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A REGULARIZED PROJECTION METHOD
FOR COMPLEMENTARITY PROBLEMS
WITH NON-LIPSCHITZIAN FUNCTIONS

GOETZ ALEFELD AND XIAOJUN CHEN

Abstract. We consider complementarity problems involving functions which
are not Lipschitz continuous at the origin. Such problems arise from the nu-
merical solution for differential equations with non-Lipschitzian continuity, e.g.
reaction and diffusion problems. We propose a regularized projection method
to find an approximate solution with an estimation of the error for the non-
Lipschitzian complementarity problems. We prove that the projection method
globally and linearly converges to a solution of a regularized problem with
any regularization parameter. Moreover, we give error bounds for a computed
solution of the non-Lipschitzian problem. Numerical examples are presented
to demonstrate the efficiency of the method and error bounds.

1. Introduction

Let F : Rn → Rn be defined by

F (x) = Mx + φ(x),

where M is an n × n matrix and φ : Rn → Rn is a monotonically increasing and
continuous diagonal function, but not Lipschitz continuous at the origin. A function
g : Rn → Rn is called a monotonically increasing diagonal function if gi(x) = gi(xi),
and

(gi(xi) − gi(yi))(xi − yi) ≥ 0, i = 1, 2, . . . , n.

A function g : Rn → Rn is said to be Lipschitz continuous at x if there exist an
open set D ⊂ Rn, x ∈ D, and a constant κ such that for all y ∈ D

‖g(x) − g(y)‖ ≤ κ‖x − y‖.

See [5]. In this paper, we consider the nonlinear complementarity problem

(1.1) x ≥ 0, F (x) ≥ 0, xT F (x) = 0,

and denote it by NCP(F ). Such a non-Lipschitzian NCP arises from various ap-
plications. For instance, reaction and diffusion problems which can be modelled as
free boundary problems.
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Example 1.1 ([2]). Let Ω be a bounded open set in R2 with Lipschitz boundary
∂Ω. Given two positive numbers λ and p ∈ (0, 1), consider the free boundary
problem

−�u + λup = 0 in Ω+,

u = 0 in Ω0,

u = |∇u| = 0 on Γ,

u = 1 on ∂Ω

where Ω+ = {z ∈ Ω |u(z) > 0}, Ω0 = {z ∈ Ω |u(z) = 0}, and Γ = ∂Ω0 =
∂Ω+ ∩ Ω are unknown. Using finite element approximation or finite difference
approximation, we obtain a nonlinear complementarity problem with F (x) = Mx+
φ(x), where

φ(x) = E max(0, xp) + q.

Here E is an n × n diagonal matrix with positive diagonals and q is a vector in
Rn. The function φ is a monotonically increasing diagonal function. However, since
p ∈ (0, 1), φ is not differentiable at the origin, and φ′

i(xi) → ∞ as xi ↓ 0.

The NCP(F ) can be reformulated as a system of nonsmooth equations

(1.2) H(x) := min(x, F (x)) = 0.

A number of algorithms for solving NCP have been developed based on the refor-
mulation (1.2). See [6]. However, most algorithms require the involved function F
to be Lipschitz continuous. For instance, smoothing Newton-methods, semismooth
Newton-methods and generalized Jacobian methods assume that F is continuously
differentiable in order to use the generalized Jacobian of H. The Rademacher
theorem states that a locally Lipschitzian function in Rn is almost everywhere dif-
ferentiable. If F is continuously differentiable in Rn, then H is locally Lipschitz
continuous in Rn. By the Rademacher theorem, the Clarke generalized Jacobian
of H can be defined by

∂H(x) = co{ lim
xk→x

xk∈DH

H(xk)},

where DH denotes the set of points at which H is differentiable and co denotes
the convex hull. On the other hand, some numerical methods for nonlinear comple-
mentarity problems have nice global convergence properties for F being a monotone
function [6, 11], that is, (F (x) − F (y))T (x − y) ≥ 0, for x, y ∈ Rn.

Without Lipschitzian continuity and monotonicity, it seems hard to find an ex-
isting efficient method for solving the NCP(F ). In this paper, we propose a reg-
ularized splitting method for solving the NCP(F ) without assuming Lipschitzian
continuity and monotonicity. Moreover, we give error bounds to verify accuracy
of a computed solution of the NCP(F ). In Section 2, for a given ε > 0, we define
a regularization NCP which has a unique solution whose every element is not less
than ε. We prove that the sequence of the solutions of regularization problems with
εk converges to the solution of the NCP(F ) as εk → 0. In Section 3, we give error
bounds for the non-Lipschtzian NCP(F ) and its regularization problems with M
being a P-matrix. In Section 4, based on the error bounds, we present a projec-
tion method for solving the regularization problem which includes the Jacobi-type
method, Gauss-Seidel-type method and SOR-type method as special cases. We
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prove that the projection method is globally and linearly convergent if M is an
H-matrix with positive diagonals.

