
MATHEMATICS OF COMPUTATION
Volume 77, Number 261, January 2008, Pages 125–158
S 0025-5718(07)02008-X
Article electronically published on July 26, 2007

AN INTERPOLATED STOCHASTIC ALGORITHM
FOR QUASI-LINEAR PDES

FRANÇOIS DELARUE AND STÉPHANE MENOZZI

Abstract. In this paper, we improve the forward-backward algorithm for
quasi-linear PDEs introduced in Delarue and Menozzi (2006). The new dis-
cretization scheme takes advantage of the standing regularity properties of the
true solution through an interpolation procedure. For the convergence analy-
sis, we also exploit the optimality of the square Gaussian quantization used to
approximate the conditional expectations involved.

The resulting bound for the error is closely related to the Hölder exponent

of the second order spatial derivatives of the true solution and turns out to be
more satisfactory than the one previously established.

1. Introduction

1.1. Short overview of numerical schemes for BSDEs. The theory for Back-
ward SDEs (cf. Pardoux and Peng [26] for the original background) nowadays
enjoys a new development through numerical applications. As the classical theory
introduced during the 90’s for backward equations does, the numerical counterpart
offers a double panorama: each discretization procedure for BSDEs provides a con-
ceivable scheme for a certain class of non-linear PDEs and vice and versa. Both
implications make sense (see e.g. Douglas et al. [10] for a PDE to BSDE approach),
but the trend in the current probabilistic literature now consists in exhibiting purely
stochastic algorithms for BSDEs and then in deriving alternative methods to ana-
lytical finite-difference or finite-element strategies for non-linear PDEs. Of course,
this raises the question of the competitiveness of the standing probabilistic methods
and draws the objective for the next years: refine as much as possible the earlier
algorithms to decrease at most the underlying approximation error and take ad-
vantage of the specific stochastic structure to investigate new fields of application
(SPDEs, homogenization, etc.).

In this work, we are concerned with non-linear Cauchy problems on [0, T ] × R
d

of the following form (∇xu stands for the x-gradient of u, seen as a row vector, and
Hu for the x-Hessian matrix of u):

(E)

⎧⎪⎨⎪⎩
∂tu(t, x) + ∇xu(t, x)b(x, u(t, x), v(t, x))
+1

2 tr(a(x, u(t, x))Hu(t, x)) + f(x, u(t, x), v(t, x)) = 0,

u(T, x) = H(x),

with v(t, x) ≡ ∇xu(t, x)σ(x, u(t, x)). The stochastic counterpart of (E) writes as
a “fully coupled” Forward Backward Stochastic Differential Equation (FBSDE for
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short). Namely, for a given starting point x0 ∈ R
d, we consider a diffusion process

U strongly coupled to the solution (V, W ) of a BSDE by the relation

(E) ∀t ∈ [0, T ],

{
Ut = x0 +

∫ t

0
b(Us, Vs, Ws)ds +

∫ t

0
σ(Us, Vs)dBs,

Vt = H(UT ) +
∫ T

t
f(Us, Vs, Ws)ds −

∫ T

t
WsdBs,

where B is a d-dimensional Brownian motion on a certain filtered probability space
(Ω, (Ft)t∈[0,T ], P) and σ(x, y) a square root of the diffusion matrix a(x, y). For a
guided tour of the connection between (E) and (E), we refer the reader to An-
tonelli [1], Ma, Protter and Yong [20], Ma and Yong [21], Delarue [7] and more
recently Delarue and Guatteri [8]. Generally speaking, if u denotes, under suit-
able assumptions, the solution of (E), the backward component of (E) writes at
time t: (Vt, Wt) = (u(t, Ut), v(t, Ut)). Concerning the numerical approximation, we
mention the works of Douglas et al. [10] and Milstein and Tretyakov [22], [24] and
[23].

Probabilistic algorithms for (E) consist in discretizing the following non-linear
form of the dynamic programming principle: u(t, Ut) = E[u(t + h, Ut+h)|Ft] +
E[

∫ t+h

t
f(Us, Vs, Ws)ds|Ft].

Decoupled case. In the decoupled case, the forward component can be approxi-
mated with a standard Euler scheme so that Vt = u(t, Ut) can be reached provided
a suitable estimation of (V, W ) at time t + h.

Once the approximation of Vt is available, the next step to iterate the process
consists in updating the approximation of the representation process W . To this
end, one usually uses the so-called martingale increment technique, see e.g. Bally
et al. [2] or Bouchard and Touzi [4]. Basically, this amounts to saying that Wt ≈
h−1

E[Vt+h(Bt+h − Bt)|Ft].
Monte-Carlo techniques are then well fitted to the effective computations of the

underlying conditional expectations. Due to the Markov property for U and to
the relationship (Vt, Wt) = (u(t, Ut), v(t, Ut)), for t ∈ [0, T ], these latter reduce to
conditional expectations with respect to σ-fields generated by a random vector.
Several regression methods are then conceivable: Bouchard and Touzi [4] refer to
Malliavin calculus techniques (this involves a rather large number of simulated
paths for the underlying diffusion process), and Lemor, Gobet and Warin ([18] and
[19]) make use of a finite function basis (this allows them to use the same paths for
the approximations of the forward and backward processes).

Coupled case. All the previous methods require an a priori discretized version
for the process U and thus fail in our frame, except when considering a global fixed
point strategy for the triple (U, V, W ): given a first U , compute the associated
(V, W ), and then plug this (V, W ) to compute a new U and so on. We refer to
Rivière [27] and Bender and Zhang [3] for first attempts in this direction.

The common strategy in the coupled case relies on spatial grids (see e.g. Delarue
and Menozzi [9] and Milstein and Tretyakov [25]). At time t, the initial condition
of the process U in the dynamic programming principle is chosen as a deterministic
node x of a Cartesian spatial grid. Given, for a small h > 0, an approximation
(ū(t + h, x), v̄(t + h, x)) of the solution of the PDE and of its gradient at (t + h, x),
this permits us to approximate the transition of the diffusion from time t to time
t+h and to derive an approximation of u(t, x). The martingale increment technique
provides an approximation of the gradient. Such a procedure can be iterated along
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a temporal mesh of step h. Underlying expectations are then estimated with a
quantization argument that turns out to be cheaper than a Monte-Carlo method.

Anyhow, the approximate transition plugged in the dynamic programming prin-
ciple is supported by a different set than the grid itself, so that the approximated
solution ū has to be extended from the spatial grid to the whole space. In [9],
the considered extension is piecewise constant and thus discontinuous. Here we
propose to extend ū through a piecewise linear interpolation procedure to take the
utmost advantage of the standing regularity for the true solution u (see Milstein
and Tretyakov [22], [24] and [23] for a similar procedure).

1.2. Contribution and prospects of the paper. The numerical analysis we
provide in this paper appears as a new improvement towards competitive prob-
abilistic algorithms for quasi-linear PDEs. As in [22], [24], the global bound we
exhibit below (see Theorem 3.2) mainly holds for b independent of W (several ex-
tensions to the general frame are discussed in the sequel). However, we feel that it
is the first one to apply to both an interpolated stochastic scheme and a classical
solution u ∈ C1+α/2,2+α([0, T ]×R

d, R), α being possibly small. By way of example,
the solutions are required to be at least twice differentiable in time (and therefore
four times in space) in the different papers of Milstein and Tretyakov. Generally
speaking, the explanation for these different regularity assumptions follows from the
error analysis, i.e. from the proofs of the convergence of the underlying algorithm,
and not from the very definitions of the algorithms.

Two main conclusions follow from Theorem 3.2. First, as forecasted from purely
numerical experiments in [9] and as already proved by Milstein and Tretyakov in
the very regular frame, the piecewise linear interpolation procedure reduces the
error with respect to the piecewise constant one. We prove here that the gain
between both is exactly the one expected. Second, we prove that the algorithm
still converges for a low number of points for the underlying quantization of the
Brownian increments. In this sense, we recover the results observed in the papers
of Milstein and Tretyakov where the Brownian motion is approximated by a simple
random walk. We also improve our previous work in which quantization is assumed
to be “large” enough to ensure the convergence.

The case where b depends on W is crucial for applications: the so-called deter-
ministic KPZ equations, i.e. the heat equation forced by the square norm of the
gradient of the solution, both appear in statistical mechanics (see e.g. Woyczyǹski
[29]) and in finance (see e.g. Hu et al. [13]). In the case of smooth coefficients (and
in particular for a bounded b), a suitable probabilistic algorithm and the associated
convergence analysis can be found in [23], Section 3. In our setting, we can treat the
case where b is bounded as a zero drift situation with f(x, u, v)+vσ−1(x, u)b(x, u, v)
as the second member. In the general framework (that is, for unbounded drifts), we
just manage to establish the convergence of the algorithm provided the quantiza-
tion is large enough (see Section 7). Even if not completely satisfactory, this result
is, to the best of our knowledge, new in the probabilistic literature devoted to the
subject. For b with a linear growth in v, we also show that the interpretation of the
product vσ−1(x, u)b(x, u, v) as a part of the second member term, with a possible
quadratic growth in v, may fail from a numerical point of view.

Beyond these remarks, several questions are to be investigated in future contri-
butions. First, the interpolation procedure we consider here is well fitted to our
own setting since the Lagrange kernel of order one can be interpreted as a family
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of probability weights. This fails for higher order kernels so that the interest of an
interpolation procedure of order two remains open. Second, the real influence of
the quantization in the low regular framework (i.e. for α close to zero) is rather
subtle to analyze in light of numerical experiments and is to be understood. Indeed,
for a solution with isolated “singularities” (i.e. a solution for which Hu is smooth
except in several points), the error observed in various examples may vary with the
number of points for the quantization.

Finally, our analysis of the algorithm provides a possible discretization procedure
for the FBSDE (E). For systems driven by Lipschitz continuous coefficients, this
discretization turns out to be strongly convergent, as already shown in our previous
paper. In the case of space Hölder continuous coefficients, as it may be under our
assumptions, the error has to be analyzed in the weak sense. We don’t investigate
this point in the current work.

1.3. Organization of the paper. In Section 2, we state our working assumptions.
In Section 3, we introduce the interpolated algorithm and the associated conver-
gence result. Section 4 is dedicated to numerical illustrations. The proofs of the
main results are given in the remaining parts of the paper. Section 7 is specifically
devoted to the case b = b(x, u, v).

2. Working assumptions and associated properties

For a given d ∈ N
∗, we consider the coefficients b : R

d × R × R
d → R

d, f :
R

d × R × R
d → R, σ : R

d × R → R
d×d, H : R

d → R.
Assumption (A). The functions b, f , H and σ are said to satisfy Assumption

(A) if they are bounded in space, have at most linear growth in the other vari-
ables, and are uniformly α-Hölder continuous in x, α > 0, and uniformly Lipschitz
continuous w.r.t. the other variables, if a ≡ σσ∗ is uniformly elliptic and if H is
bounded in C2+α(Rd).

From now on, Assumption (A) is in force. We denote by | · | the Euclidean norm
of R

d, and by 〈·, ·〉 the associated inner product.

2.1. Forward-backward SDE. Now consider a given T > 0 and an initial con-
dition x0 ∈ R

d. According to Delarue and Guatteri [8], there exists a filtered
probability space (Ω, (Ft)0≤t≤T , P) endowed with a d-dimensional Brownian mo-
tion (Bt)0≤t≤T as well as a progressively measurable triple (U, V, W ), with values
in R

d × R × R
d, such that E supt∈[0,T ]

(
|Ut|2 +|Vt|2

)
< +∞, E

∫ T

0
|Wt|2dt < +∞,

and which satisfies P almost surely the equations (E). The distribution of the four-
tuple (B, U, V, W ) is unique on the space C([0, T ], R

2d+1)×L2([0, T ], Rd). In other
words, the FBSDE (E) admits a unique weak solution. For α = 1, existence and
uniqueness hold in a strong sense.

