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ON THE EXISTENCE OF MAXIMUM PRINCIPLES
IN PARABOLIC FINITE ELEMENT EQUATIONS

VIDAR THOMÉE AND LARS B. WAHLBIN

Abstract. In 1973, H. Fujii investigated discrete versions of the maximum
principle for the model heat equation using piecewise linear finite elements
in space. In particular, he showed that the lumped mass method allows a
maximum principle when the simplices of the triangulation are acute, and this
is known to generalize in two space dimensions to triangulations of Delauney
type. In this note we consider more general parabolic equations and first show
that a maximum principle cannot hold for the standard spatially semidiscrete

problem. We then show that for the lumped mass method the above conditions
on the triangulation are essentially sharp. This is in contrast to the elliptic
case in which the requirements are weaker. We also study conditions for the
solution operator acting on the discrete initial data, with homogeneous lateral
boundary conditions, to be a contraction or a positive operator.

1. Introduction

Let Ω be a bounded polyhedral domain in Rd and consider the problem

ut + Au = 0 in Ω, for t > 0,(1.1)

with u = g on ∂Ω, for t ≥ 0, u(0) = v in Ω.

Here

Au = −
d∑

k,l=1

∂

∂xk

(
akl

∂u

∂xl

)
+

d∑
k=1

bk
∂u

∂xk
,

where the coefficients akl, bk ∈ C1(Ω̄), and (akl(x)) is a symmetric and uniformly
positive definite matrix on Ω̄.

The maximum principle for (1.1) asserts that, if QT = Ω × (0, T ), with T > 0,
the maximum and the minumum of a solution u ∈ C

2(QT )∩C(Q̄T ) over Q̄T occur
on the parabolic boundary,

(
∂Ω× [0, T ]

)
∪

(
Ω× {t = 0}

)
. As a consequence of this

we find at once a bound for |u| in QT , namely

(1.2) ‖u‖QT
= max

(
‖g‖∂Ω×[0,T ], ‖v‖Ω

)
, where ‖u‖V = max

V̄
|u|.

Here V denotes a set in Rd or Rd+1; when V = Ω we normally omit this subscript.
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12 V. THOMÉE AND L.B. WAHLBIN

Since constant functions satisfy the differential equation in (1.1), it is well known
and easy to prove that (1.2) is equivalent to the positivity condition

(1.3) u ≥ 0 in QT , if v ≥ 0 in Ω and g ≥ 0 on ∂Ω × [0, T ].

In the case of homogeneous Dirichlet boundary conditions, i.e., when g = 0, it
follows from (1.2) that the solution operator E(t), the semigroup defined by u(t) =
E(t)v on the continuous functions which vanish on ∂Ω, is a contraction, or

(1.4) ‖E(t)v‖ ≤ ‖v‖, for t ≥ 0.

We shall be concerned with spatially semidiscrete approximations of (1.1) based
on continuous, piecewise linear finite elements, defined on a family of triangulations
Th = {τ} of Ω̄ into closed simplices τ , such that any face of any τ is either a subset
of the boundary ∂Ω or a face of another τ ∈ Th. We set h = maxτ∈Th

diam(τ ). We
associate with Th the finite dimensional spaces

Sh = {χ ∈ C(Ω̄) : χ|τ linear for τ ∈ Th} and S0
h = {χ ∈ Sh : χ = 0 on ∂Ω}.

For each t, let gh(t) be the restriction to ∂Ω of a function in Sh and let vh ∈ Sh

with vh = gh(0) on ∂Ω. The semidiscrete standard Galerkin finite element problem
associated with (1.1) is then to find uh(t) ∈ Sh for t ≥ 0 such that

(uh,t, χ) + A(uh, χ) = 0, ∀χ ∈ S0
h, t > 0,(1.5)

with uh(t) = gh(t) on ∂Ω, for t ≥ 0, and uh(0) = vh,

where (f, g) =
∫
Ω

f(x) g(x) dx and, with b = (b1, . . . , bd)T ,

A(f, g) =
∫

Ω

( d∑
k,l=1

akl
∂f

∂xl

∂g

∂xk
+

d∑
k=1

bk
∂f

∂xk
g
)

dx = A0(f, g) + (b · ∇f, g).

It is natural to ask whether an analogue of the maximum principle (1.2) holds
for the discrete problem (1.5), or whether

(1.6) ‖uh‖QT
= max

(
‖gh‖∂Ω×[0,T ], ‖vh‖Ω

)
.

