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ON MEINARDUS’ EXAMPLES
FOR THE CONJUGATE GRADIENT METHOD

REN-CANG LI

Abstract. The conjugate gradient (CG) method is widely used to solve a
positive definite linear system Ax = b of order N . It is well known that
the relative residual of the kth approximate solution by CG (with the initial
approximation x0 = 0) is bounded above by

2
[
∆k

κ + ∆−k
κ

]−1
with ∆κ =

√
κ + 1

√
κ − 1

,

where κ ≡ κ(A) = ‖A‖2‖A−1‖2 is A’s spectral condition number. In 1963,
Meinardus (Numer. Math., 5 (1963), pp. 14–23) gave an example to achieve
this bound for k = N −1 but without saying anything about all other 1 ≤ k <
N − 1. This very example can be used to show that the bound is sharp for
any given k by constructing examples to attain the bound, but such examples
depend on k and for them the (k + 1)th residual is exactly zero. Therefore it
would be interesting to know if there is any example on which the CG relative
residuals are comparable to the bound for all 1 ≤ k ≤ N − 1. There are two
contributions in this paper:
(1) A closed formula for the CG residuals for all 1 ≤ k ≤ N−1 on Meinardus’

example is obtained, and in particular it implies that the bound is always
within a factor of

√
2 of the actual residuals;

(2) A complete characterization of extreme positive linear systems for which
the kth CG residual achieves the bound is also presented.

1. Introduction

The conjugate gradient (CG) method is widely used to solve a positive defi-
nite linear system Ax = b (often with certain preconditioning). The basic idea is
to seek approximate solutions from the so-called Krylov subspaces. While differ-
ent implementation may render different numerical behavior, mathematically1 the
kth approximate solution xk by CG is the optimal one in the sense that the kth
approximation error A−1b − xk satisfies [11, Theorem 6:1]

(1.1) ‖A−1b − xk‖A = min
x∈Kk

‖A−1b − x‖A,
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N=100

Equidist eigenvalues on [δ, 1] 

δ=10 -1, [minλ j ,max λj]=[0.1,1]

δ=10 -2, [min λ j,maxλj]=[0.01,1]
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Random eigenvalues on [δ ,1]

δ =10-1, [minλj,maxλ j ]=[0.10469,0.98909]

δ =10-2, [minλj,maxλj ]=[0.015159,0.988]

Figure 1.1. Conjugate gradient method for Ax = b with A =
diag(λ1, λ2, . . . , λn) and b the vector of all ones—Ratios of (1.4)
over the actual residuals for equidistant or random distributed λj ’s

or, equivalently, the kth residual rk = b − Axk satisfies

(1.2) ‖rk‖A−1 = min
x∈Kk

‖b − Ax‖A−1 ,

where Kk ≡ Kk(A, b) is the kth Krylov subspace of A on b defined as

(1.3) Kk ≡ Kk(A, b) def= span{b, Ab, . . . , Ak−1b},

and M -vector norm ‖z‖M
def=

√
z∗Mz. Here the superscript “·∗” takes conjugate

transpose. In practice, xk is computed recursively from xk−1 via short term recur-
rences [4, 7, 10, 19]. But exactly how it is computed, though extremely crucial in
practice, is not important to our analysis here in this paper.

CG always converges for positive definite A. In fact, we have the following well
known and frequently referenced error bound (see, e.g., [4, 10, 19, 22]):

(1.4)
‖rk‖A−1

‖r0‖A−1
≡ ‖A−1b − xk‖A

‖A−1b‖A
≤ 2

[
∆k

κ + ∆−k
κ

]−1
,

where κ ≡ κ(A) = ‖A‖2‖A−1‖2 is the spectral condition number, generic notation
‖ · ‖2 is for either the spectral norm (the largest singular value) of a matrix or the
euclidian length of a vector, and

(1.5) ∆t
def=

√
t + 1

|
√

t − 1|
for t > 0

that will be used frequently later for different t. The widely cited Kaniel [13]
(1966) gave a proof of (1.4) while saying “This result is known” with a pointer to
Meinardus [18] (1963). The same bound was proved to hold for Richardson-like
processes [5, pp. 28–31], making it likely that (1.4) could be known before 1963
because their proofs do not differ much.

This paper is concerned with how sharp this well-known error bound is. Consider
A = diag(λ1, λ2, . . . , λn) and b the vector of all ones, where λj ∈ [δ, 1] is either
randomly or equidistantly distributed on the interval. Figure 1.1 plots the ratios
of the residual bounds by (1.4) over the actual residuals. What it shows is that
initially for small k, bounds by (1.4) are good indications of actual residuals, but
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as k becomes larger and larger, this bound overestimates the actual ones too much
to be of any use. Are the phenomena in Figure 1.1 representative? Often this is
what people observed [20], known as superlinear convergence.

In [18], Meinardus devised an N × N positive definite linear system Ax = b for
which he proved that

‖rN−1‖A−1

‖r0‖A−1
= 2

[
∆N−1

κ + ∆−(N−1)
κ

]−1

,

but without saying anything about all other 1 ≤ k < N − 1. This example of
Meinardus’ can be easily modified to give examples which achieve the error bound
in (1.4) for any given 1 ≤ k < N−1; e.g., trivially embed an example of Meinardus’
of dimension k + 1 with zero blocks to make it of dimension N . Greenbaum [10,
p. 52] and [9] claimed that the error bound for a given k can be attained for A
having eigenvalues at the extreme points of a translated Chebyshev polynomial of
degree k and some particular b whose explicit form was not given, however. The
same conclusion can be reached from [1, p. 561] if A’s eigenvalues are chosen as
Greenbaum’s. This in a sense shows that the error bound in (1.4) is sharp and
cannot be improved in general. But examples, i.e., A and b, constructed as such
depend on the given step-index k and CG on any of these examples for k other
than the example it was constructed for behaves much differently and in particular
rk+1 = 0 exactly. So this only proves that the error bound is “locally” sharp: for
given k,

(1.6) max
κ(A)=γ

2
[
∆k

γ + ∆−k
γ

]−1

‖rk‖A−1/‖r0‖A−1
= 1.

