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EXPLICIT VALUES OF MULTI-DIMENSIONAL
KLOOSTERMAN SUMS FOR PRIME POWERS, II

S. GURAK

In memory of Derick H. Lehmer

Abstract. For any integer m > 1 fix ζm = exp(2πi/m), and let Z∗
m denote

the group of reduced residues modulo m. Let q = pα, a power of a prime p.
The hyper-Kloosterman sums of dimension n > 0 are defined for q by

R(d, q) =
∑

x1,...,xn∈Z∗
q

ζ
x1+···+xn+d(x1···xn)−1

q (d ∈ Z∗
q),

where x−1 denotes the multiplicative inverse of x modulo q.
Salie evaluated R(d, q) in the classical setting n = 1 for even q, and for

odd q = pα with α > 1. Later, Smith provided formulas that simplified the
computation of R(d, q) in these cases for n > 1. Recently, Cochrane, Liu
and Zheng computed upper bounds for R(d, q) in the general case n > 0,
stopping short of their explicit evaluation. Here I complete the computation
they initiated to obtain explicit values for the Kloosterman sums for α > 1,
relying on basic properties of some simple specialized exponential sums. The
treatment here is more elementary than the author’s previous determination
of these Kloosterman sums using character theory and p-adic methods. At the
least, it provides an alternative, independent evaluation of the Kloosterman
sums.

1. Introduction

For any integer m > 1 fix ζm = exp(2πi/m) and let Z∗
m denote the group

of reduced residues modulo m. Let q = pα, a power of a prime p. The hyper-
Kloosterman sums of dimension n > 0 are defined for q by

(1) R(d, q) =
∑

x1,...,xn∈Z∗
q

ζx1+···+xn+d(x1···xn)−1

q

for 1 ≤ d ≤ q, (d, q) = 1, where x−1 denotes the multiplicative inverse of x modulo
q for any x in Z∗

q . For (a, q) = 1, if σa denotes the automorphism of Q(ζq) induced
by sending ζq → ζa

q , then it is readily seen from (1) that

(2) σa(R(d, q)) = R(dan+1, q).

In particular, R(d, q) lies in the subfield K of Q(ζq) fixed by automorphisms σa for
which an+1 ≡ 1(mod q), and of degree
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476 S. GURAK

(3) |Z∗n+1
q | =

{
1
2φ(q)/(n + 1, 1

2φ(q)) if 8|q and n odd,

φ(q)/(n + 1, φ(q)) otherwise.

Salie [17] explicitly determined R(d, q) in the classical case n = 1 when p = 2,
and for odd primes p where q = pα with α > 1. Specifically, R(1, 2) = 1,
R(3, 4) = −R(1, 4) = 2; R(1, 8) = R(5, 8) = 0, R(7, 8) = −R(3, 8) = 4; R(1, 16) =
R(13, 16) = −R(5, 16) = −R(9, 16) = 4

√
2,

R(d, 16) = 0 if d ≡ 3(mod 4);
R(5, 32) = 16 cos( 2π

16 + π
4 ), R(d, 32) = 0 if d �≡ 5(mod 8);

R(1, 64) = 16
√

2 cos( 2π
32 + π

4 ), R(d, 64) = 0 if d �≡ 1(mod 8);
R(1, 128) = −32 cos( 2π

64 + π
4 ), R(d, 128) = 0 if d �≡ 1(mod 8).

For α > 5 (α �= 7), R(1, 2α) = 2(α+3)/2 cos( 2π
2α−1 + π

4 ), R(d, 2α) = 0 if d �≡
1(mod 8). The conjugates R(d, 2α) of R(1, 2α) for d ≡ 1(mod 8) with α > 5 are
determined from (2).

For odd primes p and α > 1, R(1, pα) = i
(pα−1)2

4 pα/2(ζ2
pα +(−1

p )αζ−2
pα ), R(d, pα) =

0 if (d
p ) = −1. The conjugates R(d, pα) of R(1, pα) for (d

p ) = 1 are determined from
(2). Here (p ) denotes the usual Legendre symbol.

Recently [12] I generalized Salie’s result to the multi-dimensional case n > 1
utilizing the well-known formula [9]

R(d, q) =
1

φ(q)

∑
χ

χ̄(d)G(χ)n+1,

the sum over all numerical characters χ modulo q where G(χ) denotes the classical
Gauss sum for the character χ. That treatment relied on Mauclaire’s explicit eval-
uation of G(χ) for prime powers q = pα (α > 1) and recent results of the author on
exponential sums of the form

∑
χ(x)axζbx

q that used some p-adic methods. Here
I give a more elementary evaluation of the multi-dimensional Kloosterman sums
(1) using the well-known formulas of Smith [18] (see also Evans [9]), relying on the
Galois action (2) and elementary properties of the special exponential sums of the
form

pγ∑
t=1

ζ
((1+pjt)k−1−pjkt)/pβ+2j

pγ (γ, j > 0),

for suitable exponents k ≡ 1(mod pβ) when p is odd, and analogous such sums
when p = 2. I essentially complete the computation that Cochrane, Liu and Zheng
[6] initiated in determining upper bounds for such Kloosterman sums.

To best describe the evaluation here, I write n + 1 = pβu, for β ≥ 0 and p � u,
and set f = gcd(n + 1, p − 1) if p odd or f = gcd(n + 1, 2) if p = 2. For odd
primes p, let H denote the group of f -roots of unity modulo pα−β (or just modulo
p when α ≤ β). I shall show in section 2 for odd primes p with α > β + 1 that
R(d, q) vanishes if d

p−1
f �≡ 1(mod pβ+1), otherwise up to a fourth root of unity is a

conjugate of

(4) p(αn+β)/2
∑
x∈H

(
x

p
)cζx

pα−β

with c = 0 or 1 according to whether αn ≡ β(mod 2) or not. I also determine
R(d, pα) for the smaller powers 1 < α ≤ β + 1. The important case R(d, p) for odd
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primes p remains unresolved. In section 3 I show for p = 2 with α > β + 4 and n
odd that R(d, q) vanishes if d �≡1(mod 2β+2), otherwise up to sign is a conjugate of

(5) 2(αn+β)/2 · 2 cos(
2π

2α−β
+

nπ

4
).

I separately determine R(d, 2α) for the smaller powers α ≤ β + 4. The methods
may be applied to study certain types of twisted Kloosterman sums, but for the
sake of simplicity I consider only the ordinary hyper-Kloosterman sums here.

I wish to mention some consequences and related results regarding the explicit
values for R(d, q) found here. Expressions (4) and (5) immediately lead to a bound
|R(d, q)| ≤ fp

αn+β
2 for α > β+1 (α > β+4 if p = 2), already mentioned in [6], that is

a modest improvement of the customary Deligne [7] bound |R(d, q)| ≤ (n+1)pαn/2

when β > 0. Moreover, from such expressions (4) and (5), the non-vanishing sums
R(d, q) are seen to be integer multiples of ordinary Gauss periods for pα−β or a
quadratic twist of such. Thus, additional improvement in the upper bound for
|R(d, q)| may be obtained using recent estimates for Gauss periods obtained by
Bourgain and Chang (chiefly Theorem 4.7 in [4]). When f > 1 one may essentially
replace f by fp−ε in |R(d, q)| ≤ fp

αn+β
2 above, where ε > 0 depends on pα−β and

f . (See also [3] and [14].) These details and the extent to which ε can be effectively
determined are beyond the scope of the presentation here, but will be discussed
elsewhere.

