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AN INTERPOLATION ERROR ESTIMATE
IN R2 BASED ON THE ANISOTROPIC MEASURES

OF HIGHER ORDER DERIVATIVES

WEIMING CAO

Abstract. In this paper, we introduce the magnitude, orientation, and aniso-
tropic ratio for the higher order derivative ∇k+1u (with k ≥ 1) of a function
u to characterize its anisotropic behavior. The magnitude is equivalent to its
usual Euclidean norm. The orientation is the direction along which the ab-
solute value of the k + 1-th directional derivative is about the smallest, while
along its perpendicular direction it is about the largest. The anisotropic ratio
measures the strength of the anisotropic behavior of ∇k+1u. These quanti-
ties are invariant under translation and rotation of the independent variables.
They correspond to the area, orientation, and aspect ratio for triangular ele-
ments. Based on these measures, we derive an anisotropic error estimate for
the piecewise polynomial interpolation over a family of triangulations that are
quasi-uniform under a given Riemannian metric. Among the meshes of a fixed

number of elements it is identified that the interpolation error is nearly the
minimum on the one in which all the elements are aligned with the orientation
of ∇k+1u, their aspect ratios are about the anisotropic ratio of ∇k+1u, and
their areas make the error evenly distributed over every element.

1. Introduction

Numerous examples have shown that long and thin elements are useful in compu-
tation of problems with boundary or internal layers [1, 2, 14, 15, 19, 22]. A practical
question is in what direction an element should be long and how long and thin it
should be. More generally, given a fixed number of degree of freedom, what are
the characteristics of the optimal or nearly optimal mesh that produces the small-
est approximation error? Here we confine ourselves to the approximation problem
of interpolation by piecewise polynomials. For linear interpolation, the answer to
the above question has been made clear through a number of works over the past
20 years, [18, 19, 13, 21, 8]. The main conclusion is: given the area of a general
triangular element τ , the error (in various norms) for the linear interpolation of a
function u at the vertices of τ is nearly the minimum when τ is aligned with the
eigenvector (associated with the smaller eigenvalue) of the Hessian ∇2u, and the
aspect ratio (or stretch ratio) of τ is about the square root of the ratio of the larger
eigenvalue of ∇2u to the smaller one. The globally optimal or nearly optimal mesh
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can be further characterized by the equidistribution of the interpolation error over
each element [17, 10, 11].

In the case of piecewise interpolation by polynomials of degree k ≥ 2, the con-
clusion is far from clear. There are only a few papers considering the anisotropic
error estimates and mesh refinement for higher order elements. For instance, denote
by Πku the interpolation of u by polynomials of degree k. Apel derived in [2] the
following estimate for the interpolation error u − Πku over an anisotropic element
τ :

|u − Πku|W m,q(τ) ≤ c|τ |1/q−1/p
∑

i+j=k−m+1

hi
1h

j
2|∂xiyj u|W m,p(τ),

where Wm,p is the usual Sobolev space of functions whose up to m-th order deriva-
tives are Lp-integrable. h1 and h2 are the lengths of τ along x and y directions,
respectively. This estimate indicates qualitatively that when the partial derivatives
of u are of different magnitudes in different directions, an element can be long and
thin in the direction of smaller partial derivatives without compromising the overall
accuracy of interpolation. The difficulty in using this estimate for adaptive mesh
refinement is that it does not specify in what direction the partials are considered
small and thus how the element should be aligned, nor does it specify how much
the element aspect ratio should be. For example, if u is a function of x + y only,
there is no hint in this error estimate indicating that the element should be long
and thin along the constant u direction (1,−1)T . Analogously to the analysis of
linear interpolation errors, Huang [16] provided an estimate for the Wm,p-norm of
u − Πku in terms of the eigenvalues and eigenvectors of the follow matrix:

H(Dk−1u) =
∑

i+j=k−1

abs(∇2(∂xiyj u)),

where abs(A) =
√

AT A for a real matrix A. It is seen from his estimate that the
optimal triangle should be aligned with the eigenvector (associated with the smaller
eigenvalue) of H, and its aspect ratio should equal to the square root of the ratio
of the larger eigenvalue of H to the smaller one. These conclusions can be readily
applied to anisotropic mesh generation and refinement. However, since condensing
∇k+1u to H inevitably loses some information about its anisotropic behavior, this
error estimate may not be accurate, and the direction and aspect ratio based on H
may be far from optimal. For instance, let ε be a small positive number. Consider
the interpolation of u = (εx)k+1+yk+1 on a triangle by polynomials of degree k. The
best aspect ratio for the Lp-error is about ε−1, which transforms the problem into
interpolating û = ε(k+1)/2(x̂k+1+ŷk+1) on a shape regular element of the same area.
But the aspect ratio predicted by the eigenvalues of H would be ε−(k+1)/2, with
which the Lp-norm of the interpolation error would be about the same magnitude
as that of interpolating û = ε(3−k)/4x̂k+1 on a shape regular element of the same
area.

Needless to say the error for interpolation by polynomials of degree k depends on
the k + 1-th derivatives of the interpolated function u. Accurately understanding
the anisotropic behavior of ∇k+1u is crucial for the anisotropic error estimates and
mesh refinements. As pointed out in [2], page 7, a tight error estimate for k ≥ 2
relies on a “sufficiently fine description of the properties of the solution u”. A major
motivation for our work in this paper is to find a way to measure quantitatively
the anisotropic behavior of ∇k+1u. More precisely, we introduce for any k ≥ 1
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the magnitude, orientation, and anisotropic ratio of ∇k+1u. The magnitude is
equivalent to the usual Euclidean norm of ∇k+1u. The orientation of ∇k+1u is
the direction along which the absolute value of the k +1-th directional derivative is
about the smallest, while along its perpendicular direction is about the largest. The
anisotropic ratio measures the strength of the anisotropic behavior of ∇k+1u. A
critical feature for these definitions is that they are invariant under translation and
rotation of the xy-coordinates. These quantities correspond to the three geometric
features of an anisotropic triangular element: the size, the orientation, and the
aspect ratio. One may determine the size, orientation and aspect ratio of the
triangular elements according to the magnitude, orientation, and anisotropic ratio
of ∇k+1u in mesh generation and refinement.

Another motivation of this work is to find the connection among the interpola-
tion error, the geometric features of the triangular elements, and the anisotropic
features of ∇k+1u. We derive an error estimate for interpolation over a family of
triangulations that are quasi-uniform under a given Riemannian metric M . The
estimate is formulated in terms of the magnitude, orientation, and anisotropic ratio
of ∇k+1u and the metric M . Based on this estimate we identify an optimal metric
which leads to the smallest error bound for the Wm,p-seminorm of the interpolation
error. When a triangulation is quasi-uniform under the optimal metric, all elements
are aligned with the orientation of ∇k+1u, their aspect ratios approximately equal
to the anisotropic ratio of ∇k+1u, and the error over each element is about evenly
distributed. In this case, the total interpolation error can be bounded by 1

(
∑

τ∈TN

|u−Πku|pm,p,τ )1/p≤cN−(k+1−m)/2‖(Sk+1)−(k+1−m)/2Dk+1‖L2/(k+1−m+2/p)(Ω),

where N is the total number of elements, Dk+1 and Sk+1 are the magnitude and
anisotropic ratio of ∇k+1u, respectively. This error bound extends the optimal
interpolation error estimates for linear elements in [2, 10, 11, 16] to higher order
elements in R2. The above conclusions also agree with those based on the exact
error formulas in the model problems of linear interpolation of a quadratic function
(k = 1) and quadratic interpolation of a cubic function (k = 2) presented in [8] and
[9], respectively.