What about its “global ” sharpness? For example,

(1.7)
Is there any positive definite system Ax = b for which relative
residuals ‖rk‖A−1/‖r0‖A−1 achieve the error bounds by (1.4) for
all 1 ≤ k < N − 1?

This question turns out to be too strong and the answer is “no” by Kaniel [13,
Theorem 4.4], who showed that if rk attains the bound, then it must be rk+1 = 0,
(see also Theorem 2.2 below). So instead we ask

(1.8)

Is

sup
κ(A)=γ

max
1≤k≤n−1

2
[
∆k

γ + ∆−k
γ

]−1

‖rk‖A−1/‖r0‖A−1

modestly bounded?

This question has been recently answered positively in Li [14], using A with eigen-
values being the translated zeros of Nth Chebyshev polynomial of the first kind. It
is proved there that the ratio in (1.8) can be bounded from above by a bound that
asymptotically approaches to

√
2∆γ/

√
∆2

γ − 1 as k goes to infinity. It depends on

κ(A) = γ and, unfortunately, can be arbitrarily large as γ → 1+. A much stronger
bound on the ratio, namely

√
2, is implied later in this paper.

In what follows, we shall compute the CG residuals on Meinardus’ examples for
all 1 ≤ k ≤ N −1 and investigate extreme positive linear systems for which the kth
CG residual achieves the error bound in (1.4). Before we set out to do so, let us
look at some numerical examples. Figure 1.2 plots the ratios of the error bounds
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Figure 1.2. Ratios of the error bound in (1.4) over the exact CG
residuals for Meinardus’ example.

by (1.4) over the actual CG relative residuals, i.e., the right-hand side of (1.4) over
its left-hand side, on a Meinardus’ example, where the exact CG residuals were
carefully computed within MAPLE2 with a sufficiently high precision. While it is
not surprising at all to see that the ratios are not smaller than 1, they seem not
to be bigger than

√
2 as well. This in fact will be confirmed by one of our main

results, which will also furnish another example for the global sharpness question
(1.8), in addition to the one in [14].

The rest of this paper is organized as follows. Section 2 explains Meinardus’
examples and gives our main results—the closed formula for CG residuals for a
Meinardus example and a complete characterization of extreme positive linear sys-
tems for which the kth CG residual achieves the error bound in (1.4). Proofs for
our main results are rather long and thus are given separately in Section 3 and
Section 4. Concluding remarks are given in Section 5.

Notation. Throughout this paper, Cn×m is the set of all n×m complex matrices,
Cn = Cn×1, and C = C1. Similarly define Rn×m, Rn, and R except replacing the
word complex by real. In (or simply I if its dimension is clear from the context)
is the n × n identity matrix, and ej is its jth column. The superscript “·T ” takes
transpose only. We shall also adopt MATLAB-like convention to access the entries
of vectors and matrices. i : j is the set of integers from i to j inclusive. For vector
u and matrix X, u(j) is u’s jth entry, X(i,j) is X’s (i, j)th entry, diag(u) is the
diagonal matrix with (diag(u))(j,j) = u(j); X’s submatrices X(k:�,i:j), X(k:�,:), and
X(:,i:j) consist of intersections of row k to row � and column i to column j, row k
to row �, and column i to column j, respectively.

2. Meinardus’ examples and main results

The mth Chebyshev polynomial of the first kind is

Tm(t) = cos(m arccos t) for |t| ≤ 1,(2.1)

=
1
2

(
t +

√
t2 − 1

)m

+
1
2

(
t −

√
t2 − 1

)m

for |t| ≥ 1.(2.2)

It frequently shows up in numerical analysis and computations because of its numer-
ous nice properties, for example |Tm(t)| ≤ 1 for |t| ≤ 1 and |Tm(t)| grows extremely

2http://www.maplesoft.com/.
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fast for |t| > 1. Later we will need

(2.3)
∣∣∣∣Tm

(
1 + t

1 − t

)∣∣∣∣ ≡ ∣∣∣∣Tm

(
t + 1
t − 1

)∣∣∣∣ =
1
2
[
∆m

t + ∆−m
t

]
for 1 �= t > 0.

The first equality holds because Tm(−t) = (−1)mTm(t). We shall prove the second
equality for 0 < t < 1 only and a proof for t > 1 is similar. For 0 < t < 1, we have

1 + t

1 − t
+

√(
1 + t

1 − t

)2

− 1 =
1 + t + 2

√
t

1 − t
=

1 +
√

t

1 −
√

t
= ∆t,

which proves (2.3) for 0 < t < 1. Tm(t) has m+1 extreme points in [−1, 1], so-called
the mth Chebyshev extreme nodes :

(2.4) τjm = cosϑjm, ϑjm =
j

m
π, 0 ≤ j ≤ m,

at which |Tm(τjm)| = 1. Given α < β, set

(2.5) ω =
β − α

2
> 0, τ = −α + β

β − α
.

The linear transformation

(2.6) t(z) =
z

ω
+ τ =

2
β − α

(
z − α + β

2

)
maps z ∈ [α, β] one-to-one and onto t ∈ [−1, 1]. With its inverse transformation
x(t) = ω(t− τ ), we define the so-called mth translated Chebyshev extreme nodes on
[α, β]:

(2.7) τ tr
jm = ω(τjm − τ ), 0 ≤ j ≤ m.

It can be verified that τ0m = β and τmm = α.
Now we are ready to state Meinardus examples. Assume 0 < α < β. For the

sake of presentation, set
n = N − 1.

Let Q be any N × N unitary matrix. A Meinardus’ example is a positive definite
system Ax = b with

(2.8) A = QΛQ∗, b = QΛ1/2g,

where

(2.9) Λ def= diag(τ tr
0n, τ tr

1n, . . . , τ tr
nn), g(j+1)

def=

⎧⎨⎩
√

1/τ tr
jn, for j ∈ {0, n},√

2/τ tr
jn, for 1 ≤ j ≤ n − 1.