2.2. Quasi-linear PDE. According to Ladyzhenskaya et al. [17, Ch. 7, Th 7.1]
and to [20] (up to a regularization procedure of the coefficients), we claim that (E)
admits a solution u ∈ C1,2([0, T ] × R

d, R) satisfying:
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Theorem 2.1. There exists a constant C2.1, depending only on T and on known
parameters appearing in (A), such that ∀(t, x) ∈ [0, T ] × R

d,

|u(t, x)| + |∇xu(t, x)| + |∇2
x,xu(t, x)| + |∂tu(t, x)|

+ sup
t′∈[0,T ],t�=t′

[
|t − t′|−(1+α)/2|∇u(t, x) −∇u(t′, x)|

]
+ sup

x′∈Rd,x�=x′

[
|x − x′|−α|∇2

x,xu(t, x) −∇2
x,xu(t, x′)|

]
≤ C2.1.

Moreover, u is unique in the class of functions

ũ ∈ C([0, T ] × R
d, R) ∩ C1,2([0, T [×R

d, R)

for which sup(t,x)∈[0,T [×Rd

(
|ũ(t, x)| + |∇xũ(t, x)|

)
< +∞.

The connection between (E) and (E) can be summarized as follows:

(2.1) (Vt, Wt) = (u, v)(t, Ut), Vt = E[VT |Ft] + E

[∫ T

t

f(Us, Vs, Ws)ds|Ft

]
.

3. Algorithm and main results

Following Delarue and Menozzi [9], we now introduce the basic objects for the
discretization procedure of (E) and (E), namely a temporal mesh as well as a family
of spatial grids and an optimal quantization for the Gaussian law. In addition to
these ingredients, we consider a collection of interpolating functions associated to
the underlying spatial grids.

3.1. Construction of the interpolated algorithm. For clarity reasons, we
choose to define the approximated solution on a family of infinite spatial grids.
This is not realistic from a purely numerical point of view, anyhow the truncation
procedure is highly discussed in Delarue and Menozzi [9]. It induces heavy com-
putations for the error analysis and is totally useless for our original purpose. For
this reason, we consider C∞ ≡ δZ

d, δ > 0, the infinite Cartesian grid of step δ.

Shape functions. The algorithm we propose below is based on a piecewise mul-
tilinear approximation procedure, obtained by tensorization of piecewise linear in-
terpolation. The involved [0, 1]-valued shape functions are the following:

(3.1) ∀z ∈ C∞, ∀x ∈ R
d, φz(x) =

d∏
i=1

Φ
(
δ−1(xi − zi)

)
,

with Φ(t) = (1 − |t|)+. Obviously, for z ∈ C∞, φz is non-negative, is equal to one
in x = z and vanishes outside the hypercube centered at z having edge lengths 2δ.
It is plain to see that such a family interpolates exactly polynomials of order less
than one:

(3.2) ∀x ∈ R
d,

∑
z∈C∞

φz(x) = 1,
∑

z∈C∞

φz(x)z = x.

We refer the reader to the literature devoted to finite elements (see e.g. Brenner
and Scott [5]) for more general examples of shape functions. Anyhow, due to the
stochastic interpretation of the algorithm we provide below, we are to view the
underlying family of shape functions in terms of probability weights. Hence, the
method is valid only for non-negative shape functions with sum equal to 1. This
prevents us from introducing Lagrange kernels of order greater than two since they
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may take negative values (see the monograph of Milstein and Tretyakov [25, p. 425]
for similar remarks). In the sequel, we denote for a given function ψ : C∞ → R

(3.3) ∀x ∈ R
d, ψδ(x) =

∑
z∈C∞

φz(x)ψ(z),

its interpolation associated to the sequence (φz)z∈C∞ . Note that for z ∈ C∞, ψ(z) =
ψδ(z).

Time mesh. Finally, let us introduce a uniform time mesh of [0, T ] with time step
h > 0, h = T/N, N ∈ N

∗, i.e. {(ti ≡ ih)i∈[[0,N ]]}.

3.2. Algorithm. In the spirit of Delarue and Menozzi [9], we define

Algorithm 3.1.

∀x ∈ R
d, ū(T, x) ≡ H(x), v̄(T, x) ≡ ∇xH(x)σ(x, H(x)),

∀k ∈ [[0, N − 1]], ∀ x ∈ C∞,

T (tk, x) ≡ b(x, ū(tk+1, x), v̄(tk+1, x))h + σ(x, ū(tk+1, x))γ∗g(∆Bk),

v̄(tk, x) ≡ h−1
E

[
ūδ

(
tk+1, x + T (tk, x)

)
g(∆Bk)∗

]
γ,

ū(tk, x) ≡ E
[
ūδ

(
tk+1, x + T (tk, x)

)]
+ hf(x, ū(tk+1, x), v̄(tk, x)).

In the above algorithm, ∆Bk ≡ Btk+1 −Btk
where ((Bt)t≥0, (FB

t )t≥0) denotes a
d-dimensional Brownian motion and its natural augmented filtration on a probabil-
ity space (Ω,F , P). Also, g(∆Bk) ≡ h1/2ΠM (h−1/2∆Bk), ΠM being the projection
mapping onto a square optimal quantization grid Λ∗

M , with M points, for the d-
dimensional standard Gaussian vector. In other words, integrals with respect to
the Gaussian kernel are replaced by discrete sums that turn out to be numerically
computable. The only controls concerning the quantized Brownian increment that
will be needed in the sequel are the following:

E
[
|g(∆Bk) − ∆Bk|2

]
≤ CQuantiz(d)hM−2/d,(3.4)

E[∆Bk|g(∆Bk)] = g(∆Bk).(3.5)

Note that the last property simply expresses that the quantized variable is a pro-
jector. It also implies E[g(∆Bk)] = 0. For details about quantization, we refer to
the monograph of Graf and Luschgy [12].

The reader who is used to stochastic literature may wonder why we do not employ
a Monte-Carlo strategy. The reason can be explained as follows: for a while replace
ūδ(tk+1, ·) by the true solution u(tk+1, ·) in the above induction. Since the latter
function belongs to C2+α(Rd), the quantization procedure then provides a better
approximation for the integral with respect to the Gaussian kernel than the Monte-
Carlo one, that is known to be well fitted to rough frameworks.

Finally detail the meaning of γ in Algorithm 3.1. Denote the covariance matrix
of the quantized d-dimensional standard Gaussian law by

KM ≡ E[ΠM (N (0, Id)) × ΠM (N (0, Id))∗].

γ then stands for the lower triangular matrix of the Cholesky writing of K−1
M ,

i.e. γγ∗ = K−1
M (provided det(KM ) > 0). The introduction of γ in the algo-

rithm follows from the same trick as in the former paragraph: for a while re-
place ū(tk+1, ·) and ūδ(tk+1, ·) by u(tk+1, ·) both in the local transition T (tk, x)
and in the definition of v̄(tk, x) and focus on the resulting martingale increment
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h−1
E[u(tk+1, x+T (tk, x))g(∆Bk)∗]γ. Since the true solution is smooth, the Taylor

expansion yields as its first approximation:

h−1
E[u(tk+1, x + T (tk, x))g(∆Bk)∗]γ

∼ ∇xu(tk+1, x)σ(x, u(tk+1, x))γ∗KMγ = v(tk+1, x).

When corrected by γ, the martingale increment associated to a smooth function is
worth, up to negligible terms, the gradient of the underlying function multiplied by
the diffusion coefficient of the transition.

In the sequel, we also write the coefficients of the transition T (tk, x) in the
following abbreviated way: T (tk, x) ≡ β(tk, x)h+Σ(tk, x)γ∗g(∆Bk) with β(tk, x) ≡
b(x, ū(tk+1, x), v̄(tk+1, x)), Σ(tk, x) ≡ σ(x, ū(tk+1, x))γ∗.

3.3. Main results.

Theorem 3.2. Assume that b does not depend on v. Then, there exist two con-
stants c3.2 > 0 and C3.2, only depending on T and on known parameters appearing
in (A), such that for h < c3.2:

sup
x∈Rd,k∈[[0,N ]]

|u(tk, x) − ūδ(tk, x)|2 ≤ C3.2

[
E2(time) + E2(space) + E2(quantiz)

]
≡ C3.2E2(global),

with E(time) ≡ hα/2, E(space) ≡ h−1δ2, and E(quantiz) ≡ hα/2M−2/d.

Classification of the errors.

Time error. This term results from the combination of the 1/2-Hölder continuity
of the Brownian motion in the L2 sense and of the α-Hölder x-continuity of the
coefficients of the PDE.

Formally, for α = 2, we recover the rate announced in the papers of Milstein and
Tretyakov.

Spatial error. The distance between a smooth function (think of the true solution)
and its piecewise linear interpolated version at the nodes of the grid is worth δ2.
Due to the propagation of the error along the time mesh, the resulting spatial
error is h−1δ2. Compared to the rough projection in [9], i.e. piecewise constant
interpolation, we gain one order w.r.t. δ. This is the expected improvement with
such a procedure, and the new bound is in this sense satisfactory.

The reader may wonder why we restrict to an interpolation of order one since
u is C2+α in space. The reason follows once again from the probabilistic nature
of the algorithm that prevents us, at least in terms of convergence analysis, from
using negative weights deriving from higher order interpolators.

From the structure of the spatial error we derive that δ has to be small against
h. Indeed, the spatial grid has to be fine enough to catch the increments of the
Brownian motion. This ratio is the inverse of the one needed for the stability of a
deterministic algorithm for second order parabolic PDEs.

Quantization error. For a bounded smooth function F ∈ C2
b (Rd, R) (i.e. with

bounded derivatives of order one and two) and an optimally quantized Gaussian
kernel, we have from (3.4) : E[F (∆B)] − E[F (g(∆B))] = O(hM−2/d). The term
M−2/d is obtained summing along the mesh. The hα/2 corresponds to the Hölder
regularity of Hu and appears through some rather sharp controls during the error
analysis.
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Influence of the quantization. In comparison with Delarue and Menozzi [9],
this new bound for E(quantiz) is rather spectacular. The reason is the following:
we take advantage of the optimality of the quantization; see (3.5). On the opposite
side, the quantization in [9] is not assumed to be optimal since the analysis relies
on Lp bounds for the underlying Gaussian quantization, that are known to fail in
the optimal setting (see the recent paper of Graf, Luschgy and Pagès [11]).

The crucial point, in our new frame, is the following: the quantization error is
less than the temporal one. In particular, there does not seem to be any interest to
choose a large support for the quantized Gaussian kernel: it is sufficient to choose
one of the roughest quantization grids satisfying det(KM ) > 0. Actually, this
phenomenon is not so surprising: in the one-dimensional smooth case investigated
by Milstein and Tretyakov [25], that is, α = 2 in a formal way, the global error
is worth h provided δ = h and M = 2 (in fact, the latter authors do not refer to
the quantization theory, but directly approximate the Gaussian law by a centered
Bernoulli one).

Paradoxically, we feel that a large quantization may be useful in the non-smooth
setting. Indeed, for α close to zero, the order of the expected global error cannot
exceed α/2, due to the temporal error E(time), and is thus very low. On the opposite
side, the terms E(space) and E(quantiz) can be chosen of order 1/2 provided δ =
h3/4 and M = h−d/4 (such values are still reasonable in the three-dimensional
setting). The question is then the following: how do we diminish E(time)?

As explained above, the bound for E(time) follows from the smoothness of
the coefficients. To understand exactly what happens, focus on a simple semi-
linear case: assume that b vanishes and that σ reduces to identity. Generally
speaking, the underlying strategy of Algorithm 3.1 then consists in approximating
E

∫ tk+1

tk
f(Bs, u(s, Bs), v(s, Bs))ds, k ∈ [[0, N), by hEf(Btk

, ūδ(tk, Btk
), v̄δ(tk, Btk

)).
If f is just Hölder continuous in x, with respect to a small Hölder exponent,
we cannot expect to recover less than hα/2 for the temporal error. However, we
could approximate E

∫ tk+1

tk
f(Bs, u(s, Bs), v(s, Bs))ds by E

∫ tk+1

tk
f(Bs, ūδ(tk, Btk

),
v̄δ(tk, Btk

))ds with a Monte-Carlo method or a quantization procedure depending
on the exact value of α and the affordable complexity. Even if numerically heavy,
the modification of Algorithm 3.1 based on this Monte-Carlo method would provide
a convergent scheme in the limit case α = 0.

