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DIVISORS IN RESIDUE CLASSES, CONSTRUCTIVELY

DON COPPERSMITH, NICK HOWGRAVE-GRAHAM, AND S. V. NAGARAJ

Abstract. Let r, s, n be integers satisfying 0 ≤ r < s < n, s ≥ nα, α > 1/4,
and let gcd(r, s) = 1. Lenstra showed that the number of integer divisors

of n equivalent to r (mod s) is upper bounded by O((α − 1/4)−2). We re-
examine this problem, showing how to explicitly construct all such divisors,
and incidentally improve this bound to O((α − 1/4)−3/2).

1. Introduction

Lenstra [8] gave an existential proof of the following fact: Let r, s, n be integers
satisfying 0 ≤ r < s < n, s ≥ nα, α > 1/4, and let gcd(r, s) = 1. Then the
number of divisors of n in the residue class r (mod s) satisfies an upper bound c(α)
depending only on α. He proved the bound c(α) = O((α − 1/4)−2) by showing a
general (non-constructive) result concerning weight functions of sets.

Here we construct the divisors explicitly, using techniques due to Coppersmith [4]
for factoring an integer when given some knowledge of its factors, along with re-
finements and an improved presentation due to Howgrave-Graham [6, 7].

Although not explicitly stated in [4] it is shown in [2] that the techniques de-
scribed in [4] can easily be used to find divisors in residue classes in polynomial
time, whenever α > 1/4 (this is done with regard to lattice attacks on RSA). We
extend this observation by showing exactly which divisors may be found for α > 0,
and use an analysis of the lattice techniques to place a bound on the possible num-
ber of divisors. This analysis allows one to improve the asymptotic bound on the
number of divisors given in [8] to c(α) = O((α − 1/4)−3/2).

We start, in Section 2, by giving an overview of the lattice method and describe
how one can use the LLL lattice reduction algorithm (see [9]) to explicitly construct
the required divisors. The proofs in this section are deliberately vague, and it is
left until Section 3 to give a completely rigorous proof of our result.

In Section 4 we outline Lenstra’s original method, and show how this too can be
improved from O((α − 1/4)−2) to O((α − 1/4)−3/2) by the use of similar ideas. It
should be noted though, that although the two methods yield bounds which can be
shown to be asymptotically similar, in practice the bounds achieved by Lenstra’s
methods are considerably better than the ones implied by our lattice analysis.

In Section 5 we compare our upper bounds on the number of divisors in a specified
residue class with those obtained by Lenstra [8].

In Section 6 we show how our results may be used for primality proving.
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In Section 7 we list some of the many interesting questions that still remain open
regarding this problem.

2. An overview of the method

In this section we start by giving an outline of the results and proofs necessary
for our result, and then show how to explicitly search for the required divisors in
residue classes. For more details and a complete analysis please refer to Section 3.

We are concerned with divisors of n of the form (sx + r), and therefore should
start by giving the following trivial result.

Lemma 2.1. Given s, r, n and α with s = nα and α > 1/2, there are at most two
positive divisors of n of the form (sx + r).

Proof. The divisors of n of the form (sx + r) are paired with those of the form
(sy + r′) where r′ = n/r (mod s), 0 < r′ < s. If s > n1/2 and x ≥ 1, then its
corresponding factor must be s × 0 + r′, and so there can be only one divisor with
x ≥ 1, and one with x = 0. This also holds when r = r′. �

The rest of the paper is based around the following theorem and corollary.

Theorem 2.1. Given m and n with m = nα, all x such that (m+x) divides n and
|x| < nγ can be found in polynomial time whenever

γh(h − 1) − 2uαh + u(u + 1) ≤ −ε < 0,

for some integers h > u > 0 and some ε > 0. The largest value of γ for which this
can hold is α2 − ε.

Proof. We set X = nγ . For the given integers h > u > 0 form the h × h matrix
M(h, u, X) with rows corresponding to the polynomials

qi(x) =
{

nu−i(m + x)i, 0 ≤ i ≤ u,
xi−u(m + x)u, u < i < h.

