
MATHEMATICS OF COMPUTATION
Volume 77, Number 261, January 2008, Pages 397–419
S 0025-5718(07)02029-7
Article electronically published on June 20, 2007

FAST EVALUATION OF QUADRATURE FORMULAE
ON THE SPHERE

JENS KEINER AND DANIEL POTTS

Abstract. Recently, a fast approximate algorithm for the evaluation of ex-
pansions in terms of standard L2

(
S2

)
-orthonormal spherical harmonics at ar-

bitrary nodes on the sphere S2 has been proposed in [S. Kunis and D. Potts.
Fast spherical Fourier algorithms. J. Comput. Appl. Math., 161:75–98, 2003].
The aim of this paper is to develop a new fast algorithm for the adjoint prob-
lem which can be used to compute expansion coefficients from sampled data
by means of quadrature rules.

We give a formulation in matrix-vector notation and an explicit factorisa-
tion of the spherical Fourier matrix based on the former algorithm. Starting
from this, we obtain the corresponding factorisation of the adjoint spherical
Fourier matrix and are able to describe the associated algorithm for the adjoint
transformation which can be employed to evaluate quadrature rules for arbi-
trary weights and nodes on the sphere. We provide results of numerical tests
showing the stability of the obtained algorithm using as examples classical
Gauß-Legendre and Clenshaw-Curtis quadrature rules as well as the HEALPix
pixelation scheme and an equidistribution.

1. Introduction

Discrete Fourier analysis on a multi-dimensional torus plays an important role
in a wide range of applications, among them signal processing in general, image
processing, computed tomography, and a lot more. However, in many fields of in-
terest, data naturally arises on a geometry that can be identified with the surface of
the two-dimensonal unit-sphere—two-sphere in short—S2 :=

{
x ∈ R3 : ‖x‖2 = 1

}
,

embedded into the three-dimensional euclidean space R3. As a small indication of
the impact on current research we mention here the solution of inverse problems
arising in astrophysics or the solution of systems of differential equations in weather
forecast computation as related examples.

In the context of Fourier analysis on the sphere S2, the spherical analogue of
the usual Fourier basis functions eikx in L2 ([0, 2π)), namely the standard orthonor-
mal spherical harmonics Y n

k in L2
(
S2
)

play a fundamental role. Recently, a fast
algorithm for evaluating a function f ∈ L2(S2) with finite orthogonal expansion

(1.1) f(ϑ, ϕ) =
M∑

k=0

k∑
n=−k

an
kY n

k (ϑ, ϕ) (M ∈ N0)

Received by the editor June 1, 2006.
2000 Mathematics Subject Classification. Primary 65T99, 33C55, 42C10, 65T50.
Key words and phrases. Two-sphere, quadrature, nonequispaced fast spherical Fourier trans-

form, NFFT, FFT.

c©2007 American Mathematical Society

397

398 JENS KEINER AND DANIEL POTTS

in terms of spherical harmonics Y n
k on a set of arbitary nodes (ϑd, ϕd) with d =

1, . . . , D, D ∈ N, in spherical coordinates was given in [9]. The key idea is to first
perform a change of basis such that the function f in (1.1) takes the form

(1.2) f(ϑ, ϕ) =
M∑

n=−M

M∑
k=−M

cn
keikϑeinϕ

of an ordinary two-dimensional Fourier sum with new complex coefficients cn
k . Then,

the evaluation of the function f can be performed using the fast Fourier transform
for nonequispaced nodes (NFFT; see for example [14, 20]).

In this paper, we are intrested in the adjoint problem, i.e. the fast evaluation of
sums

(1.3) ãn
k :=

D∑
d=1

f (ϑd, ϕd)Y n
k (ϑd, ϕd)

for given function values f (ϑd, ϕd) ∈ C and all indices k = 0, . . . , M and n =
−k, . . . , k. Note that this usually does not yet recover the coefficients an

k from
(1.1) for which we denote the computed coefficients ãn

k . The coefficients an
k can be

obtained from values of the function f on a set of arbitrary nodes (ϑd, ϕd) provided
that a quadrature rule with weights wd and sufficient high degree of exactness is
available (see also [5, 10]). Then the sum in (1.3) changes to

(1.4) an
k =

D∑
d=1

wdf (ϑd, ϕd)Y n
k (ϑd, ϕd).

The computation of spherical Fourier coefficients from discrete sampled data
has major importance in the whole field of data analysis on the sphere S2. In
many applications however, the distribution of the available data on the sphere is
predetermined by the underlying measurement process or as well by data storage
and access considerations. This often requires the use of techniques like spherical
hyperinterpolation ([16]) or approximate quadrature rules that differ from classical
quadrature formulae. The implementation of the algorithm for the adjoint problem
(1.3) developed in this paper provides for the first time a means of evaluating
quadrature formulae for arbitrary nodes in a fast way and thus allows for the
efficient use of new quadrature schemes.

The outline of this paper is as follows: Section 2 introduces basic notation and
definitions, and recalls the fast algorithm for evaluating the expansion (1.1) from
[9]. We give a matrix-vector formulation of the algorithm where we distinguish the
initial change of basis to arrive at (1.2) and the application of the NFFT algorithm.
In Section 3, we describe the change of basis by means of a fast polynomial trans-
form in more detail. In Section 4, following the algorithm, the factorisation of the
corresponding transform matrix into a product of sparse matrices is derived. Con-
sequently, once obtained a fast algorithm for (1.1), a fast algorithm for the adjoint
problem (1.3) comes by taking the adjoint matrix product in Section 5. Finally,
Section 6 provides results of numerical tests showing properties of the described
algorithm by using a range of different test functions and quadrature formulae.

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 399

2. Discrete spherical Fourier transforms

This section reviews basic notation, definitions, and the fast algorithm for (1.1)
from [9].

2.1. Fourier analysis on the sphere S
2. In spherical coordinates we identify

each point x ∈ S2 with a tuple (ϑ, ϕ) ∈ [0, π] × [0, 2π) of two angles ϑ and ϕ. The
space L2

(
S2
)

is the Hilbert space of square integrable functions on the sphere S2

with the usual inner product given by

〈f, g〉L2(S2) :=
∫ π

0

∫ 2π

0

f(ϑ, ϕ)g(ϑ, ϕ) dϕ sin ϑ dϑ.

With the standard orthonormal basis of spherical harmonics Y n
k with indices k =

0, 1, . . . and n = −k, . . . , k for the space L2
(
S2
)
, any function f from L2

(
S2
)

can
be developed into a generally infinite orthogonal expansion

(2.1) f(ϑ, ϕ) =
∞∑

k=0

k∑
n=−k

an
kY n

k (ϑ, ϕ).

The functions Y n
k are harmonic homogeneous polynomials of degree k and are

defined by

(2.2) Y n
k : S

2 → C, Y n
k (ϑ, ϕ) :=

√
2k + 1

4π
P

|n|
k (cos ϑ)einϕ.

2.2. Associated Legendre functions and polynomials. The functions P
|n|
k are

the associated Legendre functions,

(2.3) Pn
k : [−1, 1] → R, Pn

k (x) :=
(

(k − n)!
(k + n)!

)1/2 (
1 − x2

)n/2 dn

dxn
Pk(x)

for n = 0, 1, . . . and k = n, n + 1, . . ., where the classical Legendre polynomials Pk

are given by their Rodrigues formula

Pk : [−1, 1] → R, Pk(x) :=
1

2kk!
dk

dxk

(
x2 − 1

)k
.

For a concise notation, we let P−1(x) := 0. The associated Legendre functions Pn
k

have the three-term recurrence relation

(2.4) Pn
k+1(x) = vn

k xPn
k (x) + wn

k Pn
k−1(x) (k ≥ n)

with initial values

Pn
n−1(x) := 0, Pn

n (x) = λn

(
1 − x2

)n/2
, λn :=

√
(2n)!

2nn!
and the coefficients
(2.5)

vn
k :=

2k + 1
((k − n + 1)(k + n + 1))1/2

, wn
k := − ((k − n)(k + n))1/2

((k − n + 1)(k + n + 1))1/2
.

