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UNIFORM ERROR ESTIMATES IN THE FINITE ELEMENT
METHOD FOR A SINGULARLY PERTURBED

REACTION-DIFFUSION PROBLEM

DMITRIY LEYKEKHMAN

Abstract. Consider the problem −ε2∆u+u = f with homogeneous Neumann
boundary condition in a bounded smooth domain in R

N . The whole range
0 < ε ≤ 1 is treated. The Galerkin finite element method is used on a globally
quasi-uniform mesh of size h; the mesh is fixed and independent of ε.

A precise analysis of how the error at each point depends on h and ε is
presented. As an application, first order error estimates in h, which are uniform
with respect to ε, are given.

1. Introduction

Consider the following problem: find a function u(x, ε) that satisfies the following
partial differential equation with homogeneous Neumann boundary conditions:

(1.1)
−ε2∆u + u = f(x, ε) in Ω,

∂u

∂n
= 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N , N ≥ 2. Here ε is a parameter,

0 < ε ≤ 1, and f(x, ε) is a uniformly bounded function in L2(Ω).
In this paper we consider the whole range 0 < ε ≤ 1. In contrast to many

other investigations (cf. below), the mesh is not allowed to vary with ε. We
assume that the mesh is globally quasi-uniform, not necessarily regular, of size h.
When ε is of order one, the problem is uniformly elliptic, the solution u is “well
behaved”, and the precise theory of A.H. Schatz [7] explains in detail how the error
behaves (cf. below in this introduction). On the other hand, when ε approaches
zero, the problem becomes singularly perturbed, and the solution may develop
boundary layers. These boundary layers are somewhat less pronounced in our case
of Neumann boundary conditions than in the case of Dirichlet boundary conditions.
Hence, in our investigation with Neumann conditions, we can establish first order
convergence in h, uniformly in ε, with a mesh independent of ε.

To achieve first order convergence in the Dirichlet case, or, to achieve higher
order convergence than first in the Neumann case, will require remeshing according
to each ε. In practice, this is rather undesirable if one wants to solve a number of
problems (1.1) with varying ε.
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A great amount of research has been done on numerical methods for singularly
perturbed reaction-diffusion problems. Most of the work has been focused on the
problems either in one space dimension or on very special domains in the plane. For
instance, in a recent paper [2], the authors considered the problem with Dirichlet
boundary conditions on a unit square and proved second order convergence in h uni-
formly in ε for the standard central finite difference method with mesh refinement
depending on ε.

Results for general domains in R
N , N ≥ 2, are rare, especially in the maximum

norm. Two such results we would like to mention are [1] and [5], where the problem
was considered on a general smooth plane domain with Dirichlet boundary condi-
tions. In those papers, with special meshes depending on ε, the authors obtained
a second order estimate in the maximum norm over the whole domain, including
the boundary layer, uniformly in ε. Furthermore, as in [2], the degrees of freedom
of the used spaces are bounded by Ch−2 uniformly in ε.

The aim of this paper is somewhat different. We consider the standard Galerkin
finite element method on a globally quasi-uniform mesh of size h. The mesh is
independent of ε. The Galerkin finite element solution uh ∈ Sr

h satisfies

(1.2) ε2(∇uh,∇χ) + (uh, χ) = (f, χ), for all χ ∈ Sr
h,

where (v, w) denotes the L2(Ω) inner product
∫
Ω

v(x)w(x)dx. The precise definition
of Sr

h is given in Chapter 2. For now, we may think of Sr
h as a set of continuous

piecewise polynomials of total degree r − 1 on globally quasi-uniform partitions of
Ω.

Instead of deriving an “ε-specific” method that guarantees a certain order of
convergence uniformly in ε, we give a precise analysis of how the error between the
real solution u and the Galerkin solution uh at each point depends on h and ε.
Then as an application of our main result, we show that the error is of first order
in h, uniformly in ε.

Before we describe the main result, let us review pointwise error estimates in
two extreme cases, ε = 0 and ε = 1.

When ε = 0, problem (1.2) degenerates formally into the zero order equation

(uh, χ) = (f, χ),

i.e. uh is the L2 projection onto Sr
h. Pointwise behavior of L2 projections are well

analyzed (cf. Chapter 7 in [13]), and it can be shown that the error satisfies

(1.3) |(u − uh)(x)| ≤ C min
χ∈Sr

h

‖e−c |x−y|
h (u − χ)(y)‖L∞(Ω),

for some positive constants c and C independent of u, uh, x, and h.
When ε = 1, the equation (1.2) is uniformly elliptic and sharp pointwise error

estimates were obtained by A.H. Schatz in [7]. To describe his main result we need
to introduce some notation. Fix x ∈ Ω and consider the weight

(1.4) σ(y) = σh,x(y) =
h

h + |x − y| , for y ∈ R
N .

Notice that σ(y) = O(1) if |x − y| = O(h) and σ(y) = O(h) if |x − y| = O(1).
For 1 ≤ p ≤ ∞, a real number s, and a fixed x, we define the weighted norms

over domains Ω by

(1.5) ‖u‖Lp(Ω),σ,s = ‖σs
h,x(y)u(y)‖Lp(Ω).
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The main result of [7] says that, for any 0 ≤ s ≤ r − 2,

(1.6) |(u − uh)(x)| ≤ C�h min
χ∈Sr

h

‖u − χ‖L∞(Ω),σ,s ,

where the constant C is independent of u, uh, h, and x, and the logarithmic term
�h = | log h| is necessary only when s = r − 2.

The main result in this paper can be thought of as an interpolation between
these two extreme cases and may roughly be stated as follows: Let 0 < ε ≤ 1.
Then, for any fixed x ∈ Ω and 0 ≤ s ≤ r − 2,

(1.7) |(u − uh)(x)| ≤ C�h min
χ∈Sr

h

∥∥∥e−c |x−y|
ε+h (u − χ)(y)

∥∥∥
L∞(Ω),σ,s

,

where C and c are independent of u, uh, h, ε, and x, and the logarithmic term
�h = | log h| is necessary only when s = r − 2 and ε � h.

From (1.7) it is easy to see that if ε = O(h), then uh behaves essentially like the
L2 projection, and if ε = O(1), we get the A.H. Schatz’s weighted result (1.6).

The estimate (1.7) is useful for analyzing singularly perturbed problems, i.e.
when ε is small. We now give some applications.

For the rest of the introduction we assume that ε is small, for example ε = O(hα),
for some α > 0.

Let Bd denote a ball of radius d centered at x. From (1.7), taking into consid-
eration only the exponential weight, we have

(1.8) |(u − uh)(x)| ≤ C�h min
χ∈Sr

h

‖u − χ‖L∞(Bd) + C�he−
cd

ε+h ‖u‖L∞(Ω\Bd).