For example

M(4, 2, X) =

⎛
⎜⎜⎝

n2 0 0 0
nm nX 0 0
m2 2mX X2 0
0 m2X 2mX2 X3

⎞
⎟⎟⎠ .

Now apply the LLL lattice reduction algorithm to the rows of this matrix to find
a small row b1, and associate with this small lattice vector the polynomial

b1(x) = b1 ·
(

1,
( x

X

)
,
( x

X

)2

,
( x

X

)3
)

,

where v1 ·v2 denotes the vector dot product. Notice that the polynomials associated
with the rows of M(h, u, X) are all zero modulo (m+x0)u when evaluated at x = x0

if (m + x0)|n. This means that b1(x) also has this property since it is an integer
linear combination of these polynomials. It is to be noted that in our example b1(x)
has been defined for the case when h = 4 and u = 2. For the general case b1(x) is
as below:

b1(x) = b1 ·
(

1,
( x

X

)
,
( x

X

)2

, · · ·,
( x

X

)h−1
)

where v1 · v2 denotes the vector dot product.
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From the LLL bound on the small vector b1 we will then have, for all |x| < X,
that

|b1(x)| < cnu(u+1)/2hX(h−1)/2

for some small multiple c which we shall choose to ignore. The right hand side is
less than nuα whenever

X < n
u(2αh−u−1)

h(h−1)

or

γh(h − 1) − 2uαh + u(u + 1) ≤ −ε < 0

for some ε > 0.
If b1(x) is such that b1(x0) = 0 (mod (m+x0)u) for all x0 such that (m+x0)|n,

and also b1(x0) < nuα for all |x0| < X, then any |x0| < X such that (m + x0)|n
must be a root of b1(x) over the integers, and hence may be found in polynomial
time.

For a given h the choice of u that maximizes γ is u = αh − 1/2, which means
that limh→∞ γ = α2. �

One can readily extend the result to the following.

Corollary 2.1. All x such that (sx+ r) divides n where s = nα and nβ < |x| < nγ

can be found whenever

γh(h − 1) − 2u(α + β)h + u(u + 1) ≤ −ε < 0,

for any h > u > 0 and some ε > 0, and the largest value of γ for which this can
hold is (α + β)2 − ε.

Proof. We use the fact that |x| > nβ to put a lower bound on the size of (sx + r).
If s′ = s−1 mod n, then the following are both divisible by (sx + r):

n

s′(sx + r) = x + r′′ (mod n).

This implies that we form the matrix as before with m = r′′, and now all the rows
are multiples of (sx + r)u > n(α+β)u, and thus so is b1(x). The remaining analysis
follows the one previously shown.

The best choice of u is (α + β)h − 1/2, implying limh→∞ γ = (α + β)2. �

Figure 1 represents the space of possible divisors of the given integer n which
are less than

√
n. A divisor (sx + r) corresponds to a point (logn s, logn x), which

means that all such divisors lie under the line drawn from (0, 1/2) to (1/2, 0), and
also that all the divisors we are searching for lie in a vertical line at (α, logn x).
Such a line is drawn for α = 0.29. It will be useful to refer to this diagram in the
following discussion.

For given n, s, r we may use Corollary 2.1 to find some of the divisors sx + r of
n, for any α = logn s > 0. To see exactly which ones these are, notice that if we
set X = nγ , and reduce the relevant lattice, then (by choosing a sufficiently large
h) we will find all divisors with n

√
γ−α < |x| < X = nγ . Clearly for this range to

exist (and thus for the corollary to be useful) we require that
√

γ − γ ≤ α,
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which is the curved line drawn in Figure 1. The corollary will therefore help (to
some degree) to find the divisors anywhere in the lower region of Figure 1, defined
by this curve for 0 < α ≤ 1/4, and the line γ = 1/2 − α for 1/4 < α ≤ 1/2.