So an example of Meinardus’ is any member of the family parameterized by unitary
Q. Theorem 2.1 is one of the two main results of this paper.

Theorem 2.1. Let 0 < α < β and let A and b be given by (2.8) and (2.9). rk is
the kth CG residual with initially r0 = b. Then

(2.10)
‖rk‖A−1

‖r0‖A−1
= ρk × 2

[
∆k

κ + ∆−k
κ

]−1

for 1 ≤ k ≤ n, where κ ≡ κ(A) = β/α and

(2.11)
1
2

<
1
2

(
1 +

2∆n
κ

∆2n
κ + 1

)
≤ ρ2

k =
1
2

(
1 +

∆2k
κ + ∆2(n−k)

κ

∆2n
κ + 1

)
≤ 1.
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Remark 2.1. (1) As far as the equality is concerned, (2.10) is valid for k = 0
as well, which corresponds to the very beginning of CG.

(2) The factor ρk is symmetrical in k about n/2, i.e., ρk = ρn−k. This phe-
nomenon certainly showed up in Figure 1.2 which equivalently plotted ρ−1

k .
(3) ρk ≤ 1 with equality if and only if k = 0 or n.
(4) ρk is strictly decreasing for k ≤ 	n/2
 (the largest integer that is no bigger

than n/2) and strictly increasing for k ≥ �n/2� (the smallest integer that
is no less than n/2), and

1√
2

< min
0≤k≤n

ρk = ρ�n/2� →
1√
2

as n → ∞.

The fact that ρn = 1 has already been established by Meinardus [18]. With
it, one can easily construct a positive definite linear system Ax = b for which
the kth CG residual achieves the error bound in (1.4). For example, A and b are
given by (2.8) and (2.9), where Λ = diag(τ tr

0k, τ tr
1k, . . . , τ tr

kk, . . .), i.e., k + 1 of A’s
eigenvalues are τ tr

0k, τ tr
1k, . . . , τ tr

kk, and g(j+1) is
√

1/τ tr
jk for j ∈ {0, k} and

√
2/τ tr

jk for

1 ≤ j ≤ k − 1 and zero for all other j, then ‖rk‖A−1/‖r0‖A−1 = 2
[
∆k

κ + ∆−k
κ

]−1.
For this example rk+1 = 0, i.e., convergence occurs at the (k + 1)th step! This is
not a coincidence, as it must be due to Kaniel [13, Theorem 4.4]. The following
theorem characterizes all extreme linear systems as such.

Theorem 2.2. Let Ax = b �= 0 be a positive definite linear system of order N , and
1 ≤ k < N . If the kth CG residual rk (initially r0 = b) achieves the error bound in
(1.4), i.e.,

(2.12)
‖rk‖A−1

‖r0‖A−1
= 2

[
∆k

κ + ∆−k
κ

]−1
,

where κ ≡ κ(A) = ‖A‖2‖A−1‖2, then the following statements hold.
(1) A = QΛQ∗ and b = QΛ1/2g for some unitary Q ∈ CN×N ,

Λ = diag(λ1, λ2, . . . , λN )

with 0 < λ1 ≤ λ2 ≤ · · · ≤ λN , and g ∈ RN with all g(j) ≥ 0.
(2)

∑
λj=λ1

g2
(j) > 0 and

∑
λj=λN

g2
(j) > 0.

(3) Let α = minj λj, and β = maxj λj, and let τ tr
jk be the translated Chebyshev

extreme nodes on [α, β]. The distinct λj’s in {λj : g(j) > 0} consist of
exactly τ tr

jk, 0 ≤ j ≤ k, i.e.,

{τ tr
jk, 0 ≤ j ≤ k} ⊂ {λj : g(j) > 0}, and

λi ∈ {τ tr
jk, 0 ≤ j ≤ k} if g(i) > 0.

(4) [13, Theorem 4.4] rk+1 ≡ 0.
(5) Let J� = {j : λj = τ tr

�k, g(j) > 0}. For some constant µ > 0,

(2.13) ‖gJ�
‖2 = µ

{ √
1/τ tr

�k, for � ∈ {0, k},√
2/τ tr

�k, for 1 ≤ � ≤ k − 1.

Remark 2.2. Any Ax = b described by items (1), (2), (3), and (5) is essentially
equivalent to an example of Meinardus’, (2.8) and (2.9), with N = k+1. Therefore
this theorem practically says that the kth CG residual rk (initially r0 = b) achieves
the error bound in (1.4) if and only if Ax = b is an example of Meinardus’. Thus
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unless N = 2, there is no positive linear system whose kth CG residual achieves
the error bound in (1.4) for all 1 ≤ k < N .

3. Proof of Theorem 2.1

We will adopt in whole the notation introduced in Section 2 and assume 0 <
α < β. Recall, in particular, n = N − 1 and A is N × N .

Theorem 2.1 will be proved through a restatement. For A as in (2.8) and (2.9),

min
x∈Kk

‖b − Ax‖A−1 = min
φk(0)=1

‖φk(A)b‖A−1(3.1)

= min
φk(0)=1

‖φk(Λ)Λ−1/2Q∗b‖2

= min
φk(0)=1

‖φk(Λ)g‖2

= min
|u(1)|=1

‖diag(g) V T
k+1,nu‖2,

where φk(t) is a polynomial of degree k, u ∈ Ck+1, and with αj+1 = τ tr
jn for

0 ≤ j ≤ n,

(3.2) Vk+1,N
def=

⎛⎜⎜⎜⎝
1 1 · · · 1
α1 α2 · · · αN

...
...

. . .
...