We shall demonstrate below that, in general, this is not the case. In Fujii [2] it
was shown, for special families of triangulations Th with all angles acute, that the
backward Euler method may satisfy a maximum principle. His result requires a
certain lower bound for the time step and therefore does not imply the same for
the semidiscrete method by letting the time step tend to 0.

As a preparation for our analysis we express the semidiscrete problem (1.5)
in matrix form: Let {Pi}n

i=1 denote the nodes of Th in the interior of Ω, and
{Pn+i}m

i=1 those on ∂Ω, and let {Φi}n+m
i=1 ⊂ Sh be the standard basis of pyra-

mid functions defined by Φi(Pj) = δij . The mass and stiffness matrices are then
M = (mij) and S = (sij), where mij = (Φi, Φj) and sij = A(Φi, Φj), i, j = 1 : n.
To include the boundary terms, we also set B = (bij) and Z = (zij) with bij =
A(Φi, Φn+j), zij = (Φi, Φn+j), i = 1 : n, j = 1 : m. We now also introduce the vec-
tor α(t) = (α1(t), . . . , αn(t))T of nodal values of uh(t) and correspondingly g̃(t) =
(g̃n+1(t), . . . , g̃n+m(t))T , where g̃j(t) = gh(Pj , t) and ṽ = (vh(P1), . . . , vh(Pn))T .
Thus uh(t) =

∑n
i=1 αi(t)Φi +

∑m
j=1 g̃n+j(t) Φn+j, and we may hence write (1.5) as

(1.7) Mdα

dt
+ Sα = −Bg̃ −Z dg̃

dt
, for t ≥ 0, with α(0) = ṽ.
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Since the last term in (1.7) cannot be bounded by ‖gh‖∂Ω×[0,T ], it is already now
clear that the full discrete maximum principle (1.6) cannot hold.

We now introduce the discrete semigroup Eh(t) on S0
h by setting Eh(t)vh = uh(t),

where uh(t) is the solution of (1.5) with boundary data gh(t) = 0. It has been shown
by specific counterexamples (see, e.g., [6], Chapter 6) that Eh(t) does not generally
satisfy the analogue of (1.4),

(1.8) ‖Eh(t)vh‖ ≤ ‖vh‖, for t ≥ 0.

Our first goal in this paper is to show that, in fact, (1.8) cannot hold for any
triangulation Th which is “fine” enough. We continue to show that Eh(t) cannot be
positive in the sense that Eh(t)vh ≥ 0 if vh ≥ 0. Thus in neither case (1.6) can be
valid. These results will be shown in Section 2 below. For weaker maximum-norm
stability estimates than (1.8), see [6] and references therein.

We now turn to the lumped mass method, which results from replacing the mass
matrix M in (1.7) by a diagonal matrix D with diagonal elements dii =

∑n
j=1 mij

and also setting Z = 0, or

(1.9) Ddα

dt
+ Sα = −Bg̃, for t ≥ 0, with α(0) = ṽ.

This may also be written in variational form, replacing the inner product in (1.5)
by a quadrature approximation, or

(uh,t, χ)h + A(uh, χ) = 0, ∀χ ∈ S0
h, t > 0,(1.10)

with uh(t) = gh(t) on ∂Ω, for t ≥ 0, and uh(0) = vh,

where

(ψ, χ)h =
∑
τ∈Th

Qτ,h(ψ χ), Qτ,h(f) =
meas(τ )
d + 1

∑
Pj∈τ̄

f(Pj) ≈
∫

τ

f dx.

In this lumped mass case, to be discussed in Section 3 below, we shall show
that the discrete maximum principle (1.6) holds if and only if the off-diagonal
elements of the stiffness matrix S are nonpositive and if B ≤ 0, elementwise. In
one space dimension, this is always the case. In two space dimensions, with A =
−∆, this is equivalent to the condition that each edge of Th, not entirely on ∂Ω,
is of Delauney type, in the sense that the sums of the opposing angles in the
two triangles containing it are at most π. In fact, if Pi and Pj are neighbors,
i.e., if PiPj is an edge of Th, and if α and β are the angles opposite PiPj , then
(∇Φi,∇Φj) = − sin(α + β)/(4 sin α sin β) < 0, = 0, or > 0 when α + β < π, = π,
or > π, respectively; see, e.g., Strang and Fix [5, p. 78], Xu and Zikatanov [7],
Drǎgǎnescu, Dupont and Scott [1], or [6]. In [2] the condition used was that each
of these angles is ≤ π/2, and, for higher space dimensions, similar conditions of
“acute” type are used. In Xu and Zikatanov [7] sharp conditions of Delauney type
were given for S−1 to be nonpositive in any number of space dimensions.