For a given α = logn s > 1/4, if we wish to find all the possible divisors sx + r
less than

√
n, then we must let x range between 1 and n1/2−α, and so we must use

the corollary repeatedly on subsections of this interval.1 As we will see, we may
decide to use relatively small values of h, in the interest of increasing the speed of
our method or in bounding the number of possible divisors. The effect of decreasing
h will be to decrease the size of the intervals, and thus increase the number of them
that we need to consider. The reason that h has a rôle to play in bounding the
number of divisors is that the degree of the polynomial one obtains, after the lattice
reduction, is h−1, and we know that all of the relevant divisors of n in this interval
must be factors of this polynomial (so clearly there can be at most h− 1 of them).

It should also be mentioned at this point that since the lattice techniques are
concerned with the absolute value of x, we do end up finding the divisors s(−x)+r =
−(sx − r) as well by this process, and so these are counted by h − 1 too. It is not
presently known how to place a bound on the number of divisors of the form sx+ r
for just x > 0 using these lattice techniques.

As an example of this, for α = 0.29 it turns out to be optimal (with respect to
bounding the number of divisors) to choose 7 intervals. Working from the bottom
one first these are parametrized by

(hi, ui) = (5, 1), (8, 2), (9, 3), (11, 4), (13, 5), (12, 5), (14, 6)

which implies that

logn Xi = γi = 0.045, 0.084, 0.114, 0.141, 0.167, 0.188, 0.211

are the values defining the partitioning of the interval [0, 0.21] (these sub-intervals
are also indicated in Figure 1). The total number of divisors of the form sx + r or
sx − r for α = 0.29 is thus twice (because we must count the divisors more than√

n too) the sum of the hi − 1 plus two (to count the fact that 1 and n may also
equal r mod s); namely 132 in this example.

In general to work out the optimal way to split the intervals, one may assume
one wants m intervals, and then exhaustively search2 the possible hi and ui, where
β0 = 0 and

βi = γi−1 =
2ui(α + βi−1)hi − ui(ui + 1)

hi(hi − 1)
.

Notice that these interval partitions are linear in α. With m intervals we require
that βm > 1/2 − α, which we may solve, to determine the least α with at most
2(

∑
(hi − 1) + 1) divisors sx ± r.

Table 2 in Section 5 indicates the α at which increasing the number of intervals
becomes preferable to increasing the values of h in any interval.

The upper curve in Figure 2 represents the bound on the number of divisors
achieved by this process for α ≥ 0.29. The lower curve is the presently best known
bounds for α ≥ 1/3, which can be seen to be considerably better (ending up by
a factor of slightly more than 2). It would be an interesting exercise to see if one
could align these two sets of results more closely.

1We should also remember that there may be a divisor of n with x = 0, i.e. r itself.
2This search space can be considerably reduced by only searching near the optimal values

shown in Lemma 2.2, when an estimate of α is known.
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β

α

Figure 1. A description of the divisors one can find

c

α

Figure 2. The bounds on the number of divisors

To analyze the asymptotic behavior of the upper curve in Figure 2, we can do
the following analysis.

Lemma 2.2. The number of divisors of n of the form (sx + r) less than
√

n is
approximately bounded by

c(α) ≤ πα

(α − 1/4)3/2
.
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Proof. Starting with β = 0, and increasing to β = 1/2 − α, we choose h and u to
imply a γ which minimizes the density of divisors (h−1)/(γ−β). These values are

h =
⌈

2α

(α + β)2 − β

⌉
,

u = �(α + β)h� ,

γ =
2(α + β)uh − u(u + 1)

h(h − 1)
.

The density of divisors then satisfies

h − 1
γ − β

<
4α

((α + β)2 − β)2
.

Since this an increasing function for all β < 1/2 − α we have that

h − 1 < (γ − β)
4α

((α + β)2 − β)2
<

∫ γ

v=β

4α

((α + v)2 − v)2
dv.

This means that ∑
h − 1 <

∫ 1/2−α

0

4α

((α + v)2 − v)2
dv

<
πα

(α − 1/4)3/2
. �

In the next section we go through the fine details of what we have alluded to in
the above “proof”. This mainly means tightening the analysis, and being specific
about all the required integers values.