We list some definitions and notation used in this paper.
An n×n matrix A = (aij) is called a P-matrix (P0-matrix) if all principal minors

of A are positive (nonnegative).
A is called an R0-matrix, if the linear complementarity problem x ≥ 0, Ax ≥

0, xT (Ax) = 0 has the zero vector as its unique solution.
A is called an M-matrix, if A−1 ≥ 0 and aij ≤ 0 (i �= j) for i, j = 1, 2, . . . , n.
A is called an H-matrix, if its comparison matrix Ã = (ãij) is an M-matrix,

where

ãij =
{

|aij |, i = j,
−|aij |, i �= j, i, j = 1, 2, . . . , n.

A function F : Rn → Rn is called a uniformly P-function, if there is a constant
γ > 0 such that

max
1≤i≤n

(xi − yi)(Fi(x) − Fi(y)) ≥ γ‖x − y‖2
2.

A diagonal matrix W whose diagonal elements are defined by a vector w =
(w1, . . . , wn)T is written as W =diag(wi). Let [a] denote an interval vector (matrix),
and a and a denote the lower bound and upper bound of [a], respectively, that is,
[a] = {x | a ≤ x ≤ a}. For given two vectors u, v(u ≤ v) the mid function is defined
by

mid(u, v, y)i =

⎧⎨
⎩

vi, vi < yi,
yi, ui ≤ yi ≤ vi,
ui. ui > yi.

For a given interval vector [a], Π[a](·) := mid (a, a, ·) is the Euclidean projector Π
onto the interval [a]. The nonnegative orthant is denoted by Rn

+. The max function
max(0,·) is the Euclidean projector ΠRn

+
(·) onto Rn

+.

2. Regularization method

We consider a system of regularization equations of (1.2),

(2.1) Hε(x) = min(x, Mx + φ(x)) − εe = 0,

where ε is a positive number and e is the n-dimensional vector whose elements are
all 1.

Lemma 2.1. Assume that M is a P-matrix and φ is a monotonically increasing
diagonal function. Then for any ε ≥ 0, the system of regularization equations (2.1)
has a unique solution.

Proof. It is easy to see that (2.1) can be rewritten as

Hε(x) = min(x − εe, Mx + φ(x) − εe) = 0.

Let y = x − εe. Then we can write (2.1) as an NCP in the following form:

min(y, My + ε(M − I)e + φ(y + εe)) = 0.

Let us define
Fε(y) = My + ε(M − I)e + φ(y + εe).

Then for any u, v ∈ Rn, we have

Fε(u) − Fε(v) = M(u − v) + φ(u + εe) − φ(v + εe).
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Since M is a P-matrix, we have

c(M) := min
‖x‖∞=1

{ max
1≤i≤n

xi(Mx)i} > 0.

See [4]. Therefore, from φ being monotonically increasing, we obtain, for any
u, v ∈ Rn,

max
1≤i≤n

(ui − vi)(Fε(u) − Fε(v))i

= max
1≤i≤n

{(ui − vi)(M(u − v))i + (ui − vi)(φ(u + εe) − φ(v + εe))i}

≥ max
1≤i≤n

(ui − vi)(M(u − v))i

≥ c(M)‖u − v‖2
∞

≥ c(M)
n

‖u − v‖2
2.

This implies that Fε is a uniformly P-function. By Proposition 3.5.10 in [6], the
NCF(Fε) has a unique solution, and hence the system of regularization equations
(2.1) has a unique solution. �

Let {εk} be a sequence of positive numbers, which satisfies

εk ≥ εk+1, k = 0, 1, . . . , and lim
k→∞

εk = 0.

Let xk be the solution of Hεk
(x) = 0. In the rest of this section, we study the

convergence of the solution sequence {xk}.
Let us denote the level set of the function H(x) by

S(µ) = {x ∈ Rn | ‖H(x)‖ ≤ µ}

where µ ≥ 0.

Theorem 2.1. Assume that M is a P-matrix and φ is a monotonically increasing
and continuous diagonal function. Then the sequence {xk} converges to the unique
solution of H(x) = 0.

Proof. Following the proof of Lemma 2.1, we can show that Mx+φ(x) is a uniformly
P-function. Therefore, by Proposition 9.1.27 in [6], the level set S(µ) is bounded
for every µ ≥ 0.

Since Hεk
(xk) = 0 implies that

‖H(xk)‖ = εk‖e‖ ≤ ε0‖e‖,

we deduce {xk} ⊂ S(ε0‖e‖), and thus {xk} is bounded.
Let x̄ be an accumulation point of {xk}. From the equality

H(xk) = H(xk) − Hεk
(xk) = εke,

and by the continuity of H, we find that for a subsequence, which we denote again
by {xk},

‖H(x̄)‖ = lim
k→∞

‖H(xk)‖ = lim
k→∞

εk‖e‖ = 0.

Hence x̄ is a solution x∗ of H(x) = 0. Since x∗ is the unique solution of H(x) = 0,
we deduce that the sequence {xk} converges to x∗. �
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Theorem 2.2. Assume that M is a P0-matrix and φ is a monotonically increasing
and continuous diagonal function. Assume there are positive constants Γ and γ
such that for xi ≥ Γ,

(2.2)
φi(xi) − φi(0)

xi
≥ γ, i = 1, 2, . . . , n.

If (2.1) with small εk > 0 has a solution xk, then the sequence {xk} is bounded,
and any accumulation point of {xk} is a solution of H(x) = 0.

Proof. First we show that the sequence {xk} is bounded. Note that Hεk
(xk) = 0

implies that
xk ≥ εke and Mxk + φ(xk) ≥ εke.