Another phenomenon may occur for small values of α. The coefficients and
the solution may count isolated singularities (that is, isolated points at which α is
actually tiny) and have, elsewhere, large “pockets” of smoothness. Such a case is
very difficult to investigate from a theoretical point of view. Anyhow, we observe
in practice (see Section 4 below) that quantization may be, in some cases, more
efficient for large values of M . A possible explanation is the following: there may be
a competition between the bounds for the global and local errors. In other words,
the error is, away from the singularities, of order one, and, around them, of order
α/2, and the combination of both is sensible to the value of M .

Typical values. In dimensions two and three (that is, in the cases considered
in Section 4), numerical computations show that det(KM ) > 0 for M ≥ 2d. We
believe the result to be true for higher values of d, but the proof remains open. For
this choice of M and for δ = h1/2+α/4, the error is at most of order α/2.

What about a gradient dependence in the drift? Compared to [9], there
is no E(gradient) term in the writing of E(global). The reason is simple: we just
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focus in the current setting on the case b(x, u), whereas E(gradient) appears when
considering the more general case b(x, u, v).

The first strategy to handle the case b(x, u, v) is the following: the drift term
can always be seen as a part of the second member. This amounts to considering
g(x, u, v) = f(x, u, v) + vσ−1(x, u)b(x, u, v) instead of f(x, u, v) itself. Of course,
this new coefficient g doesn’t satisfy Assumption (A) since it may be of quadratic
growth in v, and as a matter of fact, locally Lipschitz continuous.

Anyhow, if the drift b is assumed to be bounded, then the function g is at most of
linear growth and satisfies for a suitable constant C ≥ 0 and for all x, x′, z, z′ ∈ R

d

and y, y′ ∈ R,

(3.6) |g(x, y, z) − g(x′, y′, z′)| ≤ C(1 + |z|)
(
|x − x′|α + |y − y′| + |z − z′|

)
.

As explained in Section 7, we are then able to take advantage of the boundedness
of the gradient of the true solution (see Theorem 2.1) to prove that Theorem 3.2
still holds when applied to the four-tuple (0, g, H, σ) (i.e. to the equation (E) with
zero as drift term and g as its source term). This strategy corresponds to the
exponential change of probability performed in [23, Sec. 3] in a similar setting
(choose c = f = 0 there in order to recover our own framework).

It is well understood that the story is rather different when b is not bounded,
and therefore, g is of quadratic growth in ∇xu. From a theoretical point of view,
quadratic (F)BSDEs are investigated with a suitable exponential transform that is
highly discussed in Kobylanski [16]. The possible adaptation of this transform to the
discretization procedure is formally open, but the application of Algorithm 3.1 to
the quadratic framework, for example to the KPZ equation, provides disappointing
numerical results.

The KPZ equation is the heat equation driven by a non-linear term of the form
|∇xu|2 (the original terminology is inherited from the model of mechanical statis-
tics by Kardar et al. [15], where the equation is additionally forced by a white
noise). This equation frequently appears in mathematical finance (think to utility
maximization, see e.g. Hu et al. [13]) and provides a very interesting numerical
example. The non-linearity |∇xu|2 can be both interpreted as a quadratic second
member, so that the drift reduces to zero, or as a first order term with a non-linear
drift given by the gradient itself, so that the second member vanishes. We show in
Section 4 that the numerical counterpart of the first writing may be unstable and
may even explode. On the opposite side, the second point of view yields a good
approximation of the true solution.

This is the reason why the case b(x, u, v) is so important to investigate. As is
easily guessed by the reader, we are not able to prove the convergence of Algorithm
3.1 in this larger setting. A possible solution is discussed in Section 7: it consists
in introducing an intermediate predictor for the gradient in the drift of the approx-
imate transition T (tk, x), but induces a new error term, denoted in Delarue and
Menozzi [9] by E(gradient). The new bound for the global error remains the same as
in Theorem 3.2, up to a new constant C3.2, provided δ2 ≤ h and δ−3h3/2M−2/d ≤ 1.
Of course, this condition is not satisfactory since δ−3h3/2M−2/d is worth h−3α/4/4
for the above typical values. To recover the order α/2, M has to be chosen equal
to h−3dα/8. This is the best we can do so far from a theoretical point of view.

Anyhow, the condition we impose on M seems to be useless in the numerical
experiments we provide below. For example, we investigate in Subsection 4.2 the
KPZ equation in dimension three with a smooth initial condition (i.e. α = 2 in a
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formal way). For δ and h of the same order, we still observe an error of order one
w.r.t. h, although M is equal to 8.

What about a truncation? Similarly to what has been done in [9], one could
truncate the grid and obtain, for every q ≥ 1, a truncation error E(trunc) ≤
Cq(R/(R + ρ))q where R > 0 is the radius of the initial grid C0 and ρ > 0 a
truncation parameter. The constant Cq blows up when q increases.

4. Numerical examples

In this section, we choose to illustrate various behaviors of the algorithm through
the approximation of the multidimensional Burgers equations and the deterministic
KPZ equation.

4.1. Multidimensional Burgers equations. The Burgers equations are a sim-
plified form of the Navier-Stokes equations. The convective and dissipative parts
are the same, but the pressure term as well as the incompressibility constraint are
neglected. The equations write

∂tu − (u.∇x)u +
ε2

2
∆u = 0, (t, x) ∈ [0, T ) × R

d, ε > 0,

u(T, x) = H(x), x ∈ R
d,

(4.1)

where ∀i ∈ [[1, d]], ((u.∇x)u)i = ∇xui ×u. Even though the convergence results are
stated for real valued functions, the same analysis could be carried out for systems
of equations. Thus, Theorem 3.2 is still valid for the solution of (4.1).

In dimension one, it is well known that equation (4.1) has an explicit solution
obtained through a Cole-Hopf factorization; see e.g. [29]. In the multidimensional
setting, the factorization can be done provided the final condition H derives from
a potential, namely H = ∇H0, where H0 is a real-valued function. In this case, the
solution explicitly writes: ∀(t, x) ∈ [0, T ] × R

d,

(4.2) u(t, x) =
E[∇H0(x + εBT−t) exp(−ε−2H0(x + εBT−t))]

E[exp(−ε−2H0(x + εBT−t))]
.

We always consider the coupled interpretation of the Burgers equations, i.e.
b(x, u) = u and f = 0. This choice turns out to be numerically more robust; see
Section 4.2 and also [9], Section 5. In the following, we take d = 2.

Now discuss the influence of the viscosity parameter. The approximated transi-
tions involved in Algorithm 3.1 are close to εh1/2. To catch them, the spatial grid
has to be fine enough and the spatial step δ has to be, at least, less than εh1/2. This
empirical condition is confirmed from a numerical point of view. We thus choose
the following values for the parameters at hand: T = 3/8, h = 2.5 × 10−2, δ =
.01, ε2 = .4.

To avoid truncation problems, we choose the periodic initial solution H0(x) =∏
i=1,2 sin2(πxi). Since the problem is then symmetric, we only present the results

obtained for the approximation of the first component of u = (u1, u2)∗. We first
plot the profiles of the solution u1 at t = 0 and the pointwise absolute error between
the reference value and the approximation deriving from Algorithm 3.1, both with
and without γ∗. We also investigate the influence of the number M of points used
for the quantization (we first choose M = 4 and then M = 150). The reference
value is obtained through the explicit representation (4.2) via quantization with
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600 points: due to the “large” viscosity, we observe on the left top figure how fast
the solution decays.

The left bottom figure illustrates, in comparison with the right top one, how
the corrector matrix γ∗ in the transition is crucial, especially when the number of
points in the quantization is small: with M = 4, the relative error is close to 2 for
γ = Id, but close to .1 for the suitable γ (in this latter case, the relative error is
still “large” due to the tiny values of the true solution). Moreover, the last picture
confirms that increasing M does not improve the error.

Let us turn to the case of a smaller viscosity, namely ε2 = .08. For the previous
example, with M = 4, T = .5, let δ vary as εh. The reference solution has globally
the same shape as in the previous picture and is [−.4, .4] valued. We obtain

h 5 × 10−2 2.5 × 10−2 1.25 × 10−2 6.25 × 10−3

supti,xj
|(ū1 − u1)(ti, xj)| .1218 .0628 .0439 .0356

supti,xj
|(ū2 − u2)(ti, xj)| .1215 .0624 .0437 .0355

These numerical results confirm that in the “smooth” case the error is of order one
w.r.t. h. Note also that the errors for u1 and u2 differ (whereas the problem is
symmetrical) because the optimally quantized grid with 4 points is not isotropic.

4.2. KPZ equation. The KPZ equation can be seen as the primitive of the former
Burgers equations. It writes:

∂tu +
1
2
|∇xu|2 +

1
2
∆u = 0, (t, x) ∈ [0, T ) × R

d,

u(T, x) = H(x), x ∈ R
d.(4.3)
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Equation (4.3) also has an explicit solution obtained through a Cole-Hopf factor-
ization

(4.4) u(t, x) = log(E[exp(H(x + BT−t))]).

We first concentrate on the 3-dimensional case taking

H(x) = 10 exp
(
−(1/8)(3x2

1 + 2x2
2 + x2

3)
)
, T = .5, h = .02, δ = .025, M = 8.

We truncate the grid on [−3, 3]. In the decoupled case, i.e., the underlying process
is the Brownian motion, b = 0, f(x, y, z) = 1

2 |z|2, and exponential bounds are avail-
able for the truncation error through Bernstein-like arguments. In the coupled case,
i.e. b(x, y, z) = 1

2z, f = 0, since we do not prove the boundedness of the approxi-
mated gradient we only have polynomial controls; see [9]. Anyhow, the fast decay
of the terminal condition makes the associated error “numerically” reasonable.

The reference value was computed by quantization from (4.4) with M = 200.
We plot the difference between the reference value and the coupled algorithm. In
this smooth case, we still observe an error of order one w.r.t. h.

Let us now turn to an example for which the approximated solution obtained
with the decoupled algorithm explodes. Take d = 2, H(x) = 10 cos(5|x|2), T =
.1, h = .02, δ = .02, M = 4 and truncate the grid for |x| ≥ 1. The reference value is
still computed by quantization with M = 200. One gets

Basically, the numerical integration of a large gradient induces overflows. Hence,
for highly oscillating initial data, the coupled interpretation has to be preferred to
the backward one that is quite unstable.
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4.3. A toy example in the low regular setting. To illustrate the behavior of
the algorithm for small values of α, we investigate a linear example. Of course,
our algorithm is totally useless in this frame, but reference values can be computed
with a Monte-Carlo procedure.

We thus focus on the following one-dimensional example:

∂tu(t, x) +
1
2
∂2

x,xu(t, x) + |x|1/16 − |x − 1|1/16 = 0, (t, x) ∈ [0, 1) × R,

with the null boundary condition at time T = 1. The second member counts two
singularities in zero and one so that u belongs to C1+α/2,2+α([0, T ]×R), α = 1/16.
On the opposite side, the solution u has large “pockets” of regularity away from
the singular points.

In light of Theorem 3.2, we thus expect the algorithm to behave poorly around
the points zero and one and to be closer to the true solution away from them.

The solution, at time 0, may be expressed by the Feynman-Kac formula as

u(0, x) = E
[
|x + U1/2Z|1/16 − |x + U1/2Z − 1|1/16

]
,

where U follows a uniform distribution on (0, 1) and is independent of Z that is a
standard Gaussian random variable. This permits us to compute a reference value
with a Monte-Carlo method for different values of x. We plot below the reference
values associated to 106 simulations for x varying in [−5, 5] with step .01 and then
for x around the first singularity, that is, for x varying in [−.5, .5] with step .005. In
each case, the empirical standard deviation is less than 10−1 so that the underlying
error is at most of order 10−4.