A simple but at the same time powerful idea is to also define the associated Legendre
functions Pn

k for k = 0, . . . , n by means of the modified three-term recurrence
relation

(2.6) Pn
k+1(x) = (αn

kx + βn
k)Pn

k (x) + γn
k Pn

k−1(x)

400 JENS KEINER AND DANIEL POTTS

for k ≥ 0 with

(2.7)
αn

0 :=

⎧⎨
⎩

1 if n = 0,
0 if n odd,
−1 if n even, n �= 0,

αn
k :=

{
(−1)k+1 if 0 < k < n,
vn

k if n ≤ k,

βn
k :=

{
1 if 0 ≤ k < n,
0 if n ≤ k,

γn
k :=

{
0 if 0 ≤ k < n,
wn

k if n ≤ k.

Here, we let Pn
−1(x) := 0, and Pn

0 (x) := λn for even n and Pn
0 (x) := λn

(
1 − x2

)1/2

for odd n. For k ≥ n, this definition coincides with the recurrence (2.4). As easily
verified by the defining equation (2.3), Pn

k is a polynomial of degree k if n is even,
while (1 − x2)−1/2Pn

k is a polynomial of degree k − 1 if n is odd. Based on the
recurrence coefficients from (2.7) and introducing a shift parameter c ∈ N0, we
define the associated Legendre polynomials Pn

k (· , c) by

(2.8)
Pn
−1(x, c) := 0, Pn

0 (x, c) := 1,

Pn
k+1(x, c) =

(
αn

k+cx + βn
k+c

)
Pn

k (x, c) + γn
k+cP

n
k−1(x, c) (k ≥ 0).

It is not difficult to prove the following lemma by a straightforward induction ([1]):

Lemma 2.1. Let c, k, n ≥ 0 and let the functions Pn
k and Pn

k (· , c) be given as in
(2.6), (2.7), and (2.8). Then we have

Pn
k+c(x) = Pn

c (x, k)Pn
k (x) + γn

k Pn
c−1(x, k + 1)Pn

k−1(x).

2.3. Discrete Fourier transforms on the sphere S2. We recall that our goal
in this section is the evaluation of a finite expansion

(2.9) f(ϑ, ϕ) =
M∑

k=0

k∑
n=−k

an
kY n

k (ϑ, ϕ) =
∑

(k,n)∈IM

an
kY n

k (ϑ, ϕ).

of a function f in terms of spherical harmonics Y n
k , where IM denotes the index

set
IM := {(k, n) : k = 0, . . . , M ; n = −k, . . . , k} .

The sum in (2.9) is the spherical Fourier sum of the function f and M ∈ N0 is called
the bandwidth of f . Likewise, the function f is said to be a bandlimited function on
the sphere S2 with bandwidth M . The complex expansion coefficients an

k ∈ C are
the spherical Fourier coefficients of the function f . The index k denotes the degree
and n is the order with respect to the orthonormal basis of spherical harmonics Y n

k .
Alluding to the geographic coordinate system, the angles ϑ are called co-latitudes
and the angles ϕ longitudes. A set X := {(ϑd, ϕd)}D

d=1, D ∈ N, of arbitrary nodes
on the sphere S2 is called a sampling set.

2.4. Matrix-vector notation. From a linear algebra point of view, evaluating the
bandlimited function f with bandwidth M as in (2.9) on a sampling set X amounts
to evaluating the matrix-vector product

fX = YM,X aM

with
fX := (fd)

D
d=1 ∈ C

D, fd := f (ϑd, ϕd) ,

YM,X := (Y n
k (ϑd, ϕd))d=1,...,D;(k,n)∈IM

∈ C
D×(M+1)2 ,

aM := (an
k)(k,n)∈IM

∈ C
(M+1)2 .

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 401

We write fX , YM,X and aM to emphasize the dependence of these quantities on
the concrete sampling set X and the bandwidth M . Furthermore, we introduce the
notation

an
M := (an

k)M
k=|n| ∈ C

M−|n|+1

with n = −M, . . . , M for subvectors an
M of aM , each containing the spherical Fourier

coefficients an
k for a fixed order n.

2.5. A fast Fourier transform algorithm for arbitrary nodes on the sphere
S

2. We are now ready to describe the fast evaluation of a bandlimited function f
with bandwidth M on an arbitrary sampling set X on the sphere S2, or equivalently,
the fast evaluation of the matrix-vector product fX = YM,X aM . First, we rearrange
terms in the spherical Fourier sum and obtain

(2.10)

f(ϑ, ϕ) =
M∑

k=0

k∑
n=−k

an
kY n

k (ϑ, ϕ) =
M∑

n=−M

M∑
k=|n|

an
kY n

k (ϑ, ϕ)

=
M∑

n=−M

⎛
⎝ M∑

k=|n|
an

kPn
k (cos ϑ)

⎞
⎠

︸ ︷︷ ︸
:=hn(cos ϑ)

einϕ,

Then we consider polynomials of degree M ,

(2.11) gn(x) :=
M∑

k=n

an
kPn

k (x)

for even n, and of degree M − 1,

(2.12) gn(x) := (1 − x2)−1/2
M∑

k=n

an
kPn

k (x)

for odd n with the given complex spherical Fourier coefficients an
k . It is not difficult

to verify that

hn(cos ϑ) =
{

gn(cosϑ), if n even,
(sin ϑ)gn(cosϑ), if n odd.

We perform a change of basis via a fast polynomial transform (see [12]) and obtain
hn(cos ϑ) in Chebyshev representation

(2.13) hn(cos ϑ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
k=0

bn
kTk(cos ϑ), if n even,

(sin ϑ)
M−1∑
k=0

bn
kTk(cos ϑ), if n odd,

with the Chebyshev polynomials of the first kind: Tk : [−1, 1] → R, Tk(x) :=
cos(k arccos x). Since Tk(cos ϑ) = cos(kϑ), we can write

hn(cosϑ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
k=0

bn
k cos(kϑ), if n even,

(sin ϑ)
M−1∑
k=0

bn
k cos(kϑ), if n odd.

402 JENS KEINER AND DANIEL POTTS

In addition, we use cos(kϑ) = 1
2

(
eikϑ + e−ikϑ

)
and arrive at

hn(cos ϑ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M∑
k=−M

b̃n
keikϑ, if n even,

(sin ϑ)
M−1∑

k=−(M−1)

b̃n
keikϑ, if n odd,

where we let

b̃n
k :=

{
bn
0 , if k = 0,

1
2bn

|k|, if 0 < |k| ≤ M.
(2.14)

In view of sin ϑ = 1
2i

(
eiϑ − e−iϑ

)
, a last manipulation finally yields the representa-

tion

(2.15) hn(cosϑ) =
M∑

k=−M

cn
keikϑ,

with the coefficients

(2.16) cn
k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b̃n
k , if n even,

− 1
2i b̃

n
k+1, if n odd and k = −M,−M + 1,

1
2i b̃

n
k−1, if n odd and k = M, M − 1,

1
2i (b̃

n
k−1 − b̃n

k+1), if n odd and k = −M + 2, . . . , M − 2.

For the function f in (2.10), this now yields the ordinary two-dimensional Fourier
sum

(2.17) f(ϑ, ϕ) =
M∑

n=−M

M∑
k=−M

cn
keikϑeinϕ.

The double sum in (2.17) can be evaluated by the NFFT algorithm on an arbitrary
sampling set X with D nodes with O

(
M2 log M + log2 (1/ε)D

)
floating point op-

erations (flops), where ε is a prescribed accuracy. In matrix-vector notation, the
complete procedure reads

(2.18) fX = FM,X CM BM aM .

Here, the block-diagonal matrix BM with blocks Bn
M , n = −M, . . . , M , on its main

diagonal stands for the fast polynomial transform algorithm acting with block Bn
M

on the subvector an
M of aM which comprises the Fourier coefficients an

k for a fixed
order n. The matrix CM represents the intermediate steps to convert the Chebyshev
coefficients bn

k in (2.13) into the final Fourier coefficients cn
k in (2.15), and the matrix

FM,X realises the evaluation of the ordinary Fourier sum in (2.17). The matrices
CM and BM do not depend on the sampling set X but only on the bandwidth M .

