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C1 SPLINE WAVELETS ON TRIANGULATIONS

RONG-QING JIA AND SONG-TAO LIU

Abstract. In this paper we investigate spline wavelets on general triangula-
tions. In particular, we are interested in C1 wavelets generated from piecewise
quadratic polynomials. By using the Powell-Sabin elements, we set up a nested
family of spaces of C1 quadratic splines, which are suitable for multiresolu-
tion analysis of Besov spaces. Consequently, we construct C1 wavelet bases
on general triangulations and give explicit expressions for the wavelets on the
three-direction mesh. A general theory is developed so as to verify the global
stability of these wavelets in Besov spaces. The wavelet bases constructed in
this paper will be useful for numerical solutions of partial differential equations.

1. Introduction

In this paper we investigate spline wavelets on general triangulations. In partic-
ular, we are interested in C1 wavelets generated from piecewise quadratic polyno-
mials.

In [7] and [8] Chui and Wang used B-splines to construct compactly supported
semi-orthogonal wavelets. Their results were extended to compactly supported box
spline wavelets. See the work of Chui, Stöckler, and Ward [6], Jia and Micchelli [20],
and Riemenschneider and Shen [30]. For a comprehensive study on box splines, we
refer the reader to the book [1] by de Boor, Höllig, and Riemenschneider. Recently,
compactly supported wavelet bases for Sobolev spaces were studied by Lorentz and
Oswald [26], and by Jia, Wang, and Zhou [21].

It has been a challenging problem to construct spline wavelets on general tri-
angulations. For piecewise linear functions on general triangulations, Yserenntant
[38] introduced the so-called hierarchical bases in the finite element application
to second-order elliptic boundary value problems. In [36] Vassilevski and Wang
modified the hierarchical basis functions by using some projections on each level,
yielding a basis of approximate wavelets. In the same spirit, Stevenson [34, 35]
constructed the three-point wavelet bases and established H1-stability of the bases.
For piecewise quadratic polynomials on general triangulations, Liu [24] constructed
wavelet bases which are H1-stable.

The wavelets given in [34, 35] are H1-stable; but it is still an open question
whether these wavelets are L2-stable. In [12] and [13] Floater and Quak were able
to construct semi-orthogonal wavelets of continuous piecewise linear functions on
general triangulations. Certainly, semi-orthogonal wavelets are L2-stable. In [15]
Hardin and Hong further considered orthogonal wavelets of continuous piecewise
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linear functions. See the survey paper [14] of Goodman and Hardin for recent
progress in the study of multivariate spline wavelets.

The wavelets discussed in the preceding two paragraphs are continuous, but not
continuously differentiable. Recently, C1 spline wavelets have attracted attention
of many researchers in the areas of splines and wavelets. For the univariate case,
using Hermite cubic splines, in [19] we constructed a pair of C1 wavelets with nice
properties. In particular, the construction of boundary wavelets is remarkably sim-
ple. The wavelet basis given in [19] was used to solve the Sturm-Liouville equation
with the Dirichlet boundary equation. The condition number of the corresponding
stiffness matrix was shown to be very small. Our work significantly improved the
earlier results of Xu and Shann [37] on Galerkin-wavelet methods for two-point
boundary value problems.

Now let us consider C1 spline wavelets on general triangulations of polygonal do-
mains in R

2. Using the Powell-Sabin elements (see [29]), Oswald in [27] introduced
hierarchical bases and demonstrated that the hierarchical bases are sub-optimal for
the condition numbers of the corresponding discretization matrices. But the hier-
archical bases are not truly H2-stable. In [9] Davydov and Petrushev constructed
hierarchical sequences of C1 spline bases on multilevel triangualtions and investi-
gated nonlinear approximation of such redundant systems. Recently, using C1 cubic
splines of Lagrange type, Davydov and Stevenson [10] constructed C1 hierarchical
Riesz bases for Hµ with 1 < µ < 5/2.

In this paper we shall employ the Hermite interpolation property of the Powell-
Sabin elements to construct C1 spline wavelets on general triangulations. These
wavelet bases will be shown to be H2-stable. In the process we shall establish a
general theory for wavelet bases in Besov spaces, which will be useful for future
research.

Here is an outline of the paper. In Section 2 we review some basic properties of
Besov spaces as well as Bernstein type inequalities for spline functions on polyg-
onal domains. In Section 3, using the Powell-Sabin elements, we formulate bases
for the concerned spaces of spline functions and establish Jackson type inequali-
ties. In Section 4 we discuss multiresolution analysis of Besov spaces and related
norm equivalence. In Section 5 we develop a general theory for wavelet bases in
Besov spaces. Finally, in Section 6, we construct C1 wavelet bases on general tri-
angulations and show that the wavelet bases are H2-stable. In particular, for the
three-direction mesh, the wavelets are explicitly given.

It is expected that the C1 spline wavelets constructed in this paper will have
applications to numerical solutions of partial differential equations. These wavelet
bases are particularly suitable for the biharmonic equation (see the discussion in
[27] and [10]). The condition numbers of the corresponding discretization matrices
will be uniformly bounded. Our wavelet bases could have applications to a wide
range of problems in numerical analysis, such as numerical solutions of integral
equations and operator equations, and singular perturbation problems. See the
related work of Chen, Micchelli and Xu [2], Liu and Xu [25], and Shen and Lin [32].
The refinable spline functions discussed in this paper also could have applications
to computer graphics and multi-level data representation. See the related work of
Chui and Jiang [4, 5] on surface subdivision schemes.
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2. Besov spaces on polygonal domains

In this section we first introduce some notation that will be needed later. Then
we review basic properties of Besov spaces. At the end of the section we establish
a Bernstein type inequality for spline functions on polygonal domains.

Let N, Z, and R denote the set of positive integers, integers, and real numbers,
respectively. For a positive integer s, R

s denotes the s-dimensional Euclidean space
with the inner product given by

x · y := x1y1 + · · · + xsys, for x = (x1, . . . , xs) and y = (y1, . . . , ys) ∈ R
s.

Consequently, the norm of a vector x ∈ R
s is given by |x| := (x · x)1/2.

Let N0 := N ∪ {0}. An element of N
s
0 is called a multi-index. The length

of a mutli-index α = (α1, . . . , αs) ∈ N
s
0 is given by |α| := α1 + · · · + αs. For

α = (α1, . . . , αs) ∈ N
s
0 and x = (x1, . . . , xs) ∈ R

s, define

xα := xα1
1 · · ·xαs

s .

The function x �→ xα (x ∈ R
s) is called a monomial and its (total) degree is |α|. A

polynomial is a linear combination of monomials. In other words, a polynomial q
has a representation

∑
α cαxα, where the coefficients cα are real numbers and cα �= 0

only for finitely many α. The degree of q is defined to be deg q := max{|α| : cα �= 0}.
For an integer k ≥ 0, we use Πk to denote the linear space of all polynomials of
degree at most k.

For a vector y = (y1, . . . , ys) ∈ R
s, we use Dy to denote the differential operator

given by

Dyf(x) := lim
t→0

f(x + ty) − f(x)
t

, x ∈ R
s.

Let e1, . . . , es be the unit coordinate vectors in R
s. For j = 1, . . . , s, we write Dj

for Dej
. For a multi-index α = (α1, . . . , αs), Dα stands for the differential operator

Dα1
1 · · ·Dαs

s .
Now let Ω be a (Lebesgue) measurable subset of R

s. Suppose f is a (real-valued)
measurable function on Ω. For 1 ≤ p < ∞, let

‖f‖p,Ω :=
(∫

Ω

|f(x)|p dx

)1/p

.

For p = ∞, let ‖f‖∞,Ω be the essential supremum of |f | on Ω. When Ω = R
s,

we omit the reference to Ω. By Lp(Ω) (1 ≤ p ≤ ∞) we denote the linear space
of all functions f on Ω such that ‖f‖p,Ω < ∞. Equipped with the norm ‖·‖p,Ω,
Lp(Ω) becomes a Banach space. For p = 2, L2(Ω) is a Hilbert space with the inner
product given by

〈f, g〉 :=
∫

Ω

f(x)g(x) dx, f, g ∈ L2(Ω).

Suppose Ω is a (nonempty) open subset of R
s. Let C(Ω) be the linear space of all

continuous functions on Ω. For an integer r ≥ 0, we use Cr(Ω) to denote the linear
space of all r times continuously differentiable functions on Ω. For 1 ≤ p ≤ ∞, we
use W r

p (Ω) to denote the Sobolev space consisting of all functions f ∈ Lp(Ω) such
that Dαf ∈ Lp(Ω) for all |α| ≤ r.

The Fourier transform of a function f in L1(Rs) is defined by

f̂(ξ) :=
∫

Rs

f(x)e−ix·ξ dx, ξ ∈ R
s.
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The Fourier transform can be naturally extended to functions in L2(Rs). For µ > 0,
we denote by Hµ(Rs) the space of all functions f ∈ L2(Rs) such that the semi-norm

∣∣f ∣∣
Hµ(Rs)

:=
(∫

Rs

|f̂(ξ)|2|ξ|2µ dξ

)1/2

is finite. For a nonempty open subset Ω of R
s, we define

Hµ(Ω) := {f |Ω : f ∈ Hµ(Rs)}.

For x, y ∈ R
s, we use [x, y] to denote the line segment {(1− t)x+ ty : 0 ≤ t ≤ 1}.