An outline of this paper is as follows: in Section 2 we introduce the magnitude,
orientation, and anisotropic ratio for ∇k+1u. In Section 3 we derive the error
estimate for interpolation by piecewise polynomials of degree k over triangulations
that are quasi-uniform under a given Riemannian metric M . Optimal metrics which
lead to the smallest error bound are identified. We give in Section 4 an example
to support the optimality of the metrics predicted by our error estimate. Section 5
contains some discussions.

Throughout the paper, we use c as a generic constant which is independent of
the mesh and the functions involved. It may take different values in different places.

2. Anisotropic measures of higher order derivatives

Second order derivative ∇2u. It is well-known that the anisotropic features of
the Hessian matrix ∇2u can be characterized by its eigenvalues and eigenvectors.

1Throughout this paper, we use for α > 0 the notation ‖v‖Lα) = [
∫

|v|α]1/α to denote a
non-negative functional on Lα of functions whose α-th power is Lebesgue integrable. It is the
usuall Lα norm when α ≥ 1.
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For fixed x, let

∇2u(x) = Rφ2

[
λ1 0
0 λ2

]
RT

φ2
,(1)

where |λ1| ≤ |λ2| are the eigenvalues of ∇2u(x), and Rφ2 is the matrix of rotation by
angle φ2 counter-clockwise. We define the orientation of ∇2u(x) to be the direction
of the eigenvector associated with the smaller eigenvalue of ∇2u, i.e., the direction
of angle φ2 from the x-axis. We also define the anisotropic ratio of ∇2u to be

S2 =
√
|λ2

λ1
|,

and the magnitude of ∇2u as

D2 =
1
2
(|λ1| + |λ2|).

Let ξ = (ξ, η)T ; we introduce a homogenuous polynomial of ξ as

p2(ξ) =
1
2!

(ξ · ∇)2u(x).

When ‖ξ‖ = 1, p2(ξ) is the (scaled) second order directional derivative of u(x)
along ξ. The above defined anisotropic measures of ∇2u(x) can be determined
equivalently in terms of the level curves of p2. Indeed, when λ1λ2 ≤ 0, p2 is the
product of two linear functions of ξ. It is not difficult to verify that

p2(ξ) = D2 �1(ξ) �2(ξ),(2)

where

�i(ξ) = ξ sin βi − η cos βi, i = 1, 2,(3)

with β1 and β2 being the angles of the two level-0 lines of p2 from the ξ-axis.
Moreover, these two lines divide the ξη-plane into four sectors. The orientation
φ2 of ∇2u(x) is the bisector of the two smaller sectors. Also, the anisotropic ratio
S2 = tan(α), where 2α is just the opening the smaller sectors. See [9] for more
details.

When λ1λ2 > 0, p2(ξ) is always positive or negative, and the level curves of p2 are
concentric ellipses. In this case, we define an associated polynomial p∗2(ξ) = 1

2!ξ ·Ĥξ
with

Ĥ = Rφ2

[
λ1 0
0 −λ2

]
RT

φ2
.(4)

Then p∗2 can be factored into two linear functions as in (2), and the magnitude,
orientation, and anisotropic ratio of ∇2u can be determined equivalently in terms
of the level-0 lines of p∗2(ξ).

Higher order derivative ∇mu. For m ≥ 3, ∇mu(x) is no longer a matrix. To
characterize its anisotropic behavior, we study the following homogeneous polyno-
mial for the (scaled) m-th order directional derivatives at x:

pm(ξ) =
1
m!

(ξ · ∇)mu(x).(5)

By the fundamental theorem of algebra, pm can be factored as

pm(ξ) = Dm �1 �2 · · · �m1 · q1 q2 · · · qm2 ,(6)
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where Dm is a non-negative number depending on x, and m1 + 2m2 = m. Each
�i is a linear function in the form of (3), and each qi is a quadratic function in the
form qi(x) = ξ · Hiξ, where the matrix

Hi = Rθi

[
λ

(i)
1 0
0 λ

(i)
2

]
RT

θi
(7)

with λ
(i)
1 λ

(i)
2 > 0, |λ(i)

1 | ≤ |λ(i)
2 |, and |λ(i)

1 + λ
(i)
2 | = 1. This decomposition is unique

up to the signs of �i and qi. For i = 1, 2, · · · , m2, let Ĥi be defined by Hi in the same
way as Ĥ is by ∇2u in (4), and let q∗i (ξ) = ξ · Ĥiξ. Then we define a polynomial
p∗m(ξ) as follows:

p∗m(ξ) = Dm �1 �2 · · · �m1 · q∗1 q∗2 · · · q∗m2
.(8)

Now each q∗i can be factored as q∗i (ξ) = �i′(ξ)�i′′(ξ) with �i′ and �i′′ in the form of
(3). Thus p∗m can be expressed as

p∗m(ξ) = Dm�1 �2 · · · �m.(9)

We define the magnitude of ∇mu as the coefficient Dm in (6). It is an upper
bound for all the m-th order directional derivatives of u at x. It is also equiv-
alent to

∑
i+j=m

|∂xiyj u(x)|; see Lemma 2.2 below. We define the orientation and

the anisotropic ratio of ∇mu in terms of the directions of the level-0 lines of p∗m.
Specifically, assume without loss of generality that

−π

2
< β1 ≤ β2 ≤ · · · ≤ βm ≤ π

2
.

Consider the ranges for the central angle of the m sectors:

[β1, βm], and [βj , π + βj−1], j = 2, 3, · · · , m.

Let [β, β] be the shortest interval among all of them; see Figure 1. Clearly β − β ≤
(1−1/m)π. If β−β << 1, then the absolute value of the m-th directional derivative
along the line of angle

φm =
1
2
(β + β)

from the x-axis is about the smallest, while along its perpendicular direction it
is about the largest. We define the direction of angle φm from the x-axis as the
orientation of ∇mu. We may also use cot( 1

2 (β − β)) to define the anisotropic ratio
of ∇mu. When β̄ − β ≥ π/2, the level-0 lines of p∗m(ξ) cannot be wrapped in two
opposite sectors of an acute angle. In this case, there is no obviously preferred di-
rection for general ∇mu, and we consider its anisotropic ratio equal to 1. Therefore,
we define the anisotropic ratio of ∇mu as

Sm = max(1, cot(
1
2
(β − β))).

Clearly, the larger Sm is, the stronger the anisotropic behavior of ∇mu(x).