The author has recently studied certain algebraic properties of these Gauss pe-
riods and their quadratic twists for prime powers [11] to obtain formulas for the
beginning coefficients of their minimal polynomials and associated power sums of
zeros. When f = 2 a closed form expression for the minimal polynomial and the
associated power sums is actually obtained [10]. Those results can be applied with
these to describe the polynomial satisfied by the hyper-Kloosterman sums R(d, q)
for d ∈ Z∗

q . This determination may be found in [13].

2. Kloosterman sums for odd prime powers pα
, α > 1

As in the introduction I write n + 1 = pβu, for β ≥ 0 and p � u, and set
f = gcd(n + 1, p − 1). For any w �≡ 0(mod p), let w−1 denote the multiplicative
inverse of w mod pα. Let H denote the group of f -roots of unity modulo pα−β, or
just modulo p when α ≤ β, and set i∗ = i

(p−1)2

4 . For any integer d prime to p, one
has (chiefly, Cor. 3.2 in [9])

(6) R(d, pα) = pns

ps∑
w=1,wn+1≡d(mod ps)

ζnw+dw−n

pα

when α = 2s ≥ 2 is even. For α = 2s + 1 ≥ 3 odd, one has (chiefly, Cor. 4.2 in [9])
for β = 0

(7) R(d, pα) = pnα/2ζ
(1−p)n
8 (

u

p
)

ps+1∑
w=1,wn+1≡d(mod ps+1)

(
w

p
)nζnw+dw−n

pα ,

or for β > 0

(8) R(d, pα) = p(nα+1)/2ζ
(1−p)(n+1)
8 (

d

p
)

ps∑
w=1,wn+1≡d(mod ps+1)

ζnw+dw−n

pα .
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I note that nw + dw−n is invariant modulo pα if w is replaced by w + ps in the
sums above in (6) and (8), so that each sum may be taken over any complete set
of solutions to the respective congruence up to multiples of ps.

Before giving the results for Kloosterman sums defined for odd prime powers pα,
I first state an elementary fact about pγ powers modulo pα (see also Lemma 2.1 in
[6]) and an easy consequence.

Lemma 1. Let f > 0 with f |(p − 1). For α > γ ≥ 0, an integer d relatively
prime to p is a pγf-power modulo pα iff d is a pγf power modulo pγ+1 iff d

p−1
f ≡

1(mod pγ+1).

Lemma 2. If R(d, q) �= 0, then R(d, q) is conjugate to R(d′, q) for some d′ ≡
1(mod ps′

) where s′ = [(α + 1)/2]. In addition, if s′ > β, then one may choose
d′ = 1.

Proof. The hypothesis R(d, q) �= 0 implies that wn+1
0 ≡ d(mod ps′

) for some in-
teger w0 �≡ 0(mod p) from expressions (6) - (8). In particular, d′ ≡ dw

−(n+1)
0 ≡

1(mod ps′
) and R(d, q) is conjugate to R(d′, q), specifically R(d, q) = σw0(R(d′, q))

in (2). If s′ > β, then d′ ≡ 1(mod pβ+1) so d′ ∈ Z∗n+1
q by Lemma 1, and thus

R(d, q) is conjugate to R(1, q).

The following technical results on exponential sums for prime powers will prove
crucial in computing the Kloosterman sums here and later in section 3.

Lemma 3. Suppose A(t) = g(t)+pr+1B(t) for polynomials g(t) and B(t) with inte-
ger coefficients, where pr is the largest power of the prime p to divide the coefficients
of g′(t). Then if p−rg′(t) ≡ 0(mod p) has no solutions, the sum

pγ∑
t=1

ζ
A(t)
pγ = 0

whenever γ ≥ r + 2 when p is odd, and γ ≥ r + 3 (or γ = 2, r = 0) when p = 2.

The above result can be readily deduced using standard techniques to evaluate
exponential sums for prime powers. It is seen to be an immediate consequence of
Theorem 2.1 in [5].

For any positive integer k ≡ 1(mod p), say with k − 1 = pβv, p � v, and any
j > 0, set

(9) Hj(t) =
1

pβ+2j
((1 + pjt)k − 1 − kpjt).

Then it is easy to see that

(10) Hj(pt) = p2Hj+1(t)

and for any γ > 1 and t �≡ 0(mod p)

(11) Hj(t + pγ−1) ≡ Hj(t) + 2kvtpγ−1 mod pγ .

In particular,

Lemma 4. For any positive β, j, and γ

pγ∑
t=1

ζ
Hj(t)
pγ =

{
( 2v

p )p
γ−1
2 i∗

√
p if γ odd,

p
γ
2 if γ even,
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except for p = 3 with γ = j = 1 when

3∑
t=1

ζ
H1(t)
3 = (

2v

3
)i
√

3ζv
3 .

Proof. First note that Hj(t) ≡ v
2 t2 (mod p) for j > 1 or p > 3, so

∑p
t=1 ζ

Hj(t)
p

is an ordinary quadratic Gauss sum and the result follows when γ = 1. For the
exceptional case p = 3, γ = j = 1 direct computation yields the value stated above.
Now assume γ > 1 and write t = ipγ−1 + l for 0 ≤ i < p, 1 ≤ l ≤ pγ−1. Then

pγ∑
t=1

ζ
Hj(t)
pγ =

pγ∑
t=1,p�t

ζ
Hj(t)
pγ + p

pγ−2∑
t=1

ζ
Hj+1(t)

pγ−2

from (10). But the first summand on the right in the above equation is

pγ∑
t=1,p�t

ζ
Hj(t)
pγ =

p−1∑
i=0

pγ−1∑
l=1,p�l

ζ
Hj(l+ipγ−1)
pγ =

pγ−1∑
l=1,p�l

ζ
Hj(l)
pγ ·

p−1∑
i=0

ζ2ikvl
p = 0

from (11) since p � kvl. Thus for γ = 2,
∑p2

t=1 ζ
Hj(t)

p2 = p, and the general result
follows now by induction.

I am now ready to determine the values R(d, pα) for odd prime powers. I first
state the result for even powers p2s. The computation naturally breaks into the
cases α > β + 1 and 2 ≤ α ≤ β + 1.

Theorem 1. Let q = pα with α = 2s > β + 1. Then

R(1, q) = p(αn+β)/2i
(pβ−1)2

4 (
−2
p

)β
∑
x∈H

(
ux

p
)βζux

pα−β .

The sole exception when p = 3 and α = β + 3 is

R(1, 3α) = 3
α
2 (n+1)−2i

√
3

∑
x∈H

(
ux

3
)ζ19ux

27 .

Furthermore, R(d, q) = 0 if d
p−1

f �≡ 1(mod pβ+1), otherwise R(d, q) is conjugate
to R(1, q) above and determined from (2).