The stationary discrete elliptic problem corresponding to (1.5) and (1.10) is

(1.11) A(wh, χ) = 0, ∀χ ∈ S0
h, with wh = gh on ∂Ω,

If A(χ, χ) is positive definite on S0
h, (1.11) has a unique solution and may be written

in matrix form, with α and g̃ the vectors of nodal values of wh and gh,

(1.12) Sα = −Bg̃, or α = −S−1Bg̃.
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The maximum principle for (1.11), or

(1.13) ‖wh‖Ω ≤ ‖gh‖∂Ω,

is now equivalent to the positivity condition α ≥ 0 for g̃ ≥ 0, and hence, by (1.12),
S−1B ≤ 0 is necessary and sufficient for (1.13).

Consider now the discrete parabolic problem (1.10) with vh = 0 at interior nodes
and gh(t) = gh = constant in time, and assume that A(χ, χ) is positive definite
on S0

h and the maximum principle holds for (1.10). The solution of (1.10) then
converges to the solution of (1.11) as t → ∞, and (1.13) thus also holds for the
discrete stationary problem. Hence S−1B ≤ 0 is a necessary condition for (1.6) in
this case.

In two dimensions and with A = −∆, by the results already mentioned, under
Delauney conditions on Th, we have S−1 ≥ 0 and B ≤ 0 and hence (1.13) holds.
In Ruas Santos [4] examples were given of triangulations of non-Delauney type, for
which the elliptic maximum principle still holds. In R3, Korotov, Kř́ıžek, and Neit-
taanmäki [3] showed an elliptic maximum principle for tetrahedral decompositions
of nonacute type. (For certain convection dominated elliptic cases, cf. [7] and ref-
erences therein.) Thus the parabolic maximum principle demands more stringent
conditions than (1.13). In Section 3 we also discuss conditions for contractivity and
positivity of the solution operator Ēh(t) on S0

h.

2. The standard Galerkin method

In this section we shall show that, in general, a maximum principle cannot hold
for the semidiscrete standard Galerkin method (1.5). We shall show that, in fact,
the discrete solution operator Eh(t) on S0

h, thus with gh(t) = 0, is, in general,
neither contractive nor positive. For our analysis, we define a node Pi of Th to be
strictly interior if all its neighbors are interior, and a near-boundary node if it is
interior but not strictly interior. We set σi = supp (Φi).

Theorem 2.1. Assume that div b = 0 and that Th is such that each near-boundary
node has a strictly interior neighbor. Then Eh(t) cannot be a contraction.

The condition div b = 0 is superfluous if for each near-boundary node Pj and an
associated strictly interior neighbor Pi, we have meas (σj ∩ σi) ≥ c meas (σi) with
c > 0 and if h is sufficiently small.

Proof. Setting t = 0 in (1.7), with g̃ = 0 and α(0) = 1 = (1, 1, . . . , 1)T , we have

(2.1) Mβ = −γ = −S1, where β = α′(0).

If Eh(t) were a contraction, then we would have β ≤ 0 elementwise, and hence
γ ≥ 0, and we shall show that this is not possible under the assumptions of the
theorem. Let wh =

∑n
j=1 Φj ∈ Sh correspond to the vector 1 above.

We assume first that div b = 0. In this case we have for the element γi of γ,
corresponding to a strictly interior node Pi, using integration by parts,

(2.2) γi =
n∑

j=1

sij = A(Φi, wh) = (b · ∇Φi, wh) = −(div b Φi, wh) = 0,

since wh = 1 on σi. Hence
∑n

j=1 mijβj = 0 for β as in (2.1). Here mij ≥ 0, with
mij > 0 if and only if j = i or if Pj is a neighbor of Pi, and if β ≤ 0, then βj = 0
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for the corresponding j. Thus by the assumption on Th we have β = 0 and hence
γ = 0. But γ cannot be zero since

(2.3) γ · 1 = S 1 · 1 = A(wh, wh) = A0(wh, wh) − 1
2

(
div b wh, wh

)
> 0.