Lemma 2.1. Let pm(ξ) be the polynomial defined in (5), and let Dm be the mag-
nitude of ∇mu. Then

(sin
π

2m
)mDm ≤ sup

‖ξ‖=1

|pm(ξ)| ≤ Dm.
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Figure 1. Contour plot of p4(ξ) for some ∇4u at a point. Here
p4(ξ) is the product of two linear factors �1(ξ) and �4(ξ), and
a quadratic factor q1(ξ), whose associated polynomial is q∗1(ξ) =
�2(ξ)�3(ξ). [β, β̄] = [β2, β1 + π]. The bold line with angle φ4 is the
orientation of ∇4u, and the anisotropic ratio S4 = cotα.

Proof. Note that for ‖ξ‖ = 1, |�i(ξ)| ≤ 1, and |qi(ξ)| ≤ 1. We have from (6) that

sup
‖ξ‖=1

|pm(ξ)| ≤ Dm.

To show the left hand side inequality, we note that there always exists a direction
ξ0 = [cos t0, sin t0]T which is at least a π/(2m) angle away from all the level-0 lines
of p∗m(ξ), i.e.,

π

2m
≤ |t0 − βi| ≤ π − π

2m
, ∀i = 1, 2, · · · , m.

Hence we have for all 1 ≤ i ≤ m,

|�i(ξ0)| = sin(|t0 − βi|) ≥ sin(
π

2m
).

Recall that for each quadratic factor qi of pm, there are two linear factors �i′(ξ)
and �i′′(ξ) of p∗m(ξ) such that q∗i (ξ) = �i′(ξ)�i′′(ξ). Thus

|qi(ξ0)| ≥ |q∗i (ξ0)| = |�i′(ξ0)| · |�i′′(ξ0)| ≥ sin2(
π

2m
).

Therefore we have
sup
|ξ|=1

|pm(ξ)| ≥ (sin
π

2m
)mDm.

�

Lemma 2.2. Let Dm be the magnitude of ∇mu. Then there exist positive constants
c1 and c2 depending on m only such that

c1Dm ≤
∑

i+j=m

|∂xiyj u| ≤ c2Dm.
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Proof. By the previous lemma, we need only to show that
∑

i+j=m

|∂xiyj u| is equiv-

alent to sup
‖ξ‖=1

|pm(ξ)|. Note that

pm(ξ) =
1
m!

m∑
i=0

(m

i

) ∂mu

∂xi∂ym−i
ξiηm−i;(10)

we have

sup
‖ξ‖=1

|pm(ξ)| ≤ 2m

m!
max

0≤i≤m
|∂xiym−iu| ≤ 2m

m!

∑
i+j=m

|∂xiyj u|.

On the other hand, we see from (10) that

∂xiyj u = ∂ξiηj pm(ξ) = Dm∂ξiηj (Πm1
k=1�k Πm2

k=1qk) .

Note that �k(ξ) and qk(ξ) are linear and quadratic functions of ξ, respectively.
For any ‖ξ‖ = 1, we have that all |�k(ξ)|, |qk(ξ)|, and the derivative of �k, are no
more than 1, and that all the first and second order partial derivatives of qk are no
more than 2. Because ∂ξiηj [Πm1

k=1�kΠm2
k=1qk] is the sum of at most mm terms of the

products of them (with the derivatives of qk’s counted twice), we have

|∂xiyj u| ≤ mmDm,

which completes the proof of this lemma. �
Lemma 2.3. Let Dm, φm, and Sm be the magnitude, orientation angle, and
anisotropic ratio of ∇mu, respectively. Then there exists a constant c depending
only on m such that

|pm(ξ)| ≤ c Dm(ξ · Qmξ)m/2, ∀ξ ∈ R2,(11)

where

Qm = Rφm

[ 1
S2

m
0

0 1

]
RT

φm
,(12)

and Rφm
is the matrix of rotation by angle φm counter-clockwise.

Proof. Because both sides of the above inequality are homogeneous polynomials of
the same degree, we only have to prove the inequality for all ‖ξ‖ = 1. Also, since
Dm and Sm are invariant under the rotation of xy-coordinates, we only have to
prove this lemma for functions with φm = 0. Namely, if the orientation of ∇mu is
along the x-axis, then

|pm(ξ)| ≤ c Dm(ξ2/S2
m + η2)m/2.(13)

Recall the decomposition (6) of pm(ξ). If Sm = 1, the above inequality is obviously
true. When Sm > 1, all the level-0 lines of p∗m(ξ) are within sector [−α, α] with
α = arctan(1/Sm) ∈ [0, π

4 ). This implies that for each linear factor �i(ξ) = ξ sin βi−
η cos βi of pm(ξ) in (6) we have |βi| ≤ α. To bound the linear factor �i, we study
for ξ = [cos t, sin t]T the ratio

G1(t) ≡ [�i(ξ)]2

cos2 t/S2
m + sin2 t

= cos2 βi
(tanβi − tan t)2

1/S2
m + tan2 t

, ∀t ∈ [0, 2π].

The maximum value of G1(t) is attained when tan t = −1/(S2
m tan βi) with

max
t∈[0,2π]

G1(t) = cos2 βi · (S2
m tan2 βi + 1) ≤ 2,
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where we have used | tanβi| ≤ tanα = 1/Sm. Hence we conclude that

|�i(ξ)| ≤ 2 (ξ2/S2
m + η2)1/2, ∀i = 1, 2, · · · , m1.

For the quadratic factors qi(ξ), i = 1, · · · , m2, in (6), we have from (7) that

qi(ξ) = sin2 δi cos2(t − θi) + cos2 δi sin2(t − θi),

where δi = arctan(
√

λ
(i)
1 /λ

(i)
2 ). Its associated polynomial is

q∗i (ξ) = sin2 δi cos2(t−θi)−cos2 δi sin2(t−θi) = − sin(t−θi−δi) sin(t−θi +δi).

By the definition of the anisotropic ratio, we have

|θi ± δi| ≤ α.

To bound the quadratic factor qi(ξ), we define for ξ = [cos t, sin t]T

G2(t) ≡
qi(ξ)

cos2 t/S2
m + sin2 t

= cos2 α
sin2 δi cos2(t − θi) + cos2 δi sin2(t − θi)

sin2 α cos2 t + cos2 α sin2 t
, ∀t ∈ [0, 2π].

We study the supremum of G2 for all 0 ≤ α ≤ π/4, 0 ≤ δi ≤ α, |θi ± δi| ≤ α, and
0 ≤ t ≤ 2π. Let’s first fix α ∈ [0, π/4], |θ| ≤ α, and t ∈ [0, 2π], and look for the
maximum of G2 for δi ∈ [0, α − |θi|]. Since G2 is a linear function of sin2 δi, its
maximum can be attained at either δi = 0 or δi = α − |θi|. For the case δi = 0, we
have

G2(t) = cos2 α
sin2(t − θi)

sin2 α cos2 t + cos2 α sin2 t

≤ 2 cos2 α sin2 θi cos2 t + cos2 θi sin2 t
sin2 α cos2 t + cos2 α sin2 t

.

The right hand side of the above inequality is a rational function of sin2 t. Its
maximum is attained at either sin2 t = 0 or sin2 t = 1. In both cases, we have
G2(t) ≤ 2 by the fact |θi| ≤ α.