3. The construction

Lemma 3.1. Assume given integers h > u > 0 and reals α, β, γ satisfying

0 < α < 1,
0 ≤ β < γ ≤ 1 − α,

u(u + 1) + γh(h − 1) − 2(α + β)uh < 0.

Then there exists an effectively computable integer n0 > 0 such that for all integers
0 < r < s < n with

n > n0,
s ≥ nα,

gcd(r, s) = gcd(s, n) = 1,

the number of pairs of integers (d, x) satisfying

d|n,
d = sx + r,

nβ ≤ x ≤ nγ

is bounded above by h − 1. We give a procedure to find these divisors in time
polynomial in (u, h, log n).

Proof. We will calculate n0 later.
For a given instance (n, r, s) of our problem, because gcd(n, s) = 1, we can find

an integer m = s−1r (mod n), using the extended Euclidean algorithm.
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Consider the polynomials

pi(x) =
{

nu−i(x + m)i, 0 ≤ i ≤ u,
xi−u(x + m)u, u < i < h.

If d0 = sx0 + r is a divisor of n in the desired range, then each pi(x0) is a multiple
of du

0 . This follows because x0 + m = s−1d0 (mod n).
Any integer linear combination of the pi yields a polynomial which evaluates, at

x0, to a multiple of du
0 .

Let X = �nγ� be the upper bound on the values of |x| under consideration.
We build an h×h matrix M whose columns correspond to powers of x, and whose

rows correspond to the polynomials pi, in the sense that mij is Xj times the coeffi-
cient of xj in the polynomial pi(x). M is lower triangular, so its determinant is given
by the product of its diagonal elements, namely det(M) = nu(u+1)/2Xh(h−1)/2.

We consider the rows of M to be the basis of an integer lattice. We apply the
lattice basis reduction algorithm from [9] to find a relatively short element of this
lattice: a row vector v whose L2 norm satisfies

‖ v ‖=

⎛
⎝∑

j

v2
j

⎞
⎠

1/2

≤ 2(h−1)/4(det(M))1/h.

Interpreting this row as a polynomial, which is to be evaluated at the point x0,
we compute:

|v(x0)| ≤
√

h ‖ v ‖≤ 2(h−1)/4
√

h
(
nu(u+1)/2Xh(h−1)/2

)1/h

.

The hypotheses imply

u(u + 1) + γh(h − 1) − 2(α + β)uh = −ε < 0.

We select

n0 = 1 +
⌊(

2(h−1)/4
√

h
)2h/ε

⌋
.

Then we have

|v(x0)| ≤
(
2(h−1)/4

√
h
) (

nu(u+1)/2Xh(h−1)/2
)1/h

< (nε/2h
0 )

(
nu(u+1)/2Xh(h−1)/2

)1/h

<
(
nεnu(u+1)Xh(h−1)

)1/2h

≤
(
nε+u(u+1)+γh(h−1)

)1/2h

=
(
n2(α+β)uh

)1/2h

= n(α+β)u

< du
0 .

The last inequality follows from d0 > x0s ≥ nα+β . Since v(x0) is a multiple of du
0 ,

and we have just seen that |v(x0)| < du
0 , we conclude that v(x0) = 0.

Thus for all x0 in the range nβ ≤ x0 ≤ nγ we know that v(x0) = 0, so that x0 is
a root of v. Then h − 1 = deg(v) is an upper bound on the number of divisors in
that range. Further, we can compute these divisors by building the matrix, doing
lattice basis reduction, and solving a univariate polynomial over the integers, all of
which are polynomial-time operations. �
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Lemma 3.2. Given α > 1/4 there is an integer n0 > 0 such that for all integers
n > n0 and s > nα and 0 < r < s < n with gcd(r, s) = gcd(s, n) = 1, the number
of divisors d of n with d ≤

√
n and d ≡ r (mod s) is bounded above by

1 +
πα

(α − 1/4)3/2
+

2α

α − 1/4
.

