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EVALUATING THE EVANS FUNCTION:
ORDER REDUCTION IN NUMERICAL METHODS

SIMON MALHAM AND JITSE NIESEN

Abstract. We consider the numerical evaluation of the Evans function, a
Wronskian-like determinant that arises in the study of the stability of travel-
ling waves. Constructing the Evans function involves matching the solutions
of a linear ordinary differential equation depending on the spectral parameter.
The problem becomes stiff as the spectral parameter grows. Consequently, the
Gauss–Legendre method has previously been used for such problems; however
more recently, methods based on the Magnus expansion have been proposed.
Here we extensively examine the stiff regime for a general scalar Schrödinger
operator. We show that although the fourth-order Magnus method suffers from
order reduction, a fortunate cancellation when computing the Evans matching
function means that fourth-order convergence in the end result is preserved.
The Gauss–Legendre method does not suffer from order reduction, but it does
not experience the cancellation either, and thus it has the same order of conver-
gence in the end result. Finally we discuss the relative merits of both methods
as spectral tools.

1. Introduction

Many partial differential equations admit travelling wave solutions; these are
solutions that move at a constant speed without changing their shape. Such trav-
elling waves occur in many fields, including biology, chemistry, fluid dynamics, and
optics. It is often important to know whether a given travelling wave is stable:
does it persist under small perturbations? A major step towards determining the
stability of a travelling wave is to locate the spectrum of the linearization of the
differential operator about the travelling wave. Evans [10] considers a shooting
and matching method for this task. Evans introduced a function to measure the
mismatch for a specific class of reaction–diffusion equations. This function was
called the Evans function by Alexander, Gardner and Jones [2], who generalized
its definition considerably. Since then, the Evans function has been used frequently
for stability analysis; see, for example, [1, 3, 4, 6, 15] for numerical computations
employing the Evans function and [11, 22, 30, 34, 35] for an analytic treatment.
The review paper by Sandstede [33] gives an excellent overview of the field.

The Evans function is a function of one argument, the spectral parameter λ,
and zeros of the Evans function correspond to eigenvalues of the corresponding
operator. Hence, one can get information about the spectrum by finding zeros of
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the Evans function, either analytically or numerically. Our focus here is on the
numerical approach.

The main part in the numerical evaluation of the Evans function is the solution
of a linear ordinary differential equation depending on the spectral parameter λ.
This is often done with an off-the-shelf integrator using an explicit Runge–Kutta
method. Afendikov and Bridges [1] noticed that when λ grows, the problem may
become stiff, and therefore they use a Gauss–Legendre method. Recently, Aparicio,
Malham and Oliver [3] proposed a new procedure based on the Magnus expansion,
building on the work of Moan [25] and Greenberg and Marletta [14] who used the
Magnus expansion to solve Sturm–Liouville problems. Aparicio et al. noticed that
the Magnus method suffers from order reduction in the stiff regime. This means
that the fourth-order integrators whose global error should scale like h4 when the
step size h is small, instead converge more slowly. They analyzed this phenomenon
in a modified Airy equation using the WKB-method. However, they restricted
themselves to those values of λ which correspond to the essential spectrum of the
linearized differential operator.

The current paper continues the analysis of the Magnus method in the context
of Evans function evaluations. We concentrate on scalar Schrödinger operators to
simplify the analysis. Other methods based on a transformation to Prüfer vari-
ables [32] probably perform better in the scalar setting, but these methods cannot
be used unchanged in the non-self-adjoint case where our interest lies.

We present another approach to the analysis of the Magnus method based on a
power series expansion, which is valid for values of λ outside the essential spectrum.
We will show that the Magnus method also suffers from order reduction in this
regime. Specifically, the relative local error is of order λ−1/2h2 as h → 0 with
|λ|1/2h � 1. However, there are two subsequent important observations. First,
when going from the local to the global error, one does not lose a factor of h (as
usual), but the global error is also of order λ−1/2h2. Second, the order reduction
disappears completely when we evaluate the matching condition: the relative error
in the Evans function is of order λ−1/2h4, thus quartic in the step size, just as one
would expect from a fourth-order method. Since useful asymptotic estimates invoke
an order λ−1 error, at best, our numerical schemes even with order reduction prove
a useful spectral tool in the regime |λ| � h−8.

The phenomenon of order reduction was discovered for implicit Runge–Kutta
methods by Prothero and Robinson [31]. Nowadays, it is understood within the
framework of B-convergence (see for instance [16, §IV.15]). The stability of Magnus
methods has been analyzed for a highly-oscillatory equation by Iserles [19], for
Schrödinger equations by Hochbruck and Lubich [17], and for parabolic equations
by González, Ostermann and Thalhammer [13]. Unfortunately, these results cannot
yet be fitted into a general theory [20]. The present paper can also be viewed as a
contribution to this research.

We also present an analysis of the fourth-order Gauss–Legendre method. We
show that the relative error committed by this method does not contain a term
of order λ−1/2h2, but only smaller terms. Furthermore, the error decreases even
further when evaluating the Evans function. As explained in more detail later, this
is due to an effect similar to the one which makes the trapezoidal rule very efficient
for the quadrature of periodic functions.
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The contents of this paper are as follows. In the next section, we define the
Evans function and we give an asymptotic expression for the Evans function in
the scalar case when the spectral parameter λ is large in modulus and outside the
essential spectrum. We then define the Magnus method in Section 3. We show
that the Magnus method suffers from order reduction, and we compute the error
when evaluating the Evans function. We repeat the computation for the Gauss–
Legendre method in the next section. The analysis is corroborated by numerical
experiments in Section 5. In the final section, we compare our results with those of
Aparicio, Malham and Oliver [3] and we discuss the stability of the Magnus method
in general. More details of the intricate calculations presented in Sections 2–4 can
be found in the technical report [29].

2. The Evans function

We are interested in homogeneous reaction–diffusion equations on an unbounded
one-dimensional domain. Such equations have the form

(1) ut = Kuxx + f(u),

where K is an n-by-n diagonal matrix with positive entries (the diffusion coeffi-
cients) and the unknown u is a function of t and x. The function f : Rn → Rn

describes the reaction term; we assume that f is sufficiently smooth.
A travelling wave solution has the form u(x, t) = û(ξ) with ξ = x − ct where

c is the wave speed; see for example Kolmogorov, Petrovsky and Piskunov [23].
We assume that a travelling wave solution for the equation is known, at least
numerically. Furthermore, we assume that û is constant at infinity, meaning that
the limits û± = limξ→±∞ û(ξ) exist (in fact, we will need later that additionally,
the derivatives û(p) vanish at infinity for p = 1, 2, . . .). Such a wave is called a pulse
(if û+ = û−) or a front (if û+ �= û−).