Proof. I consider the case s > β first. The second assertion of the theorem follows
easily in this case from Lemmas 1 and 2. In computing

R(1, q) = pns

ps∑
w=1,wn+1≡1(mod ps)

ζnw+w−n

p2s

it has been noted that the summation may be taken over any complete set of
solutions of the congruence (mod ps), say those of the form x(1 + tps−β) for 1 ≤
t ≤ pβ and x any element of H. One writes R(1, q) = pns

∑
x∈H Sx where

Sx =
pβ∑
t=1

ζnx(1+ps−βt)+x(1+ps−βt)−n

q
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since x ≡ x−n(mod q). Since Sx is the conjugate of S1 under the action ζq → ζx
q

it suffices to evaluate S1. Setting k = (φ(q) − 1)n and j = s − β > 0 one has
k − 1 = pβv for p � v, and modulo q

n + ntps−β + (1 + tps−β)−n ≡ n + ntpj + (1 + tpj)k ≡ n + 1 + (1 + pjt)k − 1− kpjt,

so

S1 = ζn+1
q

pβ∑
t=1

ζ
Hj(t)

pβ =

{
ζn+1
q pβ/2 if β even,

ζn+1
q (−2u

p )i∗
√

pp(β−1)/2 if β odd

(except S1 = ζn+1
81 (u

3 )i
√

3ζ2u
3 if α = 4 and β = 1 with p = 3 ) by Lemma 4. This

yields the expression for R(1, q) in Theorem 1 whenever s > β.
Next consider the case β + 1 < α = 2s ≤ 2β, where from Lemmas 1 and 2 it

suffices to consider R(d, q) for d ≡ 1(mod ps), say d = 1 + yps for some integer
y. I assert that if R(d, q) �= 0, then R(d, q) is conjugate to R(1, q), so the second
statement of the theorem holds here, too. Indeed, one may choose solutions of
wn+1 ≡ d(ps) in (6) of the form

(12) {x(1 + pt)|1 ≤ t ≤ ps−1, x ∈ H}

and write R(d, q) = pns
∑

x∈H Sx where

Sx =
ps−1∑
t=1

ζnx(1+pt)+xd(1+pt)−n

q

since x ≡ x−n(mod q). Again it suffices to evaluate S1. With k = (φ(q) − 1)n as
before, one finds

n(1 + pt) + d(1 + pt)−n ≡ n + npt + (1 + yps)(1 + pt)k

≡ n + 1 + (1 + pt)k − 1 − kpt + yps(1 + pt)k (mod q),

so

S1 = ζn+1+yps

q

ps−1∑
t=1

ζ
y((1+pt)k−1)/p)+pβ+1−sH1(t)
ps−1 = 0

by Lemma 3 when ordp y < β + 1 − s since s ≤ β and g(t) = 1
p ((1 + pt)k − 1) is

linear modulo ps−1. Thus if R(d, q) �= 0, then d ≡ 1(mod pβ+1), and hence d is an
n + 1-power modulo q by Lemma 1 so R(d, q) is conjugate to R(1, q) as asserted.
Taking solutions (12) to compute R(1, q) yields R(1, q) = pns

∑
x∈H Sx similarly as

before, with

S1 = ζn+1
q

ps−1∑
t=1

ζ
H1(t)

pα−β−2 = pβ+1−sζn+1
q

pα−β−2∑
t=1

ζ
H1(t)

pα−β−2

= pβ+1−sζn+1
q p

α−β−2
2 or pβ+1−sζn+1

q (
−2u

p
)i∗

√
pp

α−β−3
2

by Lemma 4 according to whether β is even or odd. The sole exception occurs for
p = 3 when α = β + 3 where S1 = 3β+1−sζn+1

q (u
3 )i

√
3ζ2u

3 . The expressions for
R(1, q) in the statement of the theorem now follows when β + 1 < 2s ≤ 2β. The
proof of the theorem is now complete.
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Corollary 1. If q = p2s and p � (n + 1), then

R(1, q) = pnα/2
∑
x∈H

ζ(n+1)x
q .

For small even values of α one finds that

Proposition 1. Let q = pα with 1 < α ≤ β + 1 even. For d ≡ 1(mod pα−1),

R(d, pα) = p
α
2 (n+1)−1

∑
x∈H

ζ(n+d)x/pα−1

p ,

where H is the group of f-roots of unity modulo p. Furthermore R(d, q) = 0 if
d

p−1
f �≡ 1(mod pα−1), otherwise R(d, q) is conjugate to some R(d′, q) above where

d′ ≡ 1(mod pα−1) and is determined from (2).

Proof. First assume d ≡ 1(mod ps). One may take the solutions of wn+1 ≡
d(mod ps) in formula (6) of the form w = x(1 + tp) for 0 ≤ t < ps−1 and
x ∈ H. Since x−n ≡ x(mod q), one finds using the negative binomial series that
nx(1 + tp) + d(x(1 + tp))−n is congruent to

nx + nxtp + dx(1 − ntp +
(

n + 1
2

)
t2p2 −

(
n + 2

3

)
t3p3 + · · · )

≡ (n + d)x + nxtp(1 − d) + dx

(
n + 1

2

)
t2p2 − dx

(
n + 2

3

)
t3p3 (mod pα).

Thus,

R(d, pα) = p
αn
2

∑
x∈H

ζ
(n+d)x
pα

ps−1−1∑
t=0

ζ
nxt 1−d

ps

pα−s−1

equals p
α
2 (n+1)−1

∑
x∈H ζ

(n+d)x
pα if d ≡ 1(mod pα−1) and otherwise 0 for d ≡

1(mod ps) since

ps−1−1∑
t=0

ζ
nxt 1−d

ps

pα−s−1 =

{
ps−1 if d ≡ 1(mod pα−1),
0 if d �≡ 1(mod pα−1).

In view of Lemma 2 one has R(d, p) �= 0 if and only if d ≡ d′wn+1
0 (mod pα) with

d′ ≡ 1(mod pα−1) if and only if d is a pβf power modulo pα−1 if and only if
d

p−1
f ≡ 1(mod pα−1) by Lemma 1. Thus the last statement of the proposition

readily follows. This completes the proof of the proposition.
I next consider the case for odd powers p2s+1. �

Theorem 2. Let q = pα with α = 2s + 1 > β + 1. Then

R(1, q) = p(αn+β)/2ζ
(1−p)(n+1)
8 (

−2
p

)β+1i
(pβ+1−1)2

4

∑
x∈H

(
ux

p
)β+1ζux

pα−β .

The sole exception is

R(1, 3α) = 3(αn+β)/2i−n
∑
x∈H

(
ux

p
)ζ19ux

27

when p = 3 and α = β + 3 > 3. Furthermore, R(d, q) = 0 if d
p−1

f �≡ 1(mod pβ+1),
otherwise R(d, q) is conjugate to R(1, q) above and determined from (2).
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Proof. I consider the case s ≥ β first. The last assertion of the theorem follows in
this case as before from Lemmas 1 and 2. When β = 0 (and hence u = n + 1) one
has from (7) that

R(1, q) = pαn/2ζ
(1−p)n
8 (

u

p
)

ps+1∑
w=1, wn+1≡1(mod ps+1)

(
w

p
)nζnw+w−n

pα ,

where the sum may be taken over any complete set of solutions (mod ps+1). Here
one may choose w to run through H, so the above becomes

R(1, q) = pαn/2ζ
(1−p)n
8 (

u

p
)n

∑
x∈H

(
x

p
)nζux

pα ,

since x−n ≡ x(mod q) for x ∈ H, so nx + x−n ≡ nx + x ≡ ux(mod q). This
expression for R(1, q) matches that stated above upon noting ζ1−p

8 i∗ = (−2
p ).