We give a procedure to find these divisors in time polynomial in (log n, (α−1/4)−1).

Corollary 3.1. Given α > 1/4 there is an integer n0 > 0 such that for all integers
n > n0 and s > nα and 0 < r < s < n with gcd(r, s) = gcd(s, n) = 1, the number
of divisors d of n with d ≡ r (mod s) is bounded above by

2 +
2πα

(α − 1/4)3/2
+

4α

α − 1/4
.

We give a procedure to find these divisors in time polynomial in (log n, (α−1/4)−1).

Proof of Corollary 3.1. Apply Lemma 3.2 twice, the second time with r′ ≡ n/r
(mod s). Divisors d of n larger than

√
n and equivalent to r (mod s) correspond

to divisors d′ of n smaller than
√

n and equivalent to r′ (mod s) by dd′ = n. �

Proof of Lemma 3.2. The divisors d = sx + r with n0 ≤ x ≤ n1/2−α include all
those we are interested in, with the possible exception of d = r corresponding to
x = 0 < n0. This is the first “1” in the formula.

The closed interval I = [0, 1/2 − α] contains logn x. We will divide I into sub-
intervals Ij = [βj , γj), j = 1, 2, . . . , J , with β1 = 0, γj = βj+1, and γJ > 1/2 − α.
We will provide uj , hj for each interval, satisfying the conditions of Lemma 3.1. At
most hj − 1 values x lie in each sub-interval Ij , and the sum

∑
(hj − 1) will give

the desired bound.
For fixed α and for each β = βj in turn, we choose parameters u, γ, h so as to

minimize the density of roots in the neighborhood: with at most h − 1 divisors in
the range [nα+β, nα+γ), we strive to minimize (h − 1)/(γ − β).

To this end, we set

h =
⌈

2α
(α+β)2−β

⌉
,

u = �(α + β)h�
so that

2α
(α+β)2−β ≤ h < 2α

(α+β)2−β + 1,

(α + β)h − 1 < u ≤ (α + β)h.

We also select γ in the range

β < γ < γmax =
2(α + β)uh − u(u + 1)

h(h − 1)
,

so that the hypothesis of Lemma 3.1 is satisfied.
For fixed α, β, h, with u at either of its extrema we have

γmax ≥ (α + β)2h2 − (α + β)h
h(h − 1)

=
(α + β)2h − (α + β)

h − 1

and the same holds for u in the interior of its allowed range, by convexity. Then

γmax − β ≥ ((α + β)2 − β)h − α

h − 1
.
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The numerator of this expression is minimized when h is minimized, at h =
2α/((α + β)2 − β), yielding

numerator ≥ α.

The denominator is maximized when h is maximized, at

h = 2α/((α + β)2 − β) + 1,

yielding

denominator <
2α

(α + β)2 − β
.

We conclude that

γmax − β >
α

2α/((α + β)2 − β)

=
1
2

[
(α + β)2 − β

]
,

and the density satisfies

h − 1
γmax − β

<
4α

((α + β)2 − β)2
.

Notice that the density function f(β) = 4α
((α+β)2−β)2 is an increasing function of

β for β < 1/2 − α, so that

h − 1 < (γmax − β)f(β) <

∫ γmax

β

f(v)dv.

So we can select γ slightly less than γmax so that we still have

h − 1 <

∫ γ

β

f(v)dv.

Let uj , hj , γj be defined by (u, h, γ), and let the value n0 from Lemma 3.1 be
known as n0,j . Lemma 3.1 then tells us that the number of divisors d = xs+r with
βj ≤ logn x < γj is at most hj − 1, as long as n > n0,j .

Continue to produce intervals [βj , γj) until γJ > 1/2−α. Then upper bound hJ

by its largest possible value,

hJ =
⌈

2α

(α + βJ)2 − βJ

⌉
≤

⌈
2α

(α + (1/2 − α))2 − (1/2 − α)

⌉
<

2α

α − 1/4
+ 1,

hJ − 1 <
2α

α − 1/4
.

