
MATHEMATICS OF COMPUTATION
Volume 77, Number 261, January 2008, Pages 227–241
S 0025-5718(07)01959-X
Article electronically published on July 26, 2007

THE COMPLETION OF LOCALLY REFINED SIMPLICIAL
PARTITIONS CREATED BY BISECTION

ROB STEVENSON

Abstract. Recently, in [Found. Comput. Math., 7(2) (2007), 245–269], we
proved that an adaptive finite element method based on newest vertex bisection
in two space dimensions for solving elliptic equations, which is essentially the
method from [SINUM, 38 (2000), 466–488] by Morin, Nochetto, and Siebert,
converges with the optimal rate.The number of triangles N in the output
partition of such a method is generally larger than the number M of triangles
that in all intermediate partitions have been marked for bisection, because
additional bisections are needed to retain conforming meshes.A key ingredient
to our proof was a result from [Numer. Math., 97(2004), 219–268] by Binev,
Dahmen and DeVore saying that N −N0 ≤ CM for some absolute constant C,
where N0 is the number of triangles from the initial partition that have never
been bisected. In this paper, we extend this result to bisection algorithms
of n-simplices, with that generalizing the result concerning optimality of the
adaptive finite element method to general space dimensions.

1. Introduction

Nowadays, adaptive finite element methods are a popular tool for the numerical
solution of boundary value problems. Compared to non-adaptive finite element
methods, they have the potential to achieve the optimal work-accuracy balance
allowed by the polynomial degree, under much milder smoothness conditions on
the solution of the boundary value problem.

The basic loop of an adaptive finite element method consists of computing the
finite element solution with respect to the current partition; computing an a posteri-
ori error estimator, being a sum of local error indicators associated to the individual
elements; a marking of those elements for refinement which correspond to the largest
error indicators; and finally, the construction of the next partition by refining the
marked elements, generally together with elements in some surrounding in order to
retain structural properties of the partition needed to apply the error estimator in
the next iteration. We refer to this refinement of elements in the surrounding of
the marked ones as the completion of the partition.

In this paper, we confine ourselves to partitions into n-simplices, as a basic re-
finement step we use bisection, and as the structural property of the partition we
require conformity, meaning that the intersection of any two different simplices in

Received by the editor September 23, 2005 and, in revised form, May 3, 2006.
2000 Mathematics Subject Classification. Primary 65N50, 65Y20, 65N30.
Key words and phrases. Adaptive finite element methods, conforming partitions, bisection,

n-simplices.
This work was supported by the Netherlands Organization for Scientific Research and by the

European Community’s Human Potential Programme under contract HPRN-CT-2002-00286.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

227



228 ROB STEVENSON

the partition is either empty or a common hyperface of both simplices. In this set-
ting, in order to retain conformity, a bisection of a simplex has to be complemented
by bisections of some of its neighbours, which in turn may induce bisections of their
neighbours and so on. The complexity of this completion process is being studied
in this paper. The advantage of the sketched approach is that highly locally refined
partitions can be generated, the arising simplices are uniformly shape regular, and
that finite element spaces with respect to refined partitions are nested. Alterna-
tively, one may consider non-conforming partitions generated by other refinement
strategies. In that case, a valid error estimator will require that the “amount of non-
conformity” is bounded, among other things meaning that the number of hanging
vertices per element has to be uniformly bounded. So also then refinements cannot
be made on a purely individual element basis, and similar questions arise as with
the approach studied here.

In [BDD04], considering conforming partitions into triangles generated by the
so-called newest vertex bisection rule starting from some fixed initial conforming
triangulation, Binev, Dahmen and DeVore showed that the total number of tri-
angles in the partition at termination of the adaptive finite element method is
bounded by some absolute multiple of the number of triangles that were marked
for refinement in all iterations. In other words, all additional bisections to retain
conformity of all intermediate partitions inflate the final number of triangles by not
more than a constant factor. In [Ste06], we used this result to prove optimal com-
putational complexity of an adaptive linear finite element method, essentially the
method introduced in [MNS00], in the following sense: Whenever for some s > 0,
the solution can be approximated within a tolerance ε > 0 in energy norm by a
continuous piecewise linear function with respect to a partition generated by newest
vertex bisection with O(ε−1/s) triangles, and one knows how to approximate the
right-hand side in the dual norm with the same rate with piecewise constants; then
this adaptive method produces approximations that converge with this rate, using
a number of operations that is of the order of the number of triangles in the output
partition. This result can be generalized to higher order elements and/or more
than two space dimensions, for the latter generalization assuming that the result
of Binev, Dahmen and DeVore concerning newest vertex bisection of triangles can
be generalized to more space dimensions, which is the topic of this paper.