To study the stability of the travelling wave, we linearize (1) about the wave and
write the result in the (ξ, t) coordinate system which moves with the same speed
as the travelling wave. This yields

(2) ut = Kuξξ + cuξ + Df(û) u.

Define the operator L by L(U) = KU ′′ + cU ′ + Df(û) U , where U : R → Cn. Its
spectrum determines whether (2) has solutions of the form u(ξ, t) = eλtU(ξ). The
stability of the travelling wave û can be deduced from the location of the spectrum
of L.

The spectrum of L can be divided in two parts: the point spectrum σpt(L),
consisting of those λ ∈ σ(L) for which L − λI is Fredholm of index zero,1 and the
essential spectrum σess(L), which contains the rest of the spectrum. We assume
that σess(L) is contained in the left half-plane {z ∈ C : Re z ≤ 0}. This means that
the spectral stability is determined by the position of the eigenvalues λ ∈ σpt(L).

We now introduce the Evans function, which is a tool for locating these eigenval-
ues. We rewrite the eigenvalue equation L(U) = λU as the first-order differential
equation

(3a)
dy

dξ
= A(ξ; λ) y,

1An operator is Fredholm with index zero if its range is closed and the dimension of the null
space equals the codimension of the range.
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where y : R → C2n and the matrix A is given by

(3b) A(ξ; λ) =
[

0 I
K−1

(
λI − Df(û(ξ))

)
−cK−1

]
.

Since the spectral problem (3a) is a linear equation, its solutions form a linear
space of dimension 2n. Define E−(λ) to be the subspace of solutions y satisfying
the boundary condition y(ξ) → 0 as ξ → −∞. Similarly, E+(λ) denotes the
subspace with y(ξ) → 0 as ξ → +∞. Any eigenfunction must satisfy both boundary
conditions and hence lie in the intersection of E−(λ) and E+(λ).

For all λ �∈ σess(L), we have

dimE−(λ) + dim E+(λ) = 2n.

Choose a basis y1( · ; λ), . . . , yk( · ; λ) of E−(λ), where k = dimE−(λ), and a basis
yk+1( · ; λ), . . . , y2n( · ; λ) of E+(λ). We can assemble these basis vectors, evaluated
at an arbitrary point, say ξ = 0, in the 2n-by-2n matrix[

y1(0; λ) . . . yk(0; λ) yk+1(0; λ) . . . y2n(0; λ)
]
.

The Evans function, denoted D(λ), is defined to be the determinant of this matrix.
If the determinant vanishes, then the yi are linearly dependent, which implies that
the spaces E−(λ) and E+(λ) have a nontrivial intersection, and this intersection
contains the eigenfunctions of (3a). Therefore, D(λ) = 0 if and only if λ ∈ σpt(L).

Let C denote the connected component of C \ σess(L) containing the right half-
plane. We can choose the basis vectors yi to be analytic functions of λ in the
region C. The Evans function will then also be analytic in C, and the order of its
zeros corresponds to the multiplicity of the eigenvalues of L.

More details on the Evans function and the stability of travelling waves can be
found in the landmark paper by Alexander, Gardner and Jones [2] and the review
article by Sandstede [33].

2.1. The Evans function near infinity. We are interested in the behaviour
of D(λ) and numerical approximations to D(λ) as |λ| → ∞, because experiments
show an unexpected deterioration of the approximations in this limit [3]. For sim-
plicity, we will restrict ourselves to scalar reaction–diffusion equations, i.e., we as-
sume that n = 1. However, it is expected that the methods of analysis presented in
this paper also apply to the nonscalar case, though the computations will obviously
be more involved.

We may assume without loss of generality that the diffusion coefficient is 1, so
that the partial differential equation reads

ut = uxx + f(u).

The corresponding eigenvalue problem (3) in this case is

(4a)
dy

dξ
= A(ξ; λ) y,

where

(4b) A(ξ; λ) =
[

0 1
λ − f ′(û(ξ)) −c

]
.
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The limits of A as ξ → ±∞ are given by

(5) A±(λ) =
[

0 1
λ − f ′(û±) −c

]
.

Furthermore, the eigenvalues of A−(λ) are

(6) µ
[1]
− , µ

[2]
− =

1
2

(
−c ±

√
c2 + 4(λ − f ′(û−))

)
.

To avoid any confusion between the eigenvalues of the differential operator L, which
form the point spectrum that we want to compute, and the eigenvalues of the
matrices A±(λ), we call the latter spatial eigenvalues.

One of the spatial eigenvalues is purely imaginary if λ lies on the parabolic curve
given by

γ− =
{
−s2 + f ′(û−) + ıcs : s ∈ R

}
.

The curve γ− is part of the essential spectrum. If λ lies to the right of γ−, then the
spatial eigenvalues µ

[1]
− and µ

[2]
− have positive and negative real parts, respectively.

The limit ξ → +∞ is treated in the same manner and leads to the curve γ+.
The region C on which the Evans function is defined is the part of the complex
plane to the right of γ− ∪ γ+.

We assume henceforth that λ ∈ C. We compute the asymptotic behaviour of the
Evans function as |λ| → ∞ using a different approach to that outlined in Alexander,
Gardner and Jones [2, §5B], extending the approximation to further higher order
corrections. We start with the solution y of (4) satisfying y(ξ) → 0 as ξ → −∞.
The matrix A in (4b) goes to A− as defined in (5) in this limit, and the eigenvalues
of A− are given in (6), with corresponding eigenvectors (1, µ[1]

− )� and (1, µ[2]
− )�.

This suggests writing y as

(7a) y(ξ) = exp(µ[1]
− ξ)

(
ū(ξ)

[
1

µ
[1]
−

]
+ v̄(ξ)

[
1

µ
[2]
−

])
= exp(µ[1]

− ξ) B ȳ(ξ)

where

(7b) ȳ =
[
ū
v̄

]
and B =

[
1 1

µ
[1]
− µ

[2]
−

]
.

The vector ȳ satisfies the linear differential equation

(8)
dȳ

dξ
= Ā(ξ; λ) ȳ with Ā = (B−1AB − µ

[1]
− I).