In the case δi = α − |θi|, we have

G2(t) ≤ cos2 α

(
sin2(t − θi)

sin2 α cos2 t + cos2 α sin2 t

+
2 sin2(α − |θi|)(cos2 θi cos2 t + sin2 θi sin2 t)

sin2 α cos2 t + cos2 α sin2 t

)
.

The first term in the right hand side of the above inequality can be bounded by
2 as shown before. The second term is again a rational function of sin2 t, whose
maximum is less than or equal to 2 by the fact |θi| ≤ α ≤ π/4.

Combining the above two cases, we conclude that for each quadratic factor qi,

|qi(ξ)| ≤ 4 (ξ2/S2
m + η2), ∀ξ ∈ R2,

which completes the proof of the lemma. �

Remark 2.1. Lemma 2.3 is the key to characterizing the anisotropic behavior of
higher order derivatives. Note that the right hand side of (11) is the m

2 -th power
of a quadratic function of ξ, whose level curves are concentric ellipses. We may
alternatively define the magnitude, orientation, and anisotropic ratio of ∇mu by
the size, orientation, and eccentricity of the largest possible ellipse enclosed in the
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curve |pm(ξ)| = 1. This idea can be generalized to define the anisotropic measures
of higher order derivatives in three dimensions.

Remark 2.2. Lemmas 2.1 and 2.2 indicate that the magnitude of ∇mu is equivalent
to its largest m-th order directional derivative. In particular, all the mixed m-th
order partial derivatives ∂xiym−iu(x) can be bounded by the largest m-th order
directional derivative of u at x.

3. Interpolation error estimates

We first recall some classical results for the interpolation error estimates. Let
{TN} be a family of triangulations for a given polygonal domain Ω, where N repre-
sents the total number of elements. {TN} is called regular if each element is shape
regular, i.e., ∀τ ∈ TN , diam(τ ) ≤ c|τ |1/2, or equivalently, the minimum internal
angles of every τ ∈ TN is bounded from below by a positive constant. Let k be
a positive integer. Denote by Pk the set of polynomials of x of total degree ≤ k.
Let Πk be an interpolation operator which preserves Pk on each element. It is
well-known (see, e.g., Thm 3.1.5 of [12]) that for 0 ≤ m ≤ k and p, q ∈ [1,∞],

|u − Πku|m,p,τ ≤ c |τ |(k+1−m)/2+1/p−1/q|u|k+1,q,τ ,(14)

provided that

(15) W k+1,q(τ ) ↪→ Cs(τ ), and W k+1,q(τ ) ↪→ Wm,p(τ ),

where s is the greatest order of the partial derivatives occuring in the definition of
Πk.

If we further assume that {TN} is quasi-uniform, i.e., all τ ∈ TN are shape regular
and

max
τ∈TN

|τ | ≤ c min
τ∈TN

|τ |,

then we have globally

(16) (
∑

∀τ∈TN

|u − Πku|pm,p,τ )1/p ≤ cN−(k+1−m)/2|u|k+1,p,Ω.

To derive the anisotropic error estimates, we introduce a Riemannian metric M
on Ω. We extend the above classical results to the case where the triangulation
{TN} is quasi-uniform under metric M . Without loss of generality, we assume

M(x) = µ Rψ

[
1
r 0
0 r

]
RT

ψ,(17)

where µ > 0, r ≥ 1, and ψ are smooth functions of x, and Rψ is the matrix of
rotation by angle ψ. For each element τ in the triangulation, we define µ̄ to be the
mean value of µ on τ , i.e.,

µ̄ =
1
|τ |

∫
τ

µ(y) dy.

Similarly ψ̄ and r̄ denote the mean values of ψ and r, respectively. Let xc be the
center of τ . Define an affine transform x̃ = F−1

τ (x − xc) with

Fτ = µ̄−1/2Rψ̄

[ √
r̄ 0
0 1√

r̄

]
.

We call a family of triangulations {TN} quasi-uniform under metric M , if
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(i) ∀τ ∈ TN , τ̃ = F−1
τ (τ − xc) is shape regular; and

(ii) maxτ∈TN
|τ̃ | ≤ c minτ∈TN

|τ̃ |.
We first list a lemma about the magnitude of the higher order derivatives in

the transformed coordinate x̃. Define ũ(x̃) = u(xc + Fτ x̃) and denote by ∇̃ the
gradient operator with respect to x̃. Clearly

∇̃ = (
∂x

∂x̃
)T ∇ = F T

τ ∇.

Lemma 3.1. For each element τ ∈ TN , denote by Dm, φm, and Sm the magnitude,
orientation angle, and anisotropic ratio of ∇mu at a point x ∈ τ , respectively. Then
we have for the magnitude D̃m of ∇̃mũ at x̃ = F−1

τ (x − xc) that

D̃m ≤ cDm (µ̄Sm)−m/2{cos2(φm − ψ̄) (
r̄

Sm
+

Sm

r̄
) + sin2(φm − ψ̄) (r̄Sm)}m/2.

Proof. Let

pm(ξ) =
1
m!

(ξ · ∇)mu(x), and p̃m(ξ) =
1
m!

(ξ · ∇̃)mũ(x̃).(18)

Then we have

p̃m(ξ) =
1
m!

(ξ · F T

τ ∇)mu(x) = pm(Fτξ).

By Lemma 2.3,
|p̃m(ξ)| ≤ cDm (ξ · F T

τ QmFτ ξ)m/2,

where Qm is the matrix defined in (12) by φm and Sm. By Lemma 2.1, we have

D̃m ≤ c sup
‖ξ‖=1

|p̃m(ξ)| ≤ cDm [ sup
‖ξ‖=1

ξ · F T

τ QmFτ ξ]m/2.

Expanding ξ · F T
τ QmFτ ξ, we get

ξ · F T

τ QmFτ ξ = µ̄−1

[ √
r̄ξ

η/
√

r̄

]
· Rφm−ψ̄

[
1/S2

m 0
0 1

]
· RT

φm−ψ̄

[ √
r̄ξ

η/
√

r̄

]

= (µ̄Sm)−1{cos2(φm − ψ̄) · ( r̄

Sm
ξ2 +

Sm

r̄
η2) + sin2(φm − ψ̄)

· ( 1
r̄Sm

η2 + r̄Smξ2) + 2ξη sin(φm − ψ̄) cos(φm − ψ̄)(
1

Sm
− Sm)}

≤ 2(µ̄Sm)−1{cos2(φm − ψ̄)(
r̄

Sm
+

Sm

r̄
) + sin2(φm − ψ) (r̄Sm)},

where in the last step above we used the facts ‖ξ‖ = 1, r̄ ≥ 1, and Sm ≥ 1. The
conclusion of this lemma follows from the above inequality. �

Similarly, we have an inequality to bound the magnitude Dm of ∇mu(x) in terms
of the magnitude D̃m of ∇̃mũ(x̃).

Lemma 3.2. For each element τ ∈ TN , we have

Dm ≤ c (µ̄r̄)m/2D̃m, ∀x ∈ τ.