The sequences {xk} and {Mxk + φ(xk)} are bounded below.
Assume that there is an i such that xk

i → ∞. Let

J = {i | xk
i → ∞}

and

vk =
xk

‖xk‖ .

Since {vk} is bounded, there is a convergent subsequence of {vk}. By working with
an appropriate subsequence of {vk} if necessary, we may assume without loss of
generality that

lim
k→∞

vk = v̄ ≥ 0 and ‖v̄‖ = 1.

Now we show that there is a matrix N ∈ Rn×n such that

(2.3) lim
k→∞

min(
xk

‖xk‖ , M
xk

‖xk‖ +
φ(xk)
‖xk‖ ) = min(v̄, Mv̄ + Nv̄) = 0.

Obviously, we have

lim
k→∞

M
xk

‖xk‖ = Mv̄.

To prove (2.3), we only need to consider the limit of
φ(xk)
‖xk‖ . First we observe that

the limit of
φ(xk)
‖xk‖ exists, since for all i ∈ J

(Mxk + φ(xk))i = εk, for large k,

which implies

(2.4) lim
k→∞

φi(xk
i )

‖xk‖ = lim
k→∞

(
εk

‖xk‖ − (M
xk

‖xk‖ )i

)
= −(Mv̄)i.

By the assumption (2.2), for large k, we have

φi(xk
i ) − φi(0)

xk
i

≥ γ, for i ∈ J .

Let
J1 = {i | v̄i > 0}.
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It is easy to see that J1 is a nonempty subset of J , since ‖v̄‖ = 1. Moreover, for
i ∈ J1, by (2.4) and

lim
k→∞

φi(xk
i )

‖xk‖ = lim
k→∞

(
φi(xk

i ) − φi(0)
xk

i

· xk
i

‖xk‖ +
φi(0)
xk

i

· xk
i

‖xk‖

)

= lim
k→∞

φi(xk
i ) − φi(0)

xk
i

· xk
i

‖xk‖

we find

lim
k→∞

φi(xk
i ) − φi(0)

xk
i

= − (Mv̄)i

v̄i
=: αi ≥ γ.

Therefore, for i ∈ J1, we have

lim
k→∞

φi(xk
i )

‖xk‖ = αiv̄i.

For i �∈ J , {xk
i } is bounded. Since φi(xi) is monotonically increasing and continu-

ous, {φi(xk
i )} is also bounded, and hence

lim
k→∞

φi(xk
i )

‖xk‖ = 0.

Therefore, we can define the i-th row of the matrix N as follows:

nT
i =

⎧⎨
⎩

αie
T
i , i ∈ J1,

−mT
i , i ∈ J /J1,

0eT
i , otherwise,

i = 1, 2, . . . , n,

where eT
i is the i-th row of the identity matrix and mT

i is the i-th row of M . Note
that (2.3) implies that v̄ is a solution of the linear complementarity problem

(2.5) x ≥ 0, (M + N)x ≥ 0, xT (M + N)x = 0.

Let (M + N)J1,J1 and NJ1,J1 be the submatrices of M + N and N with rows and
columns indexed by J1, respectively. Let v̄J1 be the subvector of v̄ with components
indexed by J1. Note that for i �∈ J1, v̄i = 0. Hence (2.5) implies that v̄J1 is a
solution of

(2.6) xJ1 ≥ 0, (M + N)J1,J1xJ1 ≥ 0, xT
J1

(M + N)J1,J1xJ1 = 0.

Since M is a P0-matrix and NJ1,J1 is a positive diagonal matrix, (M + N)J1,J1 is a
P-matrix, and thus (2.6) has the zero vector as its unique solution. This contradicts
to ‖v̄J1‖ = 1. Therefore the sequence {xk} is bounded.

Let x̄ be an accumulation point of {xk}. From

Hεk
(xk) − H(xk) = −εke = −H(xk)

and by the continuity of H, we have for a subsequence, which we denote again by
{xk},

‖H(x̄)‖ = lim
k→∞

‖H(xk)‖ = lim
k→∞

εk‖e‖ = 0.

Hence x̄ is a solution x∗ of H(x) = 0. �
Example 2.1. Consider n = 1, M = 0, and φ(x) =

∏
[0,

√
α ](

√
x) + max(β, x),

where 0 < α < β. Assumptions of Theorem 2.2 hold for this example. However,
F (x) = Mx + φ(x) is not a uniformly P-function, since for any x, y ∈ [α, β],
(x − y)(F (x) − F (y)) = 0.
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From the proof of Theorem 2.2, we can immediately get the following corollary.

Corollary 2.1. Assume that M is an R0-matrix and

(2.7) lim
xi→∞

φi(xi) − φi(0)
xi

= 0, i = 1, 2, . . . , n.

If (2.1) with εk has a solution xk, then the sequence {xk} is bounded, and any
accumulation point of {xk} is a solution of H(x) = 0.