Bisection of n-simplices has been studied in [Bän91, Kos94, AMP00] for n = 3,
and in [Mau95, Tra97] for general n, and this work has been inspired by all of these
references. See also [Bey00] for refinement strategies not based on bisection. In
order to be able to generalize the result from [BDD04], it will be important that
each uniform refinement of the fixed initial conforming partition is conforming. Here
with a uniform refinement, we mean a partition in which all simplices have been
created by an equal number of bisections. Conformity of all uniform refinements
is not guaranteed with the methods from [Bän91, AMP00]. The other methods
require conditions on the initial partition in addition to conformity. In this paper,
we apply the bisection rules from [Mau95, Tra97]. We relax the conditions on the
initial partition to their minimum. For n = 2, the resulting conditions can be
satisfied for any conforming partition. We show that for n > 2, any conforming
partition of n-simplices in any case can be refined to a valid initial partition for
our bisection method. For the bisection method being applied inside an adaptive
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finite element method, we show that the result from [BDD04] generalizes to n-
dimensions: The total number of n-simplices in the partition at termination of the
method can be bounded by some absolute multiple of the number of n-simplices
that were marked for refinement in all iterations.

This paper is organized as follows: In §2, we recall results concerning recurrent
bisections of a single n-simplex. In §3, we show that in order to verify conformity
of a partition, we only have to check whether (n−1)-dimensional hyperfaces match
to (n − 1)-dimensional hyperfaces, where lower-dimensional hyperfaces can then
be ignored. In §4, we formulate minimal conditions on the initial partition under
which all uniform refinements are conforming. In Appendix A, we show that these
conditions can always be satisfied by some initial refinement of any given conforming
subdivision into n-simplices. In §5, we demonstrate how local refinements can be
made while retaining conformity. Finally, in §6, we prove that the result of Binev,
Dahmen and DeVore generalizes to n-dimensions.

2. Bisection of a single simplex

Let 2 ≤ n ≤ m. An n-simplex, or briefly, simplex T in Rm is the convex hull of
n + 1 points x0, . . . , xn ∈ Rm that do not lie on a (n− 1)-dimensional hyperplane.
We will identify T with the set of its vertices {x0, . . . , xn}. For 0 ≤ k ≤ n − 1, a
simplex spanned by k + 1 vertices of T is called a hyperface of T . For k = n− 1, it
will be called a true hyperface, and for k ≤ n− 2 it will called a lower dimensional
hyperface.

Corresponding to a simplex {x0, . . . , xn}, we will distinguish between n(n + 1)!
tagged simplices given by all possible ordered sequences (x0, x1, . . . , xn)γ and types
γ ∈ {0, . . . , n − 1}. Given a tagged simplex T = (x0, x1, . . . , xn)γ , its children are
the tagged simplices

(x0,
x0+xn

2 , x1, . . . , xγ , xγ+1, . . . , xn−1)(γ+1)modn

and

(xn, x0+xn

2 , x1, . . . , xγ , xn−1, . . . , xγ+1)(γ+1)modn,

where the sequences (xγ+1, . . . , xn−1) and (x1, . . . , xγ) should be read as being
void for γ = n − 1 and γ = 0, respectively. So these children are defined by
bisecting the edge x0xn of T , i.e., by connecting its midpoint with the other vertices
x1, . . . , xn−1, and by an appropriate ordering of their vertices, and by having type
(γ + 1)modn. See Figure 1 for an illustration. Corresponding to a tagged simplex
T = (x0, . . . , xn)γ , we set

TR = (xn, x1, . . . , xγ , xn−1, . . . , xγ+1, x0)γ ,

which is the tagged simplex that has the same set of children as T , and in this sense
is equal to T . So actually we distinguish between 1

2n(n + 1)! tagged simplices.
The edge x0xn is called the refinement edge of T . In the n = 2 case, the

vertex opposite to this edge is known as the newest vertex, and the procedure is
known as newest vertex bisection. A tagged simplex that is created by applying �
recursive bisections to T is called a level � descendant of T . One may verify that
the refinement edge of a tagged simplex of type 0 will not be further cut until the
creation of level n + 1 descendants. Generally, this is not true for a tagged simplex
of type unequal to 0. Yet, an edge will never be cut on two consecutive levels.
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Figure 1. Bisection of a tagged tetrahedron of type 0 with the
next two level cuts indicated

The above bisection rule was introduced in [Tra97] and, in different notation, in
[Mau95]. The idea behind it is that when starting with a so-called Kuhn simplex,
giving it type 0, recurrent bisections always cut the longest edge. A Kuhn simplex
is a simplex of the form {xπ

0 , . . . , xπ
n} with xπ

i =
∑i

j=1 eπ(j), π being a permutation
of {1, . . . , n}, and {e1, . . . , en} the canonical basis for Rn. The set of the n! Kuhn
simplices form a partition of the n-dimensional hypercube. The following result
was proven in [Tra97, Mau95]

Theorem 2.1. All 2� level �-descendants of a tagged Kuhn simplex (xπ
0 , . . . , xπ

n)0
are mutually congruent. Moreover, the level n descendants are congruent to
(xπ

0 , . . . , xπ
n)0 up to a magnification factor 1

2 . All these congruence mappings be-
tween pairs of tagged simplices preserve the ordering of the vertices, showing that
all descendants of (xπ

0 , . . . , xπ
n)0 have at most n different shapes.