For y ∈ R
s, let Ωy denote the set {x ∈ Ω : [x − y, x] ⊂ Ω}. The modulus of

continuity of a function f ∈ Lp(Ω) for 1 ≤ p < ∞, or f ∈ C(Ω) for p = ∞, is
defined by

ω(f, h)p := sup
|y|≤h

∥∥∇yf
∥∥

p,Ωy
, h > 0,

where ∇y denotes the difference operator given by ∇yf(x) = f(x) − f(x − y),
x ∈ Ωy. For a positive integer m, the mth modulus of smoothness of f is
defined by

ωm(f, h)p := sup
|y|≤h

∥∥∇m
y f

∥∥
p,Ωmy

, h > 0.

See the work of Johnen and Scherer [22] on the equivalence of the K-functional and
moduli of smoothness.

Let m ∈ N and y ∈ R
s. Then the following inequality is valid for 1 ≤ p ≤ ∞:

(2.1) ‖∇m
y f‖p,Ωmy

≤ ‖Dm
y f‖p,Ω ∀ f ∈ Wm

p (Ω).

Indeed, for f ∈ W 1
p (Ω), the relation

∇yf(x) =
∫ 1

0

Dyf(x − ty) dt

is true for almost every x ∈ Ωy. Applying the Minkowski inequality to the above
integral, we see that (2.1) is valid for m = 1. Consequently, (2.1) can be verified
by induction on m.

Suppose f ∈ W r
p (Ω) for 1 ≤ p < ∞ or f ∈ Cr(Ω) for p = ∞, where r ∈ N0. For

m > r and y ∈ R
s, by (2.1) we have∥∥∇m

y f
∥∥

p,Ωmy
=
∥∥∇r

y∇m−r
y f

∥∥
p,Ωmy

≤
∥∥Dr

y∇m−r
y f

∥∥
p,Ω(m−r)y

=
∥∥∇m−r

y Dr
yf
∥∥

p,Ω(m−r)y
.

Hence, there exists a positive constant B such that

(2.2) ωm(f, h)p ≤ Bhr
∑
|α|=r

ωm−r(Dαf, h)p, h > 0.

For µ > 0 and 1 ≤ p, q ≤ ∞, the Besov space Bµ
p,q(Ω) is the collection of those

functions f ∈ Lp(Ω) for which the following semi-norm is finite:

|f |Bµ
p,q

:=

⎧⎨
⎩
(∫∞

0

[
t−µωm(f, t)p

]q 1
t dt

)1/q

, for 1 ≤ q < ∞,

supt>0

{
t−µωm(f, t)p

}
, for q = ∞,
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where m is the least integer greater than µ. It is easily seen that

|f |Bµ
p,q(Ω) ≈

⎧⎨
⎩
(∑

j∈Z

[
2jµωm(f, 2−j)p

]q)1/q

, for 1 ≤ q < ∞,

supj∈Z

{
2jµωm(f, 2−j)p

}
, for q = ∞.

The norm for Bµ
p,q(Ω) is

‖f‖Bµ
p,q(Ω) := ‖f‖Lp(Ω) + |f |Bµ

p,q(Ω).

For x ∈ R
s and ε > 0, by Bε(x) we denote the ball {y ∈ R

s : |y − x| < ε}.
Let Ω be an open subset of R

s. Its boundary is denoted by ∂Ω. We say that Ω
is a Lipschitz-graph domain (see [22]) if there exists a finite collection of open sets
{Uj}, a corresponding collection of cones {Cj} (all congruent to a fixed finite cone
C), and a real number ε > 0 such that for each x ∈ ∂Ω, Bε(x) is contained in some
Uj , and that x + Cj ⊂ Ω for each x ∈ Uj ∩ Ω. For a Lipschitz-graph domain Ω, if
we replace ωm by ωn for some n > m, then we obtain an equivalent norm for the
Besov space Bµ

p,q(Ω).
It was shown by Sharpley [31] that Ω is a Lipschitz-graph domain if and only if

∂Ω is minimally smooth (see [33, p. 189] for the definition). Thus, the extension
theorem is valid for Sobolev spaces on such a domain (see Chapter VI of [33]). It is
well known that Hµ(Rs) = Bµ

2,2(R
s) for µ > 0 (see Chapter V of [33]). Therefore,

for 0 < µ < ∞,
Hµ(Ω) = Bµ

2,2(Ω).

Now let T be a finite or countable collection of triangles in R
2. The intersection

of any two triangles in T is empty, or a common vertex, or a common edge of them.
Let Ω be the union of the triangles in T . Then Ω is a polygonal domain in R

2 and
T is a triangulation of Ω. The domain Ω could be bounded or unbounded. But Ω
is always assumed to be a Lipschitz-graph domain.

A vertex of a triangle in T is said to be a vertex of T . A vertex v is called an
interior vertex, if v is in the interior of Ω; otherwise, it is called a boundary vertex.
An edge of a triangle in T is said to be an edge of T . An edge e is called an interior
edge, if the interior of e is included in the interior of Ω; otherwise, it is called a
boundary edge.

A direction is assigned to each edge e so that e becomes a vector in R
2. If

e = (a, b), then e⊥ := (b,−a) is a vector perpendicular to e. We call De⊥ the
normal derivative with respect to e.

The length of an edge e is denoted by |e|. The supremum of the length of
the edges of T is called the mesh size of T . Let h be the mesh size of T . We
assume that T is quasi-uniform, that is, there exists a positive constant M such
that Mh ≤ |e| ≤ h for all edges e of T . We also assume that there exists some
θ > 0 such that every angle of the triangles in T is greater than or equal to θ.
Consequently, the number of edges with a common vertex is bounded.

Let v be a vertex of T . For N = 1, 2, . . ., the stars StN
T (v) are defined as follows.

Let StT (v) = St1T (v) be the union of the triangles of T with v as a vertex. For
N > 1, let StN

T (v) be the union of the triangles of T that intersect StN−1
T (v).

Lemma 2.1. Let k be a nonnegative integer. Suppose that τ is a triangle in R
2, θ

is the minimum of the angles of τ and h is the maximum length of the edges of τ .
Then there exist two positive constants C1 and C2 depending only on k and θ such
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that

(2.3) C1h
2/p‖f‖∞,τ ≤ ‖f‖p,τ ≤ C2h

2/p‖f‖∞,τ ∀ f ∈ Πk|τ and 1 ≤ p ≤ ∞.

Moreover, for α ∈ N
2
0 with |α| = r ≤ k, there exists a positive constant C depending

only on k and θ such that

(2.4) ‖Dαf‖p,τ ≤ Ch−r‖f‖p,τ ∀ f ∈ Πk|τ and 1 ≤ p ≤ ∞.

Proof. Let T be the triangle in R
2 with vertices (0, 0), (0, 1), and (1, 0). Then Πk|T

is a finite dimensional space. Since any two norms on a finite dimensional space
are equivalent, there exist positive constants K1 and K2 such that

(2.5) K1‖g‖∞,T ≤ ‖g‖p,T ≤ K2‖g‖∞,T ∀ g ∈ Πk|T and 1 ≤ p ≤ ∞.

Moreover, for α ∈ N
2
0 there exists a positive constant Kα such that

(2.6) ‖Dαg‖p ≤ Kα‖g‖p ∀ g ∈ Πk|T and 1 ≤ p ≤ ∞.

There exists an affine transform A on R
2 such that A maps T one-to-one and

onto τ . The Jacobian determinant of A, denoted J(A), is a constant. We have

|J(A)| =
area(τ )
area(T )

= 2 area(τ ).

Consequently, M1h
2 ≤ |J(A)| ≤ M2h

2 for some positive constants M1 and M2

depending only on θ. Let f ∈ Πk|τ , and let g(x) = f(Ax) for x ∈ T . Then
g ∈ Πk|T . We have f(x) = g(A−1x), x ∈ τ . Hence,

‖f‖p,τ = |J(A)|1/p‖g‖p,T , 1 ≤ p ≤ ∞.

This together with (2.5) verifies (2.3).
Suppose α ∈ N

2
0 and |α| = r, where 0 ≤ r ≤ k. Since f(x) = g(A−1x) for x ∈ τ ,

there exists a positive constant Bα such that

‖Dαf‖p,τ ≤ Bα‖A−1‖r|J(A)|1/p‖Dαg‖p,T ;

but ‖A−1‖ ≤ M0/h for some constant M0 > 0. Moreover, it follows from (2.6)
that

|J(A)|1/p‖Dαg‖p,T ≤ Kα|J(A)|1/p‖g‖p,T = Kα‖f‖p,τ .

The above estimates tell us that (2.4) holds true for a positive constant C depending
only on k and θ. �

For a positive integer k, let Sk(T ) denote the space of all splines of degree k on
T . In other words, s ∈ Sk(T ) if and only if, on each triangle σ in T , s agrees with
a polynomial of degree at most k. For r = 0, 1, . . . , k − 1, let

Sr
k(T ) := Sk(T ) ∩ Cr(Ω).

The following lemma gives a Bernstein type inequality for spline functions on a
polygonal domain. See [11] and [16] for related results.

Lemma 2.2. Let T be a triangulation of a polygonal domain Ω in R
2, and let θ

be the infimum of the angles of T . Suppose that there exists a positive constant
M such that Mh ≤ |e| ≤ h for every edge e of T . Let f be a function in Sr

k(T )
such that its support is contained in N triangles of T . Then for 1 ≤ p ≤ ∞ and
0 < µ < r + 1 + 1/p,

(2.7) |f |Bµ
p,p(Ω) ≤ Ch−µ‖f‖p,Ω,

where C is a constant depending on θ, M and N but independent of f and h.
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Proof. First, consider the case p = ∞. Let us estimate ωm(f, t)∞, where m ≥
r + 1 > µ and t > 0. Note that ωm(f, t)∞ ≤ 2m‖f‖∞,Ω. Hence, for t ≥ h we have

ωm(f, t)∞ ≤
(
h−µ2m‖f‖∞,Ω

)
tµ.