3. Error bounds

In practical applications, it is very important to know the accuracy of a computed
solution. Error bounds and numerical verification methods for complementarity
problems have been studied in [1, 3, 9, 10]. In this section, we give error bounds
for the NCP(F ) and its regularization problems. The error bounds are based on
the observation [3] that for every x, y, u, v ∈ Rn,

(3.1) min(xi, yi)−min(ui, vi) = (1−wi)(xi −ui)+wi(yi −vi), i = 1, 2, . . . , n,

where

wi =

⎧⎪⎪⎨
⎪⎪⎩

0 if yi ≥ xi, vi ≥ ui,
1 if yi ≤ xi, vi ≤ ui,
min(xi, yi) − min(ui, vi) + ui − xi

yi − vi + ui − xi
otherwise.

Moreover, we have wi ∈ [0, 1]. Hence putting y = Mx + φ(x) and v = Mu + φ(u)
in (3.1), we obtain the following lemma.

Lemma 3.1. For any x, u ∈ Rn, there is a diagonal matrix W=diag(wi) with
wi ∈ [0, 1] such that

(3.2) H(x) − H(u) = (I − W + WM)(x − u) + W (φ(x) − φ(u)).

We say that the NCP(F ) satisfies the strictly complementarity condition at a
solution x∗ of (1.1) if

x∗ + F (x∗) > 0.

Theorem 3.1. Assume that M is a P-matrix and φ is a monotonically increasing
and continuous diagonal function. Suppose that the strictly complementarity con-
dition holds at the solution x∗ of ( 1.1), and for any µ > 0, there is γµ > 0 such
that for x ∈ S(ε0‖e‖), xi ≥ µ, xi �= x∗

i , it holds that

(3.3)
φi(xi) − φi(x∗

i )
xi − x∗

i

≤ γµ.

Let xk again denote the solution of Hεk
(x) = 0. Then there is a c > 0 such that

(3.4) ‖xk − x∗‖ ≤ c‖H(xk)‖.
Proof. We observe that {xk} ⊂ S(ε0‖e‖), since H(xk) = εke and εk ≤ ε0.

Let us denote

J = {i |x∗
i > 0} and K = {i |x∗

i = 0}.
By the assumption of the strictly complementarity condition, J ∩K = ∅. Moreover,
by the continuity of H, there are a neighbourhood B of x∗ and a positive constant
α such that for all x ∈ B

xi < α, (Mx + φ(x))i ≥ α, i ∈ K,
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and
(Mx + φ(x))i < α, xi ≥ α, i ∈ J .

By Theorem 2.1, there is a positive integer k0 > 0 such that for all k ≥ k0, we
have εk < α and xk ∈ B. This implies that for k ≥ k0,

xk
i > (Mxk + φ(xk))i, i ∈ J ,

and
xk

i < (Mxk + φ(xk))i, i ∈ K.

Therefore, we deduce

Hi(xk) − Hi(x∗) = xk
i − x∗

i , i ∈ K,

Hi(xk) − Hi(x∗) = (M(xk − x∗))i +
φi(xk

i ) − φi(x∗
i )

xk
i − x∗

i

(xk
i − x∗

i ), i ∈ J , xk
i �= x∗

i ,

and
Hi(xk) − Hi(x∗) = (M(xk − x∗))i, i ∈ J , xk

i = x∗
i .

Note that assumption (3.3) implies that for k ≥ k0 and i ∈ J , xk
i �= x∗

i , there is a
γα such that

0 ≤ φi(xk
i ) − φi(x∗

i )
xk

i − x∗
i

≤ γα.

Therefore, for k ≥ k0, we have

H(xk) − H(x∗) = (I − D∗ + D∗(M + T k))(xk − x∗),

where D∗ =diag(d∗i ) and T k =diag(tki ) with

d∗i =
{

1, i ∈ J ,
0, i ∈ K

and

tki =

⎧⎨
⎩

φi(xk
i ) − φi(x∗

i )
xk

i − x∗
i

, i ∈ J , xk
i �= x∗

i ,

0 otherwise.

Since M is a P-matrix and T k is a nonnegative diagonal matrix, the matrix
M + T k is a P-matrix. It is known that a matrix A is a P-matrix if and only if
I −W +WA is nonsingular for any diagonal matrix W with 0 ≤ wi ≤ 1 [7]. Hence,
for all k ≥ k0, the matrix I − D∗ + D∗(M + T k) is nonsingular. Moreover by the
continuity of the norm with respect to the elements of the matrix, there is a c1 > 0
such that for k ≥ k0,

‖xk − x∗‖ ≤ max
tk∈[0,γα]n

‖(I − D∗ + D∗(M + T k))−1‖‖H(xk)‖ ≤ c1‖H(xk)‖.

Now we consider k ≤ k0. Since εk ≥ εk0 for k ≤ k0, we have xk ≥ εk0e for
k ≤ k0. Let Sk =diag(sk

i ) with

sk
i =

⎧⎨
⎩

φi(xk
i ) − φi(x∗

i )
xk

i − x∗
i

, xk
i �= x∗

i ,

0 otherwise.

By the assumption of this theorem, we have sk
i ∈ [0, γεk0

]. Using (3.2), for k ≤ k0,
we can write

H(xk) − H(x∗) = (I − W k + W k(M + Sk))(xk − x∗),

where W k =diag(wk
i ) with wk

i ∈ [0, 1].
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Note that M and M + Sk are P-matrices. We find

‖xk−x∗‖ ≤ max
sk∈[0,γεk0

]n
max

wk∈[0,1]n
‖(I−W k+W k(M +Sk))−1‖‖H(xk)‖ ≤ c2‖H(xk)‖,

where sk = (sk
i ). Let c = max(c1, c2). We obtain the estimate (3.4). �

It is known that an H-matrix with positive diagonals is a P-matrix. In the
following, we give a computable error bound of a nonnegative approximate solution
of (2.1) for M being an H-matrix with positive diagonals.