Now let T = (x0, . . . , xn)0 be an arbitrary tagged n-simplex of type 0. Then
given arbitrary tagged Kuhn simplices (xπ

0 , . . . , xπ
n)0 of type 0, there is a unique

affine mapping FT : Rn → Rn such that F (xi) = xπ
i (0 ≤ i ≤ n). The definition of

the bisection rule shows that the level � descendants of T are the images under F−1
T

of the level � descendants of (xπ
0 , . . . , xπ

n)0. From Theorem 2.1 we conclude that
the smallest angle of any descendant of T stays away from zero only dependent on
the smallest angle in T . The same is true for T being a tagged simplex of type
γ ∈ {0, . . . , n − 1} since its 2n−γ level n − γ descendants are of type 0.

3. Partitions and conformity

Let Ω ⊂ Rn be an open set. A locally finite collection P of mutually essentially
disjoint n-simplices in Rn is called a partition of Ω when Ω =

⋃
T∈P T . Usually a

partition P is called conforming when the intersection of any two different T, T ′ ∈ P
is either empty, or a hyperface of both simplices. In case Ω lies simultaneously
on both sides of an (n − 1)-dimensional part of its boundary, this condition is
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unnecessarily restrictive. Instead, we will call P to be conforming when:

For any T ∈ P, ∂Ω ∩ T is the union of hyperfaces of T.(C1)

Each x ∈ T ∩ T ′ (T, T ′ ∈ P ) for which for any open ball B � x, any(C2)

y ∈ T ∩ B ∩ Ω, y′ ∈ T ′ ∩ B ∩ Ω are connected by a path through B ∩ Ω,

lies on a joint hyperface of T and T ′.

See Figure 2 for an illustration.

T

set of x as meant in (C2)

T ′

Figure 2. Tetrahedra in a conforming (left) or nonconforming
(right) partition of R3\[0, 1]2 ×{0}. Dashed edges are in R2 ×{0}

Remark 3.1. When Ω nowhere lies simultaneously on both sides of an (n − 1)-
dimensional part of its boundary, a path as meant in (C2) always exists, so that
(C2) means that each x ∈ T ∩ T ′ lies on a joint hyperface of T and T ′, or, that
T ∩ T ′ is the union of joint hyperfaces of T and T ′. Since furthermore T ∩ T ′ is
convex, we conclude that in this case T ∩T ′, if not empty, is a joint hyperface, i.e.,
(C2) is equivalent to the commonly used definition of conforming.

If, in addition, ∂Ω is everywhere (n − 1)-dimensional, i.e., if Ω = int(Ω), then
(C2) implies (C1). Indeed, let T ∈ P such that ∂Ω∩T is not the union of hyperfaces
of T . Since int(T ) ⊂ int(

⋃
T ′∈P T ′) = Ω, this means that T has a hyperface F that

contains in its interior both an x ∈ ∂Ω and an y ∈ Ω. Since Ω is open, there is an
open ball B ⊂ Rn such that, with Py := {T ′ ∈ P : T ′ � y}, y ∈ B ⊂

⋃
T ′∈Py

T ′.
Since the intersection of any two simplices from Py is a joint hyperface that contains
y, we have that F =

⋂
T ′∈Py

T ′. As a consequence, there exists an open ball
B′ ∈ Rn, such that x ∈ B′ ⊂

⋃
T ′∈Py

T ′, and so x ∈ int(
⋃

T ′∈Py
T ′) ⊂ Ω, which

gives a contradiction.

The next theorem simplifies the task of verifying whether a partition is con-
forming. Basically it says that if in a partition true hyperfaces coincide with true
hyperfaces, then this automatically holds true for lower dimensional hyperfaces.
Different T, T ′ ∈ P that share a true hyperface, and for which T ∩ T ′ ∩ Ω �= ∅, will
be called neighbours.
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Theorem 3.2. A partition P satisfies (C2) if and only if any T, T ′ ∈ P , for which
T ∩T ′∩Ω contains a point interior to a true hyperface of T (or T ′), are neighbours.

Proof. Let P satisfy (C2) and let x ∈ T ∩ T ′ ∩ Ω. Then for any open ball B � x,
B ∩ T ∩ T ′ ∩Ω is connected, and so x lies on a joint hyperface of T and T ′. When
x is interior to a true hyperface of T , we conclude that T and T ′ are neighbours.