Proof. Let pm(ξ) and p̃m(ξ) be the polynomials defined by ∇mu(x) and ∇̃mũ(x̃)
as in (18), respectively. Note that

|p̃m(ξ)| ≤ D̃m (ξ · ξ)m/2,
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therefore

|pm(ξ)| = |p̃m(F−1
τ ξ))| ≤ D̃m [ξ · (FτF T

τ )−1ξ]m/2.

The conclusion of this lemma follows immediately from Lemma 2.1 and that

sup
‖ξ‖=1

ξ · (FτF T

τ )−1ξ ≤ µ̄r̄. �

Next, we make an assumption on the metric M . Let M(x) be decomposed in
the form (17). We assume that there exists a positive number δ such that for all
x ∈ Ω and any neighborhood Nx of x with radius (under metric-M) less than δ,⎧⎨

⎩
cµ̄ ≤ µ(y) ≤ cµ̄,
cr̄ ≤ r(y) ≤ cr̄, ∀y ∈ Nx,
|ψ(y) − ψ̄| ≤ cr̄−1,

(19)

where µ̄, r̄, and ψ̄ are the mean values of µ, r, and ψ on Nx, respectively. This
assumption is basically to require the continuity of M . Indeed, if µ(x), r(x), and
ψ(x) are uniformly continuous over Ω, then the above assumption holds trivially.

In mesh adaptation, µ and r in metric M will be defined in terms of the mag-
nitude and anisotropic ratio of ∇k+1u. In general Dk+1 can be zero and Sk+1 can
be ∞. In order to have (19) satisfied, we introduce two functions that level-off the
magnitude and anisotropic ratio of ∇k+1u. More precisely, Let d∗ > 0 and S∗ ≥ 1
be parameters. Define

Dk+1(x) = max(d∗,Dk+1(x)),
Sk+1(x) = min(S∗,Sk+1(x)).

When d∗ is small and S∗ is large, Dk+1 and Sk+1 are almost identical to Dk+1 and
Sk+1, respectively. When ∇k+1u is uniformly continuous, we have relations similar
to assumption (19) that hold for Dk+1, Sk+1, and φk+1, i.e.,⎧⎨

⎩
cD̄k+1 ≤ Dk+1(y) ≤ cD̄k+1,
cS̄k+1 ≤ Sk+1(y) ≤ cS̄k+1, ∀y ∈ Nx,
|φk+1(y) − φ̄k+1| ≤ c[S̄k+1]−1.

(20)

Now we state the main theorem of this paper.

Theorem 3.1. Let M be a Riemannian metric on Ω satisfying assumption (19).
{TN} is a family of triangulation of Ω that is quasi-uniform under metric M . Let
k be a positive integer, and let Πk be an interpolation operator that preserves Pk.
For 0 ≤ m ≤ k and p ∈ [1,∞] satisfying (15), we have

(
∑

τ∈TN

|u − Πku|pm,p,τ )1/p ≤ cN−(k+1−m)/2 {
∫

Ω

µ}(k+1−m)/2

· {
∫

Ω

(µr̄)mp/2(
V

µSk+1
)(k+1)p/2|Dk+1|p}1/p,

(21)

where

V = cos2(φk+1 − ψ̄)(
r

Sk+1
+

Sk+1

r
) + sin2(φk+1 − ψ̄)(rSk+1).(22)
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Furthermore, among all the Riemannian metrics, the optimal bound of the above
estimate is attained when M is defined to be

Mk+1,m,p ≡ (Sk+1)
− (k+1−m)p

(k+1−m)p+2 (Dk+1)
2p

(k+1−m)p+2 Rφk+1

·

⎡
⎣

√
k+1+m
k+1−m

1
Sk+1

0

0
√

k+1−m
k+1+mSk+1

⎤
⎦ RT

φk+1
.

(23)

If {TN} is quasi-uniform under Mk+1,m,p, we have

(24) (
∑

τ∈TN

|u − Πku|pm,p,τ )1/p

≤cN−(k+1−m)/2‖(Sk+1)−(k+1−m)/2Dk+1‖L2/(k+1−m+2/p)(Ω).

Proof. Consider an element τ ∈ TN . Denote by µ̄, r̄, ψ̄ the mean values of µ, r, and
ψ on τ , respectively. It follows from Lemma 3.2 that

|u − Πku|pm,p,τ =
∫

τ̃

|∇m(u − Πku)(x̃)|p · det(∂x
∂x̃ ) dx̃

≤ c(µ̄r̄)mp/2 |τ |
|τ̃ |

∫
τ̃

|∇̃m(ũ − Π̃kũ)(x̃)|p dx̃.

Because τ̃ is shape regular, we have from the classical error estimate (14) that

|u − Πku|pm,p,τ ≤ c|τ̃ |(k+1−m)p/2 (µ̄r̄)mp/2 ‖∇̃k+1ũ‖p
∞,τ̃ · |τ |,

which implies by Lemma 3.1 that

(25)
|u − Πku|pm,p,τ ≤ c|τ̃ |(k+1−m)p/2(µ̄r̄)mp/2

· (max
∀x∈τ

V (x)
µ̄Sk+1(x)

)−(k+1)p/2 · ‖∇k+1u‖p
∞,τ · |τ |.

Summing up the above inequality for all τ ∈ TN , we have from assumptions (19)
and (20) that

∑
τ∈TN

|u − Πku|pm,p,τ ≤ c(max
τ∈TN

|τ̃ |)(k+1−m)p/2
∑

τ∈TN

(µ̄r̄)mp/2

· [max
∀x∈τ

V (x)
µ̄Sk+1(x)

](k+1)p/2 · ‖∇k+1u‖p
∞,τ · |τ |

≤ c(max
τ∈TN

|τ̃ |)(k+1−m)p/2

∫
Ω

(µr)mp/2[
V

µSk+1
](k+1)p/2|Dk+1|p.

(26)

Now we estimate |τ̃ |. By the assumption that {TN} is quasi-uniform under metric
M , the sizes of all τ̃ = F−1

τ (τ − xc) are of the same order. Hence

max
τ∈TN

|τ̃ | ≤ cN−1
∑

τ∈TN

|τ̃ | = cN−1
∑

τ∈TN

µ̄|τ | = cN−1

∫
Ω

µ.

Putting the above inequality into (26), we have estimate (21).
Next, we consider for what metric M the bound at the right hand side of (21)

is the smallest. Clearly, the optimal metric requires ψ(x) = φk+1(x). In this case

V (x) =
r

Sk+1
+

Sk+1

r
,
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and the integrand of the second integral in the right hand side of (21) becomes

(µr)mp/2( V
µSk+1

)(k+1)p/2|Dk+1|p

= (µ)−(k+1−m)p/2(Sk+1)−(k+1)p ·
(

(r2+S2
k+1)

k+1

rk+1−m

)p/2

· |Dk+1|p.
(27)

It is easy to identify that when

r =

√
k + 1 − m

k + 1 + m
Sk+1,

the right hand side of (27) attains the minimum

[2(k + 1)](k+1)p/2

(k + 1 + m)(k+1+m)p/4(k + 1 − m)(k+1−m)p/4
(µSk+1)−(k+1−m)p/2 · |Dk+1|p.