αk
1 αk

2 · · · αk
N

⎞⎟⎟⎟⎠ ,

a (k + 1) × N rectangular Vandermonde matrix. Note also that ‖r0‖A−1 = ‖g‖2.
Therefore, after substitution k + 1 → k, Theorem 2.1 can be equivalently stated as
follows.

Theorem 3.1. Let 0 < α < β, g as in (2.9), and Vk,N as in (3.2) with αj+1 = τ tr
jn

for 0 ≤ j ≤ n. Then

(3.3) min
|u(1)|=1

‖diag(g) V T
k,Nu‖2

‖g‖2
= ρk−1 × 2

[
∆k−1

κ + ∆−(k−1)
κ

]−1

.

for 1 ≤ k ≤ N = n + 1, where κ = β/α.

The rest of this section is devoted to the proof of this theorem. Notice that
Tj(t(z)) ≡ Tj(z/ω + τ ) is a polynomial of degree j in z; so we write

Tj(z/ω + τ ) = ajjz
j + aj−1 jz

j−1 + · · · + a1jz + a0j ,

where aij ≡ aij(ω, τ ) are functions of ω and τ in (2.5). Their explicit dependence
on ω and τ is often suppressed for convenience. For integer m ≥ 1, define upper
triangular Rm ∈ Rm×m, a matrix-valued function in ω and τ , as

(3.4) Rm ≡ Rm(ω, τ ) def=

⎛⎜⎜⎜⎜⎜⎝
a00 a01 a02 · · · a0 m−1

a11 a12 · · · a1 m−1

a22 · · · a2 m−1

. . .
...
am−1 m−1

⎞⎟⎟⎟⎟⎟⎠ ,
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i.e., the jth column consists of the coefficients of Tj−1(z/ω + τ ). Write VN = VN,N

for short and set

(3.5) SN
def=

⎛⎜⎜⎜⎝
T0(τ0n) T0(τ1n) · · · T0(τnn)
T1(τ0n) T1(τ1n) · · · T1(τnn)

...
...

...
Tn(τ0n) Tn(τ1n) · · · Tn(τnn)

⎞⎟⎟⎟⎠ .

Then V T
N RN = ST

N . Since RN is upper triangular, we have

(3.6) V T
k,N = ST

k,NR−1
k ,

a key decomposition of V T
k,N that will play a vital role later in our proofs, where

Sk,N = (SN )(1:k,:) is SN ’s first k rows. Set

(3.7) Ω = diag(2−1, 1, 1, . . . , 1, 2−1) ∈ R
N×N , Υ def= SNΩST

N .

Lemma 3.2 below says Υ is diagonal. So essentially (3.6) gives a QR-like decompo-
sition of V T

k,N .
Lemma 3.1 below is probably well known but a precise reference is hard to find.

However, it can be proved by using either Euler identity cos θ = (eιkθ + e−ιkθ)/2,
where ι =

√
−1, the imaginary unit, or the identities in [8, p. 30]. Detail is omitted.

Lemma 3.1. Let ϑkn = πk/n as in (2.4). Then

(3.8)
n∑

k=0

cos �ϑkn =

⎧⎨⎩
N, if � = 2mn for some integer m,
0, if � is odd,
1, if � is even, but � �= 2mn for any integer m.

Lemma 3.2 is known to [2, p. 33], and probably long before that. A proof can
be given with the help of Lemma 3.1, and again detail is omitted.

Lemma 3.2. Let SN , Ω, and Υ be defined as in (3.5) and (3.7). Then Υ = n
2 Ω−1.

Lemma 3.3. Let Γ = diag(µ+ν cosϑ0n, µ+ν cosϑ1n, . . . , µ+ν cosϑnn) and define
Υµ,ν

def= SNΩΓST
N , where µ, ν ∈ C. We have

(3.9) Υµ,ν =
n

4
Ω−1 (2µΩ + νH) Ω−1,

where

H =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1

1
. . . . . .
. . . 0 1

1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R
N×N .

Proof. Notice that Υµ,ν = µΥ1,0 + νΥ0,1 and Υ1,0 = SNΩST
N = Υ = n

2 Ω−1 by
Lemma 3.2. It is enough to calculate Υ0,1. Using

∑′′ to mean the first and last



MEINARDUS’ EXAMPLES FOR CONJUGATE GRADIENT METHOD 343

terms halved, we have for 0 ≤ i, j ≤ n,

(SNΩΓST
N )(i+1,j+1) =

n∑
k=0

′′(SN )(i+1,k) (µ + ν cosϑkn)(ST
N )(k,j+1)(3.10)

=
n∑

k=0

′′Ti(τkn)(µ + ν cosϑkn)Tj(τkn)

=
n∑

k=0

′′ cos iϑkn (µ + ν cosϑkn) cos jϑkn

= µ
n∑

k=0

′′ cos iϑkn cos jϑkn

+ν
n∑

k=0

′′ cos iϑkn cosϑkn cos jϑkn.

So (Υ0,1)(i+1,j+1) =
∑n

k=0
′′ cos iϑkn cosϑkn cos jϑkn. Now

4
n∑

k=0

′′ cos iϑkn cosϑkn cos jϑkn

=
n∑

k=0

′′ cos(i + j + 1)ϑkn +
n∑

k=0

′′ cos(i + j − 1)ϑkn

+
n∑

k=0

′′ cos(i − j + 1)ϑkn +
n∑

k=0

′′ cos(i − j − 1)ϑkn.

Apply Lemma 3.1 to conclude Υ0,1 = n
4 Ω−1HΩ−1 whose verification is straight-

forward, albeit tedious. �

Lemma 3.4. Let m ≤ n and ξ ∈ C such that (−2ξΩ + H)(1:m,1:m) is nonsingular.
Then the first entry of the solution to (−2ξΩ + H)(1:m,1:m) y = e1 is

y(1) =
γm
− − γm

+√
ξ2 − 1(γm

− + γm
+ )

,

where γ± = ξ ±
√

ξ2 − 1.