For proving the opposite implication, let B � x in the definition of (C2) be small
enough such that, with Px := {S ∈ P : S � x}, B∩T ∩T ′∩Ω ⊂

⋃
S∈Px

S. Consider
a path in B ∩ Ω connecting points y ∈ T ∩ B ∩ Ω, y′ ∈ T ′ ∩ B ∩ Ω. Since B ∩ Ω
is open, such a path can be arranged not to cross lower dimensional hyperfaces of
any S ∈ Px. Let T = S0, . . . , Sp = T ′ be the ordered sequence of simplices in Px

that is passed when traveling along this path connecting y and y′. By assumption,
and the construction of the path, for any 1 ≤ i ≤ p, Si−1 and Si are neighbours.
We will now show that for 1 ≤ q ≤ p,

⋂q
i=0 Si is a hyperface of Sq. For q = 1

it is true, and let us assume that it is true for a q − 1 ≥ 1. Then
⋂q

i=0 Si, being
the intersection of the hyperfaces

⋂q−1
i=0 Si and Sq−1 ∩ Sq of Sq−1, is a hyperface of

Sq−1 that is contained in Sq−1 ∩ Sq, and thus is a hyperface of Sq. The point x is
contained in

⋂p
i=0 Si, which by applying the above result for q = p, is a hyperface

of T ′, and similarly of T . �

4. Partitions created by refinements

In the remainder of this paper, we will exclusively consider partitions of tagged
simplices that can be created by recurrent bisections, as discussed in §2, starting
from some fixed initial partition P0 of tagged simplices of some fixed type γ. So
whenever we refer to a partition P , we mean a partition of this kind, and any
T ∈ P is a descendant, with some level �(T ), of a simplex from P0. A partition P
is a uniform refinement of P0 when all its simplices have the same level.

From Theorem 2.1, we infer that all partitions are uniformly shape regular only
dependent on P0 and n, meaning that the ratio of the radii of the smallest circum-
scribed and largest inscribed balls of any T is uniformly bounded, only dependent
on P0 and n. More particular, there exist constants d, D > 0, only dependent on
P0 and n, such that for any T ,

(4.1) d2−�(T ) ≤ meas(T ), diam(T ) ≤ D2−�(T )/n.

In the following we will call two neighbouring tagged simplices T = (x0, . . . , xn)γ ,
T ′ = (x′

0, . . . , x
′
n)γ′ reflected neighbours when the ordered sequence of vertices of

either T or TR coincides with that of T ′ on all but one position. We will always
assume that P0 satisfies the following 2 conditions:

(a) P0 is conforming.

(b) Any two neighbouring tagged simplices T = (x0, . . . , xn)γ , T ′ = (x′
0, . . . , x

′
n)γ

from P0 match in the sense that if x0xn or x′
0x

′
n is on T ∩ T ′, then T and T ′ are

reflected neighbours. Otherwise, the pair of neighbouring children of T and T ′ are
reflected neighbours.

Remark 4.1. If T and T ′ are reflected neighbours, then the pair(s) of their neigh-
bouring children are reflected neighbours. The opposite statement, however, is not
true. E.g., for n = 2 and arbitrary γ ∈ {0, 1}, neighbours T = (x0, x1, x2)γ and
T ′ = (x′

0, x
′
1, x

′
2)γ are reflected neighbours when x0x2 = x′

0x
′
2 or x1 = x′

1. They
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are already matching when x0x2 = x′
0x

′
2 or x1, x

′
1 ∈ T ∩ T ′; see Figure 3 for an

illustration.
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Figure 3. Matching neighbours for n = 2, and their level 1 and
2 descendants. The neighbours in the rightmost picture are not
reflected neighbours, but the pair of their neighbouring children
are.

Remark 4.2. Instead of (b), in [Mau95, Tra97] it was required that for any neigh-
bouring tagged simplices T and T ′ the ordered sequence of their vertices coincides
on all but one position (being the definition of reflected neighbours in [Tra97]),
which is thus an even stronger condition than being reflected neighbours in our ter-
minology. As shown in [Tra97], for a simply connected domain, it can be satisfied if
and only if each (n− 2)-dimensional hyperface not on the boundary of the domain
is shared by an even number of simplices. For n = 2, it means that the valence
of any interior vertex should be even. On the other hand, for n = 2 condition (b)
corresponds to the condition described in [BDD04, Lemma 2.1]. There it is shown
that for any conforming partition into triangles there exists a local numbering of
the vertices that satisfies (b).

We do not know whether for n > 2, condition (b) can be satisfied for each
conforming partition. Therefore, inspired by such a construction for n = 3 in
[Kos94], in Appendix A we show that any conforming partition of n-simplices can
be refined to a conforming partition P0 of tagged simplices of type n− 1 such that
any two neighbours are reflected neighbours, which is thus stronger than needed
for (b).

We now proceed assuming P0 satisfies (a) and (b).

Theorem 4.3. Any uniform refinement P of P0 is conforming.

Proof. Since P is a refinement of P0, it satisfies (C1). Thanks to Theorem 3.2, it
only remains to show that any T, T ′ ∈ P , for which T ∩ T ′ ∩ Ω contains a point
interior to a true hyperface of T (or T ′), are neighbours. If T and T ′ have the
same ancestor in P0, then this has been shown in [Tra97, §5]. Otherwise, with
different ancestors S = (x0, . . . , xn)γ and S′ = (x′

0, . . . , x
′
n)γ from P0 of T and T ′,

respectively, S ∩ S′ ∩ Ω contains a point interior to a true hyperface of S (or S′),
and so S and S′ are neighbours by (a).