If u ∈ W r
∞(Bd), u ∈ L∞(Ω\Bd), and d > κ(ε + h)| log h|, for κ sufficiently large,

then |(u − uh)(x)| ≤ C�hhr. Thus we can conclude that Galerkin solution uh ap-
proximates u to the optimal order on subdomains where the solution u is sufficiently
smooth.

On the other hand, in the boundary layer we have to be careful since the deriva-
tives of u may depend on ε. In Corollary 2.3 we show, assuming f ∈ W 1

∞(Ω), that,
for any x ∈ Ω, there exists a positive constant C independent of ε and h, such that

(1.9) |(u − uh)(x)| ≤ C| log h|3 min {h2/ε, h}‖f‖W 1
∞(Ω).

Therefore, we may conclude that the Galerkin approximation for the Neumann
problem is of almost first order uniformly in ε in the global maximum norm, pro-
vided ‖f‖W 1

∞
is uniformly bounded in ε.

One way to increase the order of convergence in the boundary layer is by using
matched asymptotic expansion (cf. [4]). For example, let x′ ∈ ∂Ω denote the point
where the normal from x meets the ∂Ω. Set

(1.10) uε(x) = f(x) +
∂f

∂n
(x′)e−

|x−x′|
ε ,

where f is evaluated at ε = 0. The first term on the right is called the “regular
inner expansion” and the second term is the “boundary layer correction”. It is not
hard to show that in the boundary layer ‖u−uε‖L∞ ≤ Cε2. Thus in the boundary
layer, switching from the Galerkin approximation uh to the matched expansion uε

when ε < O(h2/3), gives a “method” of uniform order almost 4/3 in the global
maximum norm. Of course if more terms in the matched asymptotic expansion
are available we can increase the order, but in general they are much harder to
compute.
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Remark 1. Using the same techniques we can prove a similar result for the above
problem with Dirichlet boundary conditions on convex bounded domains in R

N for
piecewise linear finite element spaces.

In the case of Dirichlet boundary conditions, the boundary layer is more pro-
nounced, and under the same basic assumptions using similar techniques we can
only show

|(u − uh)(x)| ≤ C�h min {h2/ε2, 1}‖f‖L∞ .

The matched asymptotic expansion in the Dirichlet case is

(1.11) uε(x) = f(x) − f(x′)e−
|x−x′|

ε ,

and on the boundary layer we have ‖u − uε‖L∞ ≤ Cε. Thus switching from the
Galerkin solution uh to the matched expansion uε in the boundary layer when
ε < O(h2/3) gives a method of uniform order only 2/3 in the global maximum
norm.

This work is based on the paper [11] by A.H. Schatz and L.B. Wahlbin, in which
the authors showed a somewhat similar result restricted to the piecewise linear
case r = 2 and space dimension N = 2. This paper sharpens the above result and
removes the restrictions on the dimension and the order of the finite element spaces
in the case when a ≡ 1.

The proof of our main result (1.7) is based on a Green’s function estimate for
the continuous problem, which is obtained from a Green’s function estimate for
the parabolic problems [3], and local energy estimates for the approximate Green’s
function. An essential analytical tool for the derivation of (1.7) is a “kick-back”
argument, which was developed by A.H. Schatz and L.B. Wahlbin and was used in
a number of papers, for example [8], [9], [10].

Outline of the paper. Section 2 contains the assumptions on the finite element
spaces, the statement of the main result, and Corollary 2.3 with a proof. Sections
3-4 are preliminary and contain global and local energy estimates, which are used
in the proof of the main result. In Sections 5-6 we prove the main result. Finally, in
the Appendix we prove Lemma 2.2, the pointwise estimate of the Green’s function
for the continuous problem.

2. Preliminaries and statement of the main result

With 0 < h < 1/2 a parameter, let τh
j , j = 1, ..., Jh, be disjoint open sets,

elements, which form a partition of Ω and fit the boundary exactly, i.e. Ω =⋃Jh

j=1 τh
j . For each such partition, let Sr

h = Sr
h(Ω) ⊂ W 1

∞(Ω) be a finite-dimensional
space. We will use W l

p(D), with 1 ≤ p ≤ ∞, l = 0, 1, ..., and a set D to denote the
standard Sobolev spaces with ‖ · ‖W l

p(D) and | · |W l
p(D) their norms and semi-norms

respectively. When needed, we will also use the piecewise norms

(2.1) ‖u‖(h)

W l
p(D)

=
( ∑

τh
j ∩D �=∅

‖u‖p

W l
p(τh

j ∩D)

)1/p

.

Similarly, we have the weighted piecewise norms

(2.2) ‖u‖(h)

W l
p(D),σ,s

=
∑

0≤|α|≤l

‖σsDα
x u‖(h)

Lp(D).
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Next, we will state some standard assumptions about finite element spaces. As-
sume there exist positive constants δ, k, k, k, C1, C2, C3, C4, and an integer r ≥ 2,
all independent of h, such that the assumptions 2.1 through 2.4 below hold.

The first assumption expresses the global quasi-uniformity of the partition of Ω
and a trace inequality at the boundary of each element.

2.1. Quasi-uniformity and trace. (i) Each τh
j contains a ball of radius kh and

is contained in a ball of radius kh.
(ii) For 0 < h < 1

2 and j = 1, 2, ..., Jh,∫
∂τh

j

|∇v|dSj ≤ C1

(
h−1|v|W 1

1 (τh
j ) + |v|W 2

1 (τh
j )

)
, ∀v ∈ W 2

1 (τh
j ).

The second assumption is a standard inverse property. For D ⊂ Ω, Sr
h(D) will

denote the restriction of Sr
h to D.

2.2. Inverse property. Let χ ∈ Sr
h(D), where D is any union of closures of ele-

ments. Then for 0 ≤ k ≤ l ≤ 2, 1 ≤ q ≤ p ≤ ∞,

‖χ‖(h)

W l
p(D)

≤ C2h
−(l−k)−N( 1

q −
1
p )‖χ‖(h)

W k
q (D)

.

Our third assumption is about local approximation properties of the finite ele-
ment spaces. For D a subset of Ω we let Dd = {x ∈ Ω : dist(x, D) ≤ d}.

2.3. Local approximation. Let d ≥ kh. There exists a linear operator Ih :
W 1

1 (Ω) → Sr
h(Ω) such that for any D the following holds:

‖v − Ihv‖(h)
W s

p (D) ≤ C3h
l−s‖v‖W l

p(Dd), for 0 ≤ s ≤ l ≤ r, 1 ≤ p ≤ ∞.

2.4. Superapproximation. If the function to be approximated is of a certain
special form, we have an assumption known as superapproximation.