When β ≥ 1, one uses (8) to compute

R(1, q) = p(αn+1)/2ζ
(1−p)(n+1)
8

ps∑
w=1, wn+1≡1(mod ps+1)

ζnw+w−n

q

where the sum may be taken over any complete set of solutions (mod ps), say those
of the form {x · (1 + ps+1−βt)| 1 ≤ t ≤ pβ−1, x ∈ H}. One writes

R(1, q) = p(αn+1)/2ζ
(1−p)(n+1)
8

∑
x∈H

Sx,

where

Sx =
pβ−1∑
t=1

ζnx(1+ps+1−βt)+x(1+ps+1−βt)−n

q

as before with Sx conjugate to S1 via the action ζq → ζx
q . To evaluate S1 again set

k = (φ(q) − 1)n with j = s + 1 − β > 0. One has k − 1 = pβv for p � v, and

n + nps+1−βt + (1 + ps+1−βt)−n ≡ n + 1 + (1 + pjt)k − 1 − kpjt (mod q),

so S1 = ζn+1
q

∑pβ−1

t=1 ζ
Hj(t)

pβ−1 = ζn+1
q p(β−1)/2 or ζn+1

q (−2u
p )i∗

√
ppβ/2−1 according to

whether β − 1 is even or odd from Lemma 4 (except S1 = ζn+1
243 (u

3 )i
√

3ζ2u
3 if α = 5

and β = 2 with p = 3). This yields the expression for R(1, q) whenever s > β > 0.
Next consider the case β + 1 < α = 2s + 1 ≤ 2β − 1, where from Lemmas 1 and

2 it suffices to consider R(d, q) for d ≡ 1(mod ps+1), say d = 1 + yps+1 for some
integer y. I assert that if R(d, q) �= 0, then R(d, q) is conjugate to R(1, q) so the last
assertion of the theorem holds for this case, too. Indeed, one may choose solutions
of wn+1 ≡ d(mod ps+1) in (8) of the form

(13) {x(1 + pt) | 1 ≤ t ≤ ps−1, x ∈ H }

and write R(d, q) = p(nα+1)/2ζ
(1−p)(n+1)
8

∑
x∈H Sx where

Sx =
ps−1∑
t=1

ζnx(1+pt)+xd(1+pt)−n

q
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since x−n ≡ x(mod q) as before. It suffices to evaluate S1 with k = (φ(q) − 1)n
again. One finds that

n(1 + pt) + d(1 + pt)−n ≡ n + npt + (1 + yps+1)(1 + pt)k

≡ n + 1 + (1 + pt)k − 1 − kpt + yps+1(1 + pt)k (mod q)

so

S1 = ζn+1+yps+1

q

ps−1∑
t=1

ζ
y((1+pt)k−1)/p)+pβ−sH1(t)
ps−1 = 0

by Lemma 3 again when ordpy < β − s similar to before. Thus if R(d, q) �= 0, then
d ≡ 1(mod pβ+1), and hence d is an n + 1-power modulo q by Lemma 1, so R(d, q)
is conjugate to R(1, q) as asserted.

Taking solutions (13) to compute R(1, q) yields

R(1, q) = p(nα+1)/2ζ(1−p)(n+1)
q

∑
x∈H

Sx,

where similar to before

S1 = ζn+1
q

ps−1∑
t=1

ζ
H1(t)

pα−β−2 = ζn+1
q pβ−s

pα−β−2∑
t=1

ζ
H1(t)

pα−β−2

equals ζn+1
q pβ−sp(α−β−2)/2 or ζn+1

q pβ−s(−2u
p )i∗

√
pp(α−β−3)/2 by Lemma 4 accord-

ing to whether β is odd or even. The sole exception occurs for p = 3 when α = β+3
where

S1 = ζn+1
q 3β−s(

u

3
)i
√

3ζ2u
3 .

The expression for R(1, q) now follows when β + 1 < α ≤ 2β − 1. The proof of the
theorem is now complete. �

For small odd values of α > 1 one finds

Proposition 2. Let q = pα with 3 ≤ α ≤ β + 1 odd.
For d ≡ 1(mod pα−1),

R(d, pα) = ζ
(1−p)(n+1)
8 p

α
2 (n+1)−1

∑
x∈H

ζ(n+d)x/pα−1,
p

where H is the group of f-roots of unity modulo p. Furthermore, R(d, pα) = 0 if
d

p−1
f �≡ 1(mod pα−1), otherwise R(d, q) is conjugate to some R(d′, q) above with

d′ ≡ 1(mod pα−1) and is determined from (2).

Proof. First assume d ≡ 1(mod ps+1) and choose solutions of wn+1 ≡ d(mod ps+1)
in formula (8) of the form w = x(1 + tp) for 0 ≤ t < ps−1 and x ∈ H. Proceeding
as in the proof of Proposition 1 one finds

R(d, pα) = p
αn+1

2 ζ
(1−p)(n+1)
8

∑
x∈H

ζ
(n+d)x
pα

ps−1−1∑
t=0

ζ
nxt 1−d

ps

pα−s−1

= ζ
(1−p)(n+1)
8 p

α
2 (n+1)−1

∑
x∈H

ζ(n+d)x/pα−1

p

if d ≡ 1(mod pα−1) and otherwise is 0 for d ≡ 1(mod ps+1). A similar argument
leads to the last statement of the proposition.



484 S. GURAK

Example 1. To illustrate Theorems 1 and 2 and Proposition 2 above, consider the
case n = 6 for q = 49, 343 and 2401. Here p = 7 with β = 1, u = 1 and f = 1.
Proposition 2 applies when q = 49 where s = 1. Direct calculation using (6) yields
R(1, 49) = 76ζ7, R(8, 49) = 76ζ2

7 , R(15, 49) = 76ζ3
7 , R(22, 49) = 76ζ4

7 , R(29, 49) =
76ζ5

7 , R(36, 49) = 76ζ6
7 and R(43, 49) = 76, with their conjugates R(d, 49) obtained

from (2). Here (Z∗
49)

7 = {±1,±18,±19}, so R(d, 49) �= 0 for each d ∈ Z∗
49. For

q = 343, Theorem 2 applies where s = 1 to give R(1, 343) = −79i
√

7ζ49; and for
q = 2401, Theorem 1 yields R(1, 2401) = −712i

√
7ζ343 where s = 2. In each of

these cases, R(d, q) = 0 if d6 �≡ 1(mod 49); otherwise R(d, q) is determined from
(2).

3. Kloosterman sums for q = 2α

As before, I write n + 1 = 2βu for β ≥ 0 and u odd, and set f = gcd(n + 1, 2).
The following result deals with the case β = 0.

Proposition 3. For n even, R(1, 2) = −1, R(1, 4) = −R(3, 4) = (−1)n/22nζ4,

R(1, 8) = 23n/2ζ
(−1)n/2

8 , R(1, 2α) = (−1)α[ n+2
4 ]2αn/2ζn+1

2α for α > 3. In each case,
for d �≡ 1 (mod 2α) with α ≥ 3, R(d, 2α) is determined from (2).

Proof. In view of Evans’ formulas for p = 2 in section 3 and 4 in [9], only the
expression for R(1, 2α) for α = 2s with s > 1 needs some justification. Here (6) is
valid for p = 2 too, so

R(1, 22s) = 2ns
∑

0<w<2s; wn+1≡1(mod 2s)

ζnw+w−n

22s .

Since n is even, wn+1 ≡ 1(mod 2s) has a unique solution w ≡ 1(mod 2s), so
R(1, 22s) = 2nsζn+1

22s = 2nα/2ζn+1
2α in agreement with the statement of the proposi-

tion. The last statement follows since (Z∗
2α)n+1 = Z∗

2α here.
I now assume that β > 0 throughout the remainder of the section. For any odd

integer d where q = 2α one has (chiefly, Cor. 3.2 in [9])

(14) R(d, q) = 2ns
2s∑

w=1, wn+1≡d(mod 2s)

ζnw+dw−n

2α

when α = 2s ≥ 2 is even; whereas for α = 2s + 1 ≥ 5 odd,

(15) R(d, q) = (−1)
n−1

4 2sn+(n+1)/2
2s∑

w=1,2s||(wn+1−d)

ζnw+dw−n

2α

if β = 1 or

(16) R(d, q) = (−1)
n+1

4 2sn+(n+1)/2
2s∑

w=1,wn+1≡d(mod 2s+1)

ζnw+dw−n

2α

if β > 1.