Suppose t < h. By (2.2) there exists a constant B > 0 such that

(2.8) ωm(f, t)∞ ≤ Btr
∑
|α|=r

ωm−r(Dαf, t)∞ ≤ Btr
∑
|α|=r

2m−r−1ω(Dαf, t)∞.

For |α| = r, Dαf belongs to W 1
∞(Ω). For y ∈ R

2 we have

‖∇yDαf‖∞,Ωy
≤ sup

τ∈T
‖DyDαf‖∞,τ .

If |y| ≤ t, then it follows from (2.4) that

‖DyDαf‖∞,τ ≤ B1th
−r−1‖f‖∞,τ ,

where B1 is a constant independent of h and f . Consequently,

ω(Dαf, t)∞ ≤ B1th
−r−1‖f‖∞,Ω.

This together with (2.8) tells us that there exists a constant C > 0 such that

ωm(f, t)∞ ≤ C(t/h)r+1‖f‖∞,Ω ≤ C(t/h)µ‖f‖∞,Ω =
(
Ch−µ‖f‖∞,Ω

)
tµ.

Therefore, (2.7) is valid for p = ∞.
It remains to prove (2.7) for the case 1 ≤ p < ∞. The proof is based on the

norm equivalence

|f |Bµ
p,p(Ω) ≈

(∑
j∈Z

[
2jµωm(f, 2−j)p

]p)1/p

,

where m ≥ k +1 > r +1+1/p. Let j0 be the integer such that h ≤ 2−j0 < 2h. We
shall estimate the above sum for j ≤ j0 and j > j0 separately.

For j ≤ j0 we have ωm(f, 2−j)p ≤ 2m‖f‖p,Ω. Hence,
j0∑

j=−∞

[
2jµωm(f, 2−j)p

]p ≤
[
2m‖f‖p,Ω

]p(2j0µ)p

j0∑
j=−∞

(
2−µp

)j0−j
.

Consequently, there exists a positive constant C such that( j0∑
j=−∞

[
2jµωm(f, 2−j)p

]p)1/p

≤ Ch−µ‖f‖p,Ω.

Let us consider the case j > j0. By (2.2) there exists a constant B such that

ωm(f, 2−j)p ≤ B(2−j)r+1
∑

|α|=r+1

ωm−r−1(Dαf, 2−j)p.

By our assumption, there exists a subcollection S of N triangles in T such that f
is supported in

⋃
τ∈S τ . Let Yj be the set of those points in Ω whose distance to

one of the edges of some triangle τ ∈ S is less than (m − r − 1)2−j . If x ∈ Ω \ Yj

and |y| ≤ 2−j , then

∇m−r−1
y (Dαf)(x) = 0 for |α| = r + 1,

since m > k and Dαf |τ ∈ Πk−r−1|τ for each triangle τ ∈ T . This shows that

ωm−r−1(Dαf, 2−j)p ≤ 2m−r−1‖Dαf‖∞,Ω

(
area(Yj)

)1/p;
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but there exists a constant M1 > 0 such that area(Yj) ≤ M12−jh. Moreover,
there exists some τ ∈ S such that ‖Dαf‖∞,Ω = ‖Dαf‖∞,τ . By Lemma 2.1, for
|α| = r + 1, there exist positive constants K1 and K2 such that

‖Dαf‖∞,τ ≤ K1h
−(r+1)‖f‖∞,τ ≤ K2h

−(r+1)h−2/p‖f‖p,τ .

Combining the above estimates together, we obtain

ωm(f, 2−j)p ≤ C1(2−j)r+1h−(r+1)h−2/p(2−jh)1/p‖f‖p,Ω,

where C1 is a constant independent of h and f . Consequently,
∞∑

j=j0+1

[
2jµωm(f, 2−j)p

]p ≤
[
C1h

−(r+1+1/p)‖f‖p,Ω

]p ∞∑
j=j0+1

2−j(r+1+1/p−µ)p.

Since µ < r + 1 + 1/p, the series on the right-hand side of the above inequality is
a geometric series with its ratio less than 1. Hence, there exists a constant C2 > 0
such that

∞∑
j=j0+1

2−j(r+1+1/p−µ)p ≤ Cp
2

(
2−(j0+1)(r+1+1/p−µ)p

)
≤
[
C2h

r+1+1/p−µ
]p

,

where the fact 2−(j0+1) ≤ h has been used to derive the last inequality. Therefore,( ∞∑
j=j0+1

[
2jµωm(f, 2−j)p

]p)1/p

≤ Ch−µ‖f‖p,Ω,

where C = C1C2. The proof of the lemma is complete. �

3. Bases of piecewise quadratic polynomials

In this section we review basic properties of the Powell-Sabin elements. Stable
bases are formulated for the concerned spaces of quadratic splines. Approximation
properties of such spaces are discussed.

Let σ be a triangle in R
2. Suppose A1, A2, and A3 are the vertices of σ. Let B1,

B2, B3 be the middle point of the line segment A2A3, A3A1 and A1A2, respectively.
The triangle σ is divided into four smaller triangles: �A1B2B3, �A2B1B3,

�A3B1B2, and �B1B2B3. We use δ4(σ) to denote the collection of these four
triangles.

The lines A1B1, A2B2, and A3B3 intersect at the barycenter O of σ. The trian-
gle σ is divided into 6 smaller triangles: �OA1B3, �OB3A2, �OA2B1, �OB1A3,
�OA3B2, and �OB2A1. We use δ6(σ) to denote the collection of these six trian-
gles.

The line segments A1B1, A2B2, A3B3, B1B2, B2B3, and B3B1 divide σ into
twelve smaller triangles. We use δ12(σ) to denote the collection of these twelve
triangles. Obviously, δ12(σ) is a subdivision of both δ4(σ) and δ6(σ). Moreover,
δ6(δ4(σ)) is a subdivision of δ12(σ).

Figure 1 shows the 6-split and 12-split of a triangle.
Splines in S1

2(δ6(σ)) are called the first type Powell-Sabin elements, and splines
in S1

2(δ12(σ)) are called the second type Powell-Sabin elements. It is known that a
function f ∈ S1

2(δ6(σ)) is uniquely determined by its function values and gradients
at the vertices of σ. Moreover, if the function values of f and its gradients vanish
on both vertices A1 and A2, then f together with its normal derivative vanishes on
the edge A1A2. A function g ∈ S1

2(δ12(σ)) is uniquely determined by its function
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A1 A2

A3

B3

B1B2
O

A1 A2

A3

B3

B1B2

Figure 1. 6-split and 12-split of a triangle

values and gradients at the vertices of σ and its normal derivatives at the midpoints
of edges of σ; see the original paper [29] of Powell and Sabin for details. Also, see
the paper [3] of Chui and He for discussions on splines based on the Powell-Sabin
elements. In [23], Lai and Schumaker gave some generalizations of the Powell-Sabin
elements.

Two triangles σ and τ are said to be neighboring, if σ ∩ τ is a common edge
of σ and τ . Suppose σ and τ are two neighboring triangles and f is a function
defined on σ ∪ τ . If f |σ ∈ S1

2(δ6(σ)) and f |τ ∈ S1
2(δ6(τ )), it is not always true that

f ∈ C1(σ∪ τ ); but f indeed lies in C1(σ∪ τ ) provided σ∪ τ forms a parallelogram.
If f |σ ∈ S1

2(δ12(σ)) and f |τ ∈ S1
2(δ12(τ )), and in addition, the normal derivatives of

f |σ and f |τ at the middle point of the common edge are equal, then f ∈ C1(σ∪ τ ).
The above discussion motivates us to consider combinations of the first type and

second type of the Powell-Sabin elements. A triangle σ is called regular if σ and its
any neighboring triangle τ form a parallelogram. Otherwise, σ is called irregular.
All the edges of regular triangles are said to be regular, and all the other edges are
said to be irregular.

Let T be a quasi-uniform triangulation of a polygonal domain Ω in R
2 with V

being the set of its vertices. We use δ4(T ) to denote the collection
⋃

σ∈T δ4(σ).
Let Tr be the collection of all regular triangles of T , and Ti the collection of all
irregular triangles of T . Let

T ∗ :=
( ⋃

σ∈Tr

δ6(σ)
)
∪
( ⋃

σ∈Ti

δ12(σ)
)

.

Figure 2 shows a triangulation of a pentagon.
Let T denote the triangulation, and let T1 = δ4(T ) and T2 = δ4(T1). A triangle

of T2 is irregular only if one of its edges is a part of an interior edge of T . These
triangles are shown as shaded. All the other triangles of T2 are regular.