We now turn to the case of a general b and assume again that β ≤ 0. For
Pi a strictly interior node we now have, by (2.1) and (2.2), that mii|βi| ≤ γi ≤
Cmeas(σi). Since mii ≥ c meas(σi), with c > 0, it follows that |βi| ≤ C for a
positive constant C. If Pj is a near-boundary node, let Pi be a strictly interior
neighboring node. Then mij |βj | ≤

∑n
l=1 mil|βl| = γi ≤ Cmeas(σi), and, since, by

assumption, mij = (Φi, Φj) ≥ c meas(σi ∩ σj) ≥ c meas(σi), we conclude also now
that |βj | ≤ C. Thus, for all interior nodes Pi, γi ≤ C

∑n
j=1 mij ≤ Cmeas(σi), and

hence γ · 1 ≤ C. But, by the first part of (2.3),

γ · 1 = S1 · 1 ≥ c‖∇wh‖2
L2

− C.

Here ∇wh = 0 on all interior simplices τ ∈ Th, so that only boundary simplices
contribute to the first term on the right. For a boundary simplex τ , which has a full
(d− 1)-dimensional face Fτ on ∂Ω, we have, with dτ the distance from the interior
vertex of τ to the hyperplane containing Fτ , and with |Fτ | the (d− 1)-dimensional
measure of Fτ ,

‖∇wh‖2
L2(τ) ≥ d−2

τ meas(τ ) ≥ cd−1
τ |Fτ | ≥ ch−1 |Fτ |, with c > 0.

Hence after summation over these τ , since
⋃

τ Fτ = ∂Ω, we conclude that γ · 1 ≥
ch−1 − C. For small h this contradicts the boundedness of γ · 1. �

We note that, in one space dimension, the first assumption about Th holds if
there are at least three interior nodes, and when d = 2, the second assumption is
satisfied when the triangulation is fine enough, and the angles in the triangles of⋃

i σi are bounded below where the union is taken over all i such that Pi is a strictly
interior neighbor of a near-boundary node. To see that some condition on Th is
needed, we consider the case when there is only one interior node P1 and div b = 0.
The system (1.7) then reduces to the scalar equation

‖Φ1‖2
L2

α′
1 + A0(Φ1, Φ1)α1 = 0, for t ≥ 0, α1(0) = ṽ = (vh, Φ1).

The solution is then the exponentially decreasing function uh(t) = exp(−tλ)ṽ, with
λ = A0(Φ1, Φ1)/‖Φ1‖2

L2
> 0, and the solution operator is a contraction.

Theorem 2.2. Assume that div b ≤ 0 and that Th is such that there exists a strictly
interior node, P1 say, such that any neighbor of P1 has an interior neighbor which
is not a neighbor of P1. Then Eh(t) cannot be a positive operator.

The condition div b ≤ 0 is not needed if h is sufficiently small.

Proof. If Eh(t) is a positive operator, then, by (1.7) with g̃ = 0, we have that E(t) =
e−Kt ≥ 0, elementwise, where K = (kij) = M−1S. Since E(t) = I − Kt + O(t2) as
t → 0, we see that then all off-diagonal elements of K are nonpositive. We shall
show that this is impossible.

Let Pi be any interior node 
= P1 which is not a neighbor of P1. Since MK = S
and since mi1 = si1 = 0, we have

∑
j �=1 mijkj1 = 0. Hence kj1 = 0 when mij > 0,

i.e., when j = i and when j is such that Pj is a neighbor of Pi. By our assumption
about Th this shows that actually kj1 = 0 for all j 
= 1; this is also true when Pj and
P1 are neighbors. Thus the first column of K only contains one possible nonzero
element, namely k11.
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For the stiffness matrix S we have
∑n

j=1 sj1 = A(1, Φ1) = 0 while, if div b ≤ 0,

s11 = A0(Φ1, Φ1) − 1
2

(
div b Φ1, Φ1

)
> 0.

In the case of a general b, we have s11 ≥ (ch−2 − C)meas (σ1), with c > 0, and
hence s11 > 0 for h small. Thus, in either case, the first column of S has elements of
different signs whereas this is not the case for M, in contradiction to MK = S. �

This time we remark that our assumption about Th is satisfied in one dimension
if there are five or more interior nodes. For the example following Theorem 2.1
above, with only one interior node, Eh(t) is also a positive operator, which shows
that some condition on Th is needed in Theorem 2.2.

3. The lumped mass method

In this section we consider the lumped mass method and give necessary and
sufficient conditions for the maximum principle to hold and also for the contractivity
and positivity of the operator Ēh(t) on S0

h.

Theorem 3.1. The maximum principle (1.6) holds for the semidiscrete parabolic
lumped mass problem (1.10) if and only if the off-diagonal elements of S and all
elements of B are nonpositive.