The case α ≤ 3 is dealt with in the following result (chiefly from Evans’ Theorem
4.3 in [9]).
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Proposition 4. For odd n and d, R(d, 2) = (−1)n+1, R(d, 4) = (−1)
n+d

2 2n and

R(d, 8) =

{
2

3n+1
2 ( 2

d ) if d �≡ n(mod 4),
0 if d ≡ n(mod 4).

I begin by stating an elementary fact about 2γ powers modulo 2α (see also
Lemma 3.2 in [6]) and analogs of Lemmas 1 and 2.

Lemma 5. For γ > 0 and α > γ + 1, an odd integer d is a 2γ-power modulo 2α iff
d is a 2γ-power modulo 2γ+2 iff d ≡ 1(mod 2γ+2).

The next fact is an easy consequence of Lemma 5 and Proposition 3.

Lemma 6. Suppose α > 3. If R(d, q) �= 0, then R(d, q) is conjugate to R(d′, q) for
some d′ ≡ 1(mod 2s′

), where s′ = [(α + 1)/2] if α odd and β �= 1, otherwise s′ = s.
In addition, if s′ > β + 1, then one may choose d′ = 1.

Proof. For β = 0, each R(d, 2α) �= 0 and is conjugate to R(1, 2α) by Proposition 3,
so assume β > 0. From (14)-(16) the hypothesis R(d, q) �= 0 implies that wn+1

0 ≡
d(mod 2s′

) for some odd integer w0. In particular, d′ ≡ dw
−(n+1)
0 ≡ 1(mod 2s′

)
and R(d′, 2α) is conjugate to R(d, 2α), specifically R(d, q) = σw0(R(d′, q)) in (2). If
s′ > β + 1, then d′ ≡ 1(mod 2β+2) so d′ ∈ Z∗(n+1)

q by Lemma 5, and thus R(d, q)
is conjugate to R(1, q).

For any odd integer k, say with k − 1 = 2βv, v odd, and any j > 0 set

(17) Hj(t) =
1

2β−1+2j
((1 + 2jt)k − 1 − 2jkt).

It is easy to see that

(18) Hj(2t) = 4Hj+1(t),

and for any odd t,

Hj(t + 2γ−1) ≡ Hj(t) (mod 2γ) if γ > 1,(19)

Hj(t + 2γ−2) ≡ Hj(t) + 2γ−1 (mod 2γ) if γ > 3.(20)

In particular, one finds the following analog of Lemma 4.

Lemma 7. For any positive k and γ with k odd and j > 1,

2γ∑
t=1

ζ
Hj(t)

2γ+1 = (
2
kv

)γ2γ/2ζkv
8

except for γ = j = 2 when
∑4

t=1 ζ
H2(t)
8 = −2ζkv

8 .

Proof. I proceed by induction on γ. When γ = 1 with j > 1, ζ
Hj(1)
4 + ζ

Hj(2)
4 =

ζkv
4 + 1 = ( 2

kv )
√

2ζkv
8 . Also note for γ = 2 and j > 1,

4∑
t=1

ζ
Hj(t)
8 = ζkv+2j

8 − 1 + ζkv+2j

8 + 1,

yielding the statement of the lemma when γ = 2, including the exceptional value
when j = 2.
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Now assume γ ≥ 3. Then

2γ∑
t=1

ζ
Hj(t)

2γ+1 =
2γ∑

t=1,t odd

ζ
Hj(t)

2γ+1 +
2γ−1∑
t=1

ζ
Hj+1(t)

2γ−1

from (18). I assert that the first sum on the right vanishes. Indeed from (20)

2γ∑
t=1,t odd

ζ
Hj(t)

2γ+1 =
2γ−1∑

t=1, t odd

(ζHj(t)

2γ+1 + ζ
Hj(t)+2γ

2γ+1 ) =
2γ−1∑

t=1, t odd

(ζHj(t)

2γ+1 − ζ
Hj(t)

2γ+1 ) = 0.

From (19) the second sum on the right equals

2
2γ−2∑
t=1

ζ
Hj+1(t)

2γ−1 = 2(
2
kv

)γ2
γ−2

2 ζkv
8 = (

2
kv

)2γ/2ζkv
8

by the induction hypothesis. This concludes the proof of the lemma.

I am ready to determine the values R(d, 2α) for β > 0 and α > 3. I first state
the result for even powers 22s. The computation naturally breaks into the cases
α > β + 4 and 4 ≤ α ≤ β + 4.

Theorem 3. Let q = 2α with α = 2s > β + 4 ≥ 5. Then

R(1, q) = (
2
un

)β2
αn+β

2 (ζu(1+n2α−β−3)

2α−β + ζ
−u(1+n+2α−β−3)

2α−β )

except

R(1, q) = −2
α
2 (n+1)−3(ζu(1+8n)

64 + ζ
−u(1+8n)
64 )

when α = β + 6. Furthermore, R(d, q) = 0 if d �≡ 1(mod 2β+2), otherwise R(d, q)
is conjugate to R(1, q) above and determined from (2).

Proof. I consider the case s > β + 1 first. The second assertion of the theorem
follows in this case from Lemma 6. To compute

R(1, q) = 2ns
2s∑

w=1,wn+1≡1(2s)

ζnw+w−n

2α

where the summation may be taken over any complete set of solutions (mod 2s),
say those of the form

{±(1 + t2s−β)| 1 ≤ t ≤ 2β},
one writes R(1, q) = 2ns(S+ + S−) where

S± =
2β∑
t=1

ζ±(n(1+t2j)+(1+t2j)−n)
q

with j = s − β ≥ 2. To evaluate S+, note that

n(1+t2j)+(1+t2j)−n ≡ n(1+t2j)+(1+t2j)k ≡ n+1+(1+t2j)k−1−2jkt (mod q)

where k = (2α−1 − 1)n so k − 1 = 2βv with v odd. Then

S+ = ζn+1
2α

2β∑
t=1

ζ
Hj(t)

2β+1 = ζn+1
2α (

2
kv

)β2β/2ζkv
8
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(except S+ = −2ζn+1
256 · ζkv

8 if α = 8 and β = 2) by Lemma 7. This yields the
expression for R(1, q) in Theorem 3 when s > β + 1.

Next I consider the case β + 4 < α ≤ 2β + 2, so β ≥ 3 and s ≥ 4. By Lemma 6
we may take d = 1+ρ2s for some integer ρ. The solution set for wn+1 ≡ d(mod 2s)
in (14) may be chosen as {±(1+4t) | 1 ≤ t ≤ 2s−2}. Then R(d, q) = 2sn(S+ +S−)
where

S± =
2s−2∑
t=1

ζ
±(n(1+4t)+d(1+4t)−n)
2α .

With k = (2α−1 − 1)n one has k − 1 = 2βv with v odd, and

n(1 + 4t) + d(1 + 4t)−n ≡ n(1 + 4t) + (1 + ρ2s)(1 + 4t)k

≡ n + 1ρ2s + kρ2s+2t + (1 + ρ2s)((1 + 4t)k − 1 − 4kt) (mod q)

so

S+ = ζn+1+ρ2s

q

2s−2∑
t=1

ζ
kρt+(1+ρ2s)2β+1−sH2(t)
2s−2 = 0

for ord2ρ ≤ β + 1 − s by Lemma 3, and similarly for S−. Thus if R(d, q) �= 0
above, then d ≡ 1(mod 2β+2) and d ∈ Z∗n+1

q so R(d, q) is conjugate to R(1, q). The
second assertion of the theorem follows now in this case from Lemmas 5 and 6.