Let d ≥ kh and ω ∈ Cδ
0(D̄2d); then for any ψ ∈ Sr

h(D3d) there exists η ∈ Sr
h(D3d),

vanishing outside of D3d such that

‖ωψ − η‖W l
2(D3d) ≤ C4h‖ω‖W δ

∞(D2d)‖ψ‖W l
2(D3d), l = 0, 1.

Furthermore, if ω ≡ 1 on Dd, then η = ψ on D, and the last factor may be replaced
by ‖ψ‖W l

2(D3d\D).
We can now state our main result, which expresses how the error at a point

depends on the continuous solution.

Theorem 2.1. Suppose that assumptions 2.1 through 2.4 hold and u and uh ∈ Sr
h

satisfy (1.1) and (1.2) respectively. Let x ∈ Ω, 0 < ε ≤ 1, and let s satisfy
0 ≤ s ≤ r − 2, for r ≥ 2. Furthermore assume 1− εc2 > 0, where c2 is the smallest
real number such that the estimate in Lemma 7.1 holds. Then there exist constants
C and c independent of x, u, uh, ε, and h such that

|(u − uh)(x)| ≤ C�h min
χ∈Sr

h

∥∥∥e−c |x−y|
ε+h (u − χ)(y)

∥∥∥
L∞(Ω),σ,s

,

where �h = 1, if s < r − 2 or ε = O(h) and �h = | log h|, if s = r − 2 and ε � h.

Remark 2. If ε = O(h), then the exponential weight is the dominating one and we
have

|(u − uh)(x)| ≤ C min
χ∈Sr

h

∥∥∥e−c |x−y|
h (u − χ)(y)

∥∥∥
L∞(Ω)

,

i.e. uh behaves like the L2 projection.
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The major tool in obtaining the main result is the following estimate for the
Green’s function of the continuous problem (1.1).

Lemma 2.2. The solution of (1.1) may be represented in terms of the Green’s
function Kε(x, y), for x, y ∈ Ω, as

u(x) =
∫

Ω

Kε(x, y)f(y)dy.

Assume that the boundary ∂Ω is sufficiently smooth and 1 − εc2 > 0, where c2

is the smallest real number such that the estimate in Lemma 7.1 holds. Then for
any multi-integer m, there exist constants C and c0 > 0 such that for the Green’s
function Kε(x, y), x, y ∈ Ω, we have

|Dm
x Kε(x, y)| ≤ Ce−c0

|x−y|
ε

εN+|m| ×

⎧⎪⎪⎨
⎪⎪⎩

1, if N + |m| = 1,

1 + | log |x−y|
ε |, if N + |m| = 2,(

|x−y|
ε

)2−N−|m|
, if N + |m| ≥ 3.

The proof of this result is given in the Appendix. It is based on [3].

Remark 3. If ε = O(1), then the above estimate reduces to the well known estimate
for the Green’s function for the uniformly elliptic problem (cf. Krasovski [6]).

Corollary 2.3. Under the assumptions of Theorem 2.1 and assuming Sr
h ⊂ C(Ω)

and f ∈ W r
∞(Ω), we have for any 1 ≤ s ≤ r

(2.3) |(u − uh)(x)| ≤ C�h · min

⎧⎨
⎩

h2| log h| log
(

1
ε

)
ε ‖f‖W 1

∞(Ω),

ε| log h|2 log
(

1
ε

)
‖f‖W 1

∞(Ω) + hs‖f‖W s
∞(Ω).

Proof. Since Sr
h ⊂ C(Ω), the standard interpolant satisfies (cf. [12] Section 4)

‖u − Ihu‖L∞(Ω) ≤ C| log h|h2‖∆u‖L∞(Ω).

From Theorem 2.1 we have

(2.4) |(u − uh)(x)| ≤ C�h min
χ∈Sr

h

‖u − χ‖L∞(Ω) ≤ C�h| log h|h2‖∆u‖L∞(Ω).

The top part of estimate (2.3) will follow from (2.4) and the following lemma.

Lemma 2.4. There exists a constant C independent of ε such that

(2.5) ‖∆u‖L∞(Ω) ≤
C

ε
log

(1
ε

)
‖f‖W 1

∞(Ω).

Proof. Since the case ε > 1/2 is easy, we assume ε ≤ 1/2. Assuming that u and f
are sufficiently smooth, we have

‖∆u‖L∞(Ω) =
1
ε2

‖u − f‖L∞(Ω).

For x ∈ Ω,

u(x) − f(x) =
∫

Ω

Kε(x, y)f(y)dy − f(x) =
∫

Ω

Kε(x, y)
(
f(y) − f(x)

)
dy,

where we used that
∫
Ω

Kε(x, y)dy = 1 for any x since the function v ≡ 1 solves

(2.6)
−ε2∆u + u = 1 in Ω,

∂u

∂n
= 0 on ∂Ω.
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Thus,

u(x) − f(x) =
∫

Ω\Bd

Kε(x, y)
(
f(y) − f(x)

)
dy +

∫
Bd∩Ω

Kε(x, y)
(
f(y) − f(x)

)
dy

= J1 + J2,

where Bd denotes a ball centered at x of radius d. Choose d = κε log
(

1
ε

)
, with κ

sufficiently large. Using the estimates of Lemma 2.2 in the case N ≥ 3, we have

|J1| ≤ C‖f‖L∞(Ω)
1

εN
e−c0κ log

(
1
ε

)
≤ Cε‖f‖L∞(Ω),

provided c0κ ≥ N + 1.
By the Mean Value Theorem we can bound J2 by

|J2| ≤ Cκ log
(1
ε

)
ε‖f‖W 1

∞(Bd)

∫
Ω

|Kε(x, y)|dy.

It remains to show that
∫
Ω
|Kε(x, y)|dy ≤ C. Using Lemma 2.2 with N ≥ 3,∫

Ω

|Kε(x, y)|dy ≤ C

∫
Ω

e−c0
|x−y|

ε
dy

ε2|x − y|N−2
.

Switching to polar coordinates, |x − y| = ρ, dy = CρN−1dρ, we have

(2.7)
∫

Ω

|Kε(x, y)|dy ≤ C

∫ R

0

e−c0
ρ
ε
ρ

ε

dρ

ε
≤ C.

Thus we have the first estimate of the corollary in the case N ≥ 3. The case N = 2
is very similar. �

To show the other part of estimate (2.3), we notice that

(2.8) u − uh = ε2∆u + f − ε2∆huh − Phf,

where Ph : L2(Ω) → Sr
h is the L2 projection defined by

(Phv, χ) = (v, χ), for χ ∈ Sr
h,

and ∆h : Sr
h → Sr

h is the discrete Laplacian defined by

−(∆hv, χ) = (∇v,∇χ), for χ ∈ Sr
h.