Let us state the entries of these matrices. We have

FM,X :=
(
ei(kϑd+nϕd)

)
d=1,...,D;(k,n)∈IM

∈ C
D×(2M+1)2

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 403

and according to (2.14) and (2.16)

(2.19)

BM := diag [Bn
M]Mn=−M ∈ R

(2M+1)(M+1)×(M+1)2 ,

Bn
M ∈ R

(M+1)×(M−|n|+1),

CM := CM,2 CM,1 ∈ R
(2M+1)2×(2M+1)(M+1),

CM,1 := I2M+1 ⊗ C̃M,1 ∈ R
(2M+1)2×(2M+1)(M+1),

C̃M,1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

. . .
1
2

1
2

1
1
2

1
2

. . .
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(2M+1)×(M+1),

CM,2 := diag
(
(δ0,n mod 2)

M
n=−M

)
⊗ C̃M,2 ∈ R

(2M+1)2×(2M+1)2 ,

C̃M,2 := tridiag
[
(−i/2)2M−1

l=0 , (0)2n
l=0 , (i/2)2M−1

l=0

]
∈ R

(2M+1)×(2M+1).

As usual, δj,k denotes the Kronecker delta function for j, k ∈ Z. The matrices BM

and CM are real matrices acting on complex vectors. The matrix CM decomposes
into a product of two matrices CM,1 and CM,2, where CM,1 represents step (2.14),
and CM,2 stands for (2.16).

The adjoint counterpart of the method just described is obtained from the fac-
torisation of the spherical Fourier matrix YM,X in the matrix-vector product (2.18)
and reads

(2.20) ãM = BT
M CT

M FH
M,X fX .

This represents the adjoint Fourier sum in (1.3) in matrix-vector notation. Again,
we use tildes to emphasize that the adjoint transform in general does not yield the
spherical Fourier coefficients an

k . The multiplication with the matrix FH
X , which is

identical to the evaluation of sums

c̃n
k :=

D∑
d=1

f (ϑd, ϕd) e−ikϑde−inϕd

for indices (k, n) ∈ IM , can also be carried out by the NFFT as described in [14].
The transposed algorithm for the intermediate steps, hence the multiplication with
the matrix CT

M , can be derived directly from the explicit representation in (2.19).
The details of the transposed polynomial transform algorithm, or, equivalently, the
multiplication with the matrix BT

M , are derived in Section 5 after the matrix BM

has been further decomposed in Section 4. The final adjoint algorithm is called
adjoint non-uniform fast spherical Fourier transform (adjoint NFSFT).

404 JENS KEINER AND DANIEL POTTS

3. Fast Legendre function transform

In this section, we review a fast algorithm for the transformation of sums

gn(x) =

{ ∑M
k=|n| a

n
kPn

k (x), if n even,

(1 − x2)−1/2
∑M

k=n an
kPn

k (x), if n odd

of associated Legendre functions Pn
k into their respective Chebyshev representation

gn(x) =
M∑

k=0

bn
kTn

k (x)

in terms of Chebyshev polynomials of the first kind Tk. This algorithm is called a
fast Legendre function transform (FLFT).

3.1. Existing algorithms. The first originating paper [4] is due to Driscoll and
Healy describing an exact algorithm for the transposed problem, i.e., projecting
a sum of Chebyshev polynomials Tk onto associated Legendre functions Pn

k . In
[13], an exact algorithm is derived, introducing for the first time a stabilisation
technique to compensate for errors due to finite precision arithmetic. Both, the
Driscoll-Healy algorithm for the transposed problem and the latter algorithm in
its initial version are subject to numerical instabilities. In [7], Healy, Kostelec,
Moore, and Rockmore show variations of the Driscoll-Healy algorithm also including
stabilization techniques.

Mohlenkamp ([11]) introduces the first related approximate algorithm. Further
approximate algorithms are developed by Suda and Takami ([17]) using a stabilisa-
tion method relying on fast multipole methods and optimised interpolation nodes.
Rokhlin and Tygert ([15]) exploit a relation to semi-separable matrices. We follow
the lines in [13] and [9].

3.2. An exact algorithm. Now let M ≥ 4, t :=
log2 M�, and N := 2t. Further-
more, set an

k := 0 for 0 ≤ k < |n| and M < k ≤ N . In the first step, we define
ñ := min(|n|, N − 2) and M̃ := min(M, N − 1). We can write

(3.1) gn =
M̃∑

k=ñ

an
k,0P

n
k

with the polynomials

(3.2)

an
k,0(x) := an

k (k = 0, . . . , N − 3),

an
N−2,0(x) := an

N−2 + γn
N−1a

n
N ,

an
N−1,0(x) := an

N−1 +
(
αn

N−1x + βn
N−1

)
an

N .

of degree at most one. By grouping terms we arrive at

(3.3) gn =

⌈
M̃+1

4

⌉
−1∑

l=� ñ
4

(
3∑

k=0

an
4l+k,0P

n
4l+k

)
,

which is a partition of the sum (3.1) into blocks of four consecutive summands.
We note that we immediately know the Chebyshev representation of each of the
polynomials an

k,0 involved, which is due to the fact that these polynomials have

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 405

degree at most one, and that T0(x) = 1 and T1(x) = x. The generalised recurrence
in Lemma 2.1 implies

(3.4)
(

Pn
k+c

Pn
k+c+1

)
= Un

c (·, k)T
(

Pn
k−1

Pn
k

)
,

where

(3.5) Un
c (·, k)T :=

(
γn

k Pn
c−1(·, k + 1) γn

k Pn
c (·, k + 1)

Pn
c (·, k) Pn

c+1(·, k)

)
.

From the matrix-vector form (3.4) and with c = 1 and k = l + 1 it follows that

(
Pn

4l+2, P
n
4l+3

)(an
4l+2,0

an
4l+3,0

)
=
(
Pn

4l, P
n
4l+1

)
Un

1 (·, 4l + 1)
(

an
4l+2,0

an
4l+3,0

)
.

This lets us rewrite the sum (3.3) as

gn =

⌈
M̃+1

4

⌉
−1∑

l=� ñ
4

(
an
4l,1P

n
4l + an

4l+1,1P
n
4l+1

)

with new polynomials of degree at most three,

(3.6)
(

an
4l,1

an
4l+1,1

)
:=

(
an
4l,0

an
4l+1,0

)
+ Un

1 (·, 4l + 1)
(

an
4l+2,0

an
4l+3,0

)
.

We can use a fast cosine transform to compute the polynomial products in (3.6)
and obtain the polynomials an

4l,1 and an
4l+1,1 in Chebyshev representation again.

Applying this idea repeatedly leads to a cascade summation scheme as illustrated
in Figure 3.1 below. For τ = 1, . . . , t − 1, we compute

(3.7)
(

an
2τ+1l,τ

an
2τ+1l+1,τ

)
=

(
an
2τ+1l,τ−1

an
2τ+1l+1,τ−1

)
+ Un

2τ−1

(
·, 2τ+1l + 1

)(an
2τ+1l+2τ ,τ−1

an
2τ+1l+2τ+1,τ−1

)

for l = �ñ/2τ+1, . . . ,
(M̃ + 1)/2τ+1� − 1. It is not difficult to see that an
2τ+1l,τ =

an
2τ+1l+1,τ = 0 for larger or smaller l. After step τ = t − 1, we arrive at gn =

an
0,t−1P

n
0 + an

1,t−1P
n
1 , where we have the Chebyshev coefficients b0,k and b1,k for

k = 0, . . . , N − 1 of the polynomials an
0,t−1 and an

1,t−1 with degree at most N − 1,
respectively. Since

λn =
{

Pn
0 (x), if n even,

(1 − x2)−1/2Pn
0 (x), if n odd,

Pn
1 (x) = (αn

0 x + βn
0)Pn

0 (x),

we have

(3.8) gn(x) = λn

(
an
0,t−1(x) + (αn

0x + βn
0) an

1,t−1(x)
)
.