We plot below the absolute error on [−.5, .5] between the reference value and the
outcomes of our algorithm for the following choices: on the first row, h = .01, δ =
.01 and M = 2, 5, 100 and on the second row, h = .001, δ = .005 and M = 2, 5, 100.
The Cartesian grid is truncated at the level |x| = 5.
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We will comment first on what happens in the case h = .01 and δ = .01. Each
graph exhibits jumps, especially around the singular point zero. The number of
jumps as well as their magnitudes decrease with the size M of the underlying
quantization. The maximal error is close to .04 for M = 2, to .02 for M = 5 and
to .01 for M = 100. Moreover, for each value of M , the adequation is less and less
satisfactory as it gets closer to the singular point zero and the maximal error is
attained at x = 0.

We provide here a possible explanation for all these observations: we feel that
the algorithm, and more specifically the quantization procedure, is sensitive to the
underlying local regularity of the coefficients. Indeed, it seems that each isolated
singularity of the coefficients is propagated on a small neighborhood and induces
several local jumps or “absurd” values. Conversely, we can reasonably think that
the local error diminishes on “pockets” of smoothness. In the end, there might be a
competition between the two phenomena, and the combination of both might vary
with the number M of quantization points: this might explain why quantization
has an influence in the low regular setting. Of course, we have no proof for this in-
terpretation and the reader may find it questionable: this point is to be investigated
in further works.

Now we turn to the second case h = .001 and δ = .005. Generally speaking, the
results are more satisfactory than in the first case, as expected in light of Theorem
3.2. For each value of M , the maximal error is between .002 and .003, and the
differences between them are of the same order as the error induced by the Monte-
Carlo method. Here is our interpretation: since h, which induces the dominant term
in the global error, is now very small, jumps are now quite small and quantization
doesn’t seem to be as influent as in the former case. Anyhow, the fitting is still
better away from the singular points: this seems to confirm the influence of the
local smoothness of the coefficients and of the true solution.

5. Proof, first step. Discrete FBSDEs

To establish Theorem 3.2, we first express ūδ through a discrete version of the
FBSDE (E). Indeed, for each k ∈ [[0, N), we can interpret the combination of the
transition T (tk, ·) and of the first order interpolation procedure as a Markovian
kernel (see Lemma 5.1 and (5.2)). In other words, we can build up, in Subsection
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5.2, a Markov process (Xtk
)k∈[[0,N ]] such that (ūδ(tk, Xtk

))k∈[[0,N ]] satisfies a dis-
crete Feynman-Kac formula (see Proposition 5.2). Following the general theory for
BSDEs (see [26]), we can associate, through the martingale representation theo-
rem, a backward SDE to this Feynman-Kac formula (see (5.8)). In Proposition 5.3,
we show that the representation term is mainly given by (v̄δ(tk, Xtk

))k∈[[0,N ]]. The
BSDE representation of ūδ provides a maximum principle for Algorithm 3.1 and
thus an L∞ bound for ūδ (see Proposition 5.4) as well as an L2 bound for v̄δ with
respect to the density of the process X (see Proposition 5.5), both bounds being
independent of the discretization parameters. As a by-product, we prove that v̄δ is
bounded, in L∞, by h−1/2 up to a multiplicative constant.

About constants. In the following, we keep the same notation C, Cη, cη (or
C ′, C ′

η, c′η) for all finite, non-negative constants which appear in our computa-
tions: they may depend on known parameters in (A), on T , but not on any of
the discretization parameters. The index η in the previous notation refers to the
numbering of the proposition, lemma, theorem, etc., where the constant appears.

Conditions on parameters. The statements of the following propositions and
lemmas hold for h small enough.

5.1. Projection mappings. For a given point x ∈ R
d, we want to individuate

the cell it belongs to in order to determine the functions (φz)z∈C∞ involved in the
interpolation procedure. It is rather obvious that at most 2d of them are concerned.

We first define the so-called projection to the lowest neighbor: ∀x ∈ R
d, Π(0)(x)

= (δ�δ−1x1�, · · · , δ�δ−1xd�). Following an arbitrary numbering, we denote by
Π(i)(x), i ∈ [[1, 2d), the remaining projection mappings to the vertices of the cell x
belongs to.

For d = 2, Π(0), . . . , Π(3) can be represented as in Figure 1 below.

Figure 1. Projection mappings, d = 2

With these notations, for a function ψ : C∞ → R, one also has

(5.1) ∀x ∈ R
d, ψδ(x) =

2d−1∑
i=0

φΠ(i)(x)(x)ψ(Π(i)(x)).

As explained in Subsection 3.1, to analyze the convergence of Algorithm 3.1, we
take advantage of the probabilistic interpretation of the piecewise linear interpo-
lation. Indeed, for x ∈ R

d, the family of non-negative weights (φΠ(i)(x)(x))i∈[[0,2d)
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defines a probability measure on the finite set [[0, 2d). We make use in the sequel
of the associated cumulative distribution function

∀x ∈ R
d, α(0)(x) = 0, ∀i ∈ [[1, 2d]], α(i)(x) =

i−1∑
j=0

φΠ(j)(x)(x).

5.2. Discrete version of (U, V, W ). The key to prove Theorem 3.2 is to associate
to Algorithm 3.1 a discrete version of the FBSDE (E). Assume for example that
(X, Y, Z) denotes a possible candidate to mimic (U, V, W ) but along Algorithm 3.1.
In order to have a discrete Feynman-Kac formula, we need to define the forward
process (Xtk

)k∈[[0,N ]] as a Markov chain with continuous state space. Since the
transitions in the algorithm are defined on the grid, we need to specify the transition
for (Xtk

)k∈[[0,N) according to its spatial position at the current discretization time.
The most natural way to proceed consists in randomly choosing, at time tk, one of
the 2d possible transitions associated to the cell that Xtk

belongs to. This is done
by simulating, independently of the Brownian motion, a discrete random variable
with weights (φ(i)

k ≡ φΠ(i)(Xtk
)(Xtk

))i∈[[0,2d).

Extension of the probability space. Let (U�)�∈N∗ be a sequence of independent
identically distributed random variables, independent of the σ-field

∨
t≥0 FB

t , such
that U1 ∼ U([0, 1]). We set, for t ≥ 0, Ft ≡ FB

t ∨ FU
t , with FU

t ≡ σ(U1, . . . , Uk+1)
with k such that tk < t ≤ tk+1 (FU

0 ≡ {∅, Ω}). In particular, the σ-field FU
t+ differs

from FU
t for t ∈ {(tk)k∈[[0,N)}. For simplicity, we set ∀k ∈ [[0, N ]], Ek[.] ≡ E[.|Ftk

].
The following lemma (whose proof is left to the reader) provides the connection

between the variables (U�)�∈N∗ and the projection mappings.

Lemma 5.1. Conditionally to the σ-field Ftk
, k ∈ [[0, N), Uk+1 and σ(Bs, s ≤ tk+1)

are independent and for every R
d-valued and Ftk

-measurable random variable ξ:

∀i ∈ [[0, 2d), Ek

[
IIUk+1∈[α(i)(ξ),α(i+1)(ξ)[

]
= φΠ(i)(ξ)(ξ).

Discrete representation processes. Algorithm 3.1 and Lemma 5.1 motivate, for
an initial condition x0 ∈ R

d, the following definition for the approximating triple
(X, Y, Z). Set X0 ≡ x0 and

Xtk+1 ≡
2d−1∑
i=0

IIUk+1∈[α(i)(Xtk
),α(i+1)(Xtk

)[

(
Π(i)(Xtk

) + T (tk, Π(i)(Xtk
))

)
≡

2d−1∑
i=0

χ
(i)
k+1X

(i)
tk+1

for k ∈ [[0, N),

(Ytk
, Ztk

) ≡
(
ūδ(tk, Xtk

), v̄δ(tk, Xtk
)
)

for k ∈ [[0, N ]].

(5.2)

Note carefully that X
(i)
tk+1

does not stand for the ith component of a vector of R
d. It

is associated to the initial position Π(i)(Xtk
) and to the transition T (tk, Π(i)(Xtk

)).
Referring to the notations introduced after Algorithm 3.1, T (tk, Π(i)(Xtk

)) writes
in an obvious manner T (tk, Π(i)(Xtk

)) ≡ b
(i)
k h + σ

(i)
k γ∗g(∆Bk).
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Backward equation. From the above definition we derive the following:

Proposition 5.2 (Discrete Feynman Kac formula). For all k ∈ [[0, N),

Ytk
= Ek

[
H(XtN

)

+ h

N−1∑
j=k

2d−1∑
i=0

φ
(i)
j f

(
Π(i)(Xtj

), ū(tj+1, Π(i)(Xtj
)), v̄(tj , Π(i)(Xtj

))
)]

≡ Ek

[
H(XtN

) + h
N−1∑
j=k

2d−1∑
i=0

φ
(i)
j f

(i)
j

]
≡ Ek

[
H(XtN

) + h
N−1∑
j=k

f̄δ

(
tj , Xtj

)]
.

Proof. Write first, for k ∈ [[0, N) (we specify over the symbols “=” the references
employed for the computations)

Ek[Ytk+1 ]
(5.2)
= Ek[ūδ(tk+1, Xtk+1)]

(3.3)
=

∑
z∈C∞

øu(tk+1, z)Ek[φz(Xtk+1)]

(5.2), Le. 5.1
=

∑
z∈C∞

øu(tk+1, z)
2d−1∑
i=0

Ek[χ(i)
k+1]Ek[φz

(
X

(i)
tk+1

)
]

Le. 5.1=
∑

z∈C∞

øu(tk+1, z)
2d−1∑
i=0

φ
(i)
k Ek[φz

(
X

(i)
tk+1

)
].

(5.3)

From Algorithm 3.1, one also gets

Ytk

(5.2)
= ūδ(tk, Xtk

)
(5.1)
=

2d−1∑
i=0

φ
(i)
k øu(tk, Π(i)(Xtk

))

Al. 3.1=
2d−1∑
i=0

φ
(i)
k

{
Ek

[
ūδ

(
tk+1, X

(i)
tk+1

)]
+ hf

(i)
k

}
(5.2), Le. 5.1

=
2d−1∑
i=0

φ
(i)
k

{ ∑
z∈C∞

øu
(
tk+1, z)Ek

[
φz

(
X

(i)
tk+1

)]
+ hf

(i)
k

}
.

(5.4)

Equations (5.3) and (5.4) yield Ek[Ytk+1 ]+h
∑2d−1

i=0 φ
(i)
k f

(i)
k = Ytk

. The proof of the
proposition follows by induction. �

5.3. Associated a priori estimates. From (5.2), we derive ∀k ∈ [[0, N)

Ytk+1 =
2d−1∑
i=0

χ
(i)
k+1ūδ

(
tk+1, X

(i)
tk+1

)
.

For k ∈ [[0, N) and i ∈ [[0, 2d), the random variable ūδ(tk+1, X
(i)
tk+1

) is

Ftk
∨ σ(Bt − Btk

, tk ≤ t ≤ tk+1)

measurable. Thanks to the Martingale Representation Theorem (see e.g. Theorem
III.4.33 in Jacod and Shiryaev [14]), there exists a process (øZ(i)

t )tk≤t≤tk+1 with
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values in R
d, progressively measurable with respect to the previous filtration and

with finite moment of order two, such that:

(5.5) ūδ

(
tk+1, X

(i)
tk+1

)
= Ek

[
ūδ

(
tk+1, X

(i)
tk+1

)]
+

∫ tk+1

tk

Z̄(i)
s dBs,

so that Ytk+1 =
∑2d−1

i=0 χ
(i)
k+1

{
Ek[ūδ(tk+1, X

(i)
tk+1

)] +
∫ tk+1

tk
Z̄

(i)
s dBs

}
. Define for t ∈

[tk, tk+1],

(5.6) Z̄t =
2d−1∑
i=0

χ
(i)
k+1Z̄

(i)
t .