Using the triangle inequality we have

(2.9) ‖u − uh‖L∞(Ω) ≤ ε2‖∆u − ∆huh‖L∞(Ω) + ‖f − Phf‖L∞(Ω).

Using the approximation properties of the L2 projection we can bound the second
term as

(2.10) ‖f − Phf‖L∞(Ω) ≤ Chs‖f‖W s
∞(Ω), for any 0 ≤ s ≤ r.

For the first term on the right hand side in (2.9) by the triangle inequality, we have

(2.11) ‖∆u − ∆hu‖L∞(Ω) ≤ ‖∆u − ∆hRhu‖L∞(Ω) + ‖∆hRhu − ∆huh‖L∞(Ω),

where Rh : H1(Ω) → Sr
h is the Ritz projection defined by

(∇Rhv,∇χ) = (∇v,∇χ), for χ ∈ Sr
h.
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Using the operator identity ∆hRh = Ph∆, the stability of the L2 projection in L∞
norm, and (2.5), we can bound the first term on the right hand side of (2.11) as

‖∆u − ∆hRhu‖L∞(Ω) = ‖∆u − Ph∆u‖L∞(Ω)

≤ C‖∆u‖L∞(Ω) ≤
C

ε
log

(1
ε

)
‖f‖W 1

∞(Ω).
(2.12)

Applying the inverse inequality and the triangle inequality on the second term on
the right hand side of (2.11), we have

(2.13) ‖∆hRhu − ∆huh‖L∞(Ω) ≤ Ch−2
(
‖Rhu − u‖L∞(Ω) + ‖u − uh‖L∞(Ω)

)
.

By (2.4), the estimate ‖Rhu − u‖L∞(Ω) ≤ Ch2| log h|2‖∆u‖L∞(Ω) (cf. Lemma 4.1
in [12]), and (2.5), we finally obtain

(2.14) ‖Rhu − u‖L∞(Ω) + ‖u − uh‖L∞(Ω) ≤
Ch2| log h|2 log

(
1
ε

)
ε

‖f‖W 1
∞(Ω).

Combining estimates (2.9), (2.10), (2.11), (2.12), (2.13), and (2.14) we have the
corollary. �

In the next sections we will collect some results which we will use later.

3. Global energy estimates

For v ∈ H1(Ω), define P ε
hv ∈ Sr

h by

(3.1) Aε(v − P ε
hv, χ) = 0, for any χ ∈ Sr

h,

where

(3.2) Aε(w, χ) := ε2(∇w,∇χ) + (w, χ).

Lemma 3.1. There exists a constant C independent of 0 < ε ≤ 1 and 0 < h < 1/2
such that

‖∇(v − P ε
hv)‖L2(Ω) ≤

{
C ‖v‖H1(Ω),

Ch‖v‖H2(Ω),

and

‖v − P ε
hv‖L2(Ω) ≤

{
Ch ‖v‖H1(Ω),

Ch2‖v‖H2(Ω).

The proof of this result, which is valid for N ≥ 2, is in [11], Lemma 4.1.

4. Local energy estimates

In the results below we assume that d ≥ kh for some positive constant k.

Lemma 4.1. Let 0 < ε ≤ 1 and 0 < h ≤ 1/2 be parameters, and vh ∈ Sr
h(Dd)

satisfy
Aε(vh, χ) = 0, for any χ ∈ Sr

h(Dd).

There exist positive constants c1 and C independent of ε and h, such that

‖vh‖D + d‖∇vh‖D ≤ Ce−
c1d
ε+h ‖vh‖Dd

.
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Lemma 4.2. Let 0 < ε ≤ 1 and 0 < h ≤ 1/2 be parameters, and vh ∈ Sr
h(Dd)

satisfy
Aε(vh, χ) = 0, for any χ ∈ Sr

h(Dd).
There exist positive constants c1 and C independent of ε and h, such that

‖v − vh‖H1(D) ≤ C
(
‖∇(v − χ)‖Dd

+ d−1‖v − χ‖Dd

)
+ Cd−1e−

c1d
ε+h ‖v − vh‖Dd

.

The proofs of these two results are in [11], Lemma 5.1. and Lemma 5.2. respec-
tively. Although the main result in that paper was done in the plane domains, the
proofs of these lemmas are valid in any number of dimensions.

Lemma 4.3. Let 0 < ε ≤ 1 and 0 < h ≤ 1/2 be parameters, and vh ∈ Sr
h(Dd)

satisfy
Aε(v − vh, χ) = 0, for any χ ∈ Sr

h(Dd).
There exist positive constants c1 and C independent of ε and h, such that

‖v − vh‖D ≤ Ch
(
‖∇(v − χ)‖D2d

+ d−1‖v − χ‖D2d

)
+ Ce−

c1d
ε+h ‖v − vh‖D2d

.

Proof. Let ω ∈ C∞
0 (Dd) be a cut-off function with the following properties:

ω ≡ 1 on Dd and ‖ω‖l,D2d
≤ Cd−l, l = 0, 1.

Define ṽ = ωv and ṽh = P ε
h ṽ. Then we have

(4.1) ‖v − vh‖D ≤ ‖ṽ − ṽh‖D + ‖ṽh − vh‖D.

Since Aε(ṽh − vh, χ) = 0, for χ ∈ Sr
h(Dd), by Lemma 4.1 we have

(4.2)
‖ṽh − vh‖D ≤ Ce−

c1d
ε+h ‖ṽh − vh‖Dd

≤ Ce−
c1d
ε+h

(
‖ṽ − ṽh‖Dd

+ ‖v − vh‖Dd

)
.

Thus we only need to estimate ‖ṽ− ṽh‖. Using global energy estimates Lemma 3.1

(4.3) ‖ṽ − ṽh‖ ≤ Ch‖ṽ‖1 ≤ Ch
(
‖∇v‖D2d

+ d−1‖v‖D2d

)
.

Combining estimates (4.1), (4.2), (4.3), and writing v − vh = (v −χ)− (vh −χ) for
χ ∈ Sr

h, we complete the proof. �

5. Proof of the main result: Part 1

Let x ∈ τ0. For any χ ∈ Sr
h using the triangle inequality and assumptions 2.2

and 2.3 we have

(5.1)

|(u − uh)(x)| ≤ |(u − χ)(x)| + Ch−N/2‖χ − uh‖L2(τ0)

≤ |(u − χ)(x)| + Ch−N/2
(
‖u − χ‖L2(τ0) + ‖u − uh‖L2(τ0)

)
≤ C‖u − χ‖L∞(τ0) + Ch−N/2‖u − uh‖L2(τ0).

Define a function

(5.2) η(y) =

{
h−N/2(u − uh)(y)/‖u − uh‖L2(τ0), for y ∈ τ0,

0, otherwise.