Lemma 3.2 ([3]). Suppose that A is an H-matrix with positive diagonals. Then
for any diagonal matrix W =diag(wi) with wi ∈ [0, 1] the matrix I − W + WA is
an H-matrix with positive diagonal elements and

|(I − W + WA)−1| ≤ Ã−1 max(∆, I),

where Ã is the comparison matrix of A and ∆ is the diagonal part of A.

Theorem 3.2. Suppose that M is an H-matrix with positive diagonals. Then for
any x ≥ 0, and εk ≥ 0, we have

|x − xk| ≤ M̃−1 max(D, I)|Hεk
(x)|,

where D is the diagonal part of M and M̃ is the comparison matrix of M and we
set Hεk

(x) = H(x) if εk = 0.

Proof. For a fixed x, let V k =diag(vk
i ) with

vk
i :=

⎧⎨
⎩

φi(xi) − φi(xk)
xi − xk

i

, xi �= xk
i ,

0 otherwise.

By Lemma 3.1 and the definition of V k, there is a diagonal matrix W k=diag(wk
i )

with wk
i ∈ [0, 1] such that

Hεk
(x) = Hεk

(x)− Hεk
(xk) = H(x)− H(xk) = (I − W k + W k(M + V k))(x− xk).

Since φ is monotonically increasing, vk
i ≥ 0 for i = 1, 2, . . . , n. This implies M +V k

is an H-matrix with positive diagonals. Hence, I − W k + W k(M + V k) is also an
H-matrix with positive diagonals, and

|x − xk| ≤ |(I − W k + W k(M + V k))−1||Hεk
(x)|.

By Lemma 3.2, we deduce that

|x − xk| ≤ (M̃ + V k)−1 max(D + V k, I)|Hεk
(x)|.

Let |B| = D − M̃ . Then we have

(M̃ + V k)−1 = (I − (D + V k)−1|B|)−1(D + V k)−1.

Since 0 ≤ (D + V k)−1|B| ≤ D−1|B|, the spectral radius ρ((D + V k)−1|B|) ≤
ρ(D−1|B|) < 1. See [12]. Hence we can estimate the inverse of I − (D + V k)−1|B|
as follows:

(I − (D + V k)−1|B|)−1 = I + (D + V k)−1|B| + ((D + V k)−1|B|)2 + . . .

≤ I + D−1|B| + (D−1|B|)2 + . . .

= (I − D−1|B|)−1.
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Therefore, we have

(M̃ + V k)−1 max(D + V k, I) = (I − (D + V k)−1|B|−1) max(I, (D + V k)−1)
≤ (I − D−1|B|)−1 max(I, D−1)

= M̃−1 max(D, I).

We complete the proof. �

Remark 3.1. Let x∗ be the solution of the non-Lipschitzian NCP(F ). Since H0(x) =
H(x), Theorem 3.2 yields a componentwise error bound for any x ≥ 0,

(3.5) |x − x∗| ≤ M̃−1 max(D, I)|H(x)|.
Moreover, for any monotone vector norm and the corresponding operator norm, we
have

(3.6) ‖x − x∗‖ ≤ ‖M̃−1 max(D, I)‖‖H(x)‖.
(We say ‖ · ‖ is a monotone vector norm if for any x, y ∈ Rn, |x| ≤ |y| implies that
‖x‖ ≤ ‖y‖, which is equivalent to ‖x‖ = ‖|x|‖. Any p−norm (p ≥ 1) is a monotone
vector norm. See [8].)

4. Projection methods

In this section we consider a projection method for the solution of (2.1). We use
Theorem 3.2 to construct an interval vector, which contains the solution of (2.1).
Starting from a point in the interval, we generate a sequence by the projection
method. We prove that the sequence converges to the solution of (2.1). Using
(3.5) or (3.6), we can provide error bounds of an approximate solution to the exact
solution of (1.1).

By rewriting (2.1) as in the proof of Lemma 2.1, we obtain the following NCP:

(4.1) min(y, My + φ(y + εe) + ε(M − I)e) = 0,

where y = x − εe. By Lemma 2.1, if M is a P-matrix, then (4.1) has a unique
solution y∗ ≥ 0, and thus (2.1) has a unique solution x∗

ε = y∗ + εe > 0. Defining a
diagonal function

ψ(y) := φ(y + εe) + ε(M − I)e,

(4.1) can be written as

(4.2) min(y, My + ψ(y)) = 0.