Now, using x T0(x) = x = T1(x) and x Tk(x) = 1
2 (Tk+1(x) + Tk−1(x)) for k ≥ 1,

we finally obtain in the last step the sought after Chebyshev coefficients bn
k for

k = 0, . . . , M if n is even, or k = 0, . . . , M − 1 if n is odd of the polynomial gn(x)

406 JENS KEINER AND DANIEL POTTS

τ = 0

τ = 1

τ = 2

τ = 3

τ = 4

0 0 0 0 a4
4 a4

5 a4
6 a4

7 a4
8 a4

9 a4
10 a4

11 a4
12 a4

13 a4
14 a4

15 a4
16

0 0 0 0 a4
4,0 a4

5,0 a4
6,0 a4

7,0 a4
8,0 a4

9,0 a4
10,0 a4

11,0 a4
12,0 a4

13,0 a4
14,0 a4

15,0

U 4
1 (·, 5) U 4

1 (·, 9) U 4
1 (·, 13)

0 0 a4
4,1 a4

5,1 a4
8,1 a4

9,1 a4
12,1 a4

13,1

U 4
3 (·, 1) U 4

3 (·, 9)

a4
0,2 a4

1,2 a4
8,2 a4

9,2

U 4
7 (·, 1)

a4
0,3 a4

1,3

b4
0 b4

1 b4
2 b4

3 b4
4 b4

5 b4
6 b4

7 b4
8 b4

9 b4
10 b4

11 b4
12 b4

13 b4
14 b4

15 b4
16

Figure 3.1. Schematic representation of the FLFT cascade sum-
mation for M = 16 (t = 4) and n = 4. The steps τ = 0 and τ = 4
are the first and the last steps, respectively.

of degree at most M or M − 1, respectively, by computing

bn
0 = λn

(
b0,0 + βn

0 b1,0 +
αn

0

2
b1,1

)
,

bn
1 = λn

(
b0,1 + βn

0 b1,1 + αn
0

(
b1,0 +

b1,2

2

))
,

bn
k = λn

(
b0,k + βn

0 b1,k +
αn

0

2
(b1,k−1 + b1,k+1)

)
(k = 2, . . . , N − 2),

bn
N−1 = λn

(
b0,N−1 + βn

0 b1,N−1 +
αn

0

2
b1,N−2

)
,

bn
N = λn

αn
0

2
b1,N−1.

(3.9)

In total, the FLFT algorithm consists of t + 1 = O(log M) steps. The first step
(τ = 0) and the last step (τ = t) clearly have a complexity of O(M) flops. The
rest is the cascade summation where each step has a complexity of O(M log M)
flops due to the DCT applications used for the multiplication with the matrices
Un

2τ−1

(
·, 2τ+1l + 1

)
. In total, this accumulates to O

(
M log2 M

)
flops for the whole

algorithm.

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 407

Figure 3.2. The time T := T̃
M log2 M

in seconds, with T̃ being the
time for a single fast Legendre function transform, as a function
of the bandwidth M up to M = 1024 and orders n = 0 (solid),
n = M

4 (dashed), n = M
2 (dashed-dotted), and n = 3M

4 (dotted).
The time measurements have been averaged over 10, 000 single
transforms for each bandwidth M and support an estimate of the
arithmetic complexity of O(M log2 M).

3.3. Stabilisation. The described algorithm is only exact in exact arithmetic. Un-
fortunately, it becomes unstable in finite precision arithmetic for |n| > 16 ([13]).
The computation is subject to numerical instabilities owing to small errors intro-
duced by the DCT algorithm that get multiplied by large function values of the
associated Legendre polynomials Pn

k (x, c) for certain admissible triples (k, n, c) and
|x| ≈ 1 ([9]). A simple but effective idea (see [13]) is to replace the ordinary multipli-
cation steps by so-called “stabilisation” steps, whenever the values Pn

k (x, c) exceed
a certain threshold κ > 0. The multiplication with the matrix Un

2τ+1

(
·, 2τ+1l + 1

)
is replaced by a multiplication with the matrix Un

2τ (2l+1)−1(·, 1) fulfilling(
Pn

2τ+1l+2τ

Pn
2τ+1l+2τ +1

)
= Un

2τ (2l+1)−1 (·, 1)T
(

Pn
0

Pn
1

)
.

This is nothing more than taking the polynomials an
2τ+1l+2τ ,τ−1 and an

2τ+1l+2τ+1,τ−1

out of the cascade and updating

(3.10)
(

an
0,t−1

an
1,t−1

)
:=

(
an
0,t−1

an
1,t−1

)
+ Un

2τ (2l+1)−1 (·, 1)
(

an
2τ+1l+2τ ,τ−1

an
2τ+1l+2τ+1,τ−1

)
after the cascade summation is completed.

These “stabilisation” steps are costly compared to the cascade summation with-
out stabilisation. We sacrifice runtime efficiency for accuracy. Unfortunately, an
upper bound for the number

sn := # {(k, n, c) : (k, n, c) is admissible and Pn
k (·, c) exceeds the threshold κ}

408 JENS KEINER AND DANIEL POTTS

Figure 3.3. The errors E2 (left) and E∞ (right) from (3.11) for
single fast Legendre function transforms as a function of the band-
width M up to M = 1024 and orders n = 0 (solid), n = M

4

(dashed), n = M
2 (dashed-dotted), and n = 3M

4 (dotted), respec-
tively. We used uniformly distributed pseudo-random coefficients
an

k from
[
−1

2 , 1
2

]
× i

[
−1

2 , 1
2

]
. Reference values were calculated with

Mathematica 5.0 using arbitrary precision arithmetic up to accu-
racy ε = 10−32.

of stabilisation steps with respect to M for a given threshold κ is not known. If
sn = O(log M), we would still have an O

(
M log2 M

)
algorithm. Figure 3.2 shows

time measurements supporting that this might be a reasonable conjecture. Figure
3.3 shows accuracy measurements with respect to the relative error measures

E∞ :=
‖g − g̃‖∞
‖g‖∞

, E2 :=
‖g − g̃‖2

‖g‖2
,(3.11)

where the vectors g and g̃ represent a sum

gn(cos ϑ) =
M∑

k=|n|
an

kP
|n|
k (cos ϑ)

evaluated at the M + 1 Chebyshev nodes ϑl = π(2l + 1)/(2(M + 1)), l = 0, . . . , M
using Mathematica 5.0 with arbitrary precision arithmetic for g, and the stabilized
FLFT algorithm followed by a DCT-III for g̃, respectively.

4. A factorization of the matrix Bn
M

In this section, we represent the FLFT algorithm as a linear mapping acting on
a vector of coefficients an

M = (an
k)M

k=|n| ∈ C
M−|n|+1 for fixed order n with |n| ≤ M .

For the sake of simplicity, we restrict ourselves to the case when M is a power of
two, hence M = N . For values of M not being a power of two, we set an

k := 0 for
M < k ≤ N . Furthermore, we let an

k := 0 for 0 ≤ k < |n| as before and use the
extended vector

an
M := (an

k)N
k=0 ∈ C

N+1.

We also omit the stabilisation procedure from Section 3.3 here and do not exploit
the fact that an

k = 0 for 0 ≤ k < n or M < k ≤ N in the following.

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 409

As seen before in Section 2.4, the FLFT algorithm can be represented as a
matrix Bn

M ∈ R(N+1)×(N+1) that when multiplied with the vector an
M results in a

vector bn
M := (bn

0 , bn
1 , . . . , bn

N)T ∈ C
N containing the Chebyshev coefficients bn

k of
the polynomial gn(x) from (2.11) or (2.12), admitting the representation

gn(x) =
N∑

k=0

bn
kTk(x).

In matrix-vector notation, this reads

bn
M = Bn

M an
M .

The FLFT algorithm implies a factorisation of the matrix Bn
M into a product of

sparse matrices. We will use this fact later on in Section 5 to obtain an algorithm
for the transposed problem, i.e., computing a matrix-vector product of the form
ãM,n = Bn

M
T b̃M,n.

In general, the FLFT algorithm consists of t+1 steps, such that the matrix Bn
M

can be decomposed into the matrix product

(4.1) Bn
M = Bn

M,t · Bn
M,t−1 · . . . · Bn

M,1 · Bn
M,0,

with the matrices

Bn
M,τ ∈

⎧⎨
⎩

R2N×(N+1), if τ = 0,
R

2N×2N , if 1 ≤ τ < t,
R(N+1)×2N , if τ = t.