It is easy to see that ‖η‖L2(Ω) ≤ Ch−N/2 and ‖η‖L1(Ω) ≤ C.
Define a function gε to satisfy

(5.3) Aε(v, gε) = (η, v), for v ∈ W 1
2 (Ω),
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and define gε
h ∈ Sr

h to be a unique solution of

(5.4) Aε(χ, gε − gε
h) = 0, for all χ ∈ Sr

h.

First we will show the global a priori estimates.

Lemma 5.1. There exists a constant C independent of 0 < ε ≤ 1 such that

‖gε‖L2(Ω) ≤ C‖η‖L2(Ω) = Ch−N/2,

‖gε‖H1(Ω) ≤ Cε−1‖η‖L2(Ω) = Cε−1h−N/2,

‖gε‖H2(Ω) ≤ Cε−2‖η‖L2(Ω) = Cε−2h−N/2.

Proof. From (5.3) we have

ε2‖∇gε‖2
L2(Ω) + ‖gε‖2

L2(Ω) = Aε(gε, gε) = (η, gε) ≤ ‖η‖L2(Ω)‖gε‖L2(Ω).

Thus ‖gε‖L2(Ω) ≤ ‖η‖L2(Ω) and ‖∇gε‖L2(Ω) ≤ ε−1‖η‖L2(Ω), which proves the first
two estimates.

To prove the last estimate we notice that

‖gε‖H2(Ω) ≤ C‖ − ∆gε + gε‖L2(Ω),

hence

‖gε‖H2(Ω) ≤ Cε−2‖ − ε2∆gε + gε‖L2(Ω) + C(1 + ε−2)‖gε‖L2(Ω)

≤ Cε−2‖η‖L2(Ω) = Cε−2h−N/2,

which completes the proof of the lemma. �

Thus we have

(5.5)

h−N/2‖u − uh‖L2(τ0) = (u − uh, η) = Aε(u − uh, gε) = Aε(u − uh, gε − gε
h)

= Aε(u − χ, gε − gε
h)

= −ε2
∑

i

(∫
τh

i

(u − χ)∆(gε − gε
h) +

∮
∂τh

i

(u − χ)∇(gε − gε
h) · n

)

+ (u − χ, gε − gε
h).

Letting F ε ≡ gε − gε
h and using Trace Inequality 2.1 we have,

(5.6)

h−N/2‖u − uh‖L2(τ0) ≤ C‖e−c |x−y|
ε+h (u − χ)‖L∞(Ω),σ,s

(
ε2‖ec |x−y|

ε+h D2F ε‖(h)
L1(Ω),σ,−s

+ ε2h−1‖ec |x−y|
ε+h ∇F ε‖L1(Ω),σ,−s + ‖ec |x−y|

ε+h F ε‖L1(Ω),σ,−s

)
.

By the triangle inequality

‖ec |x−y|
ε+h D2F ε‖(h)

L1(Ω),σ,−s ≤ ‖ec |x−y|
ε+h D2(gε − χ)‖(h)

L1(Ω),σ,−s

+ ‖ec |x−y|
ε+h D2(gε

h − χ)‖(h)
L1(Ω),σ,−s, for any χ ∈ Sr

h.

Let yτ ∈ τ be the center of the circumscribed sphere over an element τ . Using
the triangle inequality |x − y| ≤ |x − yτ | + |yτ − y|, assumption 2.1, and inverse
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inequality 2.2 in the case D = τ , we have

‖ec |x−y|
ε+h D2(gε

h − χ)‖(h)
L1(Ω),σ,−s =

∑
τ

∫
τ

∣∣∣∣ec |x−y|
ε+h D2(gε

h − χ)
(

h + |x − y|
h

)s∣∣∣∣
≤

∑
τ

ec |x−yτ |+kh
ε+h

(
h + |x − yτ | + kh

h

)s ∫
τ

∣∣D2(gε
h − χ)

∣∣
≤ Ch−1

∑
τ

ec |x−yτ |+kh
ε+h

(
h + |x − yτ | + kh

h

)s (∫
τ

∣∣∇(gε − χ)
∣∣ +

∣∣∇(gε − gε
h)

∣∣) .

Using the triangle inequality −|x − y| ≤ |yτ − y| − |x − yτ |, we have∑
τ

ec |x−yτ |+kh
ε+h

(
h + |x − yτ | + kh

h

)s (∫
τ

∣∣∇(gε − χ)
∣∣ +

∣∣∇(gε − gε
h)

∣∣)

≤
∑

τ

ec 2kh
ε+h (1 + 2k)s

∫
τ

∣∣∣∣ec |x−y|
ε+h ∇(gε − χ)

(
h + |x − y|

h

)s∣∣∣∣
+

∑
τ

ec 2kh
ε+h (1 + 2k)s

∫
τ

∣∣∣∣ec |x−y|
ε+h ∇(gε − gε

h)
(

h + |x − y|
h

)s∣∣∣∣
≤ e2ck(1 + 2k)s

(
‖ec |x−y|

ε+h ∇(gε − χ)‖L1(Ω),σ,−s + ‖ec |x−y|
ε+h ∇F ε‖L1(Ω),σ,−s

)
.

Thus, we have shown

(5.7)
‖ec |x−y|

ε+h D2F ε‖(h)
L1(Ω),σ,−s ≤ Ch−1‖ec |x−y|

ε+h ∇F ε‖L1(Ω),σ,−s

+ Ch−1‖ec |x−y|
ε+h ∇(gε − χ)‖L1(Ω),σ,−s + ‖ec |x−y|

ε+h D2(gε − χ)‖(h)
L1(Ω),σ,−s.

Putting it all together, we have

|(u − uh)(x)| ≤ C‖e−c |x−y|
ε+h (u − χ)‖L∞(Ω),σ,s

×
(

1 + ε2h−1‖ec |x−y|
ε+h ∇F ε‖L1(Ω),σ,−s + ‖ec |x−y|

ε+h F ε‖L1(Ω),σ,−s

+ ε2h−1‖ec |x−y|
ε+h ∇(gε − χ)‖L1(Ω),σ,−s + ε2‖ec |x−y|

ε+h D2(gε − χ)‖(h)
L1(Ω),σ,−s

)
.

(5.8)

Thus in order to prove the theorem we need to show that

I1 = ε2h−1‖ec |x−y|
ε+h ∇(gε − χ)‖L1(Ω),σ,−s

+ ε2‖ec |x−y|
ε+h D2(gε − χ)‖(h)

L1(Ω),σ,−s ≤ C�h

(5.9)

and
I2 = ε2h−1‖ec |x−y|

ε+h ∇F ε‖L1(Ω),σ,−s + ‖ec |x−y|
ε+h F ε‖L1(Ω),σ,−s ≤ C�h.