Here ψ is a monotonically increasing and continuous diagonal function. Further-
more (4.2) can be rewritten as a fixed point problem

(4.3) y = max
(
0, y − Λ(My + ψ(y))

)
,

where Λ is a diagonal matrix with positive diagonal elements.
For all u, v contained in some interval vector [y] we have

ψ(u) − ψ(v) = δψ(u, v)(u − v),

where the diagonal matrix δψ(u, v) is the slope of ψ for u and v. Assume that for
all u, v,∈ [y], the slope δψ(u, v) can be bounded by some diagonal interval matrix,

δψ(u, v) ∈ [δ, δ], u, v ∈ [y].
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Since ψ is a monotonically increasing diagonal function, we can assume that δ ≥ 0.
We assume that the bounds for the slope behave inclusion monotone:

[y] ⊆ [z] ⇒ [δ, δ][y] ⊆ [δ, δ][z],

where the indices [y] and [z] indicate that the bounds for the slope belong to
the corresponding intervals [y] and [z]. This inclusion monotonicity is a natural
assumption.

Let D be the diagonal part of M and B = D − M . Let δ be a diagonal matrix
with positive diagonals. Set

Λ = ω(D + δ)−1

with ω > 0 in (4.3). We find that y∗ solves (4.2) if and only if y∗ is a fixed point of
the following equations:

(4.4) y = max{0, ω(D + δ)−1

(
Ry + Sy + δy − ψ(y) +

1 − ω

ω
(D + δ)y

)
},

where matrices R and S satisfy B = R + S and |B| = |R| + |S|.

Now we propose a projection method for solving (4.2).

Projection Method.
Initial Step. Choose y0 ≥ 0 and compute the nonnegative matrix C :=

M̃−1 max(D, I).
Set a vector

r0 := C|min(y0, My0 + ψ(y0))|
and an interval vector

[y0] = [y0 − r0, y0 + r0] ∩ Rn
+. (See Remark 4.1.)

Iteration. For l = 0, 1, 2, ...

Step 1. Compute [δl, δ
l
], such that for all u, v ∈ [yl]

ψ(u) − ψ(v) ∈ [δl, δ
l
](u − v).

Step 2. Compute ŷl+1. (See Remark 4.2.)
Step 3. Compute [yl+1] (with the property [yl+1] ⊆ [yl] and y∗ ∈ [yl+1]).

(See Remark 4.3.)
Step 4. Compute the projection

yl+1 = Π[yl+1](ŷ
l+1).

Remark 4.1. By Remark 3.1, the initial interval vector [y0] contains a solution y∗

of (4.2), if M is an H-matrix with positive diagonal elements.

Remark 4.2. ŷl+1 in Step 2 is computed by
(4.5)

ŷl+1 = max{0, ω(D + δ
l
)−1

(
Rŷl+1 + Syl + δ

l
yl − ψ(yl) +

1 − ω

ω
(D + δ

l
)yl

)
}

which includes the following two cases:
(i) Relaxed Jacobi-like method: R = 0, S = D − M .
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(ii) Successive overrelaxation-like method: R = L, S = U , where −L and
−U denote the strictly lower and strictly upper triangular part of M , re-
spectively.

Case (i) contains a Jacobi-like method as a special case (ω = 1). Moreover, case
(ii) contains a Gauss-Seidel-like method as a special case (ω = 1). In general, any
splitting method for which the spectral radius ρ(Ll

ω) < σ1 < 1 can be used for the
computation of ŷl+1 where

Ll
ω = (D + δ

l − ω|R|)−1
(
ω|S| + ω(δ

l − δl) + (1 − ω)(D + δ
l
)
)

.

Remark 4.3. The simplest choice in Step 3 is [yl+1] = [yl], which means [yl] = [y0],
for all l = 1, 2, .... However, one can also spend some work for the calculation of
[yl+1] by two additional steps:

Step 3a. rl+1 = C|min(ŷl+1, Mŷl+1 + ψ(ŷl+1))|.
Step 3b. [yl+1] = [ŷl+1 − rl+1, ŷl+1 + rl+1] ∩ [yl].

By Remark 3.1, and y∗ ∈ [y0], we have y∗ ∈ [yl] for all l ≥ 0. Moreover, one can
also use (3.6) with the infinity norm for the calculation of [yl+1]. In particular, we
can replace Step 3a by

rl+1 = ‖C‖∞‖min(ŷl+1, Mŷl+1 + ψ(ŷl+1))‖∞e.

If M̃−1 ≥ 0, then C = M̃−1 max(D, I) ≥ 0. Since ‖C‖∞ = ‖Ce‖∞ =: ‖v‖∞, we
can compute ‖C‖∞ by solving a system of linear equations, M̃v = max(D, I)e.

Now we study the convergence of the projection method for M being an H-
matrix with positive diagonals.

The projection method generates a sequence {yl}. We will show that the se-
quence yl will converge to y∗.

Note that δ
l ≥ 0 since ψ is monotonically increasing. Moreover, we have y∗ ∈ [yl]

for all l ≥ 0.
By the definition of [y0] combined with Step 3b, we have yl ≥ 0 and thus [yl] =

[yl, yl] ⊆ Rn
+ for all l ≥ 0. By the substitution y = x − εe, the value xi = 0

corresponds to yi = −ε < 0. Hence the slope of ψi is bounded for each interval
[yi] = [y

i
, yi] with lower bound y

i
≥ 0. This means

[δl, δ
l
] ⊆ [δ1, δ2],

where [δ1, δ2] is a fixed interval diagonal matrix. We can assume δ1 ≥ 0 since all ψi

are monotonically increasing.
It is easy to see that for any x, y ∈ Rn, |max(0, x)−max(0, y)| ≤ |x−y|. Hence,

from (4.4) with δ = δ and (4.5), we have

|ŷl+1 − y∗| ≤ ω(D + δ
l
)−1

(
|R||ŷl+1 − y∗| + |S||yl − y∗|

+|δl
+

1 − ω

ω
(D + δ

l
) − δψ(yl, y∗)||yl − y∗|

)
.