Taking the solutions for wn+1 ≡ 1(mod 2s) in (14) of the form {1+2t | −2s−2 ≤
t ≤ 2s−2 − 1} to compute R(1, q) in this case, one finds R(1, q) = 2sn(S+ + S−),
where
(21)

S+ =
2s−2−2∑

t=−2s−2,t even

ζn(1+2t)+(1+2t)−n

q and S− =
2s−2−1∑

t=−2s−2,t odd

ζn(1+2t)+(1+2t)−n

q .

Since n is odd, one notes that S− becomes

S− =
2s−2−1∑

t=−2s−2,t even

ζ−n(1+2t)−(1+2t)−n

q ,

upon replacing t by −1 − t in the expression for S−. Hence one may write

(22) S+ =
2s−3−1∑

t′=−2s−3

ζn(1+4t′)+(1+4t′)−n

q and S− =
2s−3−1∑

t′=−2s−3

ζ−n(1+4t′)−(1+4t′)−n

q .

With k = (2α−1 − 1)n, one has

n(1 + 4t′) + (1 + 4t′)−n ≡ n(1 + 4t′) + (1 + 4t′)k ≡ n + 1 + 2β+3H2(t′) (mod q),

so

S+ = ζn+1
q

2s−3−1∑
t′=−2s−3

ζ
H2(t

′)
2α−β−3 = ζn+1

q

2s−2∑
t=1

ζ
H2(t)

2α−β−3 = ζn+1
q 2β+2−s

2α−β−4∑
t=1

ζ
H2(t)

2α−β−3

in view of (19) since s ≤ β + 1. Thus

S+ = (
2
kv

)β2β/2ζn+1
q ζkv

8 = (
2

nu
)β2β/2ζ(n+1)(1+n+2α−β−3)

q
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since β ≥ 3. Similarly, S− = ( 2
nu )β2β/2ζ

−(n+1)(1+n2α−β−3)
q so

R(1, q) = (
2
nu

)β2
αn+β

2 (ζu(1+n2α−β−3)

2α−β + ζ
−u(1+n2α−β−3)

2α−β ).

The sole exception occurs for α = β + 6, β ≥ 4, when S+ = −2β/2ζ
u(1+8n)
64 so

R(1, q) = −2
α
2 (n+1)−3(ζu(1+8n)

64 + ζ
−u(1+8n)
64 ).

This completes the proof of the theorem.

For small even values α with β > 0 one finds

Proposition 5. Let q = 2α with α ≥ 2 even. For α < β + 2,

R(d, q) =

{
(−1)(n+d)/2α−1

2
α
2 (n+1)−1 if d ≡ 1(mod 2α−1),

0 otherwise.

For α = β + 2,

R(d, q) =

{
0 if d ≡ 1(mod 2α−1) or d �≡ 1(mod 2α−2),
(−1)(n+d)/2α−1

2
α
2 (n+1)−1 if d ≡ 1 + 2α−2 (mod 2α−1).

For α = β + 3,

R(d, q) =

{
2

α
2 (n+1)−2(ζn+d

q + ζ
−(n+d)
q ) if d ≡ 1(mod 2α−2),

0 if d �≡ 1(mod 2α−2).

For α = β + 4,

R(d, q) =

{
2

α
2 (n+1)−2(ζn+d

q + ζ
−(n+d)
q ) if d ≡ 1 + 2α−3(mod 2α−2),

0 otherwise.

Proof. First note that since s ≤ β + 2, wn+1 ≡ 1(mod 2s) for any odd integer w.
Thus from (14) R(d, q) = 0 if d �≡ 1(mod 2s). For d ≡ 1(mod 2s), one may choose
solutions of wn+1 ≡ d(mod 2s) in (14) of the form {±(1+4t) | 1 ≤ t ≤ 2s−2}. From
the negative binomial expansion

(1 + 2x)−n = 1 − n(2x) +
(

n + 1
2

)
(2x)2 − · · · ,

one finds

n(1+4t)+d(1+4t)−n ≡ n+d+4tn(1−d)+2β+3t

(
n + 1

2

)
(2x)2−· · · (mod 2β+4).

In particular from (14), R(d, q) = 2
αn+1

2 (S+ + S−) where

S± =
2s−2∑
t=1

ζ±(n+d+4t(1−d)n+2β+3t)
q .

For α ≤ β + 3,

S+ = ζn+d
q

2s−2∑
t=1

ζ
tn(1−d)/2s

2s−2 = 2s−2ζn+d
q



EVALUATION OF KLOOSTERMAN SUMS 489

if d ≡ 1(mod 2α−2) and otherwise 0. Similarly S− = 2s−2ζ
−(n+d)
q or 0 according to

whether d ≡ 1(mod 2α−2) or not. A routine calculation gives the expressions for
R(d, q) for α ≤ β + 3 as stated in the proposition. For α = β + 4 above though,

S+ = ζn+d
q

2s−2∑
t=1

ζ
t(n(1−d)/2s)+2s−3)
2s−2 = 2s−2ζn+d

q

if d ≡ 1 + 2β+1(mod 2β+2) and otherwise 0. This yields the expression for R(d, q)
when α = β + 4.

The analogous situation for odd powers 22s+1 is treated next. The computation
again breaks naturally into the cases α > β + 4 and 5 ≤ α ≤ β + 4.

Theorem 4. Let q = 2α with α = 2s + 1 > β + 4 ≥ 5.
i) If β = 1, then

R(1, 128) = (−1)(n+3)/42(7n+1)/2(ζu(1+8n)
64 + ζ

−u(1+8n)
64 ),

R(1, q) = (−1)(n−1)/42(αn+1)/2(ζu(1+n2α−4)
2α−1 + ζ

−u(1+n2α−4)
2α−1 ) for α > 7.

ii) If β > 1, then

R(1, q) = (
2
un

)β−1(−1)(n+1)/42(αn+β)/2(ζu(1+n2α−β−3)

2α−β + ζ
−u(1+n2α−β−3)

2α−β ),

except when α = β + 6, then

R(1, q) = (−1)(n−3)/42α(n+1)/2−3(ζu(1+8n)
64 + ζ

−u(1+8n)
64 ).

Furthermore, R(d, q) = 0 if d �≡ 1(mod 2β+2), otherwise R(d, q) is conjugate to
R(1, q) above and determined from (2).

Proof. I consider the case s > β first. The last assertion of the theorem follows in
this case from Lemma 6. To compute R(1, q) when β = 1 so s ≥ 3, one notes that
the two solutions of wn+1 ≡ 1(mod 2s) with 2s||(wn+1−1) in (15) may be take to be
±(1+2s−1). With k = (2α−1−1)n one has k−1 = 2βv with v odd, and n(1+2s−1)+

(1+2s−1)−n ≡ n(1+2s−1)+(1+2s−1)k ≡ n+1+
(

k
2

)
22s−2 (mod 2α) for s > 3, so

R(1, q) = (−1)
n−1

4 2
αn+1

2 (ζu(1+n2α−4)
2α−1 +ζ

−u(1+n2α−4)
2α−1 ) immediately from (15). When

s = 3, one readily gets R(1, 128) = −(−1)
n−1

4 2
αn+1

2 (ζu(1+8n)
64 + ζ

−(1+8n)
64 ) instead.

