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CORRIGENDUM TO “THE HOLOMORPHIC FLOW
OF THE RIEMANN ZETA FUNCTION”

KEVIN A. BROUGHAN AND A. ROSS BARNETT

Theorem 4.5 of [2], describing the topological type of the zeros of the flow § = ((s)
at reflected points off the critical line, claiming they were the same, contains an
error. We gratefully acknowledge Professor Cevat Gokcek for pointing out the error
to us.

In some circumstances the types will never be the same. Indeed, it appears to
be unlikely that a fixed formal relationship will exist between the types of flow for
¢(s) at reflected points off the critical line. Given that such points are not at hand
(and expected not to be found), examples are currently impossible to come by. The
revised statement and proof are given below. Some proof reading errors picked up
by a helpful referee are also noted.

Let

D(s) = 7 /70(3),

Theorem 0.1. Let ((s) have a zero of order m at s = Py := % + z + 1y for some
z,y > 0.

(a) Then the zero at the reflected point P— := § — x + iy for &(s), £(s) or ¢(s)
has the same local type if m > 1.

(b) If m = 1, then for £(s), &(s) or ((s), both zeros are simple.

(c) If m =1, they have the same type for £(s) or é(s)

(d) If the reflected points are centers or nodes for f(s), then arg('(Py) =
arg ¢'(P_) mod 7 is false.

Proof. (a) Differentiate the functional equation in the form
(1 —5)¢(1 =) = (s)C(s)
m times to obtain
(—1)"m@(PD)C™ (PT) = B(Py )¢ (Py),

If m > 1, the result follows from [II Theorem 2.5], since ®(s) is never zero.
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(b) Now let m = 1. The equation now reads
—B(P)C(P) = (P, )C(Py).
It follows from this equation, since ®(s) is entire and never zero, that the zeros
at Py for £(s), £(s) or ((s), are both simple.
(c) This follows by [I, Theorem 2.9] since —¢'(P_) = &'(Py) with this same
equation being true if £(s) is replaced by é(s)

(d) Let Py, P_ be centers or nodes for £(s). Then in the expression
£(Py) _ ®(PL)C(Py)
g(p)  e(P)C(Po)
the left-hand side is real. But the difference of the imaginary parts of logI'(z) at

P, /2 and P_/2is mz/2 + O(1/y), so the ratio ®(Py)/P(P-) is never real, and so
¢'(Py)/¢(P-) also cannot be real, and the result for (d) follows immediately. O

We would also wish to point out some proof reading errors. In the proof of
Lemma 4.3, arg P} and arg P_ should be argT'(P,) and arg I'( P_) respectively. In
the proof of Theorem 4.6, in the definition of C, s should be replaced by z, in the
expression for the imaginary part of S, ¢ should be omitted, and in the equation
following (5), the exponent of each exponential should include 3.
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