6. Proof of the main results: Part 2

To prove (5.9), we shall decompose Ω into “annuli”. For j an integer, let dj =
2−j and Ωj = {y ∈ Ω : dj ≤ |y − x| ≤ 2dj}. Then, with J0 fixed such that
|y − x| ≤ 2dJ0 = 21−J0 in Ω, and any J∗ > J0,

Ω =
( J∗⋃

j=J0

Ωj

)
∪ Ω∗, where Ω∗ = {y ∈ Ω : |y − x| ≤ dJ∗}.
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We shall refer to Ω∗ as the “innermost” set. Ultimately, we shall choose J∗ = J∗(h)
such that dJ∗ ≈ C∗h for small h, where C∗ is a sufficiently large number to be chosen
later. Note that then J∗ ≈ C| log h|. Constants C and c will, as usual, change freely
but will be independent of C∗. We shall write

∑
∗,j when the innermost set is

included and
∑

j when it is not. We also define Ω′
j = Ωj−1∪Ωj ∪Ωj+1, Ω′′

j = (Ω′
j)

′,
and so on.

Proposition 6.1. There exist constants C and c such that I1 ≤ CC
N/2+s
∗ ec C∗h

ε+h +
C�h, where I1 is defined in (5.9).

Proof. First we shall bound the second term in I1 on Ω∗. Since on Ω∗ the weights
ec |y−x|

ε+h ≤ ec C∗h
ε+h and σ ≤ C∗, it is sufficient to estimate ‖gε − Ihgε‖W 2

1 (Ω∗). Using
the Cauchy-Schwarz inequality, the local approximation assumption 2.3, a priori
estimate of Lemma 5.1 and (5.2), we have

‖gε−Ihgε‖W 2
1 (Ω∗) ≤ C(C∗h)N/2‖gε‖W 2

2 (Ω) ≤ C(C∗h)N/2ε−2‖η‖L2(Ω) ≤ CC
N/2
∗ ε−2.

To estimate I1 on Ω\Ω′
∗ we use the representation gε(x) =

∫
Ω

Kε(x, y)η(y)dy. The
Green’s function Kε(x, y) is singular only for x = y. Hence if x /∈ supp(η), the
representation Dαgε(x) =

∫
Ω

Dα
x Kε(x, y)η(y)dy is valid for multi-index α.

Using local approximation 2.3 and Lemma 2.2, for any |α| = r and c < c0 we
have

‖ec |y−x|
ε+h D2(gε − Ihgε)‖(h)

L1(Ω\Ω′
∗),σ,−s ≤

J∗−1∑
j=J0

(dj/h)se
cdj
h+ε ‖gε − Ihgε‖(h)

W 2
1 (Ωj)

≤ C

J∗−1∑
j=J0

(dj/h)se
cdj
h+ε hr−2‖gε‖W r

1 (Ωj)

≤ Cε−2
J∗−1∑
j=J0

(dj/h)se
cdj
h+ε hr−2dN

j e−c0
dj
ε d2−N−r

j ‖η‖L1(Ω)

≤ Cε−2
J∗−1∑
j=J0

(
h

dj

)r−2−s

e−c̃
dj
ε ≤

{
Cε−2, if r − 2 > s or ε = O(h),
Cε−2| log h|, if r − 2 = s and ε � h.

The proof is very similar for the other term in I1. �
To conclude the proof of Theorem 2.1, it remains to prove the following result.

Proposition 6.2. There exist constants c, C, and C∗, with the latter large enough,
such that I2 ≤ CC

N/2+s
∗ ec C∗h

h+ε + C�h, where I2 is defined in (5.9).

Proof. In this proof, almost all norms occurring in the estimates will be L2 based.
We shall write ‖v‖D for L2-norms over a set D and ‖v‖k,D when up to k spatial
derivatives are included.

Using Cauchy-Schwarz inequality

I2 ≤
∑
∗,j

(dj/h)s(2dj)N/2e
cdj
h+ε

(
ε2h−1‖∇F ε‖Ωj

+ ‖F ε‖Ωj

)
.

The part of I2 over Ω∗, which we will call I∗2 , can be bounded by

(6.1)
I∗2 ≤ CC

N/2+s
∗ hN/2ec C∗h

h+ε
(
‖F ε‖Ω + ε2h−1‖∇F ε‖Ω

)
≤ CC

N/2+s
∗ hN/2ec C∗h

h+ε
(
‖gε‖Ω + ‖gε

h‖Ω + ε2‖gε‖2,Ω

)
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by using the global estimate from Lemma 3.1. Using a priori estimates in Lemma
5.1 and the fact that ‖gε

h‖Ω ≤ ‖η‖Ω, we get

(6.2) I∗2 ≤ CC
N/2+s
∗ hN/2ec C∗h

h+ε ‖η‖Ω ≤ CC
N/2+s
∗ ec C∗h

h+ε .

The remaining terms are bounded by Cd
N/2
j (dj/h)se

cdj
h+ε Mj , where

(6.3) Mj = ‖F ε‖Ωj
+ ε2h−1‖∇F ε‖Ωj

.

Thus so far we have

(6.4) I2 ≤ CC
N/2+s
∗ ec C∗h

h+ε + CM, where M =
∑

j

d
N/2
j (dj/h)se

cdj
h+ε Mj .

To treat the terms involved in Mj , we shall consider two cases, ε ≤ h and ε > h.

6.1. Case 1: ε ≤ h.

M ≤
∑

j

d
N/2
j (dj/h)s

e
cdj
ε+h

(
‖gε‖Ωj

+ ‖gε
h‖Ωj

+ ε2h−1‖∇gε‖Ωj
+ ε2h−1‖∇gε

h‖Ωj

)
.

Using the Green’s function representation and Lemma 2.2 for N ≥ 3, we have

|gε(x)| ≤
∫

Ω

|Kε(x, y)| · |η(y)|dy ≤ Cε−2d2−N
j e−c0

dj
ε ‖η‖L1(Ω).

Hence,

‖gε‖Ωj
≤ Cd

N/2
j ε−2d2−N

j e−c0
dj
ε ‖η‖L1 ≤ Cd

2−N/2
j ε−2e−c0

dj
ε .

Using the fact that ε ≤ h,

(6.5)
∑

j

d
N/2
j (dj/h)se

cdj
ε+h ‖gε‖Ωj

≤ C
∑

j

e−c̃
dj
ε (dj/ε)2+s ≤ C.

Very similarly

‖∇gε‖Ωj
≤ Cd

1−N/2
j ε−2e−c0

dj
ε ,

and using the fact that ε ≤ h,

(6.6)
∑

j

d
N/2
j (dj/h)se

cdj
ε+h ε2h−1‖∇gε‖Ωj

≤ C
∑

j

e−c̃
dj
ε (dj/ε)1+s ≤ C.