Now rewrite

Ytk+1 =
2d−1∑
i=0

φ
(i)
k Ek

[
ūδ

(
tk+1, X

(i)
tk+1

)]
+

∫ tk+1

tk

øZsdBs + ∆Rk+1(1)

Le. 5.1= Ek[Ytk+1 ] +
∫ tk+1

tk

øZsdBs + ∆Rk+1(1),

∆Rk+1(1) ≡
2d−1∑
i=0

(
χ

(i)
k+1 − φ

(i)
k

)
Ek

[
ūδ(tk+1, X

(i)
tk+1

)
]
.

(5.7)

Note from Lemma 5.1 that Ek[∆Rk+1(1)] = 0. Eventually use Proposition 5.2 to
obtain:

Ytk+1 = Ytk
− høfδ(tk, Xtk

) +
∫ tk+1

tk

øZsdBs + ∆Rk+1(1),

YtN
+ h

N∑
k=1

øfδ

(
tk−1, Xtk−1

)
= Y0 +

∫ T

0

Z̄sdBs +
N∑

k=1

∆Rk(1).
(5.8)

This allows us to apply the BSDE machinery already used in [9], provided the
following a priori estimates.

Proposition 5.3. For k ∈ [[1, N ]], hZtk−1 = Ek−1

[∫ tk

tk−1
Z̄sds

]
γ and for i ∈ [[0, 2d),

høv(tk−1, Π(i)(Xtk−1)) = Ek−1[
∫ tk

tk−1
øZ

(i)
s ds]γ.

Proposition 5.4. ∃C5.4 ≥ 0 s.t. sup(k,x)∈[[0,N ]]×Rd |ūδ(tk, x)|2 ≤ C5.4.

Proposition 5.5. ∃C5.5 ≥ 0 s.t. E
[∫ T

0
|Z̄s|2ds

]
+ h

∑N−1
k=0 E

[
|v̄|2δ(tk, Xtk

)+ |Ztk
|2

]
+ h sup(k,x)∈[[0,N ]]×Rd |v̄δ(tk, x)|2 ≤ C5.5.

Proof of Proposition 5.3. From (5.8), write for a given k ∈ [[0, N):

Ytk+1 + høfδ

(
tk, Xtk

)
= Ytk

+
∫ tk+1

tk

Z̄sdBs + ∆Rk+1(1),

Ek

∫ tk+1

tk

Z̄sds = Ek

[
Ytk+1(∆Bk)∗

] Le. 5.1,(3.5)
= Ek

[
Ytk+1g(∆Bk)∗

] Le. 5.1= hZtk
γ−1.

Similar arguments and (5.5) yield the second statement of the proposition. �
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Proof of Proposition 5.4. We apply the basic strategy of the BSDE theory using
a discrete version of Itô’s formula; see Shiryaev [28], Chapter VII, Subsection 9 or
Lemma 6.8 in [9]. We get:

|YT |2 = |Y0|2 + 2
N∑

k=1

〈Ytk
− Ytk−1 , Ytk−1〉 +

N∑
k=1

|Ytk
− Ytk−1 |2,

with Ytk
− Ytk−1 = −høfδ(tk−1, Xtk−1) +

∫ tk

tk−1
Z̄sdBs + ∆Rk(1) (cf. (5.8)). From

(5.7), Ek−1[∆Rk(1)] = 0. Similarly,

Ek−1

[∫ tk

tk−1

Z̄sdBs

]
(5.6)
=

2d−1∑
i=0

Ek−1

[
χ

(i)
k

∫ tk

tk−1

Z̄(i)
s dBs

]
Le. 5.1=

2d−1∑
i=0

Ek−1[χ
(i)
k ]Ek−1

[∫ tk

tk−1

Z̄(i)
s dBs

]
= 0.

(5.9)

Hence,

E|YT |2 = |Y0|2 + 2h
N∑

k=1

E〈−øfδ(tk−1, Xtk−1), Ytk−1〉

+
N∑

k=1

E

[{
høfδ(tk−1, Xtk−1) −

∫ tk

tk−1

Z̄sdBs − ∆Rk(1)
}2]

.

(5.10)

As above, the expectations of the double products involving øfδ(tk−1, Xtk−1) and∫ tk

tk−1
Z̄s dBs on the one hand and øfδ(tk−1, Xtk−1) and ∆Rk(1) on the other hand

vanish. Note finally that

Ek−1

[(∫ tk

tk−1

Z̄sdBs

)
∆Rk(1)

]
(5.6)
=

2d−1∑
i=0

Ek−1

[(∫ tk

tk−1

Z̄(i)
s dBs

)(
χ

(i)
k ∆Rk(1)

)]
Le. 5.1=

2d−1∑
i=0

Ek−1

[(∫ tk

tk−1

Z̄(i)
s dBs

)]
Ek−1

[
χ

(i)
k ∆Rk(1)

]
= 0.

(5.11)

Plug (5.9) and (5.11) into (5.10):

E|YT |2 = |Y0|2 + 2h

N∑
k=1

E〈−øfδ(tk−1, Xtk−1), Ytk−1〉

+ h2
N∑

k=1

E
[
øf2

δ (tk−1, Xtk−1)
]
+ E

∫ T

0

|Z̄s|2ds +
N∑

k=1

E[∆R2
k(1)].

(5.12)
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From Assumption (A) and (3.2), there exists a constant C such that:

|Y0|2 + E

∫ T

0

|Z̄s|2ds ≤ E|YT |2 + Ch

N∑
k=1

E

[
|Ytk−1 |

(
1 + |ūδ(tk, ·)|∞

+
2d−1∑
i=0

φ
(i)
k−1|øv(tk−1, Πi(Xtk−1))|

)]
.

(5.13)

From Young’s inequality and from Jensen’s inequality (applied to interpolation
weights), we derive for every η > 0:

|Y0|2 + E

∫ T

0

|Z̄s|2ds ≤ E|YT |2 + Cη−1h
N∑

k=1

E
[
|Ytk−1 |2

]
+ Cηh

N∑
k=1

E

[
1 + |ūδ(tk, ·)|2∞ +

2d−1∑
i=0

φ
(i)
k−1|øv|2(tk−1, Πi(Xtk−1))

]
.

(5.14)

Set Q ≡ h
∑N

k=1

∑2d−1
i=0 E

[
φ

(i)
k−1|øv|2(tk−1, Πi(Xtk−1))

]
. Owing to Proposition 5.3:

Q = h−1
N∑

k=1

2d−1∑
i=0

E

[
φ

(i)
k−1

∣∣∣∣Ek−1

[∫ tk

tk−1

øZ(i)
s ds

]
γ

∣∣∣∣2]

≤ C
N∑

k=1

2d−1∑
i=0

E

[
φ

(i)
k−1Ek−1

[∫ tk

tk−1

|øZ(i)
s |2ds

]]
.

Now write

(5.15) Q
Le. 5.1
≤ C

N∑
k=1

2d−1∑
i=0

E

[
χ

(i)
k

∫ tk

tk−1

∣∣øZ(i)
s

∣∣2ds

]
(5.6)
= CE

[∫ T

0

|øZs|2ds

]
.

From (5.15) and (5.14), we derive that for η and h small enough

|Y0|2 +
1
2

E

[∫ T

0

|øZs|2ds

]
≤ E|YT |2 + C + Ch

N∑
k=1

|ūδ(tk, ·)|2∞.(5.16)

Recall that |YT | ≤ |H|∞. Thus |ūδ(0, ·)|2∞ ≤ C + Ch
∑N

k=1 |ūδ(tk, ·)|2∞. As usual
in BSDE theory, we could establish in a similar way that for every j ∈ [[1, N):
|ūδ(tj , ·)|2∞ ≤ C +Ch

∑N
k=j+1 |ūδ(tk, ·)|2∞. A discrete version of Gronwall’s Lemma

yields the result. �

Proof of Proposition 5.5. The L2-estimate of øZ follows from Proposition 5.4 and
(5.16). Then, the L2-estimate of Z follows from the L2-estimate of øZ and Propo-
sition 5.3. The L2-estimate of |v̄|δ then comes from the earlier definition of Q.
Finally, as a consequence of Proposition 5.4 and the definition of v̄δ, see Algorithm
3.1, we deduce the estimate of the supremum norm of v̄δ. �
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6. Proof, second step: Stability properties

This section focuses on the second step of the proof of Theorem 3.2. Our strategy
follows from the decoupling argument (or Four Step Scheme) used by Ma, Protter
and Yong [20] to establish uniqueness of the solutions to some FBSDEs. Indeed,
because of the smoothness properties of the true solution u (see Theorem 2.1), we
can express (u(tk, Xtk

))k∈[[0,N ]] as the solution of a new BSDE (see (6.7)). The
whole point is to compare this new BSDE to the one satisfied by (Ytk

)k∈[[0,N ]]:
this amounts to applying to our specific setting general stability properties for
BSDEs. The minutely detailed computations are postponed to the end of the
section (see Lemmas 6.3 and 6.4). The final result is stated below (see Theorem
6.1). Theorem 3.2 then follows from an obvious combination of Theorem 6.1 and
Gronwall’s Lemma.

To express (u(tk, Xtk
))k∈[[0,N ]] as the solution of a BSDE, we first introduce a

time continuous extension of X (see (6.2)) and then develop (u(t, Xt))0≤t≤T by
Itô’s formula. The dynamics of X between tk and tk+1, k ∈ [[0, N), is chosen to be
Gaussian, so that X jumps at time tk. We investigate in Lemma 6.2 the sizes of
these jumps.

6.1. Stability theorem. Applying the usual FBSDE machinery, we establish in
Subsection 6.2:

Theorem 6.1. There exists a constant C6.1 > 0 such that:

|(ūδ − u)(0, x)|2 + C−1
6.1h

N∑
k=1

E
[
(|v̄ − v|2)δ(tk−1, Xtk−1)

]
≤ C6.1

[
E2(global) + h

N∑
k=1

|(ūδ − u)(tk, ·)|2∞
]
.

(6.1)

We then derive Theorem 3.2 from Theorem 6.1 and Gronwall’s Lemma (up to a
modification of the initial condition).

6.2. Proof of Theorem 6.1.

Starting point: Time continuous processes. For the proof, we need to extend the
definition of X to the whole set [0, T ]. Put for all k ∈ [[0, N) and t ∈ (tk, tk+1):

Xt ≡
2d−1∑
i=0

χ
(i)
k+1

[
Π(i)(Xtk

) + b
(i)
k (t − tk) + σ

(i)
k γ∗(Bt − Btk

)
]

≡
2d−1∑
i=0

χ
(i)
k+1X

(i)
t .

(6.2)

Note that X
(i)
tk+ = Π(i)(Xtk

). Hence, the extended process (Xt)0≤t≤T is discontinu-
ous at times (tk)k∈[[1,N), both at tk− and tk+ (of course, it is also discontinuous at
times 0+ and T−). At a given time tk, k ∈ [[1, N), the size of the jumps performed
by the process depends, on the right, on the spatial projection error, and, on the
left, on the quantization error. The first one is bounded by δ and is of mean zero.
The second one is easily controlled by the distortion; cf. (3.4). More precisely, for
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all k ∈ [[0, N)

(6.3) Xtk+1 − Xtk+1− =
2d−1∑
i=0

[
χ

(i)
k+1σ

(i)
k γ∗[g(∆Bk) − ∆Bk

]]
.

Moreover, one easily obtains the following

Lemma 6.2. There exists C6.2 ≥ 0 s.t. for every k ∈ [[0, N − 1]]:

∀i ∈ [[0, 2d), ∀t ∈ (tk, tk+1), Ek

[
|X(i)

t − X
(i)
tk+|2

]
≤ C6.2h.

Referring to the structure of the PDE (E), we set

∀t ∈ [0, T ], øVt ≡ u(t, Xt), W̄t ≡ ∇xu(t, Xt)σ(Xt, V̄t),

∀t �∈ {(tk)k∈[[0,N ]]}, i ∈ [[0, 2d),

⎧⎪⎨⎪⎩
V̄

(i)
t ≡ u(t, X(i)

t ),
W̄

(i)
t ≡ ∇xu(t, X(i)

t )σ(X(i)
t , V̄

(i)
t )

≡ ∇xu(t, X(i)
t )σ̄(i)

t .