4.1. The First Step. The first step converts the spherical Fourier coefficents an
k ,

k = 0, . . . , N , into polynomials an
k,0, k = 0, . . . , N − 1 of degree at most one in

Chebyshev representation, i.e., vectors an
k,0 ∈ C2 containing the coefficients of their

expansions in terms of the Chebyshev polynomials Tk for k = 0, 1. In matrix-vector
notation, this reads

an
M,0 = Bn

M,0 an
M

where the result vector

an
M,0 :=

⎡
⎢⎣

ãn
0,0
...

ãn
N−1,0

⎤
⎥⎦ ∈ C

2N

is a vector of length 2N . For k = 0, . . . , N − 3 we have

ãn
k,0 = e an

k , with e :=
(

1
0

)
since these new polynomials remain constants. The last polynomial an

N,0 is mapped
onto the preceeding ones, an

N−1,0 and an
N−2,0, by means of the three-term recurrence

relation (2.6), i.e.,

an
N,0 =

(
αn

N−1x + βn
N−1

)
an

N−1,0 + γn
N−1a

n
N−2,0.

Consequently, the matrix Bn
M,0 can be written as

(4.2) Bn
M,0 = [IN ⊗ e, ẽ] ,

with ẽ :=
(
0, 0, . . . , 0, γn

N−1, 0, βn
N−1, α

n
N−1

)T ∈ R2N .

410 JENS KEINER AND DANIEL POTTS

4.2. Steps τ = 1, . . . , t − 1 (Cascade Summation). These steps represent the
cascade summation applied to a sum of associated Legendre functions Pn

k as in
Figure 3.1. Notice that after the first step, we have N polynomials an

k,0 for k =
0, . . . , N − 1, where N is a power of two. In each step now following, half the
functions Pn

k are eliminated by mapping the polynomials an
k,0 in front of them

onto the remaining ones, employing the three-term recurrence. The input of step
τ , the vector an

M,τ−1, containing the Chebyshev coefficients of the polynomials
an
2τ+1l+j,τ−1 as vectors ãn

2τ+1l+j,τ−1 and j = 0, 1, 2τ , 2τ +1, is grouped by the index
j into consecutive blocks ân

l,τ−1 of four polynomials for l = 0, . . . , N/2τ+1−1, hence

an
M,τ−1 :=

⎡
⎢⎢⎣

ân
0,τ−1
...

ân
N

2τ+1 −1,τ−1

⎤
⎥⎥⎦ ∈ C

2N , ân
l,τ−1 :=

⎡
⎢⎢⎢⎢⎣

ãn
2τ+1l,τ−1

ãn
2τ+1l+1,τ−1

ãn
2τ+1l+2τ ,τ−1

ãn
2τ+1l+2τ+1,τ−1

⎤
⎥⎥⎥⎥⎦ ∈ C

2τ+2
.

In every block ân
l,τ−1, the first and the second polynomial, an

2τ+1l,τ−1 and
an
2τ+1l+1,τ−1 remain unchanged. The third and the fourth polynomial, an

2τ+1l+2τ ,τ−1

and an
2τ+1l+2τ+1,τ−1, get multiplied by the matrix Un

2τ−1

(
·, 2τ+1l + 1

)
and the re-

sult is added to an
2τ+1l,τ−1 and an

2τ+1l+1,τ−1 yielding an
2τ+1l,τ and an

2τ+1l+1,τ .
The output vector an

M,τ of this step contains only half as many polynomials
as before, but due to the multiplication with the matrix Un

2τ−1

(
·, 2τ+1l + 1

)
, the

degree of each polynomial nearly doubles each time so that twice the space is needed
to store the Chebyshev coefficients, hence the vectors ãn

2τ+1l,τ and ãn
2τ+1l+1,τ . In

total, the result vector an
M,τ still has length 2N .

Reviewing this polynomial multiplication and addition scheme, we need to keep
the first two polynomials, but with their vectors zero-padded to twice the length.
Furthermore, we have to add the vectors of Chebyshev coefficients due to the mul-
tiplication of the third and fourth polynomial with the matrix Un

2τ−1

(
·, 2τ+1l + 1

)
.

By writing these steps now as

[
ãn

2τ+1l,τ

ãn
2τ+1l+1,τ

]
= Vn

l,τ

⎡
⎢⎢⎣

ãn
2τ+1l,τ−1

ãn
2τ+1l+1,τ−1

ãn
2τ+1l+2τ ,τ−1

ãn
2τ+1l+2τ+1,τ−1

⎤
⎥⎥⎦ = Vn

l,τ ân
l,τ−1

we introduce the matrices

Vn
l,τ := [Zτ ,Ul,τ] ∈ R

2τ+2×2τ+2
,

Zτ :=

⎡
⎢⎢⎣

I2τ 0
0 0
0 I2τ

0 0

⎤
⎥⎥⎦ ∈ R

2τ+2×2τ+1
,

Un
l,τ ∈ R

2τ+2×2τ+1

where the matrix Un
l,τ representing the multiplication of the third and fourth poly-

nomial with the matrix Un
2τ−1

(
·, 2τ+1l + 1

)
can be further factorised as:

(4.3) Un
l,τ := DII,τ Sτ Pn

l,τ DIII,τ ,

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 411

defining the matrices

DII,τ := I2 ⊗ (D2τ+1C2τ+1) ∈ R
2τ+2×2τ+2

,

Sτ := I2 ⊗ [I2τ+1 , I2τ+1] ∈ R
2τ+2×2τ+3

,

Pn
l,τ := diag

([
γn
2τ+1l+1P

n
2τ−2(2

τ+1l + 1 + 1), γn
2τ+1l+1P

n
2τ−1(2

τ+1l + 1 + 1),

Pn
2τ−1(2

τ+1l + 1),Pn
2τ (2τ+1l + 1)

])
∈ R

2τ+3×2τ+3
,

DIII,τ := I2 ⊗
((

I2 ⊗ CT
2τ+1

)
Zτ

)
∈ R

2τ+3×2τ+1
,

and using the DCT related matrices D2τ+1 and C2τ+1 given by

CN :=
(

cos
j(2k + 1)π

2N

)N−1

j,k=0

, DN := diag
(
(εj)

N−1
j=0

)
(N ∈ N),

with ε0 := 1
2 and εj := 1 for j = 1, . . . , N − 1.

The matrix DIII,τ realizes the zero-padding (see the definition of Zτ from above)
of the two polynomials an

2τ+1l+2τ ,τ−1 and an
2τ+1l+2τ+1,τ−1, second, the evaluation

at the Chebyshev nodes cos
(

(2j+1)π
2τ+2

)
for j = 0, . . . , 2τ+1 − 1 by the DCT-III re-

lated matrix CT
2τ+1 , and finally, a duplication of the resulting vector to allow for

multiplication with two different associated Legendre polynomials. Combined, the
zero-padding and evaluation are an interpolation of function values of the polyno-
mials at additional nodes.

The diagonal matrix Pn
l,τ contains the values of the associated Legendre polyno-

mials in the matrix Un
2τ−1

(
·, 2τ+1l + 1

)
Chebyshev nodes cos

(
(2j + 1)π/2τ+2

)
for

j = 0, . . . , 2τ −1 on its main diagonal. It represents a pointwise multiplication with
the interpolated polynomial function values of an

2τ+1l+2τ ,τ−1 and an
2τ+1l+2τ+1,τ−1.

The matrix S(τ) forms the sums for the two rows of the result, and finally,
the matrix DII,τ transforms the newly obtained polynomials an

2τ+1l.τ and an
2τ+1l+1,τ

back into Chebyshev representation by applying the DCT-II related matrix product
D2τ+1 C2τ+1 to each vector of polynomial function values.