Proof. Expand y to have a 0th entry y(0) and a (m + 1)th entry y(m+1) satisfying

(3.11) y(0) − ξy(1) = −1, y(m+1) = 0.

Entry-wise, we have

y(i−1) − 2ξy(i) + y(i+1) = 0, for 1 ≤ i ≤ m.

The general solution has form y(i) = c+γi
+ + c−γi

−, where γ± are the two roots of
1−2ξγ +γ2 = 0, i.e., γ± = ξ±

√
ξ2 − 1. We now determine c+ and c− by the edge

conditions (3.11):

(1 − ξγ+) c+ + (1 − ξγ−) c− = −1,

γm+1
+ c+ + γm+1

− c− = 0.
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Notice γ+γ− = 1 and

(1 − ξγ+)γm+1
− − (1 − ξγ−)γm+1

+ = (γ− − ξ)γm
− − (γ+ − ξ)γm

+

= −
√

ξ2 − 1(γm
− + γm

+ )

to get

c+ =
−γm+1

−

−
√

ξ2 − 1(γm
− + γm

+ )
, c− =

+γm+1
+

−
√

ξ2 − 1(γm
− + γm

+ )
.

Finally y(1) = c+γ+ + c−γ−. �

In its present general form, the next lemma was proved in [14]. It was also
implied by the proof of [12, Theorem 2.1]. See also [16].

Lemma 3.5. If Z has full column rank, then

(3.12) min
|u(1)|=1

‖Zu‖2 =
[
eT
1 (Z∗Z)−1e1

]−1/2
.

Proof. Set v = Zu. Since Z has full column rank, its Moore-Penrose pseudo-inverse
is Z† = (Z∗Z)−1Z∗ [21] and thus u = Z†v. This gives a one-one and onto mapping
between u ∈ Cm and the column space v ∈ span(Z). Now
(3.13)

min
|u(1)|=1

‖Zu‖2 = min
u

‖Zu‖2

|u(1)|
= min

v∈ span(Z)

‖v‖2

|eT
1 Z†v| ≥ min

v

‖v‖2

|eT
1 Z†v| = ‖eT

1 Z†‖−1
2 ,

where the last min is achieved at

vopt =
(
eT
1 Z†)∗ = Z(Z∗Z)−1e1 ∈ span(Z),

which implies the “≥” in (3.13) is actually an equality, and uopt = Z†vopt/eT
1 Z†vopt.

Finally

‖eT
1 Z†‖2 =

√
eT
1 Z†(Z†)∗e1 =

√
eT
1 (Z∗Z)−1e1.

This completes the proof. �

Proof of Theorem 3.1. By Lemma 3.5,

(3.14) min
|u(1)|=1

‖diag(g)V T
k,Nu‖2

‖g‖2
=

[
eT
1

(
Vk,N [diag(g)]2V T

k,N

)−1

e1

]−1/2

‖g‖2
.

Let Γ = diag(τ tr
0n, τ tr

1n, . . . , τ tr
nn) ≡ diag(µ+ν cosϑ00, µ+ν cosϑ01, . . . , µ+ν cosϑnn),

where µ = −ωτ and ν = ω as in (2.5). Then

Vk,N [diag(g)]2V T
k,N = 2Vk,NΓ−1ΩV T

k,N(3.15)

= 2
(

eT

Vk−1,NΓ

)
Γ−1Ω

(
e ΓV T

k−1,N

)
= 2

(
eT Γ−1Ωe eT ΩV T

k−1,N

Vk−1,NΩe Vk−1,NΓΩV T
k−1,N

)
,
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where e = (1, 1, . . . , 1)T . Notice V T
k−1,N = ST

k−1,NR−1
k−1 by (3.6) to get

Vk−1,NΩe = Vk−1,NΩV T
k−1,Ne1(3.16)

= R−T
k−1 (Υ1,0)(1:k−1,1:k−1) R−1

k−1e1

= R−T
k−1 (Υ1,0)(1:k−1,1:k−1) e1,

Vk−1,NΓΩV T
k−1,N = R−T

k−1Sk−1,NΓΩST
k−1,NR−1

k−1(3.17)

= R−T
k−1 (Υµ,ν)(1:k−1,1:k−1) R−1

k−1,

in the notation introduced in Lemma 3.3. Recall3(
B11 B12

B21 B22

)−1

=
(

C−1
11 −C−1

11 B12B
−1
22

−B−1
22 B21C

−1
11 B−1

22 + B−1
22 B21C

−1
11 B12B

−1
22

)
,

assuming all inversions exist, where C11 = B11 −B12B
−1
22 B21. We have from (3.15)

eT
1

(
Vk,N [diag(g)]2V T

k,N

)−1
e1(3.18)

=
1
2

[
ζ − eT ΩV T

k−1,N

(
Vk−1,NΓΩV T

k−1,N

)−1
Vk−1,NΩe

]−1

,

where ζ = eT Γ−1Ωe. But, from (3.16) and (3.17),

eT ΩV T
k−1,N

(
Vk−1,NΓΩV T

k−1,N

)−1
Vk−1,NΩe(3.19)

= eT
1 (Υ1,0)(1:k−1,1:k−1)

[
(Υµ,ν)(1:k−1,1:k−1)

]−1

(Υ1,0)(1:k−1,1:k−1) e1

= n2eT
1

[
(Υµ,ν)(1:k−1,1:k−1)

]−1

e1,

and for k ≤ N , by Lemma 3.4 with m = k − 1 and ξ = τ ,

eT
1

[
(Υµ,ν)(1:k−1,1:k−1)

]−1

e1(3.20)

= n−1 eT
1

[
(2µΩ + νH)(1:k−1,1:k−1)

]−1
e1

=
1

nω
eT
1

[
(−2τΩ + H)(1:k−1,1:k−1)

]−1
e1

=
1

nω

γk−1
− − γk−1

+√
τ2 − 1(γk−1

− + γk−1
+ )

,

where γ± = τ ±
√

τ2 − 1. The conditions of Lemma 3.4 are fulfilled because |τ | > 1
and −2τΩ + H is diagonally dominant and thus nonsingular. Since 2ζ = ‖g‖2

2, we
have by (3.14) and (3.18)–(3.20)

(3.21) min
|u(1)|=1

‖diag(g)V T
k,Nu‖2

‖g‖2
=

[
1 − n

ωζ
√

τ2 − 1
γk−1
− − γk−1

+

γk−1
− + γk−1

+

]1/2

.