(6.4)

Note, moreover, that the martingale part of (V̄t)0≤t≤T is driven, for t ∈ (tk, tk+1),
k ∈ [[0, N), by:

(6.5) Wtγ
∗ ≡

2d−1∑
i=0

[
χ

(i)
k+1∇xu(t, X(i)

t )σ(i)
k γ∗] ≡ 2d−1∑

i=0

[
χ

(i)
k+1W

(i)
t γ∗].

From Theorem 2.1 and Lemma 6.2, we derive the following a priori estimates for
V̄ (i), W̄ (i), i ∈ [[0, 2d). For all k ∈ [[0, N) and s ∈ (tk, tk+1),

(6.6) Ek

[
|V̄ (i)

s − V̄
(i)
tk+|2 + |W̄ (i)

s − W̄
(i)
tk+|2

]
≤ Ch.

Step One: Itô’s formula for V̄ . Applying Itô’s formula to (u(t, X(i)
t ))tk<t<tk+1 , for

all i ∈ [[0, 2d) and k ∈ [[0, N), and using the PDE (E), we obtain:

V̄tk+1 − V̄tk
= V̄tk+1 − V̄tk+1− + V̄tk+ − V̄tk

+
2d−1∑
i=0

{
χ

(i)
k+1

[∫ tk+1

tk

[
F

(
s, X(i)

s , X
(i)
tk+, ū(ti+1, X

(i)
tk+), σ(i)

k γ∗γ(σ(i)
k )∗

)
− F

(
s, X(i)

s , X(i)
s , V̄ (i)

s , σ̄(i)
s (σ̄(i)

s )∗
)]

ds

−
∫ tk+1

tk

f
(
X(i)

s , V̄ (i)
s , W̄ (i)

s

)
ds

]}
+

∫ tk+1

tk

Wsγ
∗dBs,

(6.7)

with F (s, x, x′, y, A) = (1/2)tr(AHu(s, x))+∇xu(s, x)b(x′, y), s ∈ [0, T ], x, x′ ∈ R
d,

y ∈ R and A ∈ R
d×d.

Step Two: Difference of the processes. The strategy is well-known: make the dif-
ference between V̄ and Y and apply the usual BSDE machinery to estimate the
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difference. From Proposition 5.2 and (5.8), we claim:

V̄tk+1 − Ytk+1 −
[
V̄tk

− Ytk

]
=

{
V̄tk+1 − V̄tk+1− + ∆Rk+1(3)

}
+

{
V̄tk+ − V̄tk

}
+

{2d−1∑
i=0

χ
(i)
k+1

[∫ tk+1

tk

[
F

(
s, X(i)

s , X
(i)
tk+, ū(ti+1, X

(i)
tk+), σ(i)

k (σ(i)
k )∗

)
− F

(
s, X(i)

s , X(i)
s , V̄ (i)

s , σ̄(i)
s (σ̄(i)

s )∗
)]

− f
(
X(i)

s , V̄ (i)
s , W̄ (i)

s

)
+ f

(i)
k

]
ds

]}
+

{∫ tk+1

tk

[
Wsγ

∗ − Z̄s

]
dBs + ∆Rk+1(2)

}
≡ ∆Ek+1(1) + ∆Ek+1(2) + ∆Ek+1(3) + ∆Ek+1(4),

(6.8)

denoting

∆Rk+1(2) ≡ h

2d−1∑
i=0

[(
φ

(i)
k − χ

(i)
k+1

)
f

(i)
k

]
− ∆Rk+1(1),

∆Rk+1(3) ≡
2d−1∑
i=0

χ
(i)
k+1

∫ tk+1

tk

1
2
tr(Hu(s, X(i)

s )σ(i)
k (γ∗γ − Id)(σ

(i)
k )∗)ds.

(6.9)

The discrete Itô formula yields:

E|V̄T − YT |2 = |V̄0 − Y0|2 + 2E

N∑
k=1

[[
V̄tk−1 − Ytk−1

]( 4∑
�=1

∆Ek(�)
)]

+ E

N∑
k=1

[( 4∑
�=1

∆Ek(�)
)2]

.

(6.10)

From the above expression, we get:

|V̄0 − Y0|2 +
N∑

k=1

E
[(

∆Ek(1) + ∆Ek(2) + ∆Ek(4)
)2]

= E|V̄T − YT |2 − 2E

N∑
k=1

[[
V̄tk−1 − Ytk−1

]( 4∑
�=1

∆Ek(�)
)]

−
N∑

k=1

E[(∆Ek(3))2] − 2
N∑

k=1

E
[
∆Ek(3)

(
∆Ek(1) + ∆Ek(2) + ∆Ek(4)

)]
.

The inequality 2ab ≤ 2a2 + (1/2)b2 yields

|V̄0 − Y0|2 +
1
2

N∑
k=1

E
[(

∆Ek(1) + ∆Ek(2) + ∆Ek(4)
)2]

≤ E|V̄T − YT |2

− 2E

N∑
k=1

[[
V̄tk−1 − Ytk−1

]( 4∑
�=1

∆Ek(�)
)]

+
N∑

k=1

E[(∆Ek(3))2].

(6.11)
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Put:

D(1) ≡ −2E

N∑
k=1

[[
V̄tk−1 − Ytk−1

]( 4∑
�=1

∆Ek(�)
)]

,

D(2) ≡
N∑

k=1

E[(∆Ek(3))2],

D(3) ≡
N∑

k=1

E
[(

∆Ek(1) + ∆Ek(2) + ∆Ek(4)
)2]

.

(6.12)

Step Three: Standard BSDE techniques. Admit for the moment that

Lemma 6.3. There exists a constant C6.3 such that for η ∈]0, 1]:

|D(1)| + D(2) ≤ CE2(global) + Chη−1
N∑

k=1

|(ūδ − u)(tk, .)|2∞

+ h(η + h)
N∑

k=1

E
[
(|v̄ − v|2)δ(tk−1, Xtk−1)

]
.

Lemma 6.4. There exists a constant C6.4 > 0 such that:

D(3) ≥ C−1
6.4h

N∑
k=1

E[(|v̄ − v|2)δ(tk−1, Xtk−1)] − C6.4E2(global)

− C6.4h
N∑

k=1

|(ūδ − u)(tk−1, .)|2∞.

To conclude the proof of Theorem 6.1 note that YT = V̄T . Hence, for η small
enough one obtains inequality (6.1) from (6.11), (6.12), and Lemmas 6.3 and 6.4.
This completes, up to the proofs of Lemmas 6.3 and 6.4, the proof of Theorem
6.1. �

Proof of Lemma 6.3, D(1). From Theorem 2.1, Lemma 5.1 and Taylor’s formula
applied to V̄tk

− V̄tk− =
∑2d−1

i=0 [χ(i)
k (u(tk, X

(i)
tk

) − u(tk, X
(i)
tk−))], we derive

Ek−1[∆Ek(1)]

=
2d−1∑
i=0

φ
(i)
k−1

{
Ek−1[∇xu(tk, X

(i)
tk

)(X(i)
tk

− X
(i)
tk−)]

+ Ek−1

[∫ tk

tk−1

ds

∫ 1

0

dλ(1 − λ)
(

tr
(
Hu(s, X(i)

s )σ(i)
k−1(γ

∗γ − Id)(σ
(i)
k−1)

∗)
− h−1tr

(
Hu(tk, X

(i),λ
tk

)σ(i)
k−1γ

∗[(g(∆Bk−1) − ∆Bk−1)]

× [(g(∆Bk−1) − ∆Bk−1)]∗γ(σ(i)
k−1)

∗))]}
,

(6.13)

with X
(i),λ
tk

≡ X
(i)
tk

+ λ(X(i)
tk− − X

(i)
tk

). Exploiting (3.5), we get

Ek−1[∇xu(tk, X
(i)
tk

)(X(i)
tk

− X
(i)
tk−)]

= Ek−1[∇xu(tk, X
(i)
tk

)σ(i)
k−1γ

∗
E[g(∆Bk−1) − ∆Bk−1|g(∆Bk−1)]] = 0.
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Thus with obvious notations

(6.14) Ek−1[∆Ek(1)] ≡
2d−1∑
i=0

φ
(i)
k−1

∫ tk

tk−1

ds

∫ 1

0

dλ(1 − λ)Ek−1[I
(i)
k−1(s, λ)].

Noting that h−1
Ek−1[(g(∆Bk−1)−∆Bk−1)(g(∆Bk−1)−∆Bk−1)∗] = Id− (γγ∗)−1,

we derive

Ek−1

[
I
(i)
k−1(s, λ)

]
= Ek−1

[
tr

(
[Hu(s, X(i)

s ) − Hu(tk−1, X
(i)
tk−1+

)]σ(i)
k−1(γ

∗γ − Id)(σ
(i)
k−1)

∗)]
− Ek−1

[
h−1tr

(
[Hu(tk, X

(i),λ
tk

) − Hu(tk−1, X
(i)
tk−1+

)]

× σ
(i)
k−1γ

∗[(g(∆Bk−1) − ∆Bk−1)][(g(∆Bk−1) − ∆Bk−1)]∗γ(σ(i)
k−1)

∗)].
From (3.4), note first that |γγ∗ − Id| ≤ CM−2/d. The key idea is now to use the
α-Hölder continuity of the Hessian matrix of u, cf. Theorem 2.1, combined with the
fact that for β ∈ [2, d + 2), the square Gaussian quantization is still rate optimal
in Lβ(P), cf. [11], that is, (E[|g(∆Bk−1) − ∆Bk−1|β ])β−1 ≤ Ch1/2M−1/d. Hence,
putting ζ > 1 s.t. ζ−1 + (β/2)−1 = 1, the Hölder inequality yields:

|Ek−1[I
(i)
k−1(s, λ)]|

≤ CEk−1[(hα/2 + sup
tk−1<s<tk

|X(i)
s − X

(i)
tk−1+

|α + |X(i)
tk− − X

(i)
tk

|α)ζ ]ζ
−1

×
[
M−2/d + h−1

Ek−1[|∆Bk−1 − g(∆Bk−1)|β]2β−1]
≤ Chα/2M−2/d.

Plug the above control into (6.14) to obtain |Ek−1[∆Ek(1)]| ≤ Ch1+α/2M−2/d.
Turn to ∆Ek(2). Apply the Taylor formula to the function u:

Ek−1[∆Ek(2)] = Ek−1

[2d−1∑
i=0

χ
(i)
k

(
u(tk−1, X

(i)
tk−1+

) − u(tk−1, Xtk−1)
)]

=
2d−1∑
i=0

φ
(i)
k−1

[
u(tk−1, X

(i)
tk−1+

) − u(tk−1, Xtk−1)
]

=
2d−1∑
i=0

φ
(i)
k−1

[
∇xu(tk−1, Xtk−1)

(
X

(i)
tk−1+

− Xtk−1

)
+

∫ 1

0

dλ(1 − λ)tr
[
Hu(tk−1, Xtk−1 + λ(X(i)

tk−1+
− Xtk−1))

×
(
X

(i)
tk−1+

− Xtk−1

)(
X

(i)
tk−1+

− Xtk−1

)∗]]

≡
2d−1∑
i=0

φ
(i)
k−1

[
∆E

(i)
k (2, 1) + ∆E

(i)
k (2, 2)

]
.