Now estimate (21) becomes

(
∑

τ∈TN

|u − Πku|pm,p,τ )1/p ≤ cN−(k+1−m)/2 {
∫

Ω

µ}(k+1−m)/2

· {
∫

Ω

(µSk+1)−(k+1−m)p/2|Dk+1|p}1/p.

(28)

To determine the µ(x) for the optimal bound of the above estimate, let

q =
1
2
(k + 1 − m)p,

and let
f = µq/(q+1), g = (µSk+1)−q/(q+1)(Dk+1)p/(q+1).

Recall Hölder’s inequality,∫
fg ≤ ‖f‖L(q+1)/q · ‖g‖Lq+1 , ∀f, g,

and that the equality holds iff f (q+1)/q is a multiple of gq+1. Then we have

{
∫

Ω

µ}(k+1−m)/2 {
∫

Ω

(µSk+1)−(k+1−m)p/2|Dk+1|p}1/p

=
(
{
∫

Ω

|f |(q+1)/q}q/(q+1) {
∫

Ω

|g|q+1}1/(q+1)

)(q+1)/p

≥
(∫

Ω

|fg|
)(q+1)/p

=
(∫

Ω

(Sk+1)−q/(q+1)|Dk+1|p/(q+1)

)(q+1)/p

= ‖(Sk+1)−(k+1−m)/2Dk+1‖L2/(k+1−m+2/p)(Ω),

and the equality is attained when

µ(x) = (Sk+1)−q/(q+1)(Dk+1)p/(q+1)

= (Sk+1)
− (k+1−m)p

(k+1−m)p+2 (Dk+1)
2p

(k+1−m)p+2 .

This completes the proof of the theorem. �
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Remark 3.1. Theorem 3.1 is a generalization of the classical result (16) for quasi-
uniform triangulations. Indeed, when M is constant, the fact that {TN} is quasi-
uniform under metric M implies that it is quasi-uniform in the usual sense. In this
case, µ(x) and r(x) are constant. Therefore V (x) ≤ cSk+1, and (21) is reduced to
(16).

Remark 3.2. A triangulation family {TN} being quasi-uniform under the optimal
metric Mk+1,m,p can be characterized by two features: (i) For each element τ , the
mapping x̃ = F−1

τ (x − xc) not only transforms τ into a shape regular triangle,
but also makes the level-0 lines of p̃k+1(ξ) for ∇̃k+1ũ evenly distributed across the
entire plane. In other words, {TN} makes ∇̃k+1ũ isotropic on each element. (ii)
Estimate (25) for the Wm,p(τ )-seminorm of the interpolation error is of the same
magnitude on every element τ . In other words, {TN} makes the Wm,p-seminorm of
the error over every element evenly distributed. Therefore, the optimal metric can
also be considered as derived from the so-called equidistribution principle. This
principle has been used extensively to justify the selection of optimal or nearly
optimal meshes; see, e.g., [10, 11, 16, 17].

Remark 3.3. The condition ψ = φk+1 for a triangle aligned with ∇k+1u can be
relaxed to |ψ−φk+1| ≤ c[Sk+1]−1. All the conclusions requiring ψ = φk+1 still hold
under this weak sense of alignment.

We illustrate the conclusion of Theorem 3.1 in several special cases.
Case 1: k = 1, m = 0. In this case Πk is the linear interpolation operator.

∇2u(x) is the Hessian of u at x. The magnitude and anisotropic ratio of ∇2u are
respectively

D2 =
1
2
(|λ1| + |λ2|), S2 =

√
|λ2

λ1
|,

where |λ1| ≤ |λ2| are the two eigenvalues of ∇2u. Neglecting the cut-off for D2 and
S2, we have

1
2 |λ2| ≤ D2 ≤ |λ2|,

1
2

√
det(∇2u) ≤ D2

S2
≤

√
det(∇2u).

Inequality (21) becomes

‖u − Π1u‖Lp(Ω) ≤ cN−1 {
∫

Ω

µ} {
∫

Ω

(
V

µ
)p (

√
det(∇2u)p}1/p.

The optimal metric for this case is

M2,0,p = (det(∇2u))p/(2p+2)Rφ2 ·

⎡
⎣

√
|λ1
λ2
| 0

0
√
|λ2
λ1
|

⎤
⎦ RT

φ2

= (det(∇2u))−1/(2p+2) · abs(∇2u),

where

abs(∇2u) = Rφ2 ·
[

|λ1| 0
0 |λ2|

]
RT

φ2
.

When {TN} is quasi-uniform under this metric, the error estimate is

‖u − Π1u‖Lp(Ω) ≤ cN−1 ‖
√

det(∇2u) ‖Lp/(p+1)(Ω).
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This is exactly the conclusion in [10] in two dimensions. Also, if a triangulation
is quasi-uniform under metric M2,0,p, the aspect ratio of each element should be
about

√
|λ2/λ1|. This aspect ratio coincides with that obtained based on the exact

error formulas for linear interpolation of quadratic functions on a triangle [8]. Note
that in [8] the notation for λ1 and λ2 are switched.

Case 2: k = 1, m = 1. In this case the optimal metric is

M2,1,p = |λ1|−1/(p+2)|λ2|(p−1)/(p+2) · Rφ2

[ √
3|λ1| 0

0 |λ2|√
3

]
RT

φ2
,

and the error estimate is

|u − Π1u|1,p,Ω ≤ cN−1/2‖ |λ1|1/4|λ2|3/4‖L2p/(p+2)(Ω).

In particular, when p = 2, the optimal metric is

M2,1,2 = |λ1|−1/4|λ2|1/4 · Rφ2

[ √
3|λ1| 0

0 |λ2|√
3

]
RT

φ2
.

When {TN} is quasi-uniform under M2,1,2, the error estimate is

|u − Π1u|H1(Ω) ≤ cN−1/2‖ |λ1|1/4|λ2|3/4 ‖L1(Ω).

This implies that the H1-seminorm of the linear interpolation error is about the
smallest when each element is align with the orientation of ∇2u, the aspect ratio is
equal to S2/

√
3 ≈ 0.577

√
|λ2/λ1|, and the area is be proportional to

[det(M2,1,2)]−1/2 = |λ1|−1/4|λ2|−3/4.