A spline s ∈ S1
2(T ∗) is said to be admissible if for every irregular edge e of

T , the normal derivative of s at its middle point is equal to the average of the
normal derivatives of s at its two end points. Let S̃1

2(T ) denote the linear space of
all admissible splines in S1

2(T ∗). Hermite interpolation is permitted in the space
S̃1

2(T ). More precisely, for given sequences (cv0)v∈V , (cv1)v∈V , and (cv2)v∈V of real
numbers, there exists a unique spline s ∈ S̃1

2(T ) such that

s(v) = cv0, D1s(v) = cv1, D2s(v) = cv2, ∀ v ∈ V.
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Figure 2. A triangulation of a pentagon

For a vertex v of T , let ϕv,0, ϕv,1, and ϕv,2 be the unique splines in S̃1
2(T ) such

that ⎡
⎣ϕv,0(v) D1ϕv,0(v) D2ϕv,0(v)

ϕv,1(v) D1ϕv,1(v) D2ϕv,1(v)
ϕv,2(v) D1ϕv,2(v) D2ϕv,2(v)

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

and
ϕv,i(w) = 0, D1ϕv,i(w) = 0, D2ϕv,i(w) = 0,

for all w ∈ V \ {v} and i = 0, 1, 2. Clearly, each ϕv,i is supported on StT (v). For
v ∈ V and i = 0, 1, 2, let

φv,i := ϕv,i/‖ϕv,i‖2,Ω.

Thus, each φv,i is so normalized that ‖φv,i‖2,Ω = 1.
Suppose σ is a triangle in T with three vertices v0, v1, and v2. For i, j = 0, 1, 2,

let
φvi,σ,j := φvi,j |σ.

Clearly, φvi,σ,j (i, j = 0, 1, 2) are linearly independent functions in L2(σ). Hence,
there exist unique functions φ̃vk,σ,l (k, l = 0, 1, 2) in the linear span of {φvi,σ,j :
i, j = 0, 1, 2} such that

〈φ̃vk,σ,l, φvi,σ,j〉 =

{
1 if k = i and l = j,

0 otherwise.
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For v ∈ V and i ∈ {0, 1, 2}, we define φ̃v,i to be the function on Ω such that for
each triangle σ of T ,

φ̃v,i|σ :=
1
nv

φ̃v,σ,i,

where nv is the number of triangles incident to v. Then we have

(3.1) 〈φ̃v,i, φw,j〉 =

{
1 if v = w and i = j,

0 otherwise.

Note that φ̃v,i (i = 0, 1, 2) are piecewise quadratic polynomials and well defined
except for the points lying on the edges of T . Moreover, φ̃v,i (i = 0, 1, 2) are
supported on StT (v). These functions are not necessarily continuous, but they
belong to Lp(Ω) for 1 ≤ p ≤ ∞.

Suppose that T is a quasi-uniform triangulation satisfying the minimum angle
condition. By Lemma 2.1 we see that there exist positive constants K1 and K2

such that
(3.2)

K1h
2/p−1 ≤ ‖φv,i‖p,Ω ≤ K2h

2/p−1 and K1h
2/p−1 ≤ ‖φ̃v,i‖p,Ω ≤ K2h

2/p−1,

where h is the mesh size of T .

Lemma 3.1. For 1 ≤ p ≤ ∞, {h1−2/pφv,i : v ∈ V, i = 0, 1, 2} forms a stable
basis for S̃1

2(T ) ∩ Lp(Ω), i.e., any f ∈ S̃1
2(T ) ∩ Lp(Ω) can be represented as f =∑

v∈V

∑2
i=0 av,iφv,i for some av,i ∈ R (v ∈ V and i = 0, 1, 2), and

Ah2/p−1

(∑
v∈V

2∑
i=0

|av,i|p
)1/p

≤ ‖f‖p,Ω ≤ Bh2/p−1

(∑
v∈V

2∑
i=0

|av,i|p
)1/p

,

where A and B are positive constants independent of h and f .

Proof. Suppose that (av,i)v∈V,i=0,1,2 is a sequence of real numbers with the prop-
erty that

(∑
v∈V

∑2
i=0 |av,i|p

)1/p
< ∞. Since each φv,i (i = 0, 1, 2) is supported on

StT (v) and satisfies the inequalities in (3.2), by Lemma 3.2 of [18] we see that there
exists a positive constant B such that∥∥∥∥∑

v∈V

2∑
i=0

av,iφv,i

∥∥∥∥
p,Ω

≤ Bh2/p−1

(∑
v∈V

2∑
i=0

|av,i|p
)1/p

.

On the other hand, suppose f ∈ S̃1
2(T )∩Lp(Ω). Then f =

∑
v∈V

∑2
i=0 av,iφv,i for

some av,i ∈ R (v ∈ V and i = 0, 1, 2). By (3.1) we have av,i = 〈f, φ̃v,i〉 for v ∈ V
and i = 0, 1, 2. By Lemma 3.1 of [18], there exists a positive constant C such that(∑

v∈V

2∑
i=0

|av,i|p
)1/p

≤ Ch1−2/p‖f‖p,Ω.

This shows that {h1−2/pφv,i : v ∈ V, i = 0, 1, 2} forms a stable basis for S̃1
2(T ) ∩

Lp(Ω). �

By Lemma 2.2, there exists a constant C > 0 such that |φv,i|Bµ
p,p

≤ Ch2/p−1−µ

for 0 < µ < 2 + 1/p. With the help of Lemma 3.3 of [18], we deduce from Lemma
3.1 that S̃1

2(T ) ∩ Lp(Ω) ⊂ Bµ
p,p(Ω) for 0 < µ < 2 + 1/p.
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Let Q be the linear operator given by

Qf :=
∑
v∈V

2∑
i=0

〈f, φ̃v,i〉φv,i,

where f is a locally integrable function on Ω. In light of (3.1) we see that Q is a
projection onto S̃1

2(T ). In particular, Qq = q for q ∈ Π2|Ω. Hence, the following
Jackson type inequality is valid. See [17] for details of the proof.

Lemma 3.2. If f ∈ Lp(Ω) for 1 ≤ p < ∞ or f ∈ C(Ω) for p = ∞, then

‖f − Qf‖p,Ω ≤ Cω3(f, h)p,

where C is a constant independent of h and f .

4. Refinable spaces of C1
quadratic splines

In this section we discuss multiresolution analysis of Besov spaces by using a
sequence of refinable spaces of C1 quadratic splines. Then we establish norm equiv-
alence for Besov spaces on the basis of multilevel decomposition.

Let Ω be a polygonal domain in R
2, and let T be a quasi-uniform triangulation

of Ω. We assume that the mesh size of T is 1.
Let T0 := T and Tk := δ4(Tk−1) for k = 1, 2, . . .. Clearly, the mesh size of Tk

is 2−k. Also, T ∗
k+1 is a subdivision of T ∗

k . Suppose f ∈ S̃1
2(Tk) and e is an edge

of Tk+1. Then the normal derivative of f on e is a linear function. Hence, the
normal derivative of f at the middle point of e is equal to the average of the normal
derivatives of f at its two end points. This shows that S̃1

2(Tk) ⊂ S̃1
2(Tk+1) for

k ∈ N0.
Suppose 1 ≤ p ≤ ∞. Fix p for the time being. In what follows, ‖·‖p,Ω will be

abbreviated as ‖·‖p. Let

(4.1) Fk := S̃1
2(Tk) ∩ Lp(Ω), k = 0, 1, 2, . . . .

For 0 < µ < 2 + 1/p we have

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Bµ
p,p(Ω).

It will be shown later that
⋃∞

k=0 Fk is dense in Bµ
p,p(Ω) for 1 ≤ p < ∞.

For each k ∈ N0, let Vk denote the set of vertices of Tk, and let Ek denote the set
of edges of Tk. For v ∈ Vk and i = 0, 1, 2, let ϕv,i,k be the unique spline in S̃1

2(Tk)
such that

(4.2)

⎡
⎣ϕv,0,k(v) D1ϕv,0,k(v) D2ϕv,0,k(v)

ϕv,1,k(v) D1ϕv,1,k(v) D2ϕv,1,k(v)
ϕv,2,k(v) D1ϕv,2,k(v) D2ϕv,2,k(v)

⎤
⎦ =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

and
(4.3)
ϕv,i,k(w) = 0, D1ϕv,i,k(w) = 0, D2ϕv,i,k(w) = 0, i = 0, 1, 2, w ∈ Vk \ {v}.

For k ∈ N0, v ∈ Vk, and i = 0, 1, 2, let

φv,i,k := ϕv,i,k/‖ϕv,i,k‖2.
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Lemma 4.1. Suppose 1 ≤ p ≤ ∞ and 0 < µ < 2+1/p. Let fk ∈ Fk, k = 0, 1, . . . , n.
Then there exists a positive constant C independent of n such that∥∥∥∥

n∑
k=0

fk

∥∥∥∥
Bµ

p,p(Ω)

≤ C

( n∑
k=0

[
2kµ‖fk‖p

]p)1/p

.

Proof. Each fk may be represented as fk =
∑

v∈Vk

∑2
i=0 cv,i,kφv,i,k, where cv,i,k

are real coefficients. By Lemma 2.1, there exist positive constants K1 and K2 such
that

K1(2−k)2/p−1 ≤ ‖φv,i,k‖p ≤ K2(2−k)2/p−1.

Moreover, by Lemma 2.2, there exists a positive constant K such that

|φv,i,k|Bµ
p,p(Ω) ≤ K(2−k)−µ(2−k)2/p−1.

By Theorem 5.1 of [18], (φv,i,k)k∈N0,v∈Vk,i=0,1,2 is a Bessel sequence in Bµ
p,p(Ω) with

respect to the semi-norm. More precisely, there exists a constant C1 > 0 such that∣∣∣∣
n∑

k=0

∑
v∈Vk

2∑
i=0

cv,i,kφv,i,k

∣∣∣∣
Bµ

p,p(Ω)

≤ C1

( n∑
k=0

∑
v∈Vk

2∑
i=0

∣∣2kµ(2−k)2/p−1cv,i,k

∣∣p)1/p

.