We now compute ωζ
√

τ2 − 1. Let f(z) def=
∏n

j=0(z − τ tr
jn). Then

f(z) = η(z − τ tr
0n)(z − τ tr

nn) Un−1(z/ω + τ )

3This is well known. See, e.g., [6, pp. 102-103], [23, p. 23].



346 REN-CANG LI

for some constant η, where Un−1(t) is the (n − 1)th Chebyshev polynomial of
the second kind. This is because the zeros of Un−1(z/ω + τ ) are precisely τ tr

jn =
ω(τjn − τ ), j = 1, 2, . . . , n − 1. Then, upon noticing τ tr

0n = β and τ tr
nn = α,

2ζ =
n∑

j=0

′′ 2
τ tr
jn

= − 1
τ tr
0n

+ 2
n∑

j=0

1
τ tr
jn

− 1
τ tr
nn

= −
(

1
α

+
1
β

)
− 2

f ′(0)
f(0)

= −α + β

αβ
− 2

−(α + β) Un−1(τ ) + α + β U ′
n−1(τ )/ω

αβ Un−1(τ )

=
α + β

αβ
− 2

ω

U ′
n−1(τ )

Un−1(τ )
.

Recall [3, p. 37]

2Un−1(t) =
(t +

√
t2 − 1)n − (t −

√
t2 − 1)n

√
t2 − 1

,(3.22)

2U ′
n−1(t) = n

(t +
√

t2 − 1)n + (t −
√

t2 − 1)n

t2 − 1

−
t
[
(t +

√
t2 − 1)n − (t −

√
t2 − 1)n

]
(t2 − 1)

√
t2 − 1

.

They yield

2Un−1(τ ) =
γn
+ − γn

−√
τ2 − 1

, 2U ′
n−1(τ ) = n

γn
+ + γn

−
τ2 − 1

−
τ (γn

+ − γn
−)

(τ2 − 1)
√

τ2 − 1
.

Therefore, upon noticing ω = (α + β)/2 and τ = −(β + α)/(β − α),

2ζ =
α + β

αβ
+

2
ω

n√
τ2 − 1

γn
− + γn

+

γn
− − γn

+

+
2
ω

τ

τ2 − 1
(3.23)

=
2
ω

n√
τ2 − 1

γn
− + γn

+

γn
− − γn

+

,

ωζ
√

τ2 − 1 = n
γn
− + γn

+

γn
− − γn

+

.(3.24)

Equation (3.21) and (3.24) imply

(3.25) min
|u(1)|=1

‖diag(g)V T
k,Nu‖2

‖g‖2
=

[
1 −

γn
− − γn

+

γn
− + γn

+

γk−1
− − γk−1

+

γk−1
− + γk−1

+

]1/2

.

Because τ = −(κ + 1)/(κ − 1),

γk−1
− = (−1)k−1∆k−1

κ , γk−1
+ = (−1)k−1∆−(k−1)

κ ,

and therefore

(3.26) min
|u(1)|=1

‖diag(g)V T
k,Nu‖2

‖g‖2
=

[
1 − ∆n

κ − ∆−n
κ

∆n
κ + ∆−n

κ

∆k−1
κ − ∆−(k−1)

κ

∆k−1
κ + ∆−(k−1)

κ

]1/2

.

For k = N ≡ n + 1, the right-hand side of (3.26) is 2 [∆n
κ + ∆−n

κ ]−1, as was shown
by Meinardus [18]. For any other k, we have

(3.27) min
|u(1)|=1

‖diag(g)V T
k,Nu‖2

‖g‖2
= ρk−1 × 2

[
∆k−1

κ + ∆−(k−1)
κ

]−1

.
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where

ρk−1
def=

Right-hand side of (3.26)

2
[
∆k−1

κ + ∆−(k−1)
κ

]−1

=

⎡⎢⎣
(
∆k−1

κ + ∆−(k−1)
κ

)2

4
−

(∆n
κ − ∆−n

κ )
(
∆2(k−1)

κ − ∆−2(k−1)
κ

)
4
(
∆n

κ + ∆−n
κ

)
⎤⎥⎦

1/2

=

⎡⎣1
2

(
∆k−1

κ + ∆−(k−1)
κ

)(
∆n−(k−1)

κ + ∆−[n−(k−1)]
κ

)
∆n

κ + ∆−n
κ

⎤⎦1/2

=

⎡⎣1
2

(
∆2(k−1)

κ + 1
)(

∆2[n−(k−1)]
κ + 1

)
∆2n

κ + 1

⎤⎦1/2

,

which yields (2.11). �

4. Proof of Theorem 2.2

We first prove two general lemmas for the Vandermonde matrix VN ≡ VN,N as
defined in (3.2) with arbitrary, possibly complex, nodes αj .

Lemma 4.1. Assume one or more of 1) there are fewer than n distinct αj, 2)
some αj = 0, and 3) some g(j) = 0 occur. Then

min
|u(1)|=1

‖diag(g)V T
N u‖2 =

{
0, if all αj �= 0;√∑

αj=0 |g(j)|2, otherwise.