If x0xn or x′
0x

′
n is on S ∩ S′, then S and S′ are reflected neighbours by (b), and

so on any level � the subdivision of S into 2� descendants is a reflection in S ∩S′ of
the corresponding subdivision of S′. This is easily seen when the ordered sequences
of vertices of S and S′ coincide on all but one positions, but the same is true when
the ordered sequences of vertices of SR and S′ coincide on all but one positions,
since SR and S have the same children. We conclude that in this case T and T ′ are
neighbours.
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Otherwise, (b) shows that the children of S and S′ that have S∩S′ as a hyperface,
and thus which contain T and T ′, respectively, are reflected neighbours. The same
argument shows that T and T ′ are neighbours also in this case. �

Remark 4.4. Giving our bisection rule, (b) and obviously (a) are actually also
necessary conditions for conformity of all uniform refinements of P0. Indeed, since
an edge is never cut on two consecutive levels, if T and T ′ as in (b) both have their
refinement edge not on T∩T ′, then the pair of their neighbouring children have their
refinement edges on their common true hyperface. So, to show the necessity of (b),
it is sufficient to show that, for any γ, if any of two neighbours T = (x0, . . . , xn)γ ,
T ′ = (x′

0, . . . , x
′
n)γ have their refinement edge on T ∩ T ′, then the union of their

level � descendants can only form conforming partitions for any � when T and T ′

are reflected neighbours. Suppose they are not, meaning that the ordered sequences
of vertices of both T , T ′ and TR, T ′ differ on more than one position. It is needed
that x0xn = x′

0x
′
n, since otherwise already their level 1 descendants do not form a

conforming partition. By possibly replacing T by TR, we may assume that x0 = x′
0

and xn = x′
n. By the assumption that the ordered sequences of vertices differ on

more than one position, and the fact that T and T ′ are neighbours, there exists an
i ∈ {1, . . . , n − 1} with xi �= x′

i and xi or x′
i on T ∩ T ′. For each �, there exists

one level � descendant T� (T ′
�) of T (T ′) having vertex x0 (x′

0) and a true hyperface
on T ∩ T ′. So as long as for increasing �, the union of the level � descendants of
T and T ′ form a conforming partition, T� and T ′

� are neighbours. At some level
�, however, depending on i and γ, T� will be cut along x0xi and T ′

� along x′
0x

′
i,

meaning that on level �+1 the partitions are nonconforming, completing the proof
of the necessity of (b).

Remark 4.5. In [Bän91, AMP00], algorithms for bisection tetrahedra, i.e., for n = 3,
are formulated that do not require a matching of neighbours in the initial partition.
With these methods, however, Theorem 4.3 is generally not valid; only uniform
refinements with levels divisible by n are guaranteed to be conforming. The result
of Theorem 4.3, however, will be heavily used in the following. An interesting
open question is whether the tetrahedra on level n generated by the algorithms
from [Bän91, AMP00] can be retagged so that (b) is satisfied. In contrast to
the construction from Appendix A, this would give an initial refinement based
on bisections. For n = 2, starting with an arbitrary tagging of the triangles, the
triangles on level 2 can always be locally retagged such that (b) is valid (see [BDD04,
p. 229]), whereas a suitable tagging of the initial partition might not be easy to
find.

In the following, tagged neighbours will be called compatibly divisible when they
have the same refinement edge. For a partition P , and T ∈ P , we set

N(P, T ) := {neighbours T ′ of T in P that contain the refinement edge of T}.

Corollary 4.6. For any partition P , T ∈ P , and T ′ ∈ N(P, T ), either
• �(T ′) = �(T ) and T, T ′ are compatibly divisible, or
• �(T ′) = �(T ) − 1 and T is compatibly divisible with one of the children of

T ′.

Proof. For some p ≥ 2, let T1, T2 be neighbours with �(T1) = �(T2) − p. Then
there is a level p descendant of T1 that contains a point of T2 ∩Ω interior to a true
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hyperface. Theorem 4.3 shows that this level p descendant is a neighbour of T2,
i.e., that it has a true hyperface in common with T2 and thus with T1. Since a level
p ≥ 2 descendant of T1 has less than n − 1 vertices in common with T1, we arrive
at a contradiction, and conclude that the levels of neighbours differ at most one.

Now let T ′ ∈ N(P, T ) with �(T ′) = �(T )+1. Then again Theorem 4.3 shows that
one of both children of T is a neighbour of T ′. However, since T has its refinement
edge on T ∩ T ′ this cannot be the case.

Concerning the two remaining cases, if �(T ′) = �(T ), then T, T ′ are indeed
compatibly divisible, since otherwise the uniform refinement with simplices of level
�(T ) + 1 would not be conforming.