Proof. With the notation in the introduction we have, from (1.9),

(3.1) α(t) = Ē(t)α(0) −
∫ t

0

Ē(t − s)D−1B g̃(t) ds, with Ē(t) = e−Ht, H = D−1S.

As in (1.3) for the continuous case, the maximum principle (1.6) is equivalent to

α(t) ≥ 0 for t ≥ 0 if α(0) ≥ 0 and g̃(t) ≥ 0 for t ≥ 0.

Thus, if (1.6) holds, it follows from (3.1), with g̃(t) = 0, that Ē(t) ≥ 0. Since

(3.2) Ē(t) = I − tH + O(t2), as t → 0,

all off-diagonal elements of H must then be nonpositive, and since D is diagonal
with positive elements, the off-diagonal elements of S = DH are also nonpositive.
Setting α(0) = 0 and g̃(t) ≥ 0 in (3.1), we now find that it is also necessary that
B ≤ 0.

Conversely, if the off-diagonal elements of S are nonpositive, this holds also for
H. Writing H = P − Q where P is diagonal and Q ≥ 0, and setting J = I + kP,
we have, for k small,

(I + kH)−1 = (J − kQ)−1 = (I − kJ−1Q)−1J−1 =
∞∑

l=0

kl(J−1Q)lJ−1 ≥ 0.

Since

(3.3) Ē(t) = lim
n→∞

(
I +

t

n
H

)−n

,

this shows Ē(t) ≥ 0. If also B ≤ 0, it follows that Ē(t − s)D−1B ≤ 0. Hence, if
α(0) ≥ 0 and g̃(t) ≥ 0 for t ≥ 0, we obtain by (3.1) that α(t) ≥ 0 for t ≥ 0, which
shows our claim. �
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We note that the condition of the theorem may also be expressed as

(3.4) A(Φi, Φj) ≤ 0 for i = 1 : n, j = 1 : n + m, i 
= j.

As already remarked, in two dimensions and with A = −∆, this condition is equiv-
alent to the triangulation being of Delauney type. When A = −∆ + b · ∇, (3.4)
holds for h sufficiently small if the triangulation is strictly Delauney in the sense
that α+β ≤ γ0 < π, for all angles α, β associated with the edges of Th, not on ∂Ω.

When div b = 0, the condition (3.4) implies that S is diagonally dominant,
or

∑
j �=i |sij | ≤ sii for i = 1 : n. In fact, since

∑n+m
j=1 Φj = 1 in Ω, we have∑n+m

j=1 A(Φi, Φj) = A(Φi, 1) = 0, so that
∑n

j=1 sij = −
∑m

j=1 A(Φi, Φn+j) ≥ 0, with
equality when Pi is strictly interior (and thus not a neighbor of the Pn+j). Hence∑

j �=i |sij | = −
∑

j �=i sij ≤ sii, with equality if Pi is strictly interior. We also note
that at a strictly interior node Pi, if div b = 0, the diagonal dominance in the ith row
is equivalent to sij ≤ 0 for j 
= i. This follows from

∑
j �=i |sij | ≤ sii = −

∑
j �=i sij .

Note that the row sums of S corresponding to stictly interior nodes Pi are always
zero and that for all these rows to be diagonally dominant, it is thus necessary and
sufficient that sij ≤ 0 for j 
= i.

We shall now give necessary and sufficient conditions for the solution operator
Ēh(t) with homogeneous boundary conditions to be contractive. In view of the
above discussion, in the case div b = 0, these conditions are essentially concerned
with the properties of the rows corresponding to near-boundary nodes.

Theorem 3.2. The semigroup Ēh(t) on S0
h is a contraction if and only if S is

diagonally dominant.

Proof. If Ēh(t) is a contraction, so is the matrix Ē(t) in (3.1) with respect to the
vector maximum-norm | · |∞. Since Ē(t) = I − Ht + O(t2) as t → 0, we have
|Ē(t)|∞ = max(1 − thii + t

∑
j �=i |hij |) + O(t2). For this norm to be bounded by

1, we find at once by taking t small that it is necessary that
∑

j �=i |hij | ≤ hii for
i = 1 : n, so that H is diagonally dominant. Since D is a positive diagonal matrix,
S = DH is then also diagonally dominant.

Conversely, if we know that S, and hence also H = D−1S, is diagonally dominant,
it is easy to see that

(3.5) |(I + kH)−1|∞ ≤ 1, for k > 0.