Proof. If all αj �= 0, only cases 1) and 3) are possible. Let � be the number of
distinct αj ’s, exclude those corresponding to g(j) = 0. Then � < n. By permuting
the rows of diag(g)V T

N , we may assume that α1, α2, . . . , α� are distinct and for αj

(j > �) either it is equal to some αi (i ≤ �) or corresponding g(j) = 0. Set v ∈ CN

whose v(j) is the coefficient of zj−1 in the polynomial φ(z) =
∏�

j=1(z − αj). Then
v(1) =

∏�
j=1(−αj) �= 0, and

min
|u(1)|=1

‖diag(g)V T
N u‖2 ≤ ‖diag(g)V T

n (v/v(1))‖2 = 0,

as expected.
If some αj = 0, then since ‖diag(g)V T

N u‖2 ≥
√∑

αj=0 |g(j)|2 always for any

vector u with |u(1)| = 1, it suffices to find a vector u to annihilate all other rows
corresponding to αj �= 0. Such u can be constructed similarly to what we just
did. �

The next lemma is essentially [17, Theorems 2.1 and 3.1], but stated differently.
The proof below has a slightly different flavor.

Lemma 4.2 ([17]). Let VN ≡ VN,N be as defined in (3.2) with all nodes αj (possibly
complex) distinct, and let f(z) =

∏N
j=1(z − αj).
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(1) If all g(j) �= 0, then

(4.1) min
|u(1)|=1

‖diag(g)V T
N u‖2

‖g‖2
=

⎡⎣ N∑
j=1

(
|f(0)|

|αj | |f ′(αj)|

)2

|g(j)|−2
N∑

j=1

|g(j)|2
⎤⎦−1/2

.

(2)

(4.2) max
g

min
|u(1)|=1

‖diag(g)V T
N u‖2

‖g‖2
=

⎡⎣ N∑
j=1

|f(0)|
|αj | |f ′(αj)|

⎤⎦−1/2

,

where the maximum is achieved if and only if for some constant µ > 0,

(4.3) |g(j)| = µ

[
|f(0)|

|αj | |f ′(αj)|

]1/2

for 1 ≤ j ≤ N .

Proof. In Lemma 3.5, take Z = diag(g)V T
N . The assumptions make this Z nonsin-

gular. Therefore[
min

|u(1)|=1
‖diag(g)V T

N u‖2

]−2

= eT
1 (V̄NΦV T

N )−1e1

= eT
1 (VNΦV ∗

N )−1e1

= (V −1
N e1)∗Φ−1(V −1

N e1),

where Φ = [diag(g)]∗ diag(g) and V̄N is the complex conjugate of VN . Let y =
V −1

N e1, the first column of V −1
N which consists of the constant terms of the La-

grangian basis functions,

�j(z) =
∏
i �=j

z − αi

αi − αj
, 1 ≤ j ≤ N,

since �j(αi) = 1 for i = j and 0 otherwise, which means the jth row of V −1
N consists

of the coefficients of �j(z). Therefore

eT
1 (V̄NΦV T

N )−1e1 =
N∑

j=1

(
|f(0)|

|αj | |f ′(αj)|

)2

|g(j)|−2,

min
|u(1)|=1

‖diag(g)V T
N u‖2

‖g‖2
=

⎡⎣ N∑
j=1

(
|f(0)|

|αj | |f ′(αj)|

)2

|g(j)|−2
N∑

j=1

|g(j)|2
⎤⎦−1/2

(4.4)

≤

⎡⎣ N∑
j=1

|f(0)|
|αj | |f ′(αj)|

⎤⎦−1/2

,

where it is an equality if and only if |g(j)| are given by (4.3). �

Remark 4.1. This lemma closely relates to a result of Greenbaum [9, (2.2) and
Theorem 1] which in our notation essentially proved that if all nodes αj > 0, there
exist k of αj ’s: αj1 , . . . , αjk

such that

max
g

min
|u(1)|=1

‖diag(g)V T
k,Nu‖2

‖g‖2
= max

h
min

|u(1)|=1

‖diag(h)V T
k u‖2

‖h‖2
,
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where Vk is the k × k Vandermonde matrix with nodes αji
(1 ≤ i ≤ k). Notice the

difference in conditions: Lemma 4.3 only covers k = N , while this result of Green-
baum’s is for all 1 ≤ k ≤ N but requires all αj > 0. Greenbaum [9, Theorem 1]
also obtained an expression for the optimal h but a bit of more complicated than
we get from applying Lemma 4.3. It is not clear how to find out the most relevant
nodes αji

.

Lemma 4.3. Let ω, τ ∈ C (not necessarily associated with any interval [α, β] as
previously required), and let n = N − 1 and τ tr

jn as in (2.7) with any given ω and τ .
Suppose the Vandermonde matrix VN has nodes αj+1 = τ tr

jn for 0 ≤ j ≤ n.

(1) If all g(j) �= 0, then

min
|u(1)|=1

‖diag(g) V T
N u‖2

‖g‖2
=

nω

|τ tr
0nτ tr

nnUn−1(τ )| ·

⎡⎣⎛⎝ N∑
j=1

|g(j)|2
⎞⎠

(4.5)

×

⎛⎝ 1
(2τ tr

0n)2
|g(1)|−2 +

N−1∑
j=2

1
(τ tr

jn)2
|g(j+1)|−2 +

1
(2τ tr

nn)2
|g(N)|−2

⎞⎠⎤⎦−1/2

,

where Un−1(t) is the (n− 1)th Chebyshev polynomial of the second kind as
in (3.22).

(2)

max
g

min
|u(1)|=1

‖diag(g) V T
N u‖2

‖g‖2
(4.6)

=
nω

|τ tr
0nτ tr

nnUn−1(τ )|

⎡⎣ 1
|2τ tr

0n|
+

n−1∑
j=1

1
|τ tr

jn|
+

1
|2τ tr

nn|

⎤⎦−1

,

where the maximum is achieved if and only if for some µ > 0

(4.7) |g(j+1)| =

⎧⎨⎩ µ
√

1/|τ tr
jn|, for j ∈ {0, n},

µ
√

2/|τ tr
jn|, for 1 ≤ j ≤ n − 1.