The case N = 2 is similar, and we leave it to the reader.
Applying Lemma 4.1 to ‖gε

h‖Ωj
and ‖∇gε

h‖Ωj
, we get

‖gε
h‖Ωj

+ dj‖∇gε
h‖Ωj

≤ Ce−c1
dj
h ‖gε

h‖Ω′
j
≤ Ce−c1

dj
h ‖η‖Ω ≤ Ce−c1

dj
h h−N/2.

Thus again using the fact that ε ≤ h,

(6.7)

∑
j

d
N/2
j (dj/h)se

cdj
h (‖gε

h‖Ωj
+ ε2h−1‖∇gε

h‖Ωj
)

≤ C
∑

j

e−c̃
dj
h (dj/h)N/2+s + C

∑
j

e−c̃
dj
h (dj/h)N/2+1+s ≤ C.

Combining estimates (6.5), (6.6), and (6.7) we complete the proof in the case when
ε ≤ h.
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6.2. Case 2: ε > h. To treat the terms involved in Mj in (6.4), we shall use the
local energy-based estimates from Section 4.

By Lemma 4.2, we have

(6.8) ‖∇F ε‖Ωj
≤ C

(
‖∇(gε − χ)‖Ω′

j
+ d−1

j ‖gε − χ‖Ω′
j

)
+ Cd−1

j e−
c1dj
ε+h ‖F ε‖Ω′

j
,

for any χ ∈ Sr
h. Taking χ = Ihgε, using Green’s function representation and the

fact that h < dj , we can estimate the first two terms in (6.8) as

‖∇(gε − Ihgε)‖Ω′
j
+ d−1

j ‖gε − Ihgε‖Ω′
j

≤ Chr−1‖gε‖r,Ω′′
j
≤ Chr−1ε−2e−c0

dj
ε d

2−N/2−r
j .

(6.9)

Hence the contribution to M is bounded by

C
∑

j

d
N/2
j (dj/h)se

cdj
h+ε hr−2e−c0

dj
ε d

2−N/2−r
j

≤ C
∑

j

(h/dj)r−2−se−c̃
dj
ε ≤ C�h.

(6.10)

We now apply Lemma 4.3 to the other term in Mj , namely ‖F ε‖Ωj
:

(6.11) ‖F ε‖Ωj
≤ Ch

(
‖∇(gε − χ)‖Ω′

j
+ d−1

j ‖gε − χ‖Ω′
j

)
+ Ce−

c1dj
ε+h ‖F ε‖Ω′

j
.

Using estimates (6.9) and the fact that ε > h, we see that the contribution to M is
bounded by

C
∑

j

d
N/2
j (dj/h)se

cdj
h+ε hrε−2e−c0

dj
ε d

2−N/2−r
j

≤ C
∑

j

(h/dj)r−2−se−c̃
dj
ε ≤ C�h.

(6.12)

Thus we have

(6.13) M ≤ C�h + C
∑

j

d
N/2
j (dj/h)s

(
1 + ε2h−1d−1

j

)
e−c̃

dj
ε ‖F ε‖Ω′

j
.

In the following lemma we will estimate ‖F ε‖Ω′
j

by a duality argument.

Lemma 6.3. The following estimate holds:

‖F ε‖Ω′
j
≤ Ch‖∇F ε‖Ω′′′

j
+ Ch2ε−2‖F ε‖Ω′′′

j

+ Chre−c0
dj
ε d

2−N/2−r
j ε−2

(
ε2h−1‖∇F ε‖L1(Ω) + ‖F ε‖L1(Ω)

)
.

Proof. Using (v, w)D for the L2 inner product over a set D, we have

(6.14) ‖F ε‖Ω′
j

= sup{(F ε, v)Ω : supp v ⊂ Ω′
j , ‖v‖Ω′

j
= 1}.
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For each such fixed v, let w solve the dual problem −ε2∆w+w = v in Ω. Integrating
by parts, we obtain for any χ ∈ Sr

h,

(F ε, v)Ω = ε2(∇F ε,∇w)Ω + (F ε, w)Ω
= ε2(∇F ε,∇(w − χ))Ω + (F ε, w − χ)Ω
= ε2(∇F ε,∇(w − χ))Ω′′′

j
+ (F ε, w − χ)Ω′′′

j

+ ε2(∇F ε,∇(w − χ))Ω\Ω′′′
j

+ (F ε, w − χ)Ω\Ω′′′
j

≤ ε2‖∇F ε‖Ω′′′
j
‖∇(w − χ)‖Ω + ‖F ε‖Ω′′′

j
‖w − χ‖Ω

+ ε2‖∇F ε‖L1(Ω)‖∇(w − χ)‖L∞(Ω\Ω′′′
j )

+ ‖F ε‖L1(Ω)‖w − χ‖L∞(Ω\Ω′′′
j ).

(6.15)

Take χ = Ihw. Using the approximation and the global stability, we obtain

(6.16) ‖w − χ‖Ω + h‖∇(w − χ)‖Ω ≤ Ch2‖w‖H2(Ω) ≤ C
h2

ε2
‖v‖Ω = C

h2

ε2
,

and

‖w − χ‖L∞(Ω\Ω′′′
j ) + h‖∇(w − χ)‖L∞(Ω\Ω′′′

j ) ≤ Chr‖w‖W r
∞(Ω\Ω′′

j )

≤ C
hr

ε2
e−c0

dj
ε d

2−N/2−r
j .

(6.17)

In the last estimate we used the Green’s function representation, Lemma 2.2, and
Cauchy-Schwarz inequality, i.e.

|Drw(x)| ≤ C

∫
Ω′

j

|Dr
xK(x, y)v(y)|dy ≤ Cε−2e−c0

dj
ε d2−N−r

j ‖v‖L1(Ω′
j)

≤ Cε−2e−c0
dj
ε d

2−N/2−r
j .

Combining estimates (6.15), (6.16) , (6.17), and taking the supremum over v, we
have the lemma. �

Now we are ready to conclude the proof of Proposition 6.2. By the lemma above
and (6.13), we have
(6.18)
M ≤ C�h + C

∑
j

d
N/2
j (dj/h)s

(
ε−2h2 + hd−1

j

) (
ε2h−1‖∇F ε‖Ω′′′

j
+ ‖F ε‖Ω′′′

j

)

+C
(
ε2h−1‖∇F ε‖L1(Ω)+‖F ε‖L1(Ω)

) ∑
j

(dj/h)s
(
ε−2h2 + hd−1

j

)
hr−2e−c

dj
ε d2−r

j .