To compute R(1, q) when s > β > 1, one may choose solutions of wn+1 ≡
1(mod 2s+1) in (16) of the form {±(1 + 2s−β+1t)| 1 ≤ t ≤ 2β−1}, and write
R(1, q) = (−1)

n+1
4 2

αn+1
2 (S+ + S−), where

S± =
2β−1∑
t=1

ζ
±(n(1+2jt)+(1+2jt)−n)

2β ,

with j = s− β + 1 ≥ 2. To evaluate S+ note for k = (2α−1 − 1)n that n(1 + 2jt) +
(1 + 2jt)−n ≡ n(1 + 2jt) + (1 + 2jt)k ≡ n + 1 + 2α−βHj(t) (mod q), so

S+ = ζn+1
q

2β−1∑
t=1

ζ
Hj(t)

2β = ζn+1
q (

2
kv

)β−12
β−1

2 ζkv
8

(except S+ = −2ζn+1
512 ζkv

8 if α = 9 and β = 3) by Lemma 7 as before. This yields
the desired expression for R(1, q) in ii).
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Next consider the case β+5 ≤ α ≤ 2β+1 so β ≥ s ≥ 4. By Lemma 6 we may take
d = 1 + ρ2s+1 for some integer ρ. The solution set for wn+1 ≡ d(mod 2s+1) in (16)
may be chosen as {±(1+4t) | 1 ≤ t ≤ 2s−2} with R(d, q) = (−1)

n+1
4 2

αn+1
2 (S++S−)

where

S± =
2s−2∑
t=1

ζ±(n(1+4t)+d(1+4t)−n)
q .

Now one gets similarly as before that

S+ = ζn+1+ρ2s+1

q

2s−2∑
t=1

ζ
kρt+(1+ρ2s+1)2β−sH2(t)
2s−2 = 0

for ord2 ρ ≤ β − s by Lemma 3, and also for S−. Thus if R(d, q) �= 0 here,
d ≡ 1(mod 2β+2) so R(d, q) is conjugate to R(1, q) again as asserted in the last
statement of the theorem.

To compute R(1, q) using (16) one may choose wn+1 ≡ 1(mod 2s+1) of the form
{1 + 2t | − 2s−2 ≤ t ≤ 2s−2 − 1 }. One has R(1, q) = (−1)

n+1
4 2

αn+1
2 (S+ + S−),

with S+ and S− as in (21) and (22). Once again one finds

S+ = ζn+1
q

2s−3−1∑
t′=−2s−3

ζ
H2(t

′)
2α−β−3 = ζn+1

q 2β+1−s
2α−β−4∑

t=1

ζ
H2(t)

2α−β−3

= (
2
nu

)β−12
β−1

2 ζn+1
q ζkv

8 = (
2
nu

)β−12
β−1

2 ζ(n+1)(1+n2α−β−3)
q

since β ≥ s ≥ 4; and similarly, S− = ( 2
nu )β−12

β−1
2 ζ

−(n+1)(1+n2α−β−3)
q . Thus

R(1, q) = (−1)
n+1

4 2
αn+β

2 (ζu(1+n2α−β−3)

2α−β + ζ
−u(1+n2α−β−3)

2α−β ).

The sole exception occurs for α = β + 6, β ≥ 5 when S+ = −2
β−1

2 ζ
u(1+8n)
64 so

R(1, q) = −(−1)
n+1

4 2
α
2 (n+1)−3(ζu(1+8n)

64 + ζ
−u(1+8n)
64 ).

The proof of the theorem is now complete.

For small odd values of α with β > 0 one finds here that

Proposition 6. Let q = 2α with α > 3 odd. For α < β + 2,

R(d, q) =

{
(−1)(n+d)/2α−1

2
α
2 (n+1)−1 if d ≡ 1(mod 2α−1),

0 otherwise.

For α = β + 2,

R(d, q) =

{
0 if d ≡ 1(mod 2α−1) or d �≡ 1(mod 2α−2),
(−1)(n+d)/2α−1

2
α
2 (n+1)−1 if d ≡ 1 + 2α−2(mod 2α−1).

For α = β + 3,

R(d, q) =

{
(−1)

n+1
4 2

α
2 (n+1)−2(ζn+d

q + ζ
−(n+d)
q ) if d ≡ 1(mod 2α−2),

0 if d �≡ 1(mod 2α−2).
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For α = β + 4,

R(d, q) =

{
(−1)

n+1
4 2

α
2 (n+1)−2(ζn+d

q + ζ
−(n+d)
q ) if d ≡ 1 + 2α−3 (mod 2α−2),

0 otherwise.

The sole exception occurs for β = 1 where

R(d, 32) =

{
(−1)

n−1
4 2

5n+1
2 (ζn+d

32 + ζ−n−d
32 ) if d ≡ 5(mod 8),

0 otherwise.

Proof. Here β > 1 (except as noted last) and s+1 ≤ β +2 so wn+1 ≡ 1(mod 2s+1)
for any odd integer w. Thus from (16) R(d, q) = 0 if d �≡ 1(mod 2s+1). For
d ≡ 1(mod 2s+1) one may choose solutions of wn+1 ≡ d(mod 2s+1) in (16) of the
form {±(1 + 4t) | 1 ≤ t ≤ 2s−2}. The proof proceeds as that for Proposition 5
to obtain the expressions for R(d, q) as stated in the proposition, including the
exceptional case α = 5, β = 1 using (15).

I conclude with an example illustrating Theorems 3 and 4 and Propositions 5
and 6 above.

Example 2. Consider the case n = 3 with q = 32, 64, 128 and 256. Here β = 2
with u = 1 and f = 2. Direct calculation using (16) yields R(1, 32) = −R(17, 32) =
−256

√
2 and R(9, 32) = −R(25, 32) = 256

√
2. The values R(d, 32) = 0 for d �≡

1(mod 8). This is in agreement with the values given in Proposition 6. Also from
(14), one obtains as expected from Proposition 5 that R(9, 64) = 211 cos 3π

8 with
R(d, 64) conjugate to R(9, 64) if d ≡ 9(mod 16) and otherwise equals 0. Theorem
4 applies when q = 128. Here one finds R(1, 128) = 212

√
2cos 13π

16 with conjugates
R(d, 128) for d ≡ 1(mod 16) determined from (2). If d �≡ 1(mod 16), R(d, 128) = 0.
Theorem 3 applies when q = 256 where s = 4. From (14) one obtains R(1, 256) =
214 cos 7π

32 as expected, with conjugates R(d, 256) for d ≡ 1(mod 16) determined
from (2). If d �≡ 1(mod 16), R(d, 256) = 0.

Using Smith’s [9, 18] formulas, I have tabulated below the non-zero values
R(d, q), one for each n + 1-st power class modulo q, for several small values of
n and small powers q = pα (α > 1) with β > 0. The explicit calculations confirm
the values obtained from Theorems 1-4 and Propositions 2, 5 and 6.

n = 2 : R(1, 9) = 9ζ3; R(4, 9) = 9ζ2
3 ; R(7, 9) = 9 with Z∗3

9 = {±1}
R(1, 27) = 27ζ9i

√
3 with Z∗3

27 = {±1,±8,±10}
R(1, 81) = 81ζ19

27 i
√

3 with Z∗3
81 = {x|x ≡ ±1(mod 9)}

n = 3 : R(1, 4) = −R(3, 4) = 8; R(1, 8) = −R(5, 8) = 32; R(5, 16) = −R(13, 16)
= −128

R(1, 32) = −R(9, 32) = −256
√

2 with Z∗4
32 = {1, 17}

R(9, 64) = 211 cos(3π/8) with Z∗4
64 = {1, 17, 33, 49}

R(1, 128) = 212
√

2 cos(13π/16) with Z∗4
128 = {x|x ≡ 1(mod 16)}

R(1, 256) = 214 cos(7π/32) with Z∗4
256 = {x|x ≡ 1(mod 16)}

n = 5 : R(3, 4) = −R(1, 4) = 32; R(7, 8) = −R(3, 8) = 256; R(1, 16)
= R(5, 16) = −210

√
2

R(5, 32) = −214 cos(5π/8) with Z∗2
32 = {1, 9, 17, 25}

R(1, 64) = 216
√

2 cos(π/16) with Z∗2
64 = {x|x ≡ 1(mod 8)}

R(1, 128) = −219 cos(27π/32) with Z∗2
128 = {x|x ≡ 1(mod 8}

R(1, 9) = R(7, 9) = −243, R(4, 9) = 486;
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R(1, 27) = −2 · 38 cos(4π/9) with Z∗6
27 = {1, 10, 19}