If �(T ′) = �(T )− 1, then one of both children of T ′ has a point of T ∩Ω interior
to a true hyperface, so that they are neighbours by Theorem 4.3. Since the uniform
refinement with simplices of level �(T )+1 is conforming, we conclude that this child
and T are compatibly divisible. �

5. Local refinements while retaining conformity

Let P be a conforming partition, and let M ⊂ P be a subset of simplices that
have been marked for bisection. After bisecting the simplices from M , a gener-
ally nonconforming partition P ′ arises. To restore conformity, one may apply the
following completion algorithm:
complete[P ′]
for T ∈ P ′, for which there exists a T ′ ∈ P ′ such that T ∩ T ′ ∩ Ω contains a point

interior to a hyperface of T , whereas T and T ′ are not neighbours
do bisect T
until such T do not exist

Since the only way to cure the situation as described in the for-statement, or
towards curing it, is to bisect T , complete[P ′] outputs the smallest conforming
refinement of P ′, assuming that a conforming refinement exists. This, however,
holds true, since with � = maxT ′∈P ′ �(T ′), the uniform partition with simplices of
level � is a conforming refinement of P ′. When implementing complete, care has
to be taken to ensure that the computational work is of the order of the number of
bisections that are made.

An alternative for first bisecting all simplices in M and then restoring conformity
by a call of complete, is, when running over T ∈ M , for each of those T to replace
the current partition P by its smallest conforming refinement in which T has been
bisected. A call of the routine refine[P, T ] given below determines such a partition.
Since it bisects generally more simplices than only T , it may happen that it bisects
T ′ ∈ M for which a call has not yet been made, which call thus can be skipped.
In other words, the number of calls of refine is never larger, but might be smaller
than the number of marked simplices. Since also with this approach, only simplices
are bisected that either are marked, or whose bisection is unavoidable for obtaining
a conforming partition, again we end up with the smallest conforming partition in
which all marked simplices are bisected.

The routine refine[P, T ] is a generalization to n-dimensions of such a routine
by Kossaczký in [Kos94] for bisecting tetrahedra. Based on Corollary 4.6, the idea
is to determine, possibly by recursive calls, a closed set of compatibly divisible
neighbours that share the refinement edge with T , after which this set of simplices
can be simultaneously bisected without introducing nonconformities.
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refine[P, T ] → P ′:
% P is a conforming partition and T ∈ P .
K := ∅; F = {T}
do Fnew := ∅

forall T ′ ∈ F do
forall T ′′ ∈ N(P, T ′) with T ′′ /∈ F ∪ K do

if T ′′ compatibly divisible with T ′

then Fnew := Fnew ∪ {T ′′}
else P := refine[P, T ′′]

add to Fnew the child of T ′′ that is a neighbour of T ′

endif
endfor

endfor
K := K ∪ F
F := Fnew

until F = ∅
create P ′ from P by simultaneously bisecting all T ′ ∈ K

Theorem 5.1. P ′ := refine[P, T ] terminates, and P ′ is the smallest conforming
refinement of P in which T has been bisected. If T ′ ∈ P ′ is newly created by the
call, then �(T ′) ≤ �(T ) + 1.

Proof. Let �(T ) = 0. Then Corollary 4.6 shows that there will be no recursive calls
of refine, and that just before any evaluation of the until-statement, all T ′ ∈ K
have the same refinement edge as T , and satisfy �(T ′) = �(T ) and N(P, T ′) ⊂ K∪F .
If F �= ∅, then in the next iteration of the do-until loop, the set K will be
extended. Since, on the other hand, from the uniform shape regularity we know
that the cardinality of K is bounded, we conclude that this loop terminates. After
termination, F = ∅, and so for all T ′ ∈ K, N(P, T ′) ⊂ K, by Theorem 3.2 meaning
that by bisecting all T ′ ∈ K conformity is retained. It is clear that we cannot
confine bisection to a smaller set of simplices, and that �(T ′) = �(T ) + 1 for any
newly created T ′.

Assuming that for some � − 1 ≥ 1, the statement is true for T with �(T ) =
� − 1, let us consider T with �(T ) = �. Possible recursive calls of refine[P, T ′′]
are unavoidable, where Corollary 4.6 shows that �(T ′′) = �(T ) − 1. The induction
hypothesis then shows that such a call outputs the smallest conforming partition
in which T ′′ has been bisected, and moreover, that it does not bisect any simplex
that is already in K ∪ F , since that would create simplices with levels larger than
�(T ) = �(T ′′) + 1. Now the proof is completed using the same arguments as in the
�(T ) = 0 case. �

Assuming that the data structures allow that the determination of N(P, T ) re-
quires not more than an absolute constant number of operations, note that the
number of operations needed for P ′ := refine[P, T ] is O(#P ′ − #P ).

In addition to the properties of refine shown in Theorem 5.2, we have

Theorem 5.2. With the constant D from (4.1), any newly created T ′ by the call
refine[P, T ] satisfies

d(T ′, T ) := inf
x′∈T ′, x∈T

|x′ − x| ≤ D21/n

�(T )∑
k=�(T ′)

2−k/n

(
<

D21/n

1 − 2−1/n
2−�(T ′)

)
.
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Proof. For �(T ) = 0, any newly created T ′ is a child of a T̃ that has its refinement
edge on ∂T , so that d(T ′, T ) = 0. Note that in this case the sum over k is empty
since �(T ′) = �(T ) + 1.