From the factorisation in (4.3), the compact representation

Un
l,τ =

(
D2τ+1C2τ+1γn

c (Pn
2τ−2(c + 1)CT

2τ+1Z1,τ + Pn
2τ−1(c + 1)CT

2τ+1Z2,τ)
D2τ+1C2τ+1(Pn

2τ−1(c)CT
2τ+1Z1,τ + Pn

2τ (c)CT
2τ+1Z2,τ)

)
with c = 2τ+1l + 1 and

Z1,τ :=
(
I2τ 0
0 0

)
∈ R

2τ+1×2τ+1
, Z2,τ :=

(
0 I2τ

0 0

)
∈ R

2τ+1×2τ+1

is obtained.
The whole step T(τ)

n can then be represented as

an
M,τ = Bn

M,τ an
M,τ−1,

Bn
M,τ :=

⎡
⎢⎢⎢⎣

Vn
0,τ

Vn
1,τ

. . .
Vn

2t−τ−1−1,τ

⎤
⎥⎥⎥⎦ .(4.4)

412 JENS KEINER AND DANIEL POTTS

4.3. The Last Step. The last step consists of obtaining the polynomial gn =
an
0,t−1P

n
0 + an

1,t−1P
n
1 in Chebyshev representation, i.e., the vector bn

M = (bn
k)N

k=0 ∈
CN+1. Using (3.9) we write

gn
M = λn

(
ĨNan

0,t−1 +
(
αn

0WN + βn
0 ĨN

)
an

1,t−1

)
.

Here, we have defined

Ĩk :=
[

IN

0

]
∈ R

(N+1)×N , WN :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

1 0 1
2

1
2 0

. . .
. 1

2
1
2 0

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(N+1)×N .

The last step is computing

bn
M = Bn

M,t a
n
M,t−1

where, depending on n, we distinguish three cases:

i) If n is odd we have αn
0 = 0, βn

0 = 1, and

(4.5) Bn
M,t = λn

[
ĨN , ĨN

]
∈ R

(N+1)×2N .

ii) For n = 0 it holds that αn
0 = 1, βn

0 = 0, and we find

(4.6) Bn
M,t = λn

[̃
IN+1,WN

]
∈ R

(N+1)×2N .

iii) Finally, if n is even and n �= 0, one verifies αn
0 = −1 and βn

0 = 1 resulting
in

(4.7) Bn
M,t = λn

[
ĨN , ĨN − WN

]
∈ R

(N+1)×2N .

5. Transposed fast Legendre function transform

After having analysed the FLFT algorithm in more detail by factorising the asso-
ciated matrix, the transposed fast Legendre function transform (transposed FLFT)
reads

(5.1) ãn
M = Bn

M
T b̃n

M

with the vectors b̃n
M :=

(
b̃n
k

)N

k=0
∈ CN+1 and ãn

M := (ãn
k)N

k=0 ∈ CN+1. Notice that

we are only interested in the coefficients ãn
k for |n| ≤ k ≤ M afterwards.

Following the lines of the preceeding sections, in particular, the formulas in (4.1),
(4.2), (4.4), and (4.5)–(4.7), we immediately obtain a factorisation of the transposed
matrix Bn

M
T as

(5.2) Bn
M

T = Bn
M,0

T · Bn
M,1

T · . . . · Bn
M,t−1

T · Bn
M,t

T.

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 413

For τ = 0 and τ = t, we have immediately

Bn
M,0

T =
(
IN ⊗ eT

1

ẽT

)
, Bn

M,t
T = λn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
ĨN

ĨN

]
, if n is odd,

[
ĨN

WT
N

]
, if n = 0,

[
ĨN

ĨN − WT
N

]
, if n is even, n �= 0.

(5.3)

For the remaining steps, i.e., the “transposed” cascade summation for τ = t −
1, . . . , 1, we have
(5.4)

Bn
M,τ

T =

⎡
⎢⎢⎢⎣
Vn

0,τ
T

Vn
1,τ

T

. . .
Vn

2t−τ−1−1,τ
T

⎤
⎥⎥⎥⎦ ,

Vn
l,τ

T =
[
Zτ

T,

Un
l,τ

T

]
,

Un
l,τ

T = [γn
2τ+1l+1(Z

T
1 C2τ+1Pn

2τ−2(2
τ+1l + 1 + 1)

+ ZT
2 C2τ+1Pn

2τ−1(2
τ+1l + 1 + 1))CT

2τ+1 , (ZT
1 C2τ+1Pn

2τ−1(2
τ+1l + 1)

+ ZT
2 C2τ+1Pn

2τ (2τ+1l + 1))CT
2τ+1].

Following this decomposition, a fast algorithm for computing the transposed FLFT,
hence computing the matrix-vector product ãM = Bn

MT b̃M can be obtained im-
mediately.

At each level τ = t− 1, . . . , 1 in the now backwards traversed cascade, we apply
two transformations corresponding to the transposed matrix Vn

l,τ
T to each pair of

polynomials ãn
2τ+1l,τ , ãn

2τ+1l+1,τ for l = 0, . . . , N
2τ+1 − 1:

First, we cut off the higher half of Chebyshev coefficients of every polynomial.
This is a multiplication with the matrix Zτ

T and can be interpreted as a projection
onto a polynomial subspace spanned by Chebyshev polynomials Tk up to degree
2τ . This yields the polynomials ãn

2τ+1l,τ−1 and ãn
2τ+1l+1,tau−1.

The second transformation corresponds to the multiplication with the matrix
Un

l,τ
T and consists of polynomial multiplications with the associated Legendre

polynomials contained in Un
2τ−1

(
·, 2τ+1l + 1

)
followed by projections onto differ-

ent polynomial subspaces, concretely the set of polynomials up to the degree 2τ

(multiplication with Z1,τ
T) and the set of polynomials with strictly higher degree

up to 2τ+1 (multiplication with Z2,τ
T).

6. Examples

We present numerical examples in order to demonstrate the stability, accuracy,
and efficiency of our approach. All algorithms were implemented in C and tested
on an AMD AthlonTMXP 2700+ with 2GB main memory, SuSe-Linux (kernel 2.6.5-
7.151-default, gcc 3.3.5) using double precision arithmetic. Moreover, we have used

414 JENS KEINER AND DANIEL POTTS

the libraries FFTW 3.0.1 [6] and the NFFT 3.0 library [8], now including the
fast NFSFT algorithms. Throughout our experiments we have applied the NFFT
routines with precomputed Kaiser–Bessel functions and an oversampling factor of
two. For the NFSFT routines we used the threshold κ = 1000 for the stabilisation.

In our tests, we used a collection of test functions f1, f2, . . . , f4 from [21]:

f1(x) := x1x2x3,

f2(x) := 0.1 ‖x‖1 ,

f3(x) := 1/ ‖x‖1 ,

f4(x) := 0.1 sin2 (1 + ‖x‖1) .

Function f1 is a cubic polynomial, i.e., the spherical Fourier coefficients an
k vanish

for k greater than three, while the other functions, not being polynomials, have
more or less rapidly decreasing spherical Fourier coefficients an

k as k grows. In
addition, we used the test function f5 with

f5(ϑ, ϕ) :=

{
1, if ϑ ∈ [0, π/2],(
1 + 3 cos2 ϑ

)−1/2
, if ϑ ∈ (π/2, π],

which we took from [2]. It consists of a half-sphere joined with a half-ellipsoid. It
is smooth everywhere except at the equator, where the two parts are joined.

We tested our algorithms on a variety of different quadrature formulae each
identified with a tuple (X , W) consisting of a set of nodes

X =
{
(ϑd, ϕd) ∈ S

2 : d = 1, . . . , D
}

and positive weights

W := {w (ϑd, ϕd) > 0 : d = 1, . . . , D}
to compute spherical Fourier coefficients an

k from the formula

an
k = 〈f, Y n

k 〉L2(S2) =
∫ 2π

0

∫ π

0

f(ϑ, ϕ)Y n
k (ϑ, ϕ) sin ϑ dϑ dϕ

by discretising to the sums
D∑

d=1

wdf(ϑd, ϕd)Y n
k (ϑd, ϕd).

We considered the following quadrature formulae (X , W):
i) The Gauss-Legendre quadrature grid XG

S of size S ∈ N0 is the Cartesian
product

XG
S :=

{
ϑG

j : j = 0, . . . , S
}
×
{
ϕG

k : k = 0, . . . , 2S + 1
}

with longitudinal nodes ϕG
k := kπ

S+1 . For the co-latitudinal direction we use
the Gauss-Legendre quadrature with nodes ϑG

j and weights wG
j which can

be obtained as the solution of an eigenvalue problem (see [3, p. 95]). The
weights

WG
S :=

{
wG

d = wG
j,k : j = 0, . . . , S; k = 0, . . . , 2S + 1

}
for the entire quadrature formula are then given by wd = wG

j,k := 2π
2S+2wG

j .
The number of nodes is

∣∣XG
S

∣∣ = 2S2 + 4S + 2 and the quadrature formula(
XG

S , WG
S

)
is exact for polynomials with degree M ≤ S.