It is shown in [8] that the H1-seminorm of the linear interpolation error on a
general element τ is minimum when τ is aligned with ∇2u and takes the aspect
ratio c

√
|λ2/λ1| with c ∈ [0.849, 1.178]. The minimum H1-error on τ is

‖∇(u − Π1u)‖L2(τ) ≈ c|λ1|1/4|λ2|3/4 |τ |.
The best aspect ratio predicted in this paper is slightly smaller than that in [8],
but both of them are in the same order. The quasi-uniformity under metric M2,1,2

again implies the equidistribution of the H1-error over every element.
Case 3: k = 2, p = 2. In this case Πk is the operator for quadratic Lagrange

interpolation. The optimal metric is

M3,0,2 = (S3)−3/4(D3)1/2Rφ3 ·
[

1
S3

0
0 S3

]
RT

φ3

for the L2-norm of the error, and

M3,1,2 = (S3)−2/3(D3)2/3Rφ3 ·
[ √

2
S3

0
0 S3√

2

]
RT

φ3

for the H1-seminorm of the error. These imply that to minimize the L2-norm of
the error, the aspect ratio of each element should be equal to S3, and the area
should be proportional to (S3)3/4(D3)−1/2. To minimize the H1-seminorm of the
error, the aspect ratio of each element should be S3/

√
2 ≈ 0.707S3, and the area

should be proportional to (S3)2/3(D3)−2/3. It is shown in [9] that for quadratic
interpolation, the minimum values of both the L2-norm and the H1-seminorm of the
interpolation error on an element τ are attained when the aspect ratio of τ is about
the anisotropic ratio of ∇3u. With this aspect ratio, the L2-norm and H1-seminorm
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on τ are proportional to S
−3/2
3 D3 |τ |2 and (S3)−1D3 |τ |3/2, respectively. When

triangulation {TN} is quasi-uniform under M3,0,2 or M3,1,2, we have respectively
that

‖u − Π2u‖L2(Ω) ≤ cN−3/2‖(S3)−3/2D3‖L1/2(Ω)

and
|u − Π2u|H1(Ω) ≤ cN−1‖(S3)−1D3‖L2/3(Ω).

4. Numerical results

In this section, we present a numerical example to compare various norms of
the interpolation errors using triangulations that are quasi-uniform under different
metrics Mk+1,m,p developed in the previous section. We consider linear and qua-
dratic interpolations of the following function on Ω = {(x, y) : r =

√
x2 + y2 ≤

1, x ≥ 0, y ≥ 0}:

u(x, y) = u(r) = e−10000(r−0.5)2 + r3.(29)

We first study the magnitudes, anisotropic ratios, and orientations of ∇2u and ∇3u.
By elementary calculation, we see that for each x with |x| = r,

p2(ξ) = 1
2! (ξ · ∇)2u(x)

= 1
2 [urrr

−2(x · ξ)2 + urr
−3(x × ξ)2].

(30)

It can be verified by the definition of anisotropic measures that⎧⎪⎨
⎪⎩

D2 = 1
2 (|urr| + |r−1ur|),

S2 =
√∣∣∣rurr

ur

∣∣∣.(31)

The orientation of ∇2u(x) is the angular direction at x.
The anisotropic measures of ∇3u can be determined similarly. Indeed, let x =

r[cos z, sin z]T , and ξ = [cos t, sin t]T . It can be verified that

p3(ξ) =
1
3!

(ξ · ∇)3u(x)

=
1
3!

[urrr cos3(t − z) + 3urrr
−1 sin2(t − z) cos(t − z)

− 3urr
−2(

1
2

sin(2t) sin(2z) cos(t − z) + cos(t + z) sin(t + z) sin(t − z))].

(32)

Since our main concern is the region around r = 0.5 where ∇3u is large, we have
for this region

p3(ξ) ≈ 1
3!

cos(t − z)[urrr cos2(t − z) + 3urrr
−1 sin2(t − z)].(33)

From the above expression we see that⎧⎪⎨
⎪⎩

D3 ≈ 1
3! (|urrr| + 3|r−1urr|),

S3 ≈
√∣∣∣rurrr

3 urr

∣∣∣.(34)

The orientation of ∇3u is also the angular direction.
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We make a cut-off of the anisotropic ratio as follows:

Sk+1 = min(1000,Sk+1), k = 1, 2.

This means the largest aspect ratio allowed is 1000. We do not level-off the magni-
tude of ∇k+1u, i.e., we define Dk+1 = Dk+1 directly, because it is already bounded
away from 0. Using S2, D2 and S3, D3, together with the angular direction for
orientation, we can define the optimal metrics M2,m,p and M3,m,p according to
(23).

Next, we describe how to generate a triangulation of Ω that is quasi-uniform
under a metric Mk+1,m,p. Since we wish to have a more precise control of the
geometric features of each element, we choose to “manually” create the anisotropic
triangulations. For more general domain and applications, readers may resort to
some robust algorithms, e.g., [5, 6], to generate the anisotropic mesh under a given
Riemannian metric. To start our process, we note that u is a function of the
radial variable only. We place all the grid points along Nr + 1 circles of radii:
0 = r0 < r1 < · · · < rNr

= 1. On each circle r = rj , we distribute evenly Na(rj)
points. By the fact that the orientation of ∇k+1u is the angular direction (at least
this is the case around r = 0.5 where the interpolation error mostly comes from),
we see that the distance between two neighboring grids on r = rj should be much
greater than rj+1−rj or rj −rj−1. Therefore, we connect all the grid points on the
same circle r = rj , and connect each grid on rj with the closest grid on r = rj+1.
In this way the longest sides of the triangles in the annulus rj ≤ r ≤ rj+1 are
approximately

hlong ≈ π

2
rj

Na(rj)
,

and the heights over the longest side for these triangles are

hshort ≈ rj+1 − rj .

Thus the aspect ratios and the areas of such triangles are

rasp ≈ hlong/hshort ≈ π
2

rj

Na(rj)(rj+1 − rj)
,

|τ | ≈ 1
2hlonghshort ≈ π

2

rj(rj+1 − rj)
Na(rj)

,

respectively. In order to make the triangulation quasi-uniform under metric
Mk+1,m,p, we require that

rasp ≈
√

k+1−m
k+1+mSk+1,

|τ | ≈ (Sk+1)
− (k+1−m)p

(k+1−m)p+2 (Dk+1)
2p

(k+1−m)p+2 ,

(35)

which results in a system of non-linear equations for rj , 1 ≤ j ≤ Nr −1, as follows:

(Sk+1)
1

(k+1−m)p+2 (Dk+1)
p

(k+1−m)p+2 (rj+1 − rj) = const, ∀j.

Once the distribution of rj is solved, the number of points Na(rj) is calculated
according to either the condition for the area or the condition for the aspect ratio
of the elements.

We consider specifically the linear (k = 1) and the quadratic (k = 2) interpo-
lation of u, and we measure the errors in L1, L2, and L∞ norms (i.e., m = 0,
p = 1, 2,∞), as well as in H1-seminorm (i.e., m = 1, p = 2). We show in Figures
2 and 3 the anisotropic meshes generated in the above manner. Note that in these
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graphs the total number of elements are all about 4, 000. We list in Tables 1 and
2 the linear and quadratic interpolation errors in various norms. It is clearly seen
that in all the cases except the L1-error of quadratic interpolation, the smallest
Wm,p-norm of the interpolation error is obtained when the mesh is generated ac-
cording to the optimal metric Mk+1,m,p. For the case of quadratic interpolation,
the meshes generated with metrics M3,0,1 and M3,0,2 are close to each other, and
the L1-errors based on M3,0,1 mesh are close to the smallest ones.

Table 1. Various norms of the linear interpolation error for func-
tion (29) based on meshes that are quasi-uniform under different
metrics M2,m,p. Nv and Ne represent respectively the total number
of nodes and elements in the triangulation.