Since δψ(yl, y∗) ∈ [δl, δ
l
], we have for 0 < ω ≤ 1,

|δl
+

1 − ω

ω
(D + δ

l
) − δψ(yl, y∗)| ≤ δ

l − δl +
1 − ω

ω
(D + δ).



REGULARIZED PROJECTION METHOD FOR COMPLEMENTARITY PROBLEMS 391

Therefore, we obtain(
(D + δ

l
) − ω|R|

)
|ŷl+1 − y∗| ≤

(
ω|S| + ω(δ

l − δl) + (1 − ω)(D + δ
l
)
)
|yl − y∗|.

By Step 4 and the property of the projection of ŷl+1 onto the interval [yl+1] which
contains the solution y∗, we have

|yl+1 − y∗| ≤ |ŷl+1 − y∗|.
Therefore, we obtain
(4.6)

|yl+1 − y∗| ≤
(
D + δ

l − ω|R|
)−1 (

ω|S| + ω(δ
l − δl) + (1 − ω)(D + δ)

)
|yl − y∗|,

provided (D + δ
l − ω|R|)−1 exists and is nonnegative, which is obviously true for

the two cases in Remark 4.2.
Since the sequence {[δl, δ

l
]} converges to [δ∗, δ

∗
], it follows that for

Ll
ω :=

(
D + δ

l − ω|R|
)−1 (

ω|S| + ω(δ
l − δl) + (1 − ω)(D + δ

l
)
)

we have

(4.7) lim
l→∞

Ll
ω = L∗

ω

where

L∗
ω =

(
D + δ

∗ − ω|R|
)−1 (

ω|S| + ω(δ
∗ − δ∗) + (1 − ω)(D + δ

∗
)
)

.

Now we show that under certain conditions, which hold especially for the two cases
in Remark 4.2, ρ(L∗

ω) < 1. Consider the matrix A = P − Q with

P =
1
ω

(D + δ
∗ − ω|R|)

and
Q =

1
ω

(ω|S| + ω(δ
∗ − δ∗) + (1 − ω)(D + δ

∗
)).

It is easy to verify

A = P − Q =
1
ω

(
ω(D + δ

∗
) − ω|R| − ω|S| − ωδ

∗
+ ωδ∗

)
= D + δ∗ − |R| − |S| = D + δ∗ − |B|.

Since δ∗ ≥ 0 and D − |B| is an M-matrix, A is also an M-matrix, and therefore
A−1 = (D + δ∗ − |R| − |S|)−1 ≥ 0. Furthermore, P−1 ≥ 0 and Q ≥ 0. Therefore,
A = P − Q is a regular splitting of A, which implies

ρ(L∗
ω) = ρ(P−1Q) < 1.

See [12].
Using (4.6), we have

(4.8) |yl+1 − y∗| ≤ (
l∏

i=1

Li
ω)|y0 − y∗|.

Since the spectral radius ρ(L∗
ω) < 1, for any given σ ∈ (0, 1 − ρ(L∗

ω)), there exists
a matrix norm such that ‖L∗

ω‖ ≤ ρ(L∗
ω) + σ < 1. By the continuity of the norm,

there exist an L > 0 and σ1 ∈ (ρ(L∗
ω) + σ, 1), such that for all l ≥ L,

‖Ll
ω‖ ≤ σ1 < 1.
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Therefore for l > L, we have

‖
l∏

i=1

Li
ω‖ ≤ ‖

L−1∏
i=1

Li
ω‖‖

l∏
i=L

Li
ω‖ ≤ cσl−L+1

1 ,

where

c = ‖
L−1∏
i=1

Li
ω‖.

Therefore, we deduce that

lim
l→∞

‖
l∏

i=1

Li
ω‖ = 0,

which is equivalent to

lim
l→∞

l∏
i=1

Li
ω = 0.

From (4.8), we find that liml→∞ yl = y∗. Moreover, we have for l ≥ L,

‖yl+1 − y∗‖ ≤ σ1‖yl − y∗‖.
This means that the sequence {yl} is convergent to y∗ linearly. We summarize our
analysis as follows.

Theorem 4.1. If M is an H-matrix with positive diagonals, then the projection
method with M = D − B = D − R − S is convergent to the solution y∗ of (4.2)
for any initial point y0 ≥ 0, provided that 0 < ω ≤ 1 and R is chosen such that
(D − ω|R|)−1 exists and is nonnegative. Furthermore, the convergence is at least
linear.

Remark 4.4. The spectral radius is continuously dependent on the matrix elements.
It is clear that there is an ω1 > 1 such that for all ω ∈ (1, ω1) Theorem 4.1 also
holds.