The matrix Ā(ξ; λ) in this equation is given by

(9a) Ā(ξ; λ) =

[
− 1

κϕ−(ξ) − 1
κϕ−(ξ)

1
κϕ−(ξ) −κ + 1

κϕ−(ξ)

]
,

where

(9b) ϕ−(ξ) = f ′(û(ξ)) − f ′(û−) and κ =
√

c2 + 4(λ − f ′(û−)).

Note that the parameters c and λ are replaced by only one parameter, κ. Now,
suppose that ū and v̄ can be expanded in inverse powers of κ:

ū(ξ; κ) = ū0(ξ) + κ−1ū1(ξ) + κ−2ū2(ξ) + κ−3ū3(ξ) + O(κ−4),

v̄(ξ; κ) = v̄0(ξ) + κ−1v̄1(ξ) + κ−2v̄2(ξ) + κ−3v̄3(ξ) + O(κ−4).
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If we substitute these expansions in (8) and equate the coefficients of the powers
of κ, we find:

0 = 0, 0 = −v̄0,

ū′
0 = 0, v̄′0 = −v̄1,

ū′
1 = −ϕ−(ξ) (ū0 + v̄0), v̄′1 = ϕ−(ξ) (ū0 + v̄0) − v̄2,

ū′
2 = −ϕ−(ξ) (ū1 + v̄1), v̄′2 = ϕ−(ξ) (ū1 + v̄1) − v̄3.

Assuming that ū(ξ) and v̄(ξ) are bounded as ξ → −∞, the solution of these equa-
tions (up to a multiplicative constant) is

(10)
ū(ξ; κ) = 1 − κ−1Φ−(ξ) + 1

2κ−2
(
Φ−(ξ)

)2 + O(κ−3),

v̄(ξ; κ) = κ−2ϕ−(ξ) + O(κ−3),

where

Φ−(ξ) =
∫ ξ

−∞
ϕ−(x) dx.

We can do something similar to find the solution y of (4) satisfying y(ξ) → 0 as
ξ → +∞. Instead of (7), we write y as

y(ξ) = exp(µ[2]
+ ξ) B+ ȳ+(ξ) where B+ =

[
1 1

µ
[1]
+ µ

[2]
+

]
.

Expanding ȳ+ in negative powers of κ+, where

(11) κ+ =
√

c2 + 4(λ − f ′(û+)),

similar to (9b), we find that

(12) ȳ+ =
[
ū+

v̄+

]
with

{
ū+(ξ; κ) = κ−2

+ ϕ+(ξ) + O(κ−3
+ ),

v̄+(ξ; κ) = 1 + κ−1
+ Φ+(ξ) + 1

2κ−2
+

(
Φ+(ξ)

)2 + O(κ−3
+ ),

where

ϕ+(ξ) = f ′(û(ξ))− f ′(û+) and Φ+(ξ) =
∫ ∞

ξ

ϕ+(x) dx.

The Evans function is obtained by evaluating both the solution satisfying y(ξ) → 0
as ξ → −∞ and the one satisfying y(ξ) → 0 as ξ → +∞ at ξ = 0, collecting the
resulting vectors in a matrix and computing the determinant of this matrix. This
yields

(13)

D(λ) =
(
Bȳ(0)

)
∧

(
B+ȳ+(0)

)
=

[
1 1

1
2 (κ − c) −1

2 (κ + c)

] [
ū(0)
v̄(0)

]
∧

[
1 1

1
2 (κ+ − c) −1

2 (κ+ + c)

] [
ū+(0)
v̄+(0)

]
= 1

2 (κ − κ+)
(
v̄(0)v̄+(0) − ū(0)ū+(0)

)
+ 1

2 (κ + κ+)
(
v̄(0)ū+(0) − ū(0)v̄+(0)

)
.

Substituting (10) and (12) and using the fact that κ−κ+ = O
(
|λ|−1/2

)
as |λ| → ∞,

we find that

(14)
D(λ) = −1

2 (κ + κ+)ū(0)v̄+(0) + O(κ−2)

= −2λ1/2 + Φ − 1
4λ−1/2

(
Φ2 − 2f ′(û−) − 2f ′(û+) + c2

)
+ O(λ−1),
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where

Φ = Φ−(0) + Φ+(0) =
∫ 0

−∞
ϕ−(x) dx +

∫ ∞

0

ϕ+(x) dx.

The approach of Sandstede [33] yields D(λ) = −2λ1/2+O(1). This agrees with (14),
but the approach presented here gives two more terms. Furthermore, we can easily
find additional terms by extending the expansions (10).

3. Magnus methods

If we want to evaluate the Evans function numerically, we have to solve the
differential equation (3). Moan [25] studied methods based on the Magnus series for
the solution of Sturm–Liouville problems of the form −(py′)′+qy = λwy on a finite
interval. Moan noticed that some of the quantities involved in the computation are
independent on the spectral parameter λ and hence need to be computed only once
when solving the differential equation for several values of λ. Moan also proposed a
modification of the method based on summing some of the terms analytically which
improves the accuracy when λ is large.

Jódar and Marletta [21] noticed that the Magnus method in combination with the
compound matrix method performs well on some scalar Sturm–Liouville problems
of high order; see also Greenberg and Marletta [14].

This approach was generalized by Aparicio, Malham and Oliver [3], who pro-
posed to use a Magnus method for solving the boundary value problem (3). They
mentioned the robustness across all regimes as an advantage of Magnus integrators.
Furthermore, they pointed out that the computational cost of Magnus methods, as
well as other methods, can be decreased by means of a precomputation technique.
In this section, we further analyze the behaviour of the Magnus method in the
regime where λ is large in modulus.

Magnus [24] showed that the solution of the differential equation y′ = A(ξ)y can
be written as y(ξ) = exp(Ω(ξ)) y(0), where the matrix Ω(ξ) is given by the infinite
series

(15)

Ω(ξ) =
∫ ξ

0

A(x) dx − 1
2

∫ ξ

0

[∫ x1

0

A(x2) dx2, A(x1)
]

dx1

+ 1
12

∫ ξ

0

[∫ x1

0

A(x2) dx2,

[∫ x1

0

A(x2) dx2, A(x1)
]]

dx1

+ 1
4

∫ ξ

0

[∫ x1

0

[∫ x2

0

A(x3) dx3, A(x2)
]

dx2, A(x1)
]

dx1 + · · · ,

where [ · , · ] denotes the matrix commutator defined by [X, Y ] = XY −Y X. Moan
and Niesen [26] proved that the series converges if

∫ ξ

0
‖A(x)‖ dx < π.