Nv Ne Metric ‖e‖L1 ‖e‖L2 ‖e‖L∞ |e|H1

533 968 M2,0,1 1.49339e-3 4.67063e-3 6.23914e-2 2.12481e+0
Ne ≈ 1000 539 986 M2,0,2 1.56953e-3 3.07417e-3 5.41552e-2 1.92157e+0

559 1050 M2,0,∞ 5.86828e-3 9.22595e-3 3.26411e-2 1.41867e+0
565 1067 M2,1,2 4.79373e-3 4.45060e-3 4.37467e-2 1.21329e+0

2115 4036 M2,0,1 3.16475e-4 8.73823e-4 1.19351e-2 1.00562e+0
Ne ≈ 4000 2072 3967 M2,0,2 3.72421e-4 6.41605e-4 6.10854e-3 7.91351e-1

2089 4048 M2,0,∞ 1.23867e-3 1.64885e-3 4.79847e-3 6.29452e-1
2080 4046 M2,1,2 3.53340e-3 5.57094e-3 2.05686e-2 5.82440e-1

8151 15920 M2,0,1 7.75799e-5 2.09533e-4 2.49726e-3 4.98888e-1
Ne ≈ 16000 8105 15863 M2,0,2 9.24885e-5 1.59773e-4 1.50450e-3 3.89114e-1

8368 16480 M2,0,∞ 2.85356e-4 3.64991e-4 1.18945e-3 3.08177e-1
8070 15918 M2,1,2 6.74756e-4 8.69082e-4 2.22446e-3 2.89580e-1

Table 2. Various norms of the quadratic interpolation error for
function (29) based on meshes that are quasi-uniform under dif-
ferent metrics M3,m,p. Nv and Ne represent respectively the total
number of nodes and elements in the triangulation.

Nv Ne Metric ‖e‖L1 ‖e‖L2 ‖e‖L∞ |e|H1

576 1063 M3,0,1 3.84101e-5 1.99156e-4 3.53582e-3 2.54690e-1
Ne ≈ 1000 555 1033 M3,0,2 3.70225e-5 1.35188e-4 2.63480e-3 1.83796e-1

536 1015 M3,0,∞ 1.01811e-4 1.73567e-4 1.41021e-3 1.54345e-1
556 1057 M3,1,2 1.30927e-4 1.95614e-4 2.01960e-3 1.25994e-1

2012 3858 M3,0,1 5.23449e-6 2.62015e-5 4.56166e-4 6.37554e-2
Ne ≈ 4000 2040 3931 M3,0,2 4.29827e-6 1.53680e-5 2.56361e-4 4.33876e-2

2126 4139 M3,0,∞ 1.12890e-5 1.88816e-5 1.71215e-4 3.61567e-2
2066 4029 M3,1,2 2.30966e-5 3.43089e-5 2.00585e-4 3.27660e-2

8202 16068 M3,0,1 5.86753e-7 2.87826e-6 4.76983e-5 1.49075e-2
Ne ≈ 16000 8154 16017 M3,0,2 5.42702e-7 1.87424e-6 2.70740e-5 1.10013e-2

8047 15880 M3,0,∞ 1.55820e-6 2.52208e-6 2.29942e-5 9.39049e-3
8027 15854 M3,1,2 2.78704e-6 3.96082e-6 2.39793e-5 8.29941e-3

5. Discussions

In the previous sections we introduced some anisotropic measures for the higher
order derivative ∇k+1u a function u. The magnitude of ∇k+1u is equivalent to its
usual Euclidean norm. The orientation is the direction along which the absolute
value of the k + 1-th directional derivative is about the smallest, while along its
perpendicular direction it is about the largest. The anisotropic ratio measures the
strength of the anisotropic behavior of ∇k+1u. These quantities are invariant under
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translation and rotation of xy-coordinates. They correspond to the size, orientation,
and aspect ratio for triangular elements. In terms of these anisotropic measures, we
derive an anisotropic error estimate for the interpolation over triangulations that
are quasi-uniform under a given Riemannian metric M . It is identified from this
estimate that among triangulations of a fixed number of elements the interpolation
error is nearly the minimum when the elements are aligned with the orientation of
∇k+1u, the aspect ratios are about the anisotropic ratio of ∇k+1u, and the areas
make the error over each element be evenly distributed.

There are a couple of immediate applications of Theorem 3.1 for anisotropic
mesh generation and refinement. For instance, there have been a number of stud-
ies on the so-called mesh quality measures, which quantifies the optimality of an
anisotropic mesh for various considerations [4, 16]. The right hand side of estimate
(21) is a natural “quality measure” if the interpolation error is the main concern.
This measure decreases when the elements become more aligned with the orienta-
tion of ∇k+1u, their aspect ratios approach the anisotropic ratio of ∇k+1u, and the
error over each element becomes more evenly distributed. Of course, these three
geometric features are related, and the overall mesh quality depends on the inter-
action among them. A nice feature of the quality measure based on (21) would be
that it has a clear geometric interpretation and it is an upper bound of the inter-
polation error itself, while many other measures are ad hoc and not directly related
to the error. Another application of this work is in the moving mesh method or the
r-refinement for solving partial differential equations. In the moving mesh method,
it is required to define a monitor function, or the target mesh metric [7]. Interpo-
lation error is one of the frequently used error indicators for defining the monitor
functions. The optimal metric Mk+1,m,p provided in Theorem 3.1 can be naturally
used for such a purpose. These applications are currently under investigation and
will be presented elsewhere.

There are a number of unresolved issues related to this work. First, the error
estimate stated in Theorem 3.1 is optimal with respect to the order of N . But we
are not clear if it is optimal with respect to the order of anisotropic ratio Sk+1.
In the case of linear interpolation, it has been shown by Chen, Sun, and Xu [10]
that the optimal error bound in Lp-norm is sharp for the class of functions with
non-vanishing Hessians on general triangular elements. However, we are not clear
whether a similar conclusion is true for the estimate of the Wm,p-error of Πk with
m ≥ 1 or k ≥ 2. Second, in Theorem 3.1 we only assume the triangulations are
quasi-uniform under a given metric. Therefore, the conclusion holds for the case
when the largest internal angles of the elements approach π. However, if we assume
in addition that the triangulations satisfy the maximum angle condition [3], can
we improve estimate (21) and select a metric leading to even smaller interpolation
errors? There are some preliminary studies for this issue. For instance, for mini-
mizing the H1-seminorm of linear interpolation errors, if we restrict all triangles to
be acute isosceles, then the optimal aspect ratio will be (S2)2, and the H1-error can
be a factor of S2 smaller than that by using the aspect ratio close to S2; see Sec-
tion 4 of [8]. Shewchuk [20] observed the same phenomenon for general anisotropic
triangles satisfying the maximum angle condition. He describes this type of case
as “super-accuracy”. However, for quadratic interpolations, it seems the optimal
aspect ratio is always in the magnitude of S3 according to the study of model prob-
lems reported in [9]. We are not clear if the so called super-accuracy phenomenon
does exist for interpolations of degree k ≥ 2 or not.
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Figure 2. Triangulations that are generated according to different
metrics M2,m,p and their close looks.
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Figure 3. Triangulations that are generated according to different
metrics M3,m,p and their close looks.
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