On the other hand, Lemma 3.1 tells us that

C2(2−k)2/p−1

(∑
v∈Vk

2∑
i=0

|cv,i,k|p
)1/p

≤ ‖fk‖p,

where C2 is a constant independent of k. Consequently, there exists a positive
constant C independent of n such that∣∣∣∣

n∑
k=0

fk

∣∣∣∣
Bµ

p,p(Ω)

≤ C

( n∑
k=0

[
2kµ‖fk‖p

]p)1/p

.

Furthermore, ∥∥∥∥
n∑

k=0

fk

∥∥∥∥
p

≤
n∑

k=0

‖fk‖p =
n∑

k=0

(
2−kµ

)(
2kµ‖fk‖p

)

≤
( n∑

k=0

(
2−kµ

)q
)1/q( n∑

k=0

[
2kµ‖fk‖p

]p)1/p

,

where 1/q + 1/p = 1 and Hölder’s inequality has been used to derive the last
inequality. Combining the above two estimates together, we establish the desired
inequality. �

It was shown in §3 that there exist functions φ̃v,i,k ∈ S2(T ∗
k ) ∩ Lp(Ω) such that

〈φ̃v,i,k, φw,j,k〉 =

{
1 if v = w and i = j,

0 otherwise.

Each φ̃v,i,k is supported on StTk
(v). Moreover, there exist two positive constants

K1 and K2 such that

K1(2−k)2/p−1 ≤ ‖φ̃v,i,k‖p ≤ K2(2−k)2/p−1.
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Let Qk be the linear operator given by

(4.4) Qkf :=
∑
v∈Vk

2∑
i=0

〈f, φ̃v,i,k〉φv,i,k,

where f is a locally integrable function on Ω. Then Qk is a linear projection onto
Fk. If f ∈ Lp(Ω) for 1 ≤ p < ∞ or f ∈ C(Ω) for p = ∞, then it follows from
Lemma 3.2 that

‖f − Qkf‖p ≤ Cω3(f, 2−k)p,

where C is a constant independent of k and f .

Lemma 4.2. Suppose f ∈ Bµ
p,p(Ω), where 1 ≤ p < ∞ and 0 < µ < 2 + 1/p. Then

(4.5) lim
n→∞

‖Qnf − f‖Bµ
p,p(Ω) = 0.

Consequently,
⋃∞

n=0 Fn is dense in Bµ
p,p(Ω).

Proof. There exists a positive constant C1 such that

‖Qk+1f − Qkf‖p ≤ ‖Qk+1f − f‖p + ‖f − Qkf‖p ≤ C1ω3(f, 2−k)p ∀ k ∈ N0.

It follows that( n∑
k=0

[
2kµ‖Qk+1f − Qkf‖p

]p)1/p

≤ C1

( n∑
k=0

[
2kµω3(f, 2−k)p

]p)1/p

≤ C1|f |Bµ
p,p(Ω).

(4.6)

In particular, if f ∈ Bµ
p,p(Ω) for 1 ≤ p < ∞, then

∑∞
k=0

[
2kµ‖Qk+1f − Qkf‖p

]p is
a convergent series. Suppose 0 ≤ m < n < ∞. By Lemma 4.1 we have

(4.7) ‖Qnf − Qmf‖Bµ
p,p(Ω) ≤ C2

(n−1∑
k=m

[
2kµ‖Qk+1f − Qkf‖p

]p)1/p

,

where C2 is a positive constant independent of n. Hence,

lim
m,n→∞

‖Qnf − Qmf‖Bµ
p,p(Ω) = 0.

In other words, (Qnf)n∈N is a Cauchy sequence in Bµ
p,p(Ω). Consequently, there

exists some g ∈ Bµ
p,p(Ω) such that

lim
n→∞

‖Qnf − g‖Bµ
p,p(Ω) = 0;

but limn→∞ ‖Qnf − f‖p = 0. Therefore, g = f . This proves (4.5). It follows that⋃∞
n=0 Fn is dense in Bµ

p,p(Ω). �

In [11], DeVore, Jawerth, and Popov investigated norm equivalence based on
wavelet decomposition. In [28] Oswald further considered norm equivalence for
finite element spaces. The following result on norm equivalence is pertinent to our
purpose.

Lemma 4.3. Suppose 1 ≤ p < ∞ and 0 < µ < 2+1/p. Then the norm ‖f‖Bµ
p,p(Ω)

is equivalent to

‖Q0f‖p +
( ∞∑

k=0

[
2kµ‖Qk+1f − Qkf‖p

]p)1/p

.
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Proof. Suppose f ∈ Bµ
p,p(Ω). By (4.5) and (4.7) there exists a positive constant C1

independent of f such that

‖f − Q0f‖Bµ
p,p(Ω) = lim

n→∞
‖Qnf − Q0f‖Bµ

p,p(Ω)

≤ C1

( ∞∑
k=0

[
2kµ‖Qk+1f − Qkf‖p

]p)1/p

.
(4.8)

This in connection with (4.6) gives

‖f − Q0f‖Bµ
p,p(Ω) ≤ C2|f |Bµ

p,p(Ω),

where C2 is a positive constant independent of f . Moreover,

‖Q0f‖p ≤ ‖f‖p + ‖Q0f − f‖p.

Therefore, there exists a positive constant C3 such that

‖Q0f‖p +
( ∞∑

k=0

[
2kµ‖Qk+1f − Qkf‖p

]p)1/p

≤ C3‖f‖Bµ
p,p(Ω) ∀ f ∈ Bµ

p,p(Ω).

On the other hand,

‖f‖Bµ
p,p(Ω) ≤ ‖Q0f‖Bµ

p,p(Ω) + ‖f − Q0f‖Bµ
p,p(Ω).

By Lemma 4.1, there exists a positive constant C4 such that

‖Q0f‖Bµ
p,p(Ω) ≤ C4‖Q0f‖p.

This together with (4.8) tells us that there exists a constant C > 0 such that

‖f‖Bµ
p,p(Ω) ≤ C

[
‖Q0f‖p +

( ∞∑
k=0

[
2kµ‖Qk+1f − Qkf‖p

]p)1/p]
.

The proof of the lemma is complete. �

5. Stable wavelet bases

The purpose of this section is to develop a general theory for wavelet bases in
Besov spaces. Let us begin with a useful inequality related to Banach spaces.

Let X be a Banach space with norm ‖·‖ . Let F0, F1, . . . , Fn be closed subspaces
of X such that

F0 ⊆ F1 ⊆ · · · ⊆ Fn.

For j = 0, 1, . . . , n, let Rj be a linear projection from Fn onto Fj . Set R−1 := 0.

Lemma 5.1. Suppose there exist some ν > 0 and a constant K > 0 such that for
k ≥ j,

(5.1) ‖Rjf‖ ≤ K2ν(k−j)‖f‖ ∀ f ∈ Fk.

If f =
∑n

k=0 fk with fk ∈ Fk, k = 0, 1, . . . , n, then for µ > ν and 1 ≤ p ≤ ∞,

(5.2)
( n∑

j=0

[
2µj‖(Rj − Rj−1)f‖

]p)1/p

≤ C

( n∑
k=0

[
2µk‖fk‖

]p)1/p

,

where C is a constant depending only on K, µ and ν.
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Proof. It follows from (5.1) that

‖(Rj − Rj−1)f‖ ≤ ‖Rjf‖ + ‖Rj−1f‖ ≤ K(1 + 2ν)2ν(k−j)‖f‖ ∀ f ∈ Fk.

For k < j we have (Rj − Rj−1)fk = 0. Hence,

(Rj − Rj−1)f =
n∑

k=j

(Rj − Rj−1)fk.

Consequently,

2µj‖(Rj − Rj−1)f‖ ≤ K(1 + 2ν)
n∑

k=j

2−(k−j)(µ−ν)
[
2kµ‖fk‖

]
.

Note that
n∑

k=j

2−(k−j)(µ−ν) ≤ 1
1 − 2−(µ−ν)

.

Therefore, (5.2) is valid with C := K(1 + 2ν)/(1 − 2−(µ−ν)). See Lemma 4.1 of
[18]. �

Let Ω be a polygonal domain in R
2, and let T be a quasi-uniform triangulation

of Ω satisfying the minimum angle condition. We assume that the mesh size of T
is 1. For k = 0, 1, 2, . . ., let Fk be the space as defined in (4.1). We have

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Bµ
p,p(Ω),

where 1 ≤ p < ∞ and 0 < µ < 2 + 1/p. Moreover,
⋃∞

k=0 Fk is dense in Bµ
p,p(Ω).

Suppose Pk is a linear projection from Fk onto Fk−1 (k = 1, 2, . . .) and P0 = 0.
The operator norm ‖Pk‖ is induced from the Lp norm on Fk. Let Gk := kerPk,
k = 0, 1, 2, . . .. Then F0 = G0 and Fk = Fk−1 + Gk, k = 1, 2, . . ..

Lemma 5.2. If there exists some ν < µ and a positive constant K such that

‖Pk+1 · · ·Pl‖ ≤ K2ν(l−k)

for all integers k and l with 0 ≤ k < l, then there exists a positive constant C
independent of n such that

(5.3)
( n∑

k=0

[
2kµ‖gk‖p

]p)1/p

≤ C

∥∥∥∥
n∑

k=0

gk

∥∥∥∥
Bµ

p,p(Ω)

,

provided gk ∈ Gk for k = 0, 1, . . . , n.