R(1, 81) = 2 · 310
√

3 sin(22π/27)) with Z∗6
81 = {1, 10, 19, 28, 37, 46, 55, 64, 73}

n = 7 : R(1, 4) = −R(3, 4) = 128; R(1, 8) = −R(5, 8) = 211; R(1, 16) =
−R(9, 16) = −215; R(25, 32) = −R(9, 32) = 219;

R(1, 64) = −R(17, 64) = 222
√

2 with Z∗8
64 = {1, 33}

R(17, 128) = 227 cos(3π/8) with Z∗8
128 = {1, 33, 65, 97}

R(1, 256) = 230
√

2 cos(3π/16) with Z∗8
256 = {x|x ≡ 1(mod 32)}

R(1, 512) = −234 cos(7π/32) with Z∗8
512 = {x|x ≡ 1(mod 32)}

n = 8 : R(1, 9) = 38, R(4, 9) = 38ζ3, R(7, 9) = 38ζ2
3 with Z∗3

9 = {±1}
R(1, 27) = −312i

√
3ζ3, R(10, 27) = −312i

√
3ζ2

3 , R(19, 27) = −312i
√

3 with
Z∗9

27 = {±1}
R(1, 81) = 317ζ9 with Z∗9

81 = {±1,±28,±55}
R(1, 243) = 321ζ19

27 with Z∗9
243 = {x|x ≡ ±1(mod 27}

n = 9 : R(3, 4) = −R(1.4) = 29; R(7, 8) = −R(3, 8) = 214

R(1, 16) = −R(5, 16) = −218
√

2 with Z∗2
16 = {1, 9}

R(5, 32) = 224 cos(7π/8) with Z∗2
32 = {1, 9, 17, 25}

R(1, 64) = −228
√

2 cos(7π/16) with Z∗2
64 = {x|x ≡ 1(mod 8)}

R(1, 128) = 233 cos(13π/32) with Z∗2
128 = {x|x ≡ 1(mod 8)}

R(1, 25) = R(6, 25) = R(14, 25) = R(4, 25) = 59 · 2cos(4π/5); R(16, 25) = 2 · 59

with Z∗10
25 = {±1}

References

[1] B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi Sums, Wiley-Interscience,
New York, (1998). MR1625181 (99d:11092)

[2] Z. Borevich and I. Shafarevich, Number Theory, Academic Press, New York, (1966).
MR0195803 (33:4001)

[3] J. Bourgain, “Exponential sum estimates on subgroups of Z∗
q , q arbitrary,” J. Analyse Math.

97 (2005), 317-355.
[4] J. Bourgain and M-C. Chang, “Exponential sum estimates over subgroups and almost sub-

groups of Z∗
q , where q is composite with few prime factors”, Geom. Funct. Anal. 16 (2006),

327–366. MR2231466 (2007d:11093)
[5] T. Cochrane and Z. Zheng, “Pure and mixed exponential sums,” Acta Arith. 91 no. 3 (1999),

249-278. MR1735676 (2000k:11093)
[6] T. Cochrane, M. Liu and Z. Zheng, “Upper bounds on n-dimensional Kloosterman sums,” J.

Number Theory 106 (2004), 259-274. MR2059074 (2005d:11122)
[7] P. Deligne, “Applications de la formula des traces aux sommes trigonometriques” in Co-

homologie etale (SGA 4.5), 168-232, Lecture Notes in Math. 569, Springer-Verlag, Berlin
(1977).

[8] W. Duke, “On multiple Salie sums”, Proc. Amer. Math Soc. 114 (1992), 623-625. MR1077785
(92f:11113)

[9] R.J. Evans, “Twisted Hyper-Kloosterman Sums over finite rings of integers”, in Proc. Mil-
lennial Conf. No. Theory, vol I, 429 -449; M.A. Bennett et al. eds, A.K. Peters, Natick, MA
(2002). MR1956239 (2003m:11125)

[10] S. Gurak, “Minimal polynomials for Gauss periods with f = 2”, Acta Arith. 121, no. 3 (2006),
233-257. MR2218343 (2006m:11119)

[11] S. Gurak, “On the minimal polynomial of Gauss periods for prime powers”, Math Comp. 75
(2006), 2021-2035. MR2240647

[12] S. Gurak, “Explicit values of multi-dimensional Kloosterman sums for prime powers, I” (to
appear)

[13] S. Gurak, “Polynomials for Hyper-Kloosterman sums” (to appear)
[14] D.R. Heath-Brown and S. Konyagan, “New bounds for Gauss sums derived from k-th powers

and for Heilbron’s Exponential Sum,” Quat. J. Math. 51 (2000), 221-235. MR1765792
(2001h:11106)

http://www.ams.org/mathscinet-getitem?mr=1625181
http://www.ams.org/mathscinet-getitem?mr=1625181
http://www.ams.org/mathscinet-getitem?mr=0195803
http://www.ams.org/mathscinet-getitem?mr=0195803
http://www.ams.org/mathscinet-getitem?mr=2231466
http://www.ams.org/mathscinet-getitem?mr=2231466
http://www.ams.org/mathscinet-getitem?mr=1735676
http://www.ams.org/mathscinet-getitem?mr=1735676
http://www.ams.org/mathscinet-getitem?mr=2059074
http://www.ams.org/mathscinet-getitem?mr=2059074
http://www.ams.org/mathscinet-getitem?mr=1077785
http://www.ams.org/mathscinet-getitem?mr=1077785
http://www.ams.org/mathscinet-getitem?mr=1956239
http://www.ams.org/mathscinet-getitem?mr=1956239
http://www.ams.org/mathscinet-getitem?mr=2218343
http://www.ams.org/mathscinet-getitem?mr=2218343
http://www.ams.org/mathscinet-getitem?mr=2240647
http://www.ams.org/mathscinet-getitem?mr=1765792
http://www.ams.org/mathscinet-getitem?mr=1765792


EVALUATION OF KLOOSTERMAN SUMS 493

[15] H. Iwaniec, Topics in classical automorphic forms Graduate Studies in Mathematics, 17,
American Mathematical Society, Providence, RI (1997). MR1474964 (98e:11051)

[16] H.D. Kloosterman, “On the representation of a number in the form ax2 + by2 + cz2 + dt2”,
Acta Math. 49 (1926), 407-464.

[17] H. Salie, “Uber die Kloostermanschen Summen S(u, v : q)”, Math. Z. 34 (1932), 91-109.
MR1545243

[18] R.A. Smith, “On n-dimensional Kloosterman sums”, J. Number Theory 11 (1979), 324-343.

MR544261 (80i:10052)

Department of Mathematics, University of San Diego, San Diego, California 92110

http://www.ams.org/mathscinet-getitem?mr=1474964
http://www.ams.org/mathscinet-getitem?mr=1474964
http://www.ams.org/mathscinet-getitem?mr=1545243
http://www.ams.org/mathscinet-getitem?mr=544261
http://www.ams.org/mathscinet-getitem?mr=544261

	1. Introduction
	2. Kloosterman sums for odd prime powers p, > 1
	3. Kloosterman sums for q=2
	References