Since the shape functions (φz)z∈C∞ are chosen to interpolate exactly the polynomi-
als of order less than one, we have

∑2d−1
i=0 φ

(i)
k−1∆E

(i)
k (2, 1) = 0. Moreover, the regu-

larity properties of u yield |
∑2d−1

i=0 φ
(i)
k−1∆E

(i)
k (2, 2)| ≤ Cδ2, so that |Ek−1[∆Ek(2)]|

≤ ChE(space).
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Due to (5.7), (5.9) and (6.9), the contribution of ∆E(4) in D(1) is null.
Now note from Theorem 2.1 (boundedness of the first and second order deriva-

tives) that ∆E(3) may be seen as a “Hölder/Lipschitz” difference. Additionally,
using the above controls for the conditional expectations of ∆E(1) and ∆E(2), we
derive that there exists a constant C, such that:

|D(1)| ≤ CE

N∑
k=1

{
|V̄tk−1 − Ytk−1 |

[
hE(global) +

2d−1∑
i=0

[
φ

(i)
k−1

×
(∫ tk

tk−1

[
|X(i)

s − X
(i)
tk−1+

|α + |V̄ (i)
s − ū(tk, X

(i)
tk−1+

)|
]
ds

+
∫ tk

tk−1

[
|W̄ (i)

s − øv(tk−1, X
(i)
tk−1+

)|
]
ds

)]]}
.

Recall that V̄
(i)
s = u(s, X(i)

s ), øW
(i)
s = v(s, X(i)

s ). From Theorem 2.1 (Hölder reg-
ularity of u in t), (6.6) (regularity of V̄ and W̄ ) and Lemma 6.2 (control of the
increments of X), we then deduce:

|D(1)| ≤ CE

N∑
k=1

[
|V̄tk−1 − Ytk−1 |

(
hE(global) + h1+α/2

+ h
{
|(ūδ − u)(tk, ·)|∞ + |øv − v|δ(tk−1, Xtk−1)

})]
.

(6.15)

Since h1+α/2 = hE(time), we derive, from Young’s inequality, the required control
for D(1). �

Proof for D(2). Recall that D(2) = E
∑N

k=1

[
(∆Ek(3))2

]
. Again, the terms ∆Ek(3)

are “Hölder/Lipschitz” differences, so that the strategy used to obtain (6.15) ap-
plies. This provides the required bound for D(2). �

6.2.1. Proof of Lemma 6.4. Recall that

D(3) =
N∑

k=1

E
[(

∆Ek(1) + ∆Ek(2) +
∫ tk

tk−1

[
Wsγ

∗ − Z̄s

]
dBs + ∆Rk(2)

)2]
.

Now, sticking to the notations introduced for the proof of Lemma 6.3 (see (6.13)),
Taylor’s formula applied to ∆EkS(1) yields:
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tk−1

[Wsγ
∗ − øZs]dBs + ∆Ek(1)

=
{2d−1∑

i=0

χ
(i)
k

(
v(tk−1, X

(i)
tk−1+

)γ∗g(∆Bk−1) −
∫ tk

tk−1

øZ(i)
s dBs

)}

+
{2d−1∑

i=0

χ
(i)
k

[
∇xu(tk, X

(i)
tk

)σ(i)
k−1 − v(tk−1, X

(i)
tk−1+

)
]
γ∗(g(∆Bk−1) − ∆Bk−1

)
−

2d−1∑
i=0

χ
(i)
k

∫ 1

0

dλ(1 − λ)tr
[
Hu(tk, X

(i),λ
tk

)σ(i)
k−1γ

∗(g(∆Bk−1) − ∆Bk−1)

× (g(∆Bk−1) − ∆Bk−1)∗γ(σ(i)
k−1)

∗]
+

2d−1∑
i=0

χ
(i)
k

∫ tk

tk−1

[W (i)
s − v(tk−1, X

(i)
tk−1+

)]γ∗dBs + ∆Rk(3)
}

≡ Ak(1) + Ak(2).

From Theorem 2.1, (6.9) and standard estimates for the increments of X, we deduce∑N
k=1 E[(Ak(2))2] ≤ Ch. Thus, D(3) ≥ (1/2)

∑N
k=1 E[(Ak(1)+∆Rk(2)+∆Ek(2))2]

−Ch. From (5.11), (6.9) and Lemma 5.1, we already know that the covariance
between the stochastic integral (respectively the quantized Brownian increment)
and ∆Rk(2) vanishes. Moreover,

Ek−1

[
Ak(1)∆Ek(2)

]

=
2d−1∑
i=0

Ek−1

[
χ

(i)
k

(
v(tk−1, X

(i)
tk−1+

)γ∗g(∆Bk−1)

−
∫ tk

tk−1

Z̄(i)
s dBs

)(
u(tk−1, X

(i)
tk−1+

) − u(tk−1, Xtk−1)
)]

= 0.

We finally obtain

D(3) ≥ 1
2

N∑
k=1

2d−1∑
i=0

E

[
φ

(i)
k−1Ek−1

[(
v(tk−1, X

(i)
tk−1+

)γ∗g(∆Bk−1)

−
∫ tk

tk−1

øZ(i)
s dBs

)2]]
− Ch.

(6.16)

To investigate (6.16), we follow (6.2) and put X
(i)
tk

= Π(i)(Xtk−1)+ b
(i)
k−1h + σ

(i)
k−1γ

∗

×g(∆Bk−1) (in (6.2), X
(i)
t is just defined for tk−1 < t < tk). A new applica-

tion of the Taylor formula at order one to u(tk, X
(i)
tk

) with respect to the ini-
tial value (tk−1, X

(i)
tk−1+

) yields, for all i ∈ [[0, 2d) and k ∈ [[1, N ]], u(tk, X
(i)
tk

) =

u(tk−1, X
(i)
tk−1+

) + ∇xu(tk−1, X
(i)
tk−1+

)(X(i)
tk

− X
(i)
tk−1+

) + O(h), so that

Ek−1

[(
u(tk, X

(i)
tk

) − Ek−1[u(tk, X
(i)
tk

)] − v(tk−1, X
(i)
tk−1+

)γ∗g(∆Bk−1)
)2]

≤ C(h2 + h|(ūδ − u)(tk−1, .)|2∞).
(6.17)
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Hence, denoting by Vk−1 the conditional variance with respect to Ftk−1 , (6.16) and
(5.5) give

D(3) ≥1
4

N∑
k=1

2d−1∑
i=0

E
[
φ

(i)
k−1Vk−1

[
(u − ūδ)(tk, X

(i)
tk

)
]]

− C

(
h + h

N∑
k=1

|(ūδ − u)(tk−1, .)|2∞
)

.

(6.18)

Since v(tk−1, X
(i)
tk−1+

) = h−1
Ek−1[v(tk−1, X

(i)
tk−1+

)γ∗g(∆Bk−1)g(∆Bk−1)∗γ], (6.17)
and the Cauchy-Schwarz inequality yield∣∣Ek−1

[
h−1u(tk, X

(i)
tk

)g(∆Bk−1)∗γ
]
− v(tk−1, X

(i)
tk−1+

)
∣∣

= h−1
∣∣Ek−1

[(
u(tk, X

(i)
tk

) − Ek−1[u(tk, X
(i)
tk

)]

− v(tk−1, X
(i)
tk−1+

)γ∗g(∆Bk−1)
)
g(∆Bk−1)∗γ

]∣∣
≤ C(h + |(ūδ − u)(tk−1, .)|2∞)1/2,

so that

h|(v − v̄)(tk−1, X
(i)
tk−1+

)|2

≤ Ch−1
∣∣Ek−1

[
(u − ūδ)(tk, X

(i)
tk

)g(∆Bk−1)∗γ
]∣∣2 + C

(
h2 + h|(ūδ − u)(tk−1, .)|2∞

)
≤ CVk−1

[
(u − ūδ)(tk, X

(i)
tk

)
]
+ C

(
h2 + h|(ūδ − u)(tk−1, .)|2∞

)
.

Due to (6.18), this completes the proof. �

7. Convergence when b depends on the gradient

As announced in Section 3, we now investigate the case where b depends on v.
As already explained, when b is bounded, we can apply Algorithm 3.1 to the four-

tuple (0, g, H, σ) (see the explanations after (3.6) for the meaning of this notation),
with g(x, u, v) = f(x, u, v) + vσ−1(x, u)b(x, u, v). Indeed, although the coefficient
g does not satisfy Assumption (A), Theorem 3.2 still holds in this case. Let us
review the main arguments: first, since b is bounded, g is of linear growth, so that
all the bounds given in Section 5 are true in this new setting; second, we can plug
the bound for the gradient of the true solution u (see Theorem 2.1) in the regularity
estimate (3.6) and treat the term ∆Ek+1(3) in (6.8) as a Lispchitz difference.

In the general frame, we are not able to establish the convergence of Algorithm
3.1 for the four-tuple (b, f, σ, H), or for the four-tuple (0, g, σ, H) either. The reason
was already discussed in our previous paper [9]: one way or another, the analysis of
Algorithm 3.1 leads us to investigate the regularity of the approximated gradient
v̄. This task is certainly far from being trivial.

Intermediate predictor. The common strategy consists in introducing an inter-
mediate predictor for v, denoted by v̂, for which the underlying estimates are easier
to establish. In [9], v̂(tk, ·), k ∈ [[0, N), is given as a regularized version of v̄(tk+1, ·).
Our choice in the current paper is slightly different. For k ∈ [[0, N) and x ∈ C∞,
set:

v̂(tk, x) ≡ h−1
E

[
ūδ(tk+1, x + T 0(tk, x))g(∆Bk)∗

]
γ,

T 0(tk, x) ≡ Σ(tk, x)γ∗g(∆Bk).
(7.1)
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Define the transition T (tk, x) ≡ β(tk, x)h + Σ(tk, x)γ∗g(∆Bk) with β(tk, x) ≡
b(x, ū(tk+1, x), v̂(tk, x)), Σ(tk, x) ≡ σ(x, ū(tk+1, x))γ∗. The definitions of ū(tk, x)
and v̄(tk, x) then remain the same (according to the new choice for T (tk, x)).

The above definition (7.1) is in fact quite natural: when replacing ūδ by the true
solution u, the first order approximation of h−1

E[u(tk+1, x + T 0(tk, x))g(∆Bk)∗]γ
remains v(tk, x) itself.

Shape functions. To investigate the convergence of the above algorithm, we also
need to change the way we interpolate the approximated solution at the nodes
of the grid. Indeed, for our analysis, we require ūδ to be sufficiently smooth in
x. A possible strategy consists in choosing a B-spline basis instead of a family of
Lagrange kernels of order one; see e.g. the monograph of de Boor [6]. Namely,
choose Φ in (3.1) as Φ(t) = 2/3 − t2 + |t|3/2 for |t| ≤ 1, Φ(t) = (1/6)(2 − |t|)3 for
1 ≤ |t| ≤ 2 and Φ(t) = 0 for |t| ≥ 2. This Φ is nonnegative and, for all x ∈ R

d,∑
z∈C∞

φz(x) = 1 and
∑

z∈C∞
zφz(x) = x, so that (3.2) holds. Of course, this new

choice for Φ changes the number of “useful neighbors” in (5.1): there are now 4d

instead of 2d neighbors to consider. Anyhow, the probabilistic interpretation of
Lemma 5.1 still holds: we let the reader adapt the definitions of the functions Π(i),
i ∈ [[0, 4d), in (5.1).

As expected, the approximated solution ūδ then belongs to C2 with Lipschitz
derivatives of order one and two. Moreover, the interpolation procedure associated
to the spline basis being exact for polynomials of order less than one is of order two
for smooth functions:

Lemma 7.1. Choose Φ as above in (3.1). Then, for a real δ > 0 and for a function
ψ ∈ C2(Rd, R) with bounded second order derivatives, the interpolated function ψδ

given by (3.3) satisfies, for all x ∈ R
d, |ψδ(x) − ψ(x)| ≤ C7.1(ψ)δ2, for a constant

C7.1(ψ) only depending on the supremum norm of Hψ.

Main result. Here is the main result of this section:

Theorem 7.2. Assume that b depends on v. Then, taking into account the above
modifications of Algorithm 3.1, there exist two constants c7.2 > 0 and C7.2, only de-
pending on T and on known parameters appearing in (A), such that, for E(global) <
c7.2 (with E(global) as in Theorem 3.2) and for B(gradient) ≡ 1+ δ−3h3/2M−2/d≤
2,

sup
x∈Rd,k∈[[0,N ]]

|u(tk, x) − ūδ(tk, x)|2 ≤ C7.2E2(global).