The Magnus series can be used to solve linear differential equations numerically,
if we truncate the infinite series and approximate the integrals numerically. For
instance, if we retain only the first term in the series and approximate A(x) by the
value at the midpoint, we get Ω(ξ) ≈ hA( 1

2ξ). The resulting one-step method is
defined by

(16) yk+1 = exp
(
hA(ξk + 1

2h)
)
yk,

where h denotes the step size and yk approximates the solution at ξk = ξ0 + kh.
This method is called the Lie midpoint or exponential midpoint method. It is a
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second-order method: the difference between the numerical and the exact solution
at a fixed point ξ is O(h2).

We can get a fourth-order method by truncating the Magnus series (15) after
the second term. We replace the matrix A(ξ) by the linear function A0 +ξA1 which
agrees with A(ξ) at the two Gauss–Legendre points

(17) ξ
[1]
k = ξk + ( 1

2 − 1
6

√
3)h and ξ

[2]
k = ξk + ( 1

2 + 1
6

√
3)h.

This yields the scheme

(18a) yk+1 = exp(Ωk) yk,

where

(18b) Ωk = 1
2h

(
A(ξ[1]

k ) + A(ξ[2]
k )

)
−

√
3

12 h2
[
A(ξ[1]

k ), A(ξ[2]
k )

]
.

The reader is referred to the review paper by Iserles, Munthe–Kaas, Nørsett and
Zanna [20] for more information on Magnus and related methods.

If we define ȳk by yk = exp(µ[1]
− ξ) B ȳk, as suggested by (7), then the fourth-order

method (18) transforms to

(19a) ȳk+1 = exp(Ω̄k) ȳk,

where

(19b) Ω̄k = 1
2h

(
Ā(ξ[1]

k ) + Ā(ξ[2]
k )

)
−

√
3

12 h2
[
Ā(ξ[1]

k ), Ā(ξ[2]
k )

]
,

with Ā as given in (9). So applying the Magnus method to the transformed equa-
tion (8) and transforming the result back to the original coordinate system is the
same as applying it to the original equation. This can be explained by the equivari-
ance of the Magnus method under linear transformations and exponential rescal-
ings [9].

Substitution of (9) in (19b) yields

(20a) Ω̄k = h

[
−κ−1αk βk − κ−1αk

βk + κ−1αk −κ + κ−1αk

]
with

(20b) αk = 1
2

(
ϕ−(ξ[1]

k ) + ϕ−(ξ[2]
k )

)
and βk = −

√
3

12
h
(
ϕ−(ξ[1]

k ) − ϕ−(ξ[2]
k )

)
.

Note that αk and βk approximate ϕ− and 1
12h2ϕ′

− respectively. Furthermore, the
exponential midpoint rule (16) is also given by (20a), but with αk = ϕ−(ξk + 1

2h)
and βk = 0 instead of (20b).

3.1. Estimates for the local error. The local error of a one-step method is the
difference between the numerical solution and the exact solution after one step. For
the Magnus method, the local error is

Lk = exp(Ωk) y(ξk) − y(ξk+1),

or, in transformed coordinates,

(21) L̄k = exp(Ω̄k) ȳ(ξk) − ȳ(ξk+1).

The exponential of the matrix Ω̄k is most easily calculated by diagonalization: if
Ω̄k = VkΛkV −1

k with Λk diagonal, then exp(Ω̄k) = Vk exp(Λk) V −1
k and exp(Λk) is
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formed by simply exponentiating the entries on the diagonal. In fact, the diagonal
entries of Λk are

(22)
λ

[1]
k = h

(
κ−1

(
β2

k − αk

)
− κ−3

(
β2

k − αk

)2 + O(κ−5)
)
,

λ
[2]
k = −h

(
κ + κ−1

(
β2

k − αk

)
− κ−3

(
β2

k − αk

)2 + O(κ−5)
)
,

as |κ| → ∞. The definition of κ in (9b) implies that Re κ > 0 unless λ is real
and λ ≤ f ′(û−) − 1

4c2. Under this condition, −Re λ
[2]
k � 1 if h|κ| � 1 and hence

exp(λ[2]
k ) is exponentially small.

We now assume that we are in the regime with |λ| � h−2, h → 0, and λ bounded
away from the negative real axis in the sense that | arg λ| < π − ε where ε > 0. In
this regime, exp(λ[2]

k ) is exponentially small. Taking this into account, a lengthy
but straightforward calculation shows that

(23) exp(Ω̄k) =

⎡
⎢⎣ 1 − hχk

κ
+ O(κ−2)

βk

κ
− αk + hβkχk

κ2
+ O(κ−3)

βk

κ
+

αk + hβkχk

κ2
+ O(κ−3)

β2
k

κ2
− hβ2

kχk

κ3
+ O(κ−4)

⎤
⎥⎦ ,

where χk = αk − β2
k. Substituting this result and the approximation (10) for the

exact solution in the definition (21), and using the definitions of χk, βk, and Φ−,
we find that the local error of the Magnus method is given by

(24) L̄k =

[
κ−1γk + O(κ−2h4)
κ−1βk + O(κ−2h)

]
,

where

(25)
γk =

∫ ξk+1

ξk

ϕ−(x) dx − h(αk − β2
k)

= h5
(

1
4320ϕ′′′′(ξk + 1

2h) + 1
144

(
ϕ′(ξk + 1

2h)
)2

)
+ O(h7)

and

(26) βk = 1
12h2ϕ′(ξk + 1

2h) + O(h4).

In deriving the above expression, we also replaced ϕ−(ξ) by ϕ(ξ) = f ′(û(ξ)). This
is allowed since they differ by a constant term, and only the derivative appears
in (24).

Equation (24) gives the local error of the fourth-order Magnus method (18) in
transformed variables. Since the method has order four, the local error is O(h5) as
h → 0 when solving a fixed equation. However, in our case, the constraint |λ| � h−2

implies that λ, and hence the relative influence of the coefficients in the equation,
must change as h approaches zero. It turns out that the local error is O(h2) in this
setting. In other words, the method behaves like a first-order method (globally).
This phenomenon is called order reduction.