The total number of divisors is now bounded by

1 +
∑J−1

j=1 (hj − 1) + (hJ − 1) ≤ 1 +
∑J−1

j=1

∫ γj

βj
f(v)dv + 2α

α−1/4

< 1 +
∫ 1/2−α

0
f(v)dv + 2α

α−1/4

= 1 +
∫ 1/2−α

0
4αdv

((α+v)2−v)2 + 2α
α−1/4

= 1 + 4α
∫ 0

−1/2+α
dx

((x+1/2)2−(x+1/2−α))2

+ 2α
α−1/4 ;
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the latter equation coming from the substitution v = x + 1/2 − α;

= 1 + 4α
∫ 0

−1/2+α
dx

(x2+(α−1/4))2 + 2α
α−1/4

< 1 + 4α
∫ 0

−∞
dx

(x2+(α−1/4))2 + 2α
α−1/4

= 1 + 4α π/4
(α−1/4)3/2 + 2α

α−1/4

= 1 + πα
(α−1/4)3/2 + 2α

α−1/4 .

This estimate holds for all n > max n0,j , so we set n0 = maxn0,j , and we are
done. �

4. Lenstra’s method

Our bound on the density of divisors allows relatively more divisors near the
middle, d ≈ n1/2, and fewer near the ends, d ≈ n0, n1. By contrast, Lenstra’s
original proof covered the unit interval with intervals of fixed length ε, and proved
a uniform bound on the number of roots whose log (base n) lies in any ε-interval.
His result was O((α − 1/4)−2) roots overall. If one follows Lenstra’s proof but
instead covers the unit interval with intervals with variable length ε and computes
independently the bounds on the number of roots in each interval, one gets the same
O((α−1/4)−3/2) bound as the present approach. Here we outline this improvement,
borrowing liberally from Lenstra’s paper.

For a positive integer k put

V (k) = {pt : p prime, t ∈ Z, t ≥ 1, pt divides k}
and define a weight w on each set V (k) by w({pt}) = logn p. It follows that
w(V (k)) = logn k.

Choose parameters β, ε with α ≤ β and β + ε ≤ 1. (Warning: Lenstra’s β
corresponds to our β + α.) Set m = |Dβ | where

Dβ = {d : d|n, d ≡ r (mod s), β log n ≤ log d < (β + ε) log n}.
Set D = V (d) and also Di = V (di) for a given value of i.

Consider d, d′ ∈ Dβ and the corresponding sets D = V (d), D′ = V (d′). We have
β ≤ w(D), w(D′) < β + ε. In particular w(D) and w(D′) differ by less than ε.
Subtracting (D∩D′) we find that w(D−D′) and w(D′−D) also differ by less than
ε. The larger is at least α = logn s, so the smaller is strictly greater than α − ε.
(Essentially this is using the fact that gcd(d, d′) ≤ |x − x′| when d = sx + r, d′ =
sx′ + r.) The symmetric difference D∆D′ satisfies w(D∆D′) > 2α − ε. Summing
over all unordered pairs of di ∈ Dβ we have∑

1≤i<j≤m

w(Di∆Dj) >

(
m

2

)
(2α − ε).

For each prime power pt|n, set mx = �{i : x ∈ Di}. We have∑
1≤i<j≤m

w(Di∆Dj) =
∑

x

(mx)(m − mx)w({x}).

Set
τ =

∑
x

mx

m
w({x}) =

1
m

∑
i

w(Di)

so that
β ≤ τ < β + ε.
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By convexity3 of the function t(m − t) we find that∑
x

(mx)(m − mx)w({x}) ≤ (mτ )(m(1− τ )),

which is the fundamental equation which allows us to treat the intervals separately
(rather than considering the (constant) bound of m2/4).

Combining, we see that (
m

2

)
(2α − ε) < m2τ (1 − τ ),

(m − 1)(2α − ε) < 2mτ (1 − τ ),

1 − 1
m

=
m − 1

m
<

τ (1 − τ )
α − (ε/2)

,

m <
α

α + τ2 − τ − ε
2

.