In the first sum on the right hand side we can replace ε2h−1‖∇F ε‖Ω′′′
j

+‖F ε‖Ω′′′
j

by
ε2h−1‖∇F ε‖Ωj

+‖F ε‖Ωj
. This multiplies the sum at most by seven. The overshoot-

ing contribution near the innermost Ω∗ is estimated as before by CC
N/2+s
∗ ec C∗h

h+ε .
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Using that σ−s ≥ 1 and ec |x−y|
ε+h ≥ 1, and the inequality e−c

dj
ε ≤ C( ε

dj
)p for any

p > 0, from (6.18) we obtain

M ≤ CC
N/2+s
∗ ec C∗h

h+ε

+ C�h + C
∑

j

d
N/2
j (dj/h)shd−1

j e
cdj
ε+h

(
ε2h−1‖∇F ε‖Ωj

+ ‖F ε‖Ωj

)

+ C
(
‖ec |x−y|

ε+h ∇F ε‖L1(Ω),σ,−s + ε2h−1‖ec |x−y|
ε+h F ε‖L1(Ω),σ,−s

) ∑
j

(h/dj)r−1−s.

Recalling the definitions of I2, Mj , and M , (5.9), (6.3), and (6.4) respectively, and
using that h/dj ≤ C−1

∗ , we have

(6.19) M ≤ CC
N/2+s
∗ ec C∗h

h+ε + C�h + CC−1
∗ M + I2C

∑
j

(h/dj)r−1−s.

By choosing C∗ large enough, from (6.19) we can conclude that

(6.20) M ≤ CC
N/2+s
∗ ec C∗h

h+ε + C�h + I2C
∑

j

(h/dj)r−1−s.

Inserting it into (6.4), we have

I2 ≤ CC
N/2+s
∗ ec C∗h

h+ε + C�h + I2C
∑

j

(h/dj)r−1−s.

Since r − 1 − s > 1, choosing C∗ once again large enough, we can conclude that

I2 ≤ CC
N/2+s
∗ ec C∗h

h+ε + C�h.

Thus the proof of Proposition 6.2 is complete. �

7. Appendix. Proof of Lemma 2.2

Proof. To show the estimates for Kε(x, y), we use the Green’s function G(x, y; t)
for the parabolic problem

(7.1)

Gt(x, y; t) − ∆G(x, y; t) = 0 in Ω, t > 0,

∂G(x, y; t)
∂n

= 0 on ∂Ω,

G(x, y; 0) = δx(y).

Since u satisfies

−∆u +
u

ε2
=

f

ε2
, in Ω,

∂u

∂n
= 0, on ∂Ω,

by the Theorem 4 in [3], we have the following representation:

(7.2) u(x) =
∫

Ω

[∫ ∞

0

e−
z

ε2 G(x, y; z)dz

]
f(y)
ε2

dy,

where G is the Green’s function for the parabolic problem. With a change of
variables t = z/ε2, we obtain

ε−2

∫ ∞

0

e−
z

ε2 G(x, y; z)dz =
∫ ∞

0

e−tG(x, y; ε2t)dt.
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Define

Kε(x, y) =
∫ ∞

0

e−tG(x, y; ε2t)dt.

Thus we have the following representation:

(7.3) u(x) =
∫

Ω

Kε(x, y)f(y)dy.

Since the coefficients in the parabolic equation (7.1) are time independent, we
have the following estimate for the parabolic Green’s function.

Lemma 7.1. Assume that ∂Ω in problem (7.1) is sufficiently smooth. Then for
any multi-index m there exist constants c2, c3, C such that for 0 < t < ∞,

|Dm
x G(x, y; t)| ≤ Ct−

N+|m|
2 ec2t−c3

|x−y|2
t .

The proof of this result can be found in [3], Theorem 3 in particular.
Using Lemma 7.1, we have

(7.4) |Dm
x Kε(x, y)| ≤ C

∫ ∞

0

e−t(1−ε2c2)−c3
|x−y|2

ε2t

(ε2t)
N+|m|

2

dt.

To estimate this integral we use the following lemma.

Lemma 7.2. There exist constants C and c0 independent of d such that

∫ ∞

0

e−c4t−c3
d2
t

tM/2
dt ≤ Ce−c0d

⎧⎪⎨
⎪⎩

1, if M = 1,

1 + | log d|, if M = 2,

d2−M , if M > 2.

Proof. The proof is adapted from [3]. First we split the integral into two parts.∫ ∞

0

e−c4t−c3
d2
t

tM/2
dt =

∫ 1

0

e−c4t−c3
d2
t

tM/2
dt +

∫ ∞

1

e−c4t−c3
d2
t

tM/2
dt = I1 + I2.

In order to estimate I1, we consider two cases, d ≤ 1 and d > 1:
Case 1: d ≤ 1,

I1 ≤
∫ 1

0

e−c3
d2
t

tM/2
dt.

For M > 2, by making a change of variables z = d√
t
, we have

I1 ≤ 2
dM−2

∫ ∞

d

e−c3z2
zM−3dz ≤ C

dM−2
.

For M = 2 by letting z = c3d
2 and making a change of variables w = z

t , we have

I1 ≤
∫ 1

0

e−
z
t

t
dt =

∫ ∞

z

e−w

w
dw ≤

∣∣∣∣
∫ 1

z

dw

w

∣∣∣∣ +
∫ ∞

1

e−wdw = | log z| + e−1.

Finally for M = 1,

I1 ≤
∫ 1

0

e−c3
d2
t

√
t

dt ≤
∫ 1

0

1√
t
dt = 2.

Case 2: d > 1,

(7.5) I1 =
∫ 1

0

e−c4t−c3
d2
t

tM/2
dt =

∫ 1

0

e−c4t−c3
d2
2t e−c3

d2
2t

tM/2
dt.
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The function −c4t − c3d2

2t has a maximum at t = d
√

c4
2c3

equal to −d
√

2c4c3, and

the function e−c3
d2
2t t−M/2 has a maximum at t = 2c3d2

M equal to e−M/2
(

M
2c3d2

)M/2

.
Thus,

(7.6) I1 ≤ e−d
√

2c4c3

∫ 1

0

e−c3
d2
2t

tM/2
dt ≤ Ce−d

√
2c4c3 .

Now we estimate I2 for any d > 0. We have

(7.7) I2 =
∫ ∞

1

e−c4t−c3
d2
t

tM/2
dt =

∫ ∞

1

e−
c4t
2 −c3

d2
t e−

c4t
2

tM/2
dt.

Again using that − c4t
2 − c3d2

t has a maximum at t = d
√

2c4
c3

equal to −2d
√

2c4c3,
we have

(7.8) I2 ≤ e−2d
√

2c4c3

∫ ∞

1

e−
c4t
2

tM/2
dt ≤ Ce−2d

√
2c4c3 ,

and the proof of Lemma 7.2 is complete. �

Provided that 1 − ε2c2 > 0, we apply the previous lemma with d = |x−y|
ε and

c4 = 1 − ε2c2, to conclude the proof of Lemma 2.2. �
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