The cause of this order reduction is the stiffness of the differential equation (4).
Indeed, if we define the stiffness ratio as the quotient between the largest and
smallest eigenvalue (as in Iserles [18]), then the stiffness quotient is∣∣∣∣∣λ

[2]
k

λ
[1]
k

∣∣∣∣∣ =
∣∣∣∣ κ2

β2
k − αk

∣∣∣∣ + O(1),
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where the leading term shown grows like |λ|. Hence, the problem is stiff if λ is large
in modulus, causing troubles for the numerical method.

3.2. Estimates for the global error. The global error is the error of the numer-
ical method after several steps, say k. Hence, the global error is Ek = yk − y(ξk),
with yk defined by the numerical method starting from y0 = y(ξ0). For the Magnus
method (18), the global error satisfies the recursion relation Ek+1 = exp(Ωk) Ek+Lk

with E0 = 0, or, in transformed coordinates,

(27) Ēk+1 = exp(Ω̄k) Ēk + L̄k, Ē0 = 0.

A routine induction argument using (23) and (24) shows that the leading term of
the global error is given by

(28) Ēk =

[
κ−1

∑k−1
j=0 γj + O(κ−2h4)

κ−1βk−1 + O(κ−2h)

]
.

This shows an advantage of stiffness: the exact flow quickly reduces the error in the
stiff component. The Magnus method inherits this property here and annihilates
at every step the error in the stiff component up to leading order (if |κ|h � 1). On
the other hand, the first (nonstiff) component of the error is propagated without
change. Since the local error in the stiff component is much bigger than the error
in the nonstiff component (order h2 versus order h5), we arrive at the surprising
conclusion that the local and global error are equal at leading order.

Substituting the definitions of αk, βk, and γk in (20b) and (25) and approximat-
ing the sum by an integral, we find that
(29)

Ēk =

[
κ−1h4

(
1

4320

(
ϕ′′′(ξk) − ϕ′′′(ξ0)

)
+ 1

144

∫ ξk

ξ0
(ϕ′(ξ))2 dξ

)
+ O(κ−1h6, κ−2h4)

1
12κ−1h2ϕ′(ξk − 1

2h) + O(κ−1h4, κ−2h)

]
.

We see that the global error is O(h2). Usually, a factor h is lost in the transition
from the local to the global error, but here both the local and the global error
are O(h2), because the local error is mainly in the stiff component. Hence, the
fourth-order Magnus method given in (18) behaves like a second-order method if
one considers the global error. The numerical experiments in Section 5 support this
analysis. However, the fact that the global error is O(h2) does not tell the whole
story, as the relative error (the error divided by the magnitude of the solution)
may give a better picture. Indeed, it follows from (7) and (10) that the solution y

grows as
√

λ, so the relative error is O(h2/
√

λ). In other words, the relative error
decreases as |λ| → ∞.

We can compute the error associated with the solution satisfying the boundary
condition that y(ξ) → 0 as ξ → +∞ similarly. Instead of (28), we now have

(30) Ē+
k =

[
κ−1

+

∑k−1
j=0 γ+

j + O(κ−2
+ h4)

κ−1
+ β+

k−1 + O(κ−2
+ h)

]
,

where α+
k , β+

k and γ+
k are as given in (20b), with ϕ+ and Φ+ replacing ϕ− and Φ−,

respectively, and κ+ is as given in (11).
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3.3. The error in the Evans function. The Evans function given in (13) is

D(λ) =
(
Bȳ(0)

)
∧

(
B+ȳ+(0)

)
.

The numerical error when evaluating the Evans function is therefore

(31) ED =
(
Bȳ(0)

)
∧

(
B+Ē+

k

)
+

(
BĒk

)
∧

(
B+ȳ+(0)

)
+

(
BĒk

)
∧

(
B+Ē+

k

)
.

We can expand this in the same manner as in (13). The first term on the right-hand
side becomes

1
2 (κ − κ+)

(
[Ē]2v̄+(0) − [Ē]1ū+(0)

)
+ 1

2 (κ + κ+)
(
[Ē]2ū+(0) − [Ē]1v̄+(0)

)
.

The dominating term in this expression is −1
2 (κ+κ+)[Ē]1v̄+(0), which is O(λ0h4);

all other terms are O(λ−1h2) or smaller (recall that we assumed that |λ| � h−2).
Therefore, the dominating contribution to the error in the Evans function comes
from the first (nonstiff) component of the global error, even though the second (stiff)
component is larger. This is because the stiff and nonstiff directions are exchanged
when you integrate in the other direction. Hence, when taking the wedge product
of the global error of the solution on [−∞, 0] with the solution itself on [0, +∞],
the stiff component of the global error is paired with the stiff component of the
solution; similarly, the nonstiff component of the global error is paired with the
nonstiff component of the solution. Since the solution is mainly along the nonstiff
direction, the nonstiff component of the global error (which has order h4) is brought
to the forefront, and the stiff component of the global error (which has order h2) is
reduced.

Substituting the exact solution from (10) and (12) and the global error from (28)
and (30) in (31), we find that the error in the Evans function is

ED =
k−1∑
j=0

γj +
k−1∑
j=0

γ+
j + O(λ−1/2h4).

Assuming that the differential equation is solved on the intervals [−L, 0] and [0, L],
with L = Nh, this evaluates to

(32)

ED =

⎡
⎣h

N−1∑
j=−N

(
ϕ
(
jh + ( 1

2 − 1
6

√
3
)
h
)

+ ϕ
(
jh + ( 1

2 + 1
6

√
3
)
h
))

−
∫ L

−L

ϕ(x) dx

⎤
⎦

− h

k−1∑
j=0

β2
j − h

k−1∑
j=0

(β+
j )2 + O(λ−1/2h4).

The term within brackets is the difference between the approximation of
∫ L

−L
ϕ(x) dx

by two-point Gauss–Legendre quadrature and the integral itself. In our setting, all
derivatives of the travelling wave û, and therefore also of the function ϕ = f ′ ◦ û,
vanish at infinity (see §2). Now, assuming that L is so large that the derivatives
of ϕ at L are negligible, the error in Gauss–Legendre quadrature vanishes at all
orders in h, for essentially the same reason that the trapezoidal rule is so effective
for periodic integrands; this is easily proved with the Euler–MacLaurin formula
(see, for instance, Davis and Rabinowitz [7, §3.4]). Hence, only the sums involving
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the βj and β+
j survive. These can be approximated easily using (26), and we find

that

(33) ED = − h4

144

∫ ∞

−∞

(
ϕ′(x)

)2 dx + O(h6) with ϕ(ξ) = f ′(û(ξ)).