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 415

ii) The Clenshaw-Curtis quadrature grid XC
S of size S ∈ N0 is the Cartesian

product

XC
S :=

{
ϑC

j : j = 0, . . . , 2S
}
×
{
ϕC

k : k = 0, . . . , 2S + 1
}

with longitudinal nodes ϕC
k := kπ

S+1 and co-latitudinal nodes ϑC
j := jπ

2S . The
weights

WC
S :=

{
wC

j,k : j = 0, . . . , 2S; k = 0, . . . , 2S + 1
}

for the quadrature formula are determined by

wC
j,k := wC

2S−j,k :=
4πε2S

j

(2S + 2)(2S + 1)

S∑
l=0

εS
l

1
1 − 4l2

cos
jlπ

S

for j = 0, . . . , S and k = 0, . . . , 2S + 1. They can be computed efficiently
by a DCT or a FFT (see e.g. [19]). Here, we have defined

εJ
j :=

{
1
2 if j = 0 or j = J ,
1 if 0 < j < J ,

for J ∈ N0. We have
∣∣XC

S

∣∣ = 4S2 + 6S + 2 and the quadrature formula(
XC

S , WC
S

)
is exact for polynomials with degree M ≤ S. The Clenshaw-

Curtis quadrature rule is computationally attractive since its nodes and
weights are easily computed and allow for using fast FFT-based algorithms
for evaluation; see also [18].

iii) The HEALPix grid XC
S of size S = 2t, t ∈ N0, is a hierarchical area parti-

tioning scheme on the sphere and has importance as data storage standard
in several applications like cosmic microwave background estimation. It
comprises

∣∣XH
S

∣∣ = 12S2 nodes, where S must be a power of two, and is
given explicitly by

NS :=

{(
arccos

(
1 − k2

3S2

)
,
π
(
n + 1

2

)
2k

)
: k = 1, . . . , S − 1; n = 0, . . . , 4k − 1

}
,

ES :=

⎧⎨
⎩
⎛
⎝arccos

(
2(2S − k)

3S

)
,
π
(
n + δ0,k mod 2

2

)
2S

⎞
⎠ : k = S, . . . , 3S;

n = 0, . . . , 4S − 1

⎫⎬
⎭ ,

SS :=

{(
arccos

(
−
(

1 − k2

3S2

))
,
π
(
n + 1

2

)
2k

)
: k = 1, . . . , S − 1;

n = 0, . . . , 4k − 1

}
,

XH
S := NS ∪ ES ∪ SS .

A drawback is that HEALPix grids lack an exact integration scheme with
easily computable weights and a degree of exactness. Nevertheless, it can
be used to compute spherical Fourier coefficients an

k up to certain accuracy.

416 JENS KEINER AND DANIEL POTTS

For simplicity, we use for the weights WH
S :=

{
wH

d : d = 1, . . . , 12S2
}

the
uniform estimate wH

d := 4π/
∣∣XH

S

∣∣.
iv) The last grid used is a so-called equidistribution grid XE

S of size S ∈ N

for which in the limit S → ∞ the exact quadrature weights approach the
uniform distribution wE

j,k = 4π

|XE
S | (see [5, Chapter 7]). We took the ensemble

from Example 7.1.9 in [5, p. 171] with nodes given by

XE
S := {x0,0 = (0, 0), xS,0 = (π, 0)}

∪
S−1⋃
j=1

{
xj,k =

(
jπ

S
,

(
k − 1

2

)(
2π

Sj

))
: k = 1, . . . , Sj

}
,

Sj :=

⎧⎨
⎩

1, if j = 0 or j = S,⌊
2π/arccos

((
cos

π

S
− cos2

jπ

S

)
/ sin2 jπ

S

)⌋
, if 0 < j < S.

An upper bound for the number of nodes contained is
∣∣XE

S

∣∣ ≤ 2 + 4
π S2.

Instead of using uniform weights we employed the Clenshaw-Curtis quad-
rature rule again and obtained for the weights WE

S := {wE

j,k : j = 0, . . . , S;
k = 1, . . . , Sj},

wE
0,0 := wE

S,0 :=
2π

SjS

�S/2�∑
j=0

ε
S/2
j

1
1 − 4j2

,

wE
j,k := wE

S−j,k :=
4π

SjS

�S/2�∑
j=0

ε
S/2
j

1
1 − 4j2

cos
jkπ

S/2
.

Example 6.1. We first examine the accuracy of the adjoint algorithm. Since we
cannot compute the exact output of the adjoint algorithms as a reference without
an extraordinary amount of time, e.g., using Mathematica with arbitrary precision
arithmetic and direct evaluation of the appearing sums, we investigate the combined
accuracy of the adjoint and non-adjoint algorithms. We therefore evaluate the test
function f1, which is a polynomial of degree three on Gauss-Legendre grids XG

S of
increasing size S, compute spherical Fourier coefficients an

k up to the appropriate
degree of exactness M = S, and evaluate the obtained trigonometric polynomial,
which should be identical with the function f1, on the same Gauss-Legendre grid
XG

S using the non-adjoint transform algorithm. In matrix-vector notation, this
reads

f̃ = YM,XG
M

(
YM,XG

M

)H

WM f .

The relative infinity error

E∞ :=
‖f − f̃‖∞
‖f‖∞

with the vectors f and f̃ of exact and computed function values, respectively, gives
an indication of the backward stability of the adjoint algorithm. Figure 6.1 shows
the results of the fast NFSFT algorithms for two different NFFT cut-off parameters
m = 3, 6 and S = M = 16, 32, 48, . . . , 1024 plus the direct NDSFT algorithms and
S = M = 16, 32, 64, 128, 256, 512, 1024. While the NFFT cut-off parameter for
m = 3 limits the achievable accuracy uniformly for all transform sizes, the accuracy

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 417

(a) (b)

Figure 6.1. (a) The error E∞ for the fast NFSFT algorithms with NFFT
cut-off parameter m = 3 (dash-dotted), m = 6 (dashed) and S = M =
16, 32, 48, . . . , 1024, and the direct NDSFT algorithms for S = M =
16, 32, 64, 128, 256, 512, 1024 (solid). (b) The error E∞ for the test functions
f2, f3, f4, f5 with S = 1024 and M = 16, 32, 48, . . . , 1024. In both examples,
we used the quadrature rule

(
XG

S , WG
S

)
.

of the computations for m = 6 decrease with increasing transform size owing to the
properties of the polynomials used in the stabilized polynomial transform algorithm.
Also, the direct NDSFT algorithms show a slight decay of accuracy.

Example 6.2. We use Gauss-Legendre quadrature rules to compute and evalu-
ate polynomial approximants to the test functions f2, f3, f4 and f5 with the fast
NFSFT algorithms and m = 6. More exactly, we evaluate the test functions on the
fixed Gauss-Legendre grid XG

1024 of size S = 1024 and compute spherical Fourier
coefficients an

k up to increasing degrees M = 16, 32, 48, . . . , 1024. We then evaluate
the approximants on the grid XG

1024 again using the relative error measure E∞. In
matrix-vector notation, this reads

f̃j = YM,XG
1024

(
YM,XG

1024

)H

W1024 fj

for the test functions fj and j = 3, 4, 5, 6.