Assuming that the theorem holds for �(T ) = � − 1 ≥ 0, let us consider T with
�(T ) = �. If T ′ is created by bisection of any simplex from the set K, then the
statement is proven as in the �(T ) = 0 case. If T ′ is created by a recursive call
refine[P, T ′′], then using T ∩ T ′′ �= ∅, the induction hypothesis shows that

d(T ′, T ) ≤ d(T ′, T ′′) + diam(T ′′)

≤ D21/n

�(T ′′)∑
k=�(T ′)

2−k/n + D2−�(T ′′)/n = D21/n

�(T )∑
k=�(T ′)

2−k/n,

by �(T ′′) = �(T ) − 1. �

The routine refine provides an alternative for the straightforward bisection of
marked simplices complemented with a call of complete. Here, it is mainly dis-
cussed because, in the next section, its properties proven in Theorems 5.1 and 5.2
will allow us to bound the complexity of a recurrent marking and completion pro-
cess. It turns out, however, that an implementation of this process by means of
calls of refine is particularly efficient. For this reason, this approach is followed in
the adaptive finite element package ALBERTA ([SS05]).

Remark 5.3. Inside adaptive finite element methods, simplices can be marked for
multiple bisections. This means that not only these simplices should be bisected,
but also some of their descendants, with the obvious restriction that a descendant
can only be on the list for bisection when its parent is. For example, for n = 2, the
adaptive finite element method introduced in [MNS00] selects triangles for their
bisection, and that of their children and 2 of their 4 grandchildren. The evaluation
of such multiple markings can be done by scheduling them as an ordered sequence
of groups of single markings, where the marking of a child is in the next group as
that of its parent. After finding the smallest conforming refinement in which all
simplices from a group are bisected, it may happen that bisections corresponding
to markings from the next groups have already taken place, so that these markings
can be deleted.

6. The complexity of a recurrent marking and completion process

We study the following algorithm:
P := P0

do mark some set M̄ ⊂ P for bisection
for T ∈ M̄ do

if T ∈ P % i.e., if it has not been yet bisected as a byproduct of a
% previous call of refine in this for-loop

then P := refine[P, T ]
endif

endfor
until satisfied

As we have seen, the output partition of this algorithm is the smallest conform-
ing refinement of P0 in which all marked simplices have been bisected. After the
preparations from the previous sections, the proof of the following main theorem
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concerning this algorithm follows the lines of the proof of the corresponding theorem
for n = 2 by Binev, Dahmen and DeVore. Since there are some small modifications,
we include the proof for the reader’s convenience.

Theorem 6.1 (generalizes [BDD04, Theorem 2.4] for n = 2). With M being the
set of simplices for which a call of refine is made in the above algorithm, which set
is thus not larger than the union of all marked simplices, for the output partition
P it holds that #(P\(P ∩ P0)) � #M , only dependent on the constants d, D from
(4.1), and n.

Proof. Fixing n, let a : N0 ∪ {−1} → R+, b : N0 → N be some sequences with∑∞
p=−1 a(p) < ∞,

∑∞
p=0 b(p)2−p/n < ∞, and infp≥0 b(p)a(p) > 0. Valid instances

are a(p) = (p+2)−2 and b(p) = 2p/(n+1). Let A := D( 21/n

1−2−1/n +1)
∑∞

p=0 b(p)2−p/n.
Inside this proof, P will always denote the output partition of the algorithm,

whereas any intermediate partition will be denoted as P̄ . We define λ : P × M by

λ(T ′, T ) =
{

a(�(T ) − �(T ′)) if d(T ′, T ) < A2−�(T ′)/n and �(T ′) ≤ �(T ) + 1,
0 otherwise.

For any fixed T ∈ P , and �′ ∈ N0 with �′ ≤ �(T ) + 1, there exists a uniformly
bounded number, only dependent on d and D, of T ′ ∈ P with d(T ′, T ) < A2−�(T ′)/n

and �(T ′) = �′. In view of the definition of λ, we thus have
∑

T ′∈P λ(T ′, T ) �∑∞
p=−1 a(p) < ∞, and so

∑
T∈M

∑
T ′∈P λ(T ′, T ) � #M .

In the second part of this proof, we are going to show that for all T ′ ∈ P\(P∩P0),

(6.1)
∑

T∈M

λ(T ′, T ) � 1,

only dependent on d, D and n, so that

#(P\(P ∩ P0) �
∑

T ′∈P\(P∩P0)

∑
T∈M

λ(T ′, T ) ≤
∑

T∈M

∑
T ′∈P

λ(T ′, T ) � #M,

as required.
Let T0 ∈ P\(P ∩ P0). For j ≥ 0, given that Tj has been defined and assuming

that it is not in P0, we let Tj+1 ∈ M be such that Tj has been created by the call
refine[P̄ , Tj+1]. Let s be the smallest integer such that �(Ts) = �(T0)−1. Note that
such an s exists since at some point the sequence ends with a Tj̃ ∈ P0, thus with
�(Tj̃) = 0, whereas the value �(T0) − 1 cannot be passed without being attained
because �(Tj+1) ≥ �(Tj) − 1 by Theorem 5.1. From Theorem 5.2 and (4.1), for
1 ≤ j ≤ s we have
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d(T0, Tj) ≤ d(T0, T1) + diam(T1) + d(T1, Tj)