Proof. Let n ∈ N be fixed. For k = 0, 1, . . . , n − 1, define Rk := Pk+1 · · ·Pn,
and let Rn be the identity mapping on Fn. For f ∈ Fn, set f0 := Q0f and
fk := Qkf − Qk−1f for k = 1, . . . , n. Then f =

∑n
k=0 fk with fk ∈ Fk for each k.

By Lemma 4.3, there exists a positive constant C1 independent of n such that( n∑
k=0

[
2µk‖fk‖

]p)1/p

≤ C1‖f‖Bµ
p,p(Ω).

This in connection with (5.2) gives( n∑
k=0

[
2µk‖(Rk − Rk−1)f‖

]p)1/p

≤ C‖f‖Bµ
p,p(Ω) ∀ f ∈ Fn,
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where R−1 := 0, and C is a constant independent of n. Now suppose f =
∑n

k=0 gk,
where gk ∈ Gk. Then (Rk − Rk−1)f = gk, k = 0, 1, . . . , n. Consequently, (5.3)
follows from the above inequality at once. �

Suppose ψjk ∈ Gk for j ∈ Jk, k = 0, 1, . . .. Each ψjk is supported in StN
Tk

(vjk)
for some vertex vjk of Tk, where N ∈ N is independent of j and k. The functions
ψjk are so normalized that ‖ψjk‖p = 2−kµ. Suppose {2kµψjk : j ∈ Jk} forms a
stable basis for the space Gk equipped with the Lp norm. In other words, there
exist two positive constants C1 and C2 such that the inequalities

(5.4) C12−kµ

[∑
j∈Jk

|cjk|p
]1/p

≤
∥∥∥∥∑

j∈Jk

cjkψjk

∥∥∥∥
p

≤ C22−kµ

[∑
j∈Jk

|cjk|p
]1/p

hold true for all sequences (cjk)j∈Jk
with

∑
j∈Jk

|cjk|p < ∞.

Theorem 5.3. Suppose Pk is a linear projection from Fk onto Fk−1 (k = 1, 2, . . .)
and P0 = 0. If there exists some ν < µ and a positive constant K such that

‖Pk+1 · · ·Pl‖ ≤ K2ν(l−k)

for all integers k and l with 0 ≤ k < l, then there exist two positive constants A
and B such that

(5.5) A

( ∞∑
k=0

∑
j∈Jk

|cjk|p
)1/p

≤
∥∥∥∥

∞∑
k=0

∑
j∈Jk

cjkψjk

∥∥∥∥
Bµ

p,p(Ω)

≤ B

( ∞∑
k=0

∑
j∈Jk

|cjk|p
)1/p

.

Proof. Since ‖ψjk‖p = 2−kµ, there exists a constant K such that ‖ψjk‖Bµ
p,p(Ω) ≤ K,

by Lemma 2.2. The second inequality in (5.5) can be easily derived from Theorem
5.1 of [18].

For k = 0, 1, . . ., let gk :=
∑

j∈Jk
cjkψjk. By Lemma 5.2, there exists a positive

constant C independent of n such that( n∑
k=0

[
2kµ‖gk‖p

]p)1/p

≤ C

∥∥∥∥
n∑

k=0

∑
j∈Jk

cjkψjk

∥∥∥∥
Bµ

p,p(Ω)

.

This in connection with (5.4) verifies the first inequality in (5.5). �

6. Construction of wavelets

We are in a position to construct C1 wavelet bases on general triangulations. In
particular, for the three-direction mesh, the wavelets will be given explicitly.

Let Ek be the set of edges of Tk. For f, g ∈ Fk and e = [v1, v2] ∈ Ek, define

(6.1) 〈f, g〉e := 2−2k
[
f(v1)g(v1)+Def(v1)Deg(v1)+f(v2)g(v2)+Def(v2)Deg(v2)

]
.

Accordingly, ‖f‖2
e = 〈f, f〉e. Furthermore, define

(6.2) 〈f, g〉Tk
:=

∑
e∈Ek

〈f, g〉e.

Consequently,
‖f‖2

Tk
=

∑
e∈Ek

‖f‖2
e.

It is easily seen from Lemma 3.1 that the norm ‖f‖Tk
is equivalent to the norm

‖f‖2,Ω.
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For k ∈ N, let Pk be the orthogonal projection from Fk to Fk−1 with respect
to the inner product given in (6.2). Thus, for f ∈ Fk, Pkf ∈ Fk−1 satisfies the
following condition:

〈f − Pkf, g〉Tk
= 0 ∀ g ∈ Fk−1.

Consequently,
‖Pkf‖Tk

≤ ‖f‖Tk
∀ f ∈ Fk.

Lemma 6.1. There exists a positive constant λ0 < 4 such that

(6.3) ‖Pkf‖Tk−1 ≤ λ0‖f‖Tk
∀ f ∈ Fk.

Proof. We have
‖Pkf‖Tk−1

‖f‖Tk

≤
‖Pkf‖Tk−1

‖Pkf‖Tk

.

Thus, it suffices to estimate ‖g‖Tk−1/‖g‖Tk
for g ∈ Fk−1.

Recall that
‖g‖2

Tk−1
=

∑
e∈Ek−1

‖g‖2
e.

Suppose e = [v1, v2] ∈ Ek−1. Let v0 := (v1 + v2)/2 be the middle point of e. Then
e = e1 ∪ e2, where e1 := [v1, v0] and e2 := [v0, v2] are two edges of Tk. Let us
estimate

‖g‖2
e1

+ ‖g‖2
e2

‖g‖2
e

.

Note that De1 = De2 . Let

ai := g(vi) and bi = De1g(vi), i = 0, 1, 2.

For 0 ≤ t ≤ 1, let q(t) := g
(
(1 − t)v1 + tv0

)
. Then q is a quadratic polynomial on

[0, 1]. Suppose q(t) = αt2 + βt + γ, where α, β, γ ∈ R. Clearly,

2q(0) + q′(0) = 2γ + β = 2q(1) − q′(1).

But q(0) = g(v1) = a1 and q′(0) = De1g(v1) = b1. Similarly, q(1) = g(v0) = a0 and
q′(1) = De1g(v0) = b0. Consequently,

2a1 + b1 = 2a0 − b0.

Similarly,
2a0 + b0 = 2a2 − b2.

It follows that

a2
0+b2

0 ≥ a2
0+

1
4

b2
0 =

1
2
[
(a0−b0/2)2+(a0+b0/2)2

]
=

1
2
[
(a1+b1/2)2+(a2−b2/2)2

]
.

Therefore, we obtain

‖g‖2
e1

+ ‖g‖2
e2

= 2−2k(a2
1 + b2

1 + 2a2
0 + 2b2

0 + a2
2 + b2

2)

≥ 2−2k
[
a2
1 + b2

1 + (a1 + b1/2)2 + (a2 − b2/2)2 + a2
2 + b2

2

]
.

Let c1 := Deg(v1) and c2 = Deg(v2). Then b1 = c1/2 and b2 = c2/2. We have

a2
1 +b2

1 +(a1 +b1/2)2 = a1+c2
1/4+(a1 +c1/4)2 = 2a2

1 +
1
2
a1c1 +

5
16

c2
1 ≥ ρ0(a2

1+c2
1),

where ρ0 is the minimum of the two eigenvalues of the matrix[
2 1/4

1/4 5/16

]
.
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A simple computation yields

ρ0 =
37 −

√
793

32
.

The same argument tells us that

a2
2 + b2

2 + (a2 − b2/2)2 = 2a2
2 −

1
2
a2c2 +

5
16

c2
2 ≥ ρ0(a2

2 + c2
2).

Therefore,

‖g‖2
e1

+‖g‖2
e2

≥ 2−2kρ0(a2
1+c2

1+a2
2+c2

2) =
ρ0

4
[
2−2(k−1)(a2

1+c2
1+a2

2+c2
2)
]

=
ρ0

4
‖g‖2

e.

Consequently,
‖g‖Tk−1 ≤ λ0‖g‖Tk

∀g ∈ Fk−1,

where

λ0 :=
√

4
ρ0

=
√

13 +
√

61
3

< 4.

We conclude that (6.3) is valid for this λ0. �

For k ∈ N0, v ∈ Vk, and i = 0, 1, 2, let ϕv,i,k be the unique spline in S̃1
2(Tk)

satisfying (4.2) and (4.3). We have ‖ϕv,0,k‖2 ∼ 2−k and ‖ϕv,i,k‖2 ∼ 2−2k for
i = 1, 2.

If v, w ∈ Vk and v �= w, then 〈ϕv,i,k, ϕw,j,k〉Tk
= 0, i, j = 0, 1, 2. If v ∈ Vk−1 and

w ∈ Vk, then 〈ϕv,i,k−1, ϕw,j,k〉Tk
= 0 unless w = v or w is the middle point of an

edge in Tk−1 incident to v. Moreover, since the values and the gradients of ϕv,j,k−1

and ϕv,j,k at v are equal, we have

〈ϕv,i,k, ϕv,j,k−1〉Tk
= 〈ϕv,i,k, ϕv,j,k〉Tk

, i, j = 0, 1, 2.

Let us consider the matrix(
〈ϕv,i,k, ϕv,j,k〉Tk

)
i,j=0,1,2

.