In fact, set w = (I + kH)−1v and let |wj | = |w|∞. Then

(1 + khjj)|wj | = |vj − k
∑
l �=j

hjlwl| ≤ |v|∞ + khjj |w|∞,

from which |w|∞ ≤ |v|∞, which shows (3.5). By (3.3) this implies |Ē(t)|∞ ≤ 1, for
t ≥ 0, so that Ēh(t) is a contraction. �

We now express the corresponding result for the positivity of Ēh(t).

Theorem 3.3. The semigroup Ēh(t) is positive if and only if sij ≤ 0 for j 
= i.

Proof. This time the positivity of Ē(t), together with (3.2), shows at once that the
off-diagonal elements H are nonpositive. Since S = DH, this shows the only if part
of the theorem.

Conversely, if the off-diagonal elements of H are nonpositive, one finds as in the
last part of the proof of Theorem 3.1 that Ē(t) ≥ 0. �



18 V. THOMÉE AND L.B. WAHLBIN

We next give two examples of two-dimensional triangulations for A = −∆ to
show that neither of the conditions in Theorems 3.2 and 3.3 implies the other.

Example 3.1. The first example is a triangulation which gives a diagonally dom-
inant stiffness matrix S but which has some sij > 0, j 
= i.

Let Ω = (0, 1) × (0, 1) and start with a uniform partition into axes parallel
squares, divided into triangles by their diagonals, from the lower left to the upper
right hand corners. Let B0, B1, B2 be three neighboring nodes on the interior of
the horizontal lower boundary, N1, N2 the neighbors above B1, B2, and, in turn,
Q1, Q2 their neighbors above. In the rectangle N1N2Q2Q1, change the original
triangulation by erasing the edge N1Q2 and inserting an interior node P0 connected
to N1, N2, Q1 and Q2 such that the edge N1N2 becomes non-Delauney, while the
rest of the edges are all Delauney. Then all rows of the modified S except those
corresponding to N1 and N2 are diagonally dominant. For these we have (with a
slight abuse of notation), noting that A(ΦN1 , ΦB0) = A(ΦN2 , ΦB1) = 0,

sNlNl
+ sN1N2 +

∑
j

sNlPj
+ A(ΦNl

, ΦBl
) ≡ al + b − cl − d = 0, l = 1, 2,

where the summations are taken over the interior nodes Pj different from Nl, includ-
ing the new node P0. Here al > 0 and cl ≥ 0 since NlPj are Delauney. Furthermore,
b = sN1N2 = sN2N1 > 0 since N1N2 is non-Delauney, and d = −A(ΦN1 , ΦB1) =
−A(ΦN2 , ΦB2) > 0. The condition of diagonal dominance for S is that b + cl ≤ al

for l = 1, 2, and this holds if d ≥ 2b, which is satisfied for a suitable choice of P0.

Example 3.2. The second example is a triangulation which gives a stiffness matrix
S with sij ≤ 0 for all j 
= i but which is not diagonally dominant.

We choose two points B1, B2 on a straight portion of ∂Ω, and we let N be an
interior point of Ω, so that NB1B2 is an equilateral triangle. By erecting suitable
obtuse triangles Q1NB1 and Q2NB2 outside the triangle NB1B2, we can arrange
that the edges NB1 and NB2 are non-Delauney. We complete the triangulation so
that the rest of the edges are Delauney. Since all interior edges are Delauney, we
have sij ≤ 0 for i 
= j. We consider now the row corresponding to N in S. We have

sNN +
∑

j

sNPj
+

(
A(ΦN , ΦB1) + A(ΦN , ΦB2)

)
≡ a − c + d = 0,

where the summation is over interior nodes Pj 
= N . This row is not diagonally
dominant since, by construction, d > 0, which implies a < c, or sNN <

∑
j |sNPj

|.
We finally remark that, for any given fixed triangulation Th, and given aij , it is

possible to have a b such that the semigroup Ēh(t) on S0
h cannot be contractive in

maximum-norm. For, with uh(t) = Ēh(t)vh, we have

(3.6) 1
2

d

dt
‖uh‖2

h = −A0(uh, uh) + 1
2 (div b uh, uh), where ‖ · ‖h = (·, ·)1/2

h .

Since S0
h is finite dimensional, and hence all norms on it are equivalent, we can

choose div b large enough for the right hand side in (3.6) to be bounded below by
c ‖uh‖2

h, and hence such that ‖uh(t)‖h → ∞, and thus also ‖uh(t)‖ → ∞ as t → ∞.
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