As already explained in Subsection 3.3, the condition B(gradient) ≤ 2 seems
to be useless in the numerical example given in Subsection 4.2, since the observed
error is still of order one w.r.t. h although δ is of the same order as h and M is
small. Moreover, in this example, the shape functions we use are Lagrange kernels
and not B-splines: the above choice for Φ may not be justified from a numerical
point of view.

Proof. The main steps of the proof of Theorem 3.2 still hold in this new frame.
Anyhow, several differences are to be quoted.

First, the drift of the approximate transition is not bounded anymore, since it
now depends on v̂. Following the proof of Proposition 5.5, we can establish that the
supremum norm of v̂ is bounded by Ch−1/2. As a consequence, along an interval
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of the form (tk, tk+1) for k ∈ [[0, N), the variation of X, given by (6.2), is still of
order h1/2. Hence, Lemma 6.2 is still true, and we can apply our strategy.

Second, in the proof of Theorem 6.1, Step One, the functional F takes the form
F (s, x, x′, y, p, A) = (1/2)tr(AHu(s, x)) + ∇xu(s, x)b(x′, y, p), s ∈ [0, T ], x, x′, p ∈
R

d, y ∈ R and A ∈ R
d×d. The term to investigate in (6.7) is now, on the event

{χ(i)
k+1 = 1} for i ∈ [[0, 4d) and on the interval (tk, tk+1) for k ∈ [[0, N),

F
(
s, X(i)

s , X
(i)
tk+, ū(tk+1, X

(i)
tk+), v̂(tk, X

(i)
tk+), σ(i)

k γ∗γ(σ(i)
k )∗

)
− F

(
s, X(i)

s , X(i)
s , V̄ (i)

s , W̄ (i)
s , σ̄(i)

s (σ̄(i)
s )∗

)
.

Then, we let the reader check that the estimates for D(1) and D(2) in Lemma
6.3 involve a new term that refers to the difference between v̂ and v. Now, Lemma
6.3 may be expressed with Ch

∑N−1
k=0 E[(|v̂− v̄|2)δ(tk, Xtk

)] in addition to the right
hand side. This leads to a new version for Theorem 6.1:

Theorem 7.3. There exists a constant C7.3 > 0 such that:

|(ūδ − u)(0, x)|2 + C−1
7.3h

N∑
k=1

E
[
(|v̄ − v|2)δ(tk−1, Xtk−1)

]
≤ C7.3

[
E2(global) + h

N∑
k=1

|(ūδ − u)(tk, ·)|2∞ + h
N−1∑
k=0

E[(|v̂ − v̄|2)δ(tk, Xtk
)]

]
.

Up to the modification of the initial condition, Theorem 7.3 together with the
discrete version of Gronwall’s lemma yield for all k ∈ [[0, N)

(7.2) |(ūδ − u)(tk, ·)|2∞ ≤ CE2(global) + Ch

N−1∑
j=k

E
[
(|v̄ − v̂|2)δ(tj , Xtj

)
]
,

for a constant C independent of k (whose value may vary in the sequel). Assume
for the moment that for all x ∈ R

d and k ∈ [[0, N)

(|v̂ − v̄|2)δ(tk, x) ≤ Ch

+ C|(ūδ − u)(tk+1, ·)|2∞
[
1 + (|v̂|2)δ(tk, x)

]
B2(gradient).

(7.3)

We can also write:
(|v̂ − v̄|2)δ(tk, x) ≤ Ch + C|(ūδ − u)(tk+1, ·)|2∞(|v̂ − v̄|2)δ(tk, x)B2(gradient)

+ C|(ūδ − u)(tk+1, ·)|2∞[1 + (|v̄|2)δ(tk, x)]B2(gradient).

For B(gradient) ≤ 2, we obtain for all x ∈ R
d and k ∈ [[0, N)

(|v̂ − v̄|2)δ(tk, x) ≤ Ch + 4C|(ūδ − u)(tk+1, ·)|2∞(|v̂ − v̄|2)δ(tk, x)

+ 4C|(ūδ − u)(tk+1, ·)|2∞
[
1 + (|v̄|2)δ(tk, x)

]
.

(7.4)

We complete the proof by the following lemma:

Lemma 7.4. With C as in (7.4), assume that

(C + 2C2)E2(global) exp(8C2T + 8C2C5.5) ≤ 1/(8C).

Then, for all k ∈ [[0, N ]],

(7.5) |(ūδ − u)(tk, ·)|2∞ ≤ (C + 2C2)E2(global) exp
(
8C2T + 8C2C5.5

)
.

We then deduce Theorem 7.2 from Lemma 7.4. �
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Proof of Lemma 7.4. Inequality (7.5) clearly holds for k = N . Assume that it is
true at given ranks k + 1, k + 2, . . . , N , k ∈ [[0, N), and prove that it holds at rank
k. Due to (7.4) and the assumed bound for E(global), we claim for all j ∈ [[k, N)
and x ∈ R

d:
(|v̂ − v̄|2)δ(tj , x) ≤ Ch + (1/2)(|v̂ − v̄|2)δ(tj , x)

+ 4C|(ūδ − u)(tj+1, ·)|2∞
[
1 + (|v̄|2)δ(tj , x)

]
,

so that,

(7.6) (|v̂ − v̄|2)δ(tj , x) ≤ 2Ch + 8C|(ūδ − u)(tj+1, ·)|2∞
[
1 + (|v̄|2)δ(tj , x)

]
.

Plug (7.6) into (7.2):

|(ūδ − u)(tk, ·)|2∞
≤ CE2(global)

+ Ch

N−1∑
j=k

{
2Ch + 8C|(ūδ − u)(tj+1, ·)|2∞

[
1 + E

[
(|v̄|2)δ(tj , Xtj

)
]]}

≤ (C + 2C2)E2(global)

+ 8C2h

N−1∑
j=k

|(ūδ − u)(tj+1, ·)|2∞
[
1 + E

[
(|v̄|2)δ(tj , Xtj

)
]]

.

The discrete version of Gronwall’s Lemma and Proposition 5.5 yield the result. �

Proof of (7.3). For x ∈ C∞, the very definitions of v̂ and v̄ (see Algorithm 3.1 and
(7.1)) give:

(v̂ − v̄)(tk, x)

= h−1
E

[(
ūδ(tk+1, x + T 0(tk, x)) − ūδ(tk+1, x + T (tk, x))

)
g(∆Bk)∗

]
γ

= h−1
E

[(
(ūδ − u)(tk+1, x + T 0(tk, x))

− (ūδ − u)(tk+1, x + T (tk, x))
)
g(∆Bk)∗

]
γ

+ h−1
E

[(
u(tk+1, x + T 0(tk, x)) − u(tk+1, x + T (tk, x))

)
g(∆Bk)∗

]
γ

≡ G(1, x) + G(2, x).

(7.7)

Start with G(1, x):

G(1, x) = −E

[∫ 1

0

[
∇x(ūδ − u)

(
tk+1, x + λβ(tk, x)h + Σ(tk, x)γ∗g(∆Bk)

)
× β(tk, x)g(∆Bk)∗

]
dλ

]
γ.

(7.8)

Admit for the moment the following lemma:

Lemma 7.5. There exists a constant C7.5 such that for every � ∈ [[1, d]] and for
every bounded function ϕ ∈ C2(Rd, R) with bounded derivatives of order one and
two and with Lipschitz continuous second order derivatives,∣∣E[ ∂ϕ

∂x�
(g(∆Bk))g(∆Bk)∗

]∣∣
≤ C7.5

[
|ϕ|∞ + hM−2/d|∇(2)ϕ|∞ + h3/2M−2/d|∇(3)ϕ|∞

]
.
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Apply Lemma 7.5 to G(1, x) or more specifically to the function y ∈ R
d �→

(ūδ − u)(tk+1, x + λβ(tk, x)h + Σ(tk, x)γ∗y)βi(tk, x), for i ∈ [[1, d]] and λ ∈ (0, 1).
The function (ūδ−u)(tk+1, ·) belongs to C2(Rd, R) with bounded and Lipschitz con-
tinuous derivatives of order one and two, and for i ∈ [[2, 3]], |∇(i)(ūδ−u)(tk+1, ·)|∞ ≤
C|(ūδ − u)(tk+1, ·)|∞δ−i. We deduce

|G(1, x)| ≤ C|(ūδ − u)(tk+1, ·)|∞(1 + |v̂(tk, x)|)B(gradient).(7.9)

Now turn to G(2, x). Expand it as G(1, x) in (7.8) and subtract ∇xu(tk+1, x +
λβ(tk, x)h) to ∇xu(tk+1, x + λβ(tk, x)h + Σ(tk, x)γ∗g(∆Bk)) (recall that g(∆Bk)
is centered). We obtain |G(2, x)| ≤ Ch|β(tk, x)| ≤ Ch1/2 since |β(tk, x)| ≤ Ch−1/2

(see Proposition 5.5). Thanks to (7.7) and (7.9), we derive (7.3). �
Proof of Lemma 7.5.

E
[ ∂ϕ

∂x�
(g(∆Bk))g(∆Bk)∗

] (3.5)
= E

[ ∂ϕ

∂x�
(g(∆Bk))(∆Bk)∗

]
= E

[( ∂ϕ

∂x�
(g(∆Bk)) − ∂ϕ

∂x�
(∆Bk)

)
(∆Bk)∗] + E

[ ∂ϕ

∂x�
(∆Bk)(∆Bk)∗

]
≡ Φ(1) + Φ(2).

First we investigate Φ(1):

Φ(1) = E
[( ∂ϕ

∂x�
(g(∆Bk)) − ∂ϕ

∂x�
(∆Bk)

)(
(∆Bk)∗ − g(∆Bk)∗

)]
+ E

[( ∂ϕ

∂x�
(g(∆Bk)) − ∂ϕ

∂x�
(∆Bk)

)
g(∆Bk)∗

]
= E

[( ∂ϕ

∂x�
(g(∆Bk)) − ∂ϕ

∂x�
(∆Bk)

)(
(∆Bk)∗ − g(∆Bk)∗

)]
−

∫ 1

0

[
∇x

( ∂ϕ

∂x�

)
(g(∆Bk) + λ(∆Bk − g(∆Bk)))

× (∆Bk − g(∆Bk))g(∆Bk)∗
]
dλ

= E
[( ∂ϕ

∂x�
(g(∆Bk)) − ∂ϕ

∂x�
(∆Bk)

)(
(∆Bk)∗ − g(∆Bk)∗

)]
−

∫ 1

0

[(
∇x

( ∂ϕ

∂x�

)
(g(∆Bk) + λ(∆Bk − g(∆Bk))) −∇x

( ∂ϕ

∂x�

)
(g(∆Bk))

)
× (∆Bk − g(∆Bk))g(∆Bk)∗

]
dλ

≡ Φ(1, 1) + Φ(1, 2),

using (3.5) to obtain Φ(1, 2). Now, we can use (3.4) to treat Φ(1, 1). For Φ(1, 2),
we use the following result: as explained in the proof of Lemma 6.3, the square
Gaussian quantization is still rate optimal in Lβ(P) for β ∈ [2, d + 2), that is,
(E[|g(∆Bk)−∆Bk|β ])β−1 ≤ Ch1/2M−1/d; see [11]. Hence, we can deduce |Φ(1)| ≤
C(|∇(2)ϕ|∞ + |∇(3)ϕ|∞h1/2)h ×M−2/d. Deal finally, for j ∈ [[1, d]], with the jth

coordinate of Φ(2):

Φj(2) = (2π)−d/2h1/2

∫
Rd

∂ϕ

∂y�
(h1/2y)yj exp(−|y|2/2)dy

= −(2π)−d/2

∫
Rd

ϕ(h1/2y)
∂

∂y�

(
yj exp(−|y|2/2)

)
dy.

Hence, |Φ(2)| ≤ C|ϕ|∞. This completes the proof. �
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