So, in the end, the error in the Evans function is of order h4, which is just what
one would expect from a fourth-order method.

3.4. The exponential midpoint rule. We saw above that the fourth-order Mag-
nus method (18) suffers severe order reduction when solving (4) with |λ| � 1. This
is not the case for all methods. There are even methods based on the Magnus
series which do not suffer global order reduction, like the exponential midpoint
rule (16) which has order two (this method is also known as the second-order Mag-
nus method). When applied to (4), this method is of the form (19a), (20a) with αk

and βk given by αk = ϕ−(ξk + 1
2h) and βk = 0 respectively. If we substitute this

in (24), we see that the κ−1 term in the second (stiff) component drops out, and
that the local error is [O(κ−1h3) O(κ−2h) ]�. So, the exponential midpoint rule
does suffer some local order reduction, but not as severe as the fourth-order Magnus
method, for which the second component of the local error is of order κ−1h2.

The global error can be computed as in §3.2. Again, only the nonstiff component
propagates, so the global error is [O(κ−1h2) O(κ−2h) ]�. As |κ| � h−1, the first
component dominates and the exponential midpoint rule effectively does not suffer
from order reduction if one looks at the global error.

Continuing to find the error in the Evans function, as we did in §3.3, we find

(34) ED = h

N−1∑
j=−N

ϕ
(
jh + 1

2h) −
∫ L

−L

ϕ(x) dx + O(λ−1/2h2).

Comparing with (32) for the fourth-order Magnus method, we see that the sums
involving the βj and β+

j have dropped out (because βj = 0), and that the two-point
Gauss–Legendre quadrature is replaced by the trapezoidal rule. Again, the error
in the trapezoidal rule vanishes at all orders if L is sufficiently large. Hence, the
error in the Evans function is O(λ−1/2h2). In contrast, the fourth-order Magnus
method has ED = O(h4); see (33). Thus, we can expect the second-order method
to be more accurate than the fourth-order method. The experiments in Section 5
confirm this.

4. The Gauss–Legendre method

Most numerical computations of the Evans function reported in the literature use
a Runge–Kutta method, in particular the classical explicit fourth-order method and
the two-stage Gauss–Legendre method. As the differential equation that we want
to solve is stiff, we consider the two-stage Gauss–Legendre method. The method is
given by

(35)

s1 = A(ξ[1]
k )

(
yk + 1

4hs1 + ( 1
4 −

√
3

6 )hs2

)
,

s2 = A(ξ[2]
k )

(
yk + ( 1

4 +
√

3
6 )hs1 + 1

4hs2

)
,

yk+1 = yk + 1
2h(s1 + s2),

where ξ
[1]
k and ξ

[2]
k are the Gauss–Legendre points, given in (17).
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We will now analyse the error committed by the Gauss–Legendre method when
computing the Evans function. After the usual coordinate transformation, cf. (7),
and substitution of the matrix given in (9), we can solve the system (35). After a
lengthy but relatively straightforward calculation, we find that ȳk+1 = Ψkȳk with

Ψk =

[
1 − κ−1hαk + 1

2κ−2h2α2
k 12κ−2h−1βk

12κ−2h−1βk 1 − 12κ−1h−1 + 72κ−2h−2

]
+ O(κ−3)

where αk and βk are as defined in (20b). The local error can now be found by
substituting this matrix and the exact solution in L̄k = Ψkȳ(ξk)− ȳ(ξk+1), cf. (21).
This yields

(36) L̄k =

[
κ−1L̄a

k + κ−2L̄b
k + O(κ−3h5)

κ−2L̄c
k + O(κ−3h2)

]

where

L̄a
k =

∫ ξk+h

ξk

ϕ−(x) dx − hαk = O(h5),(37a)

L̄b
k = Φ−(ξk)

(
hαk −

∫ ξk+h

ξk

ϕ−(x) dx

)
+ 1

2 (hαk)2 − 1
2

( ∫ ξk+h

ξk

ϕ−(x) dx

)2

(37b)

= −L̄a
k

(
Φ−(ξk) + hαk + 1

2 L̄a
k

)
= O(h5),

L̄c
k = 12h−1βk − ϕ−(ξk + h) + ϕ−(ξk) = O(h3).(37c)

For reasons which will soon become clear, we must retain the κ−2 term in the
above expression, in contrast to (24) for the Magnus method. We see that the two
terms in the first (nonstiff) component are of order κ−1h5 and κ−2h5, while the
second (stiff) component is of order κ−2h3. This is a similar situation as with the
exponential midpoint rule, except that (35) is a fourth-order method.

To find the global error, we solve the recursion relation Ēk+1 = ΨkĒk + L̄k,
Ē0 = 0; cf. (27). The solution is

(38) Ēk =

⎡
⎣κ−1

∑k−1
j=0 L̄a

j + κ−2
∑k−1

j=0

(
L̄b

j − hαj

∑j−1
i=0 L̄a

i

)
+ O(κ−3h4)

κ−2
∑k−1

j=0 L̄c
j + O(κ−3h2)

⎤
⎦ .

Again, only the error in the nonstiff component propagates.
Finally, we compute the error in the Evans function. Estimating the various

terms in (31), we find that

(39) ED = −1
2 (κ + κ+)

(
[Ē]1v̄+(0) + ū(0) [Ē+]2

)
+ O(λ−1/2h8, λ−3/2h2).