Let
ε = α + τ2 − τ = (α − 1

4
) + (τ − 1

2
)2 > 0.

Then we find that

m <
2α

α + τ2 − τ
,

m

ε
<

2α

(α + τ2 − τ )2
.

As before, the latter fraction represents a density of roots. This density corresponds
to half of our f(τ − α). We then integrate from 0 to 1, taking care of details in a
manner similar to the previous section, which yields an upper bound of about

πα

(α − 1
4 )3/2

for the total number of divisors.

5. Results

With respect to bounding the number of divisors, c(α), for a given α, the pre-
viously best known results for α ≥ 1/3 are shown below, together with the bounds
implied by our constructive lattice method. The known results are taken from [8].

Table 1. A comparison of the bounds for c(α) given α ≥ 1/3

α 1/2 2/5 3/8 4/11 13/37 9/26 31/92 1/3
(approx.) (.5) (.4) (.375) (.364) (.351) (.346) (.337) (.333)

prev. known 2 4 6 7 8 9 10 11
lattice n/a 8 12 16 22 24 30 32

Our results do not compare well with the above; mainly, it is thought, because
we are counting the number of divisors of the form sx − r as well.

As explained previously, our technique relies on splitting the range 0 . . . 1/2− α
into several intervals, and for each interval then reducing an associated lattice. In

3This is covered in more detail in Appendix A.
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order to optimally bound the number of divisors as α approaches 1/4, it is necessary
to use more intervals. Out of interest Table 2 (refer [7]) indicates the least α at
which it becomes preferable to increase the number of intervals, rather than increase
the value of h in any one of them. We also give the bound on the number of divisors
at this α.

Table 2. The least α for which m intervals is optimal

# intervals, m α (approx.) c(α)
1 5/12 (0.417) 6
2 7/18 (0.389) 10
3 23/65 (0.354) 20
4 55/166 (0.331) 32
5 6799/21420 (0.317) 48
6 6233/20440 (0.305) 72
7 24159/81550 (0.296) 100

6. Using our results for primality proving

Divisors which lie in residue classes have been exploited for primality proving. It
was shown by Brillhart et al. [3] that if one has a fully factored divisor F of p− 1,
where F > p1/3, then one can quickly decide if p is prime or composite. However,
their method involves choosing numbers at random. Konyagin and Pomerance [10]
showed that the prime or composite nature of p can be decided deterministically in
polynomial time provided F > p1/4+ε for some ε > 0. A question which arises here
is: how big must the F be in order to decide the primality of p ? Using our methods,
we achieve the same result as in Konyagin and Pomerance [10], i.e. F > p1/4+ε will
suffice. Further, by using the ideas in [1] we can eliminate the ε so that we only
require that F > p1/4. Konyagin and Pomerance show that F > pε will do, but
for that F must be a smooth number. Consequently, F > p1/4 is the best we have
been able to reach as far as the question mentioned above is concerned.

We now present an algorithm which is a simple modification of Algorithm 4.1 in
[10].

Algorithm. We have as input an integer n and a number ε with 0 < ε ≤ 3/4
and (log n)5/(4ε) < n. We also have as input integers F , R with n − 1 = FR and
F > n1/4+ε, as well as the complete prime factorization of F . This deterministic
algorithm decides if n is prime or composite.

Let F (1) = 1. For a = 2, 3, . . . , [(log n)5/(4ε)] do the following:
Step 1. If a is composite, let F (a) = F (a − 1) and goto Step 7. If aRF (a−1) ≡ 1

mod n, let F (a) = F (a− 1) and goto Step 7. Verify that an−1 ≡ 1 mod n. If not,
declare n composite and stop.

Step 2. Using the prime factorization of F , compute E(a), the order of aR

mod n in (Z/nZ)∗. Thus E(a) is the least positive divisor of F with aRE(a) ≡ 1
mod n.

Step 3. For each prime factor q of E(a), verify that gcd(aRE(a)/q − 1, n) = 1. If
not, declare n composite and stop.