We have 〈ϕv,0,k, ϕv,0,k〉Tk
= 2−2k and 〈ϕv,0,k, ϕv,j,k〉Tk

= 0 for j = 1, 2. Suppose
e1, . . . , eN (N ≥ 2) are all the edges in Tk incident to v and em = (rm, sm) for
m = 1, . . . , N . Then Dem

= rmD1 + smD2. Consequently,[
〈ϕv,1,k, ϕv,1,k〉Tk

〈ϕv,1,k, ϕv,2,k〉Tk

〈ϕv,2,k, ϕv,1,k〉Tk
〈ϕv,2,k, ϕv,2,k〉Tk

]
= 2−2k

[ ∑N
m=1 r2

m

∑N
m=1 rmsm∑N

m=1 rmsm

∑N
m=1 s2

m

]
.

Note that ∣∣∣∣∣
∑N

m=1 r2
m

∑N
m=1 rmsm∑N

m=1 rmsm

∑N
m=1 s2

m

∣∣∣∣∣ =
∑

1≤m<n≤N

(rmsn − rnsm)2.

Hence, the matrix
(
〈ϕv,i,k, ϕv,j,k〉Tk

)
i,j=0,1,2

is invertible. Moreover, we have

(r1s2 − r2s1)2 = (r2
1 + s2

1)(r
2
2 + s2

2) sin2 θ,

where θ is the angle between the edges e1 = (r1, s1) and e2 = (r2, s2). Therefore,
the inverse of the matrix [ ∑N

m=1 r2
m

∑N
m=1 rmsm∑N

m=1 rmsm

∑N
m=1 s2

m

]
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is bounded by 2−2kK, where K is a constant depending only on the smallest angle
of the triangulation T .

Let
φv,i,k := ϕv,i,k/‖ϕv,i,k‖2.

It follows that

〈φv,i,k, φv,j,k−1〉Tk
=

〈ϕv,i,k, ϕv,j,k−1〉Tk

‖ϕv,i,k‖2‖ϕv,j,k−1‖2
=

〈ϕv,i,k, ϕv,j,k〉Tk

‖ϕv,i,k‖2‖ϕv,j,k−1‖2
.

Consequently, the inverse of the matrix
(
〈φv,i,k, φv,j,k−1〉Tk

)
i,j=1,2

is bounded by a
constant depending only on the smallest angle of T . Therefore, for each v ∈ Vk−1,
the inverse of the matrix (

〈φv,i,k, φv,j,k−1〉Tk

)
i,j=0,1,2

is bounded by a constant depending only on the smallest angle of T .
Suppose e = [v0, v1] ∈ Ek−1. Let ve be the middle point of e. Consider the

functions ψve,i,k (i = 0, 1, 2) given by

(6.4)

⎡
⎣ψve,0,k

ψve,1,k

ψve,2,k

⎤
⎦ =

⎡
⎣φve,0,k

φve,1,k

φve,2,k

⎤
⎦− B0

⎡
⎣φv0,0,k

φv0,1,k

φv0,2,k

⎤
⎦− B1

⎡
⎣φv1,0,k

φv1,1,k

φv1,2,k

⎤
⎦ ,

where B0 and B1 are the 3 × 3 matrices such that 〈ψve,i,k, φw,j,k−1〉Tk
= 0 for all

w ∈ Vk−1 and i, j = 0, 1, 2. In light of the preceding discussion we see that this
happens if

(6.5) B0

(
〈φv0,i,k, φv0,j,k−1〉Tk

)
i,j=0,1,2

=
(
〈φve,i,k, φv0,j,k−1〉Tk

)
i,j=0,1,2

and

(6.6) B1

(
〈φv1,i,k, φv1,j,k−1〉Tk

)
i,j=0,1,2

=
(
〈φve,i,k, φv1,j,k−1〉Tk

)
i,j=0,1,2

.

The matrices on the right-hand side of (6.5) and (6.6) have upper bounds in-
dependent of k and the choice of the edge e; but the inverses of the matrices(
〈φv0,i,k, φv0,j,k−1〉Tk

)
i,j=0,1,2

and
(
〈φv1,i,k, φv1,j,k−1〉Tk

)
i,j=0,1,2

are bounded by a
constant depending only on the smallest angle of T . Therefore, both B0 and B1

have upper bounds independent of k and the choice of the edge e.

Theorem 6.2. For i = 0, 1, 2, k ∈ N and e ∈ Ek−1, let ψve,i,k be the function
given in (6.4) with B0 and B1 determined by (6.5) and (6.6). Then

(6.7) {φv,i,0 : v ∈ V0, i = 0, 1, 2} ∪
∞⋃

k=1

{2−kµψve,i,k : e ∈ Ek−1, i = 0, 1, 2}

is a Riesz basis in Hµ(Ω) for µ0 < µ < 5/2, where

µ0 := log2

(√13 +
√

61
3

)
≈ 1.927.

Proof. Suppose 0 ≤ k < l. By Lemma 6.1 we have

‖Pk+1 · · ·Plf‖Tk
≤ 2µ0(l−k)‖f‖Tl

∀ f ∈ Fl.

Hence, there exists a positive constant K such that

‖Pk+1 · · ·Plf‖2 ≤ 2µ0(l−k)K‖f‖2 ∀ f ∈ Fl.
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Let Gk := kerPk, k = 0, 1, 2, . . .. Then F0 = G0 and Fk = Fk−1 + Gk, k = 1, 2, . . ..
Clearly, ψve,i,k ∈ Gk.

For k ∈ N0, {φv,i,k : v ∈ Vk, i = 0, 1, 2} forms a Riesz basis for Fk equipped with
the L2 norm and the Riesz bounds are independent of k. Indeed, by Lemma 3.1,
there exist two positive constants A1 and A2 independent of k such that

A1

(∑
v∈Vk

2∑
i=0

|av,i,k|2
)1/2

≤
∥∥∥∥∑

v∈Vk

2∑
i=0

av,i,kφv,i,k

∥∥∥∥
2

≤ A2

(∑
v∈Vk

2∑
i=0

|av,i,k|2
)1/2

for all real coefficients av,i,k. By the construction of the wavelets ψve,i,k in (6.4), we
see that {ψve,i,k : e ∈ Ek−1, i = 0, 1, 2} is a Riesz sequence in Gk. More precisely,
there exist two positive constants C1 and C2 independent of k such that

C1

( ∑
e∈Ek−1

2∑
i=0

|cve,i,k|2
)1/2

≤
∥∥∥∥ ∑

e∈Ek−1

2∑
i=0

cve,i,kψve,i,k

∥∥∥∥
2

≤ C2

( ∑
e∈Ek−1

2∑
i=0

|cve,i,k|2
)1/2

for all real coefficients cve,i,k. Suppose f ∈ Gk. Then f can be represented as

f =
∑

e∈Ek−1

2∑
i=0

cve,i,kψve,i,k +
∑

v∈Vk−1

2∑
i=0

dv,i,kφv,i,k,

where cve,i,k and dv,i,k are real coefficients. Since ψve,i,k ∈ Gk for e ∈ Ek−1 and
i = 0, 1, 2, we have

〈 ∑
v∈Vk−1

2∑
i=0

dv,i,kφv,i,k, φw,j,k−1

〉
Tk

= 0, w ∈ Vk−1, j = 0, 1, 2.

For v, w ∈ Vk−1 and v �= w, we have 〈φv,i,k, φw,j,k−1〉Tk
= 0, i, j = 0, 1, 2. Hence,

it follows that
2∑

i=0

dw,i,k〈φw,i,k, φw,j,k−1〉Tk
= 0, j = 0, 1, 2;

but the matrix
(
〈φw,i,k, φw,j,k−1〉Tk

)
i,j=0,1,2

is invertible. Therefore, dw,i,k = 0 for
all w ∈ Vk−1 and i = 0, 1, 2. This shows that the set {ψve,i,k : e ∈ Ek−1, i = 0, 1, 2}
is a Riesz basis in Gk with the corresponding Riesz bounds independent of k. By
Theorem 5.3, we conclude that the set given in (6.7) indeed forms a Riesz basis in
Hµ(Ω) for µ0 < µ < 5/2. �

Remark 1. The range of µ in Theorem 6.2 can be improved by choosing a different
inner product in (6.1). For f, g ∈ Fk and e = [v1, v2] ∈ Ek, define

〈f, g〉e := 2−2k
(
f(v1)g(v1) + [f(v1) + Def(v1)/4][g(v1) + Deg(v1)/4]

+[f(v2) − Def(v2)/4][g(v2) − Deg(v2)/4] + f(v2)g(v2)
)
.

Furthermore, define 〈f, g〉Tk
:=

∑
e∈Ek

〈f, g〉e. Let us estimate ‖g‖Tk−1/‖g‖Tk
for

g ∈ Fk−1. We have
‖g‖2

Tk−1
=

∑
e∈Ek−1

‖g‖2
e.
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Suppose e = [v1, v2] ∈ Ek−1. Let v0 := (v1 + v2)/2 be the middle point of e. Then
e = e1 ∪ e2, where e1 := [v1, v0] and e2 := [v0, v2] are two edges of Tk. Let

a1 := g(v1), b1 := g(v1)+Deg(v1)/4, and a2 := g(v2), b2 := g(v2)−Deg(v2)/4.