Proof. f(z) =
∏N

j=1(z − αj) admits

f(z) = η (z − τ tr
0n)(z − τ tr

nn)Un−1(z/ω + τ ),

where η−1 is the coefficient of zn−1 in Un−1(z/ω + τ ). We have

f(0) = η τ tr
0nτ tr

nn Un−1(τ ),
f ′(τ tr

0n) = −η (τ tr
0n − τ tr

nn) Un−1(1)
= −η (τ tr

0n − τ tr
nn) n

= −η 2nω,

f ′(τ tr
nn) = −η (τ tr

nn − τ tr
0n) Un−1(−1)

= (−1)nη (τ tr
nn − τ tr

0n) n

= −(−1)nη 2nω,
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and for 1 ≤ j ≤ n − 1,

f ′(τ tr
jn) = η (τ tr

jn − τ tr
0n)(τ tr

jn − τ tr
nn)U ′

n−1(τjn)/ω

= η (τ tr
jn − τ tr

0n)(τ tr
jn − τ tr

nn)n/[ω(1 − τ2
jn)]

= −ηnω.

Therefore by Lemma 4.2, we have (4.5) and (4.6). �

Remark 4.2. As a corollary to (4.6) and the error bound in (1.4), we deduce that
the right-hand side of (4.6) is equal to |Tn(τ )| = 2 [∆n

κ + ∆−n
κ ]−1.

Proof of Theorem 2.2. Item (1) is always true for any given positive definite system
Ax = b. In fact let A = Q̃ΛQ̃∗ be its eigendecomposition, where Q̃ is unitary,
and Λ as in the theorem since A is positive definite. Set g̃ = Λ−1/2Q̃∗b. Define
g = (|g̃(1)|, |g̃(2)|, . . . , |g̃(N)|)T ∈ RN . Then g̃ = Dg for some diagonal D with
|D(j,j)| = 1. Finally A = QΛQ∗ and b = QΛ1/2g with Q = Q̃D still unitary.

Next we notice that

‖rk‖A−1 = min
x∈Kk

‖b − Ax‖A−1(4.8)

= min
pk(0)=1

‖pk(Λ)g‖2

= min
pk(0)=1

√√√√ N∑
j=1

|pk(λj)|2g2
(j),

where pk(z) denotes a polynomial of degree no more than k. If either inequality
in item (2) is violated, the effective condition number κ′ < κ(A) as far as CG is
concerned and the error bound in (1.4) gives

‖rk‖A−1

‖r0‖A−1
≤ 2

[
∆k

κ′ + ∆−k
κ′

]−1
< 2

[
∆k

κ + ∆−k
κ

]−1
,

contradicting (2.12). This proves item (2).
For item (3), we first claim that λj for which g(j) > 0 is in {τ tr

jk, 0 ≤ j ≤ k}.
Otherwise if there was a j0 such that g(j0) > 0 and λj0 �∈ {τ tr

jk, 0 ≤ j ≤ k}, then
|Tk(λj0/ω + τ )| < 1, where ω and τ are given by (2.5). Now take pk(z) = qk(z) in
(4.8), where qk(z) = Tk(z/ω + τ )/Tk(τ ), to get

‖rk‖A−1 ≤
√
|qk(λj0)|2g2

(j0)
+
∑
j �=j0

|qk(λj)|2g2
(j)

< |Tk(τ )|−1

√
g2
(j0)

+
∑
j �=j0

g2
(j)

= |Tk(τ )|−1‖r0‖A−1 ,

contradicting (2.12). This proves the claim. On the other hand, since rk �= 0, there
are at least k + 1 distinct values in {λj : g(j) > 0} and therefore {λj : g(j) > 0} ⊃
{τ tr

jk, 0 ≤ j ≤ k}. Item (3) is proved.
Item (3) says effectively A has k+1 distinct eigenvalues as far as CG is concerned

and thus rk+1 = 0. This is item (4). Kaniel [13] gave a different proof of this fact.
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Define ĝ ∈ Rk+1 by ĝ(�+1) = ‖gJ�
‖2. (4.8) gives

‖rk‖A−1 = min
pk(0)=1

√√√√ k∑
j=0

|pk(τ tr
jk)|2ĝ2

(j+1) = min
|u(1)|=1

‖diag(ĝ)V T
k+1u‖2,

where Vk+1 ≡ Vk+1,k+1 is the (k + 1) × (k + 1) Vandermonde matrix as defined in
(3.2) with nodes αj+1 = τ tr

jk for 0 ≤ j ≤ k. The condition (2.12) and the error
bound in (1.4) imply that for ĝ

min
|u(1)|=1

‖diag(ĝ)V T
k+1u‖2 = max

h
min

|u(1)|=1
‖diag(h)V T

k+1u‖2.

Lemma 4.3 shows ĝ(�+1) = ‖gJ�
‖2 must take the form of (2.13). �

5. Concluding remarks

We have found a closed formula for the CG residuals for Meinardus’ examples.
These residuals may deviate from the well-known error bounds in (1.4) by a factor
no bigger than 1/

√
2, indicating the error bounds by (1.4) governing the CG con-

vergence rate is very tight in general. Three key technical components that made
our computations possible are as follows:

(1) transforming CG residual computations as minimization problems involving
rectangular Vandermonde matrices,

(2) the QR-like decomposition V T
N = ST

NR−1
N , and

(3) the solution to min|u(1)|=1 ‖Zu‖2.
It turns out that QR-like decompositions exist for quite a few Vandermonde ma-
trices, and the combination of the three technical components have been used in
[14, 15] for arriving at the asymptotically optimally conditioned real Vandermonde
matrices, analyzing the sharpness of existing error bounds for CG and the symmet-
ric Lanczos method for eigenvalue problems.

We completely characterized the extreme positive linear systems for which the
kth CG residual achieves the error bound in (1.4). Roughly speaking, as far as CG
is concerned, these extreme examples are nothing but one of Meinardus’ examples
of order k + 1. As a consequence, unless N = 2 there is no positive linear system
whose kth CG residual achieves the error bound in (1.4) for all 1 ≤ k < N .
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