≤
j∑

k=1

d(Tk−1, Tk) +
j−1∑
k=1

diam(Tk)

<

j∑
k=1

D21/n

1 − 2−1/n
2−�(Tk−1)/n +

j−1∑
k=1

D2−�(Tk)/n

< D(1 +
21/n

1 − 2−1/n
)

j−1∑
k=0

2−�(Tk)/n

= D(1 +
21/n

1 − 2−1/n
)

∞∑
p=0

m(p, j)2−(�(T0)+p)/n,

where m(p, j) denotes the number of k ≤ j − 1 with �(Tk) = �(T0) + p.
In case m(p, s) ≤ b(p) for all p, then the definition of the constant A shows that

d(T0, Ts) < A2−�(T0)/n, and so by definition of λ, we conclude that λ(T0, Ts) =
a(�(Ts) − �(T0)) = a(−1), which shows (6.1).

Otherwise, there exist p with m(p, s) > b(p). For each of those p, there exists
a smallest j = j(p) with m(p, j(p)) > b(p). We denote p that gives rise to the
smallest j(p) as p∗, and denote j(p∗) as j∗. Thus m(p, j∗ − 1) ≤ b(p) for all p, and
m(p∗, j∗ − 1) = b(p∗). As in the case that m(p, s) ≤ b(p) for all p, we find that for
all k ≤ j∗ − 1, d(T0, Tk) < A2−�(T0)/n and λ(T0, Tk) = a(�(Tk) − �(T0)). In view of
the definition of m(·, ·), we find that

∑
{k≤j∗−2:�(Tk)=�(T0)+p∗}

λ(T0, Tk) = m(p∗, j∗ − 1)a(p∗)

= b(p∗)a(p∗) ≥ inf
p≥0

b(p)a(p) > 0,

showing (6.1) also in this case. �

The only properties that have been used in this proof are (4.1), and that of
refine given in Theorems 5.1 and 5.2.

Appendix A. An initial refinement to satisfy condition (b)

Suppose we are given some conforming partition of n-simplices. Generalizing
upon the construction by Kossaczký in [Kos94] for n = 3, in this appendix we
construct a conforming refinement of tagged simplices of type n − 1 such that any
two neighbours are reflected neighbours.

We start with constructing a conforming subdivision of any n-simplex into
1
2 (n + 1)! subsimplices, together with a global labeling of vertices and a marking of
edges in this subdivision that satisfy the following conditions:

• a vertex on a marked edge has no label,
• the other vertices are labeled with numbers 1, . . . , n − 1,
• each subsimplex contains vertices with labels 1, . . . , n − 1 and two vertices

on a marked edge,
• the subdivision and labeling/marking is symmetric in the barycentric co-

ordinates of the original (macro-) simplex.
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For n = 2, we subdivide a triangle into three subtriangles by connecting the vertices
with the centroid. This centroid is labeled with number 1, and the edges of the
original (macro-) triangle are marked. Clearly, the above conditions are satisfied.

For n ≥ 3, assuming we have defined a valid subdivision and labeling and mark-
ing of any (n−1)-simplex, we define this for an n-simplex as follows: Create (n+1)
subsimplices by connecting the vertices with the centroid. Label the centroid with
number n − 1. Each of the subsimplices shares a face with the original (macro-)
simplex. Use the subdivision of any (n − 1)-simplex to subdivide these faces into
1
2n! labeled/marked (n − 1)-simplices. Connect the vertices on the faces with the
centroid to end with a subdivision into (n + 1) ∗ 1

2n! = 1
2 (n + 1)! simplices with a

valid labeling/marking. See Figure 4 for an illustration.

21
m

m

m

Figure 4. Subdivision of a tetrahedron into 4×3 tetrahedra with
the labeling of vertices and marking of edges

Returning to the given conforming partition of n-simplices, we subdivide each
of its simplices into 1

2 (n + 1)! subsimplices as above. Clearly this refined partition,
that will serve as the initial partition P0, is also conforming. Tagging the simplices
in P0 means specifying a type, that will be n − 1, as well as a local ordering of
the vertices in each simplex. We simply let each simplex inherit the labeling of
the vertices from the macro-simplex that contains it, with the addition that both
vertices on the marked edge are numbered 0 and n in arbitrary order; see Figure 5
for an illustration for n = 2. Neighbours within one macro-simplex are obviously
reflected neighbours, since their numbering of the vertices on the hyperface between
them is the same modulo permutations of 0 and n. The same is valid for neighbours
from different macro-simplices, because of the symmetry of the labeling in the
barycentric coordinates. We conclude that P0 satisfies condition (b).

0
0 0

1 1
1

2

22

Figure 5. Local numbering of the vertices of the subtriangles of
a macro-triangle
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