A simple computation gives

‖g‖2
e1

+ ‖g‖2
e2

= 2−2k
[
a2
1 +

(a1 + b1

2
)2 +

(3b1 + b2

4
)2 +

(b1 + b2

2
)2

+
(b1 + b2

2
)2 +

(b1 + 3b2

4
)2 +

(a2 + b2

2
)2 + a2

2

]
= 2−2k[a1, b1, a2, b2] A [a1, b1, a2, b2]T ,

where A is the 4 × 4 matrix

1
8

⎡
⎢⎢⎣

10 2 0 0
2 11 7 0
0 7 11 2
0 0 2 10

⎤
⎥⎥⎦ .

The smallest eigenvalue of A is λ = (7 −
√

13)/8. Hence,

‖g‖2
e1

+ ‖g‖2
e2

≥ 7 −
√

13
8

2−2k(a2
1 + b2

1 + b2
2 + a2

2) =
7 −

√
13

32
‖g‖2

e.

It follows that

‖g‖Tk−1 ≤
√

32
7 −

√
13

‖g‖Tk
=

2(1 +
√

13)
3

‖g‖Tk
∀g ∈ Fk−1.

Following the approach of Theorem 6.2 we can construct a similar wavelet basis in
Hµ(Ω) for µ1 < µ < 5/2, where

µ1 := log2

2(1 +
√

13)
3

≈ 1.618.

Remark 2. The wavelet basis constructed in Theorem 6.2 can be modified so that
they satisfy the homogeneous boundary condition

f |∂Ω = 0 and
∂f

∂n

∣∣∣
∂Ω

= 0,

where ∂f
∂n denotes the normal derivative of f .

Let Ω be a bounded Lipschitz-graph domain in R
2. For 1 ≤ p < ∞ and 0 <

µ < 2 + 1/p, we use
◦
Bµ

p,p(Ω) to denote the closure of C1
c (Ω) ∩ Bµ

p,p(Ω) in Bµ
p,p(Ω),

where C1
c (Ω) denotes the linear space of all continuously differentiable functions

with support contained in Ω. In particular, Hµ
0 (Ω) =

◦
Bµ

2,2(Ω). Suppose in addition

that Ω is a polygonal domain and T is a triangulation of Ω. For k ∈ N0, let
◦
Vk and

◦
Ek be the set of interior vertices and interior edges of Tk, respectively. Let

◦
Fk be

the space of those functions in S̃1
2(Tk) for which f(v) = D1f(v) = D2f(v) = 0 for

all v ∈ Vk \
◦
Vk. Thus, for f ∈

◦
Fk, we have f |∂Ω = 0 and ∂f

∂n

∣∣
∂Ω

= 0. Moreover,

◦
F0 ⊂

◦
F1 ⊂

◦
F2 ⊂ · · · ⊂

◦
Bµ

p,p(Ω).
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Let Qk be the projection operator given in (4.4). For g ∈ C1
c (Ω)∩Bµ

p,p(Ω), we have

Qng ∈
◦
Fn for sufficiently large n. By Lemma 4.2,

lim
n→∞

‖Qnf − f‖Bµ
p,p(Ω) = 0.

Consequently,
⋃∞

n=0

◦
Fn is dense in

◦
Bµ

p,p(Ω). Let Pk be the orthogonal projection

from
◦
Fk to

◦
Fk−1 with respect to the inner product given in (6.2). Then there exists

a positive constant λ0 < 4 such that

‖Pkf‖Tk−1 ≤ λ0‖f‖Tk
∀ f ∈

◦
Fk.

Without loss of any generality, we may assume that at least one of the end points
of every interior edge of T is an interior vertex. Indeed, for any triangulation of T ,
T1 := δ4(T ) must satisfy the above condition. Thus, if necessary, we may replace
T by T1 in our consideration. Suppose e = [v0, v1] is an interior edge of Tk−1. Let
ve be the middle point of e. We choose ψve,i,k (i = 0, 1, 2) as in (6.4), but we set
B0 = 0 if v0 is a boundary vertex. In light of the same argument as in Theorem
6.2, we may conclude that

{φv,i,0 : v ∈
◦
V0, i = 0, 1, 2} ∪

∞⋃
k=1

{2−kµψve,i,k : e ∈
◦
Ek−1, i = 0, 1, 2}

is a Riesz basis in Hµ
0 (Ω) for µ0 < µ < 5/2, where µ0 = log2 λ0 < 2. �

Finally, let us consider the triangulation T of R
2 given by

T =
⋃

γ∈Z2

(
(τ1 + γ) ∪ (τ2 + γ)

)
,

where τ1 is the triangle with vertices (0, 0), (1, 0), and (1, 1), and τ2 is the triangle
with vertices (0, 0), (0, 1), and (1, 1). This triangulation is generated from three
families of lines: x1 = j, x2 = j, and x1 − x2 = j, j ∈ Z. Thus, such a mesh is
often called the three-direction mesh.

Let φ0, φ1, φ2 be the elements in S̃1
2(T ) satisfying the following conditions:⎡

⎣φ0(0) D1φ0(0) D2φ0(0)
φ1(0) D1φ1(0) D2φ1(0)
φ2(0) D1φ2(0) D2φ2(0)

⎤
⎦ =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ ,

and
φi(β) = D1φi(β) = D2φi(β) = 0 ∀β ∈ Z

2 \ {0} and i = 0, 1, 2.

For k ∈ N0, i = 0, 1, 2 and β ∈ Z
2, let

φβ/2k,i,k(x) := 2kφi(2kx − β), x ∈ R
2.

Let Ek denote the collection of all horizontal and vertical edges of Tk. For
f, g ∈ S̃1

2(Tk) and e ∈ Ek, let 〈f, g〉e be the inner product as given in (6.1). Moreover,
define

(6.8) 〈f, g〉Tk
:=

∑
e∈Ek

〈f, g〉e and ‖f‖Tk
:=

√
〈f, f〉Tk

.

Note that the edges of Tk in the direction of diagonals are not included in Ek. But
the norms ‖f‖2 and ‖f‖Tk

are still equivalent. Moreover, Lemma 6.1 remains valid
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for the inner product and norm given in (6.8). It is easily seen that

〈f, g〉Tk
= 2−2k

∑
β∈Z2

[
4f(2−kβ)g(2−kβ) + 2−2k+1D1f(2−kβ)D1g(2−kβ)

+ 2−2k+1D2f(2−kβ)D2g(2−kβ)
]
.

In particular,

〈f, g〉T1 =
∑
β∈Z2

[
f(β/2)g(β/2) +

1
8

D1f(β/2)D1g(β/2) +
1
8

D2f(β/2)D2g(β/2)
]
.

Let V := {v1, v2, v3}, where v1 = (1/2, 0), v2 = (0, 1/2), and v3 = (1/2, 1/2). As
was done before, the wavelets ψv,i (v ∈ V , i = 0, 1, 2) are constructed as follows:⎡
⎣ψv1,0

ψv1,1

ψv1,2

⎤
⎦=

⎡
⎣φv1,0,1

φv1,1,1

φv1,2,1

⎤
⎦− 1

4

⎡
⎣ 2 2 0
−2 −2 0
1 2 2

⎤
⎦
⎡
⎣φ(0,0),0,1

φ(0,0),1,1

φ(0,0),2,1

⎤
⎦− 1

4

⎡
⎣ 2 −2 0

2 −2 0
−1 2 2

⎤
⎦
⎡
⎣φ(1,0),0,1

φ(1,0),1,1

φ(1,0),2,1

⎤
⎦ ,

⎡
⎣ψv2,0

ψv2,1

ψv2,2

⎤
⎦=

⎡
⎣φv2,0,1

φv2,1,1

φv2,2,1

⎤
⎦− 1

4

⎡
⎣ 2 0 2

1 2 2
−2 0 −2

⎤
⎦
⎡
⎣φ(0,0),0,1

φ(0,0),1,1

φ(0,0),2,1

⎤
⎦− 1

4

⎡
⎣ 2 0 −2
−1 2 2
2 0 −2

⎤
⎦
⎡
⎣φ(0,1),0,1

φ(0,1),1,1

φ(0,1),2,1

⎤
⎦ ,

and⎡
⎣ψv3,0

ψv3,1

ψv3,2

⎤
⎦=

⎡
⎣φv3,0,1

φv3,1,1

φv3,2,1

⎤
⎦− 1

4

⎡
⎣ 2 2 2
−1 0 −2
−1 −2 0

⎤
⎦
⎡
⎣φ(0,0),0,1

φ(0,0),1,1

φ(0,0),2,1

⎤
⎦− 1

4

⎡
⎣2 −2 −2

1 0 −2
1 −2 0

⎤
⎦
⎡
⎣φ(1,1),0,1

φ(1,1),1,1

φ(1,1),2,1

⎤
⎦ .

The following result is a consequence of Theorem 6.2.

Theorem 6.3. For v ∈ V and i = 0, 1, 2, let ψv,i be the wavelets constructed above.
Then

{φi(·−β) : i = 0, 1, 2, β ∈ Z
2}∪

∞⋃
k=1

{
2−kµψv,i

(
2k · −β

)
: v ∈ V, i = 0, 1, 2, β ∈ Z

2
}

is a Riesz basis in Hµ(R2) for µ0 < µ < 5/2.

Let T be a general triangulation of a polygonal domain Ω in R
2. For k ∈ N0, the

mesh formed by the triangles of Tk contained in a fixed triangle τ of T can be viewed
as a three-direction mesh. Let e be an edge that is not a part of any edge of T .
Then the wavelets ψve,i,k (i = 0, 1, 2) in Theorem 6.2 can be obtained by applying
a suitable affine transform to the wavelets constructed just before Theorem 6.3.
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