Remark 4.5. The projection method also generates a sequence of intervals which
satisfies

y∗ ∈ [yl+1] ⊆ [yl].
The sequence is therefore convergent to some interval vector [y∗]. From the in-
equalities

|yl+1 − y∗| ≤ |ŷl+1 − y∗| ≤ |yl − y∗|
the convergence of {yl} to y∗ implies that the radius r∗ of the interval [y∗] is zero
if we use Steps 3a and 3b in Remark 4.3, which means that [y∗] = y∗.

Remark 4.6. The projection method provides intervals containing the solution x∗

of the non-Lipschitzian NCP(F ). In particular, if M is an H-matrix with positive
diagonals, from

x∗
ε − εe = y∗ ∈ [yl],

H(x∗
ε ) = H(x∗

ε ) − Hε(x∗
ε ) = εe

and
|x∗

ε − x∗| ≤ M̃−1 max(D, I)|H(x∗
ε )| = Cεe

we can easily find that for all l ≥ 0,

(4.9) x∗ ∈ [yl] + ε[(I − C)e, (I + C)e].
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We can also use Remark 3.1 to get

(4.10) x∗ ∈ [ŷl − C|H(yl)|, ŷl + C|H(yl)|].

5. Numerical experiments

We have done very extensive numerical experiments. Numerical results show
that the regularized projection method is efficient to solve the non-Lipschitzian
complementarity problems. Moreover, the error bounds (4.9) and (4.10) provide
computable error estimation for verifying the accuracy of a computed solution.

We report numerical results for a free boundary problem in [2].

Example 5.1. Let Ω = (0, 1) × (0, 1), and let p ∈ (0, 1). We consider

−�u + 9
(1−p)2 up = f(z) in Ω+,

u = 0 in Ω0,

u = |∇u| = 0 on Γ,

u = g(z) on ∂Ω,

where Ω+ = {z ∈ Ω |u(z) > 0}, Ω0 = {z ∈ Ω |u(z) = 0}, and Γ = ∂Ω0 = ∂Ω+ ∩ Ω
are unknown. Let r2 = z2

1 + z2
2 . We choose

f(z) =
9

r(1 − p)2
(3r − 1

2

) 2p
1−p

max
(
0, r − 1

3

)

and

g(z) =
(3r − 1

2

) 2
1−p

max
(
0, r − 1

3

)
, z ∈ ∂Ω.

This problem has a unique solution

u(z) =
(3r − 1

2

) 2
1−p

max
(
0, r − 1

3

)
.

Using the five-point finite difference approximation, we obtain a nonlinear com-
plementarity problem with F (x) = Mx + φ(x), where M is an M-matrix,

φ(x) = E max(0, xp) + q,

E is an n×n diagonal matrix with positive diagonals and q is a vector in Rn. Here
the components of x are the approximations to the exact solution u(z) at the grid
points of Ω. Our experiments were performed with 900 interior points of Ω.

In Table 1 and Table 2, we report some numerical results of the projection
method for solving Example 5.1. We used the successive overrelaxation-like method
described in (ii) of Remark 4.2. In all experiments we used the vector y0 =
(1, . . . , 1)T for computing the interval vector [y0] in the initial step of the projection
method.

In Table 1, we list iteration numbers with different relaxation parameter ω for
solving

(5.1) Hεk
(y) = min(y, My + εk(M − I)e + φ(y + εke)) = 0

with different values of εk = 2−k and p. For a given value of εk, we stopped the
projection method when the following inequality holds:

(5.2) ‖ŷl+1 − ŷl‖∞ ≤ 10−13‖ŷl+1‖∞.
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To save computation time, we set

[yl+1] = [yl]

in Step 3 of the projection method. The value ωopt, for which the smallest number
of iterations was taken to get (5.2), was determined experimentally.

Table 1. Number of iterations: K1 for ω = 1, Kopt for ω = ωopt

p εk ωopt K1 Kopt

1 1.8 1570 142
0.3 2−5 1.8 1578 175

2−10 2.1 2060 169
2−15 4.6 7573 558

1 1.7 822 111
0.5 2−5 1.8 1022 126

2−10 2.0 1251 128
2−15 2.0 2694 847

1 1.6 431 88
0.7 2−5 1.7 517 86

2−10 1.8 603 106
2−15 2.0 842 187

1 1.4 108 42
0.9 2−5 1.5 123 44

2−10 1.6 143 48
2−15 1.8 171 45

In Table 2, we show the total iteration number N with a fixed relaxation pa-
rameter ω for solving (5.1) for εk = 2−k, k = 0, 2, . . . , 30, and error bounds of an
approximation solution of (5.1) with εk = 2−30 to the exact solution of the NCP(F ).
In our numerical test, if ŷl+1 satisfies (5.2), we change εk = 2−k to εk = 2−k−2 and
set y0 = ŷl+1 as the initial vector for solving (5.1) with the new εk. The error
bounds were obtained by (4.10).

Table 2. Error bounds ‖x∗ − yl‖∞ ≤ errb

p ω N errb ω N errb
0.3 1.0 40030 3.5e-5 1.8 18764 1.9e-5
0.5 1.0 16647 7.4e-6 1.8 6169 4.0e-6
0.7 1.6 2025 2.1e-6 1.8 1643 1.9e-6
0.9 1.6 442 5.4e-5 1.8 774 9.1e-5

The numerical results were obtained by using the programming language
PASCAL-XSC on an HP-9000 workstation in the University of Karlsruhe.
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