Hence, we wish to compute X = [Ē]1v̄+(0) + ū(0) [Ē+]2. Substitution of the exact
solution, given in (10) and (12), and the global error (38) yields

X = κ−1
N∑

j=0

(
L̄a

j + L̄a,+
j

)
+ κ−2X2 + O(κ−3h4),

where

X2 =
N∑

j=0

(
L̄b

j − hαj

j−1∑
i=0

L̄a
i − L̄a

j Φ+(0) + L̄b,+
j − hα+

j

j−1∑
i=0

L̄a,+
i − L̄a,+

j Φ−(0)
)

.
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The sum
∑N

j=0

(
L̄a

j + L̄a,+
j

)
is the term within brackets in (32), so again, it vanishes

at all orders in h. For the Φ− and Φ+ terms, we use

(40) Φ−(ξj) =
∫ ξj

−∞
ϕ−(x) dx ≈

j−1∑
i=0

∫ ξi+h

ξi

ϕ−(x) dx =
j−1∑
i=0

(
L̄a

i + hαi

)
,

where the approximate equality becomes exact in the limit L → ∞; again, we
assume that L is so large that we can neglect any errors here. Substitution of (40),
its analogue for Φ+, and (37a) and (37b) yields

X2 = −
N∑

j=0

(
hαjL̄

a
j + hα+

j L̄a,+
j +

N∑
i=0

(
α+

i L̄a
j + αiL̄

a,+
j

)

+
j−1∑
i=0

(
hαiL̄

a
j + hL̄a

i αj + hα+
i L̄a,+

j + hL̄a,+
i α+

j

))
+ O(h8),

where the remainder term comes from estimating terms like
∑

j

∑
i L̄a

i L̄a
j . This

nested sum can be written as the product of two sums:

X2 =
N∑

i=0

h(αi + α+
i ) ·

N∑
j=0

(
L̄a

j + L̄a,+
j

)
+ O(h8).

So we arrive again at the sum
∑N

j=0

(
L̄a

j + L̄a,+
j

)
, which vanishes at all orders.

Substituting everything back into (39), we find that the error in the Evans func-
tion is given by

(41) ED = O(λ−1/2h8, λ−1h4, λ−3/2h2).

This is clearly better than the fourth-order Magnus method, with ED = O(λ0h4),
and the exponential midpoint rule, with ED = O(λ−1/2h2).

5. Numerical experiments

In this section, we evaluate the Evans function for a particular example. The
error in this computation is determined and compared against the estimates derived
in the previous sections.

The example is the Fisher equation

(42) ut = uxx + u − u2.

This is a reaction–diffusion equation of the form (1). Fisher [12] used it to de-
scribe the transmission of genes in a population. It is now viewed as the prototype
equation admitting travelling front solutions [28, §11.2].

The Fisher equation supports a travelling wave solution with wave speed c =
−5

6

√
6. In fact, this solution is known analytically:

u(x, t) = û(ξ) =
1(

1 + eξ/
√

6
)2 where ξ = x − 5

6

√
6 t.

Suppose that we wish to determine the stability of this travelling wave. We are led
to consider the eigenvalue problem (4), which in this case reads

(43a)
dy

dξ
=

[
0 1

λ − ϕ(ξ) −c

]
y,
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where

(43b) ϕ(ξ) = 1 − 2û(ξ) = 1 − 2(
1 + eξ/

√
6
)2 .

We solve this equation with the fourth-order Magnus method, given by (18). In the
previous section, we derived the local error estimate (24). For the Fisher equation,
this estimate evaluates to

(44) L̄k ≈ 1
κ

⎡
⎢⎢⎢⎢⎢⎣

h5eξ/
√

6
(
−8e3ξ/

√
6 + 33e2ξ/

√
6 + 702eξ/

√
6 + 1

)
38880

(
1 + eξ/

√
6
)6

√
6h2eξ/

√
6

18
(
1 + eξ/

√
6
)3

⎤
⎥⎥⎥⎥⎥⎦ ,

where κ =
√

c2 + 4(λ + 1) and ξ is short for ξk.
The global error estimate is given in (29). Assuming that ξ0 is negative and so

large in magnitude that we can take ξ0 = −∞, we find that

(45) Ēk ≈ 1
κ

⎡
⎢⎢⎢⎢⎢⎣

√
6 h4eξ/

√
6
(
36e4ξ/

√
6 + 180e3ξ/

√
6 + 364e2ξ/

√
6 + 353eξ/

√
6 + 1

)
38880

(
1 + eξ/

√
6
)6

√
6 h2eξ/

√
6

18
(
1 + eξ/

√
6
)3

⎤
⎥⎥⎥⎥⎥⎦ .

Finally, estimate (33) for the error in the Evans function is

(46) ED ≈ −
√

6
1080

h4 ≈ −0.002268 h4.

This estimate is independent of the parameter κ.
We perform some numerical experiments to check the validity of these estimates.

First, we solve (43) from ξ = −30 using the fourth-order Gauss–Legendre method
with step size h = 0.02. We will refer to this solution as the “exact” solution. Then,
we take the “exact” solution at ξ = −1 and do a single step with the fourth-order
Magnus method with step size h = 0.2 or h = 0.1. The local error can now be
determined by comparing the result of this single step against the “exact” solution;
this local error is plotted in the top row of Figure 1, together with the local error
estimate (44). The horizontal axis in the plots shows the imaginary part of the
eigenvalue parameter λ, which varies from ı to 108 ı in our experiments.

The global error can be determined by solving (43) from ξ = −30 till ξ = −1 with
the fourth-order Magnus method and comparing it against the “exact” solution.
This results in the bottom row of Figure 1. Finally, Figure 2 shows the difference
between the Evans function as computed by the Magnus method and the “exact”
value, compared against the estimate (46).

All graphs show that the error estimates agree well with the actual error when λ
is moderately large in magnitude. However, the numerical method starts to break
down when |λ| increases above 107.

The implementation used in the experiments is a straightforward Matlab code.
One detail proved to be important, namely, the computation of the matrix ex-
ponential in (18). The standard routine for this is called expm and uses Padé
approximation combined with scaling and squaring. However, we found that an
alternative approach based on the Schur decomposition and implemented in the
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Figure 1. The solid lines in the graphs on the top row show the
local error committed by the fourth-order Magnus method. The
step size h is 0.1 and 0.2 for the line labelled 1 and 2, respectively.
The dash lines show the local error estimate (44). On the bottom
row, the solid lines shows the global error and the dash lines show
the estimate (45).
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Figure 2. The solid line shows the error in the Evans function
as evaluated by the fourth-order Magnus method, while the dash
line shows the error estimate (46). The step size is h = 0.2 for the
graph on the left and h = 0.1 for the graph on the right.
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Figure 3. The left graph shows the error in the Evans func-
tion as evaluated by the exponential midpoint rule (16), while the
right graph shows the same for the fourth-order Gauss–Legendre
method (35). The step size is h = 0.2 for the curve labelled 2 and
h = 0.1 for the curve labelled 1. The dotted lines in the second
plot show 10−3h4/|λ|.

Matlab routine expmdemo3 works better in our case. Specifically, when using
Padé approximation, the numerical method loses accuracy around |λ| = 105, as
opposed to |λ| = 107 for the Schur decomposition. Generally, the Schur decompo-
sition runs into trouble when the matrix to be exponentiated is nearly defective,
but in our case the eigenvalues are far apart; cf. (22). The reader is refered to the
article by Moler and Van Loan [27] for an extensive discussion on this subject.