Step 4. Let F (a) = lcm(F (a − 1), E(a)). Compute F (a).
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Step 5. If F (a) ≥ n3/10 get the complete prime factorization of n by using
Algorithm 3.2 in [10]. In particular, if n is prime, declare it so and stop; if n is
composite, declare it so and stop.

Step 6. If F (a) > n1/4+ε/5 use Corollary 3.1 to factor n. In particular, if n is
prime, declare it so and stop; if n is composite, declare it so and stop.

Step 7. If a < [(log n)5/(4ε)] get the next a. If a = [(log n)5/(4ε)] and F (a) ≤
n1/4+ε/5 declare n composite and stop. (Note: If a = [(log n)5/(4ε)] and F (a) >
n1/4+ε/5, Step 6 determines whether n is prime or composite.)

The proof of correctness of the algorithm follows directly from that of Algorithm
4.1 in [10]. The only difference between the two algorithms is that in Step 6 of our
algorithm we make use of our result, i.e. Corollary 3.1. The runtime analysis is
also similar.

7. Conclusions

One reason that the lattice bounds are worse is that they actually count the
divisors in residue classes of the form sx − r as well. It would be nice if one could
remove this necessity, and further align our result with Lenstra’s.

It would also be interesting to know if the divisors indicated by Figure 1 com-
pletely describe those that can be found in polynomial time. If such a statement
could be shown to be true, then it poses the problem of how hard the remaining
divisors are to find. Finding the divisors in the top left of this diagram is clearly
equivalent to the hardest factorization problem (since one may exhaustively search
for small enough r and s), but are there a series of complexity classes that lead up
to this?

In contrast to the given problem, is that of actually constructing numbers n with
a given number of divisors in the same residue class. Cohen (see [5]) has shown
that there are infinitely many numbers with 6 divisors in the same residue class,
i.e. those of the form n = (2x + 1)(x2 + 1)(x2 + x + 1)(2x2 − x + 1)(2x2 + x + 1)
with r = 1 and s = (2x + 1)(x2 + 1) − 1. Since s > n1/3 for all x > 5 we have
that c(1/3) ≥ 6. Comparing this with the known upper bound of 11 divisors, shows
there is plenty of work needed in aligning these two sets of results.

The techniques of Section 3 worked out the optimal parameters for bounding
the number of divisors, not for speed of finding them. In order to promote the use
of this algorithm in finding divisors in residue classes in practice, it would be nice
to suggest good practical choices of parameters for any α. However, choosing semi-
optimal parameters relies on having a good estimate of lattice reduction running
times. At present we leave this as an open question.
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Appendix A. A proof of convexity

In Section 4 we required the following result with respect to the convexity of the
function t(m − t).

Theorem A.1. For any set of real numbers x1, . . . , xn, with associated (real) pos-
itive weights w1, . . . , wn we have that(

n∑
i=1

wi

) (
n∑

i=1

xi(m − xi)wi

)
≤

(
n∑

i=1

xiwi

)(
n∑

i=1

(m − xi)wi

)
.

Proof. Let δ be the righthand side minus the lefthand side, i.e.

δ =

(
n∑

i=1

xiwi

)(
n∑

i=1

(m − xi)wi

)
−

(
n∑

i=1

wi

)(
n∑

i=1

xi(m − xi)wi

)
.

By introducing a second summation variable j, and bringing both summations to
the front we have

δ =
n∑

i=1

n∑
j=1

wiwj(xi(m − xj) − xi(m − xi)).

Note that the (polynomial) coefficients of each of the w2
i terms disappear, so

there are only n(n − 1)/2 unique wiwj terms remaining. If we now perform our
grouping by these terms, then we have:

δ =
n∑

i=1

i−1∑
j=1

wiwj(xi(m − xj) − xi(m − xi) + xj(m − xi) − xj(m − xj))

=
n∑

i=1

i−1∑
j=1

wiwj(x2
i − 2xixj + x2

j)

=
n∑

i=1

i−1∑
j=1

wiwj(xi − xj)2

≥ 0 �
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