When the experiment is repeated with the exponential midpoint rule (16) and
the fourth-order Gauss–Legendre method (35), the error in the Evans function is
as plotted in Figure 3. We concluded in Section 3.4 that, because the exponential
midpoint rule suffers less from order reduction, it is likely to have a smaller error
than the fourth-order Magnus method if |λ| is large. The error plots confirm this.

For the fourth-order Gauss–Legendre method, which is the method that is more
relevant in practice, the error in the Evans function is shown in the right half of Fig-
ure 3. We found the estimate (41) for the error, and the numerical results show that
the term of order λ−1h4 dominates: the line 10−3|λ|−1h4 tracks the graphs closely
for |λ| up to 104 (the coefficient 10−3 was not determined by any computation,
in contrast to the coefficient in (46), but it was chosen to give a suitable match).
When |λ| > 104, the error committed by the Gauss–Legendre method starts to
increase erratically, following roughly the equation ED = 10−12

√
|λ|. This is likely

due to round-off error, as |y(ξ)| is approximately
√
|λ|. This suggests that the loss

of accuracy in the fourth-order Magnus method is also due to round-off error, exac-
erbated by ill-conditioning of the matrix exponential (compare with the influence
of the method for computing the matrix exponential, as noted on page 173).

6. Conclusions

We found that the fourth-order Magnus method, when applied to the linear
differential equation (4) in the regime |λ| � 1/h2, commits a global error of or-
der h2/

√
|λ| (relative to the exact solution). It is remarkable that the Magnus
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method converges at all. The convergence result [26] for the Magnus series men-
tioned earlier guarantees convergence only when |λ| < π/h2, so the usual conver-
gence proof for the truncated series does not hold. However, the error analysis
in this paper shows that the method does indeed converge for equations of the
form (4).

Given that the method converges, it is remarkable that the order of the method
drops. This is connected to the concept of stability. The Magnus method solves au-
tonomous linear equations exactly. A fortiori, the numerical solution of Dahlquist’s
test equation y′ = ay (with a ∈ C) is stable if and only if the exact solution is sta-
ble, meaning that it converges to 0 as x → ∞. Hence, the Magnus method is
A-stable and even L-stable (see, e.g., Hairer and Wanner [16] for a definition of
these terms). Nevertheless, the fourth-order Magnus method suffers from order
reduction in the current setting, in which the equation is nearly autonomous. This
may be connected to the fact that the fourth-order Magnus method is not B-stable.
A simple counterexample is given by the equation y′ = Ay with A(x) =

[−1 1
0 −1

]
for x < 3 and A(x) =

[−1 0
1 −1

]
for x > 3. This equation is contractive, but the

numerical solution does not preserve contractivity as h increases above 6. In con-
trast, the Gauss–Legendre method and the exponential midpoint rule are known to
be B-stable, and they do not suffer from order reduction. We again refer to Hairer
and Wanner [16] for a precise definition of B-stability and its connection to order
reduction.

Similar results were obtained by Hochbruck and Lubich [17], who treated Magnus
methods applied to semi-discretized Schrödinger equations. They could prove that
the method converges even when there is no known convergence result for the
untruncated Magnus series. González, Ostermann and Thalhammer [13] found that
the exponential midpoint rule suffers from order reduction when applied to semi-
discretized parabolic equations. The matrices in the semi-descretized equations
considered by them have negative eigenvalues that are large in magnitude, just as
problem (4) treated here.

However, the fourth-order Magnus method regains the full order when combining
the solution of the differential equation (4) satisfying the boundary condition at
ξ = −∞ with the one satisfying the condition at ξ = +∞ to form the Evans
function. As is clearly shown both by the analysis and by the experiment, the error
committed by the fourth-order Magnus is of order h4 uniformly in λ. Nevertheless,
the Gauss–Legendre method is still superior: its error decreases as |λ| increases.

The same holds to a lesser degree for the exponential midpoint rule. The anal-
ysis indicates that the error commited by this method is of order λ−1/2h2. The
numerical results for the exponential midpoint rule do not quite seem to agree with
this, but they also show that the error decreases as a function of |λ|; the reason for
this discrepancy is unknown. Nevertheless, we can conclude that the second term
in the Magnus expansion (15) actually harms the numerical algorithm when λ is
large in magnitude.

This suggests that the Right Correction Magnus Series, as proposed by Degani
and Schiff [8], or the modified Magnus method, as proposed by Iserles [19], might
perform well on this problem. We ran some preliminary experiments with these
methods, which showed that the error in the stiff component is greatly reduced and
comparable to the error committed by the Gauss–Legendre method. However, the
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nonstiff component seems to suffer from round-off error. A full analysis of these
methods warrants further investigation.

As explained at the start of Section 2, our interest lies in the stability analysis
for travelling waves for the reaction–diffusion equation (1). By energy estimates
similar to those in Brin [5, §3.2], we find that the eigenvalues are contained in the
wedge given by

(47)
Reλ ≤ 1

4c2 + maxξ |f ′(û(ξ))|,
Reλ + | Im λ| ≤ c2 + maxξ |f ′(û(ξ))|.

For the Fisher equation used as an example in the previous section, we have
maxξ |f ′(û(ξ))| = 1. Therefore, the analysis reported in this paper is of limited
use when assessing the stability of the travelling wave for this equation. However,
for other equations the wedge (47) and the regime in which our analysis is valid
may overlap.

We mentioned in the introduction that this work was instigated by the paper
of Aparicio, Malham and Oliver [3]. That paper studies a similar equation in the
regime arg λ = π, while the analysis in the current paper concerns the complemen-
tary regime | arg λ| < π − ε with ε > 0. In fact, it is possible to derive a combined
estimate for the local error valid in both regimes using WKB-analysis.

Finally, we wish to stress that the analysis reported here is only valid for scalar
reaction–diffusion equations. We have not done a full analysis for systems of
reaction–diffusion equations of the form (1). However, numerical experiments sug-
gest that also in this case, the Magnus method suffers from order reduction but
recovers the full order when matching the solutions to evaluate the Evans function.
Generally, the Gauss–Legendre method still outperforms the Magnus method when
λ is away from the essential spectrum, but the difference is not so pronounced.
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