Example 6.3. In Examples 6.1 and 6.2, the sampling sets are spherical grids, but
for example Maskhar et al. ([10]) show that suitable quadrature rules also allow re-
construction from scattered sampling sets. Furthermore, one is often also intrested
in quadrature rules which only approximate the spherical Fourier coefficients. We
therefore considered the Gauss-Legendre grids XG

S , the Clenshaw-Curtis grids XC
S ,

the HEALPix grids XH
S and the equidistributions XE

S for various sizes S. Up to
the fixed degree M = 128, we choose spherical Fourier coefficients an

k randomly
from

[
−1

2 , 1
2

]
. We now evaluate this random polynomial of degree M = 128 on the

different node sets for increasing sizes S = 16, 32, 48, . . . , 1024 for XG
S , XC

S , XE
S and

S = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 for XH
S . Using these function values, we try to

418 JENS KEINER AND DANIEL POTTS

(a) (b)

Figure 6.2. (a) The error E∞ for the fast NFSFT algorithms with
NFFT cut-off parameter m = 6, a random polynomial with fixed de-
gree M = 128 and sizes S = 16, 32, 48, . . . , 1024 for the quadrature
rules

(
XG

S , WG
S

)
(solid),

(
XC

S , WC
S

)
(dashed),

(
XE

S , WE
S

)
(dash-dotted) and

S = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 for the quadrature rules
(
XH

S , WH
S

)
(dotted). (b) Time measurements for the fast adjoint NFSFT algorithm
(solid) with NFFT cut-off parameter m = 6, M = 16, 32, 48, . . . , 1024,
S = M2 and the adjoint direct NDSFT algorithm (dashed) with M =
16, 32, 64, 128, 256, 512, 1024, S = M2. The time is the duration of a sin-
gle adjoint transform in seconds executed on a set of S uniformly distributed
random nodes.

recover the spherical Fourier coefficients an
k up to the degree M = 128 and com-

pare the resulting polynomial with the original function on a set of 1000 uniformly
distributed random nodes, using the relative error measure E∞. In matrix-vector
notation this reads

f̃x = Y128,XG
S

(
Y128,XG

S

)H

WS fx.

Figure 6.2 (a) compares the error E∞ for the different quadrature rules and the
absolute number of nodes used.

Example 6.4. We finally compared the computation time of the adjoint NDSFT
and adjoint NFSFT algorithms. Figure 6.2 (b) shows the CPU time required for
one transformation as a function of the bandwidth M . For given M we chose the
number of nodes as M2. For larger M , the NFSFT algorithm outperforms the
NDSFT algorithm.

References

[1] S. Belmehdi. On the associated orthogonal polynomials. J. Comput. Appl. Math., 32:311 –
319, 1991. MR1090883 (92e:33007)

[2] M. Böhme and D. Potts. A fast algorithm for filtering and wavelet decomposition on the
sphere. Electron. Trans. Numer. Anal., 16:70 – 92, 2003. MR1988721 (2004f:65220)

http://www.ams.org/mathscinet-getitem?mr=1090883
http://www.ams.org/mathscinet-getitem?mr=1090883
http://www.ams.org/mathscinet-getitem?mr=1988721
http://www.ams.org/mathscinet-getitem?mr=1988721

FAST EVALUATION OF QUADRATURE FORMULAE ON THE SPHERE 419

[3] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration (Second Edition). Academic
Press Inc., 1984. MR760629 (86d:65004)

[4] J. R. Driscoll and D. Healy. Computing Fourier transforms and convolutions on the 2–sphere.
Adv. in Appl. Math., 15:202 – 250, 1994. MR1277214 (95h:65108)

[5] W. Freeden, T. Gervens, and M. Schreiner. Constructive Approximation on the Sphere. Ox-
ford University Press, Oxford, 1998. MR1694466 (2000e:41001)

[6] M. Frigo and S. G. Johnson. FFTW, C subroutine library. http://www.fftw.org.

[7] D. Healy, P. Kostelec, S. Moore, and D. Rockmore. FFTs for the 2-sphere – Improvements
and variations. J. Fourier Anal. Appl., 9:341 – 385, 2003. MR1999564 (2005d:43014)

[8] J. Keiner, S. Kunis, and D. Potts. NFFT3.0, Softwarepackage, C subroutine library.
http://www.tu-chemnitz.de/∼potts/nfft, 2006.

[9] S. Kunis and D. Potts. Fast spherical Fourier algorithms. J. Comput. Appl. Math., 161:75 –
98, 2003. MR2018576 (2004k:65270)

[10] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward. Spherical Marcinkiewicz-Zygmund inequal-
ities and positive quadrature. Math. Comput., 70:1113 – 1130, 2001. Corrigendum on the
positivity of the quadrature weights in 71:453 – 454, 2002. MR1710640 (2002a:41032)

[11] M. J. Mohlenkamp. A fast transform for spherical harmonics. J. Fourier Anal. Appl., 5:159
– 184, 1999. MR1683208 (2000b:65247)

[12] D. Potts, G. Steidl, and M. Tasche. Fast algorithms for discrete polynomial transforms. Math.
Comput., 67:1577 – 1590, 1998. MR1474655 (99b:65183)

[13] D. Potts, G. Steidl, and M. Tasche. Fast and stable algorithms for discrete spherical Fourier
transforms. Linear Algebra Appl., 275/276:433 – 450, 1998. MR1628403 (99h:65229)

[14] D. Potts, G. Steidl, and M. Tasche. Fast Fourier transforms for nonequispaced data: A
tutorial. In J. J. Benedetto and P. J. S. G. Ferreira, editors, Modern Sampling Theory:
Mathematics and Applications, pages 247 – 270. Birkhäuser, Boston, 2001. MR1865690

[15] V. Rokhlin and M. Tygert. Fast Algorithms for Spherical Harmonic Expansions. SIAM J.
Sci. Comput., 27:1903 – 1928, 2006. MR2211433 (2006m:65323)

[16] I. H. Sloan and R. S. Womersley. Constructive polynomial approximation on the sphere. J.
Approx. Theory, 103:91 – 118, 2000. MR1744380 (2000k:41009)

[17] R. Suda and M. Takami. A fast spherical harmonics transform algorithm. Math. Comput.,

71:703 – 715, 2002. MR1885622 (2003b:65145)
[18] L. N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM Review, 2007. to

appear.
[19] J. Waldvogel. Fast construction of Fejer and Clenshaw-Curtis quadrature rules. BIT, 46:195

– 202, 2006. MR2214855
[20] A. F. Ware. Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev.,

40:838 – 856, 1998. MR1659685 (2000i:65228)
[21] R. S. Womersley and I. H. Sloan. How good can polynomial interpolation on the sphere be?

Adv. Comput. Math., 14:195 – 226, 2001. MR1845243 (2002e:41022)

Institute of Mathematics, University of Lübeck, Wallstraße 40, 23560 Lübeck,

Germany

E-mail address: keiner@math.uni-luebeck.de

Department of Mathematics, Chemnitz University of Technology, Reichenhainer

Straße 39, 09107 Chemnitz, Germany

E-mail address: potts@mathematik.tu-chemnitz.de

http://www.ams.org/mathscinet-getitem?mr=760629
http://www.ams.org/mathscinet-getitem?mr=760629
http://www.ams.org/mathscinet-getitem?mr=1277214
http://www.ams.org/mathscinet-getitem?mr=1277214
http://www.ams.org/mathscinet-getitem?mr=1694466
http://www.ams.org/mathscinet-getitem?mr=1694466
http://www.ams.org/mathscinet-getitem?mr=1999564
http://www.ams.org/mathscinet-getitem?mr=1999564
http://www.ams.org/mathscinet-getitem?mr=2018576
http://www.ams.org/mathscinet-getitem?mr=2018576
http://www.ams.org/mathscinet-getitem?mr=1710640
http://www.ams.org/mathscinet-getitem?mr=1710640
http://www.ams.org/mathscinet-getitem?mr=1683208
http://www.ams.org/mathscinet-getitem?mr=1683208
http://www.ams.org/mathscinet-getitem?mr=1474655
http://www.ams.org/mathscinet-getitem?mr=1474655
http://www.ams.org/mathscinet-getitem?mr=1628403
http://www.ams.org/mathscinet-getitem?mr=1628403
http://www.ams.org/mathscinet-getitem?mr=1865690
http://www.ams.org/mathscinet-getitem?mr=2211433
http://www.ams.org/mathscinet-getitem?mr=2211433
http://www.ams.org/mathscinet-getitem?mr=1744380
http://www.ams.org/mathscinet-getitem?mr=1744380
http://www.ams.org/mathscinet-getitem?mr=1885622
http://www.ams.org/mathscinet-getitem?mr=1885622
http://www.ams.org/mathscinet-getitem?mr=2214855
http://www.ams.org/mathscinet-getitem?mr=1659685
http://www.ams.org/mathscinet-getitem?mr=1659685
http://www.ams.org/mathscinet-getitem?mr=1845243
http://www.ams.org/mathscinet-getitem?mr=1845243

	1. Introduction
	2. Discrete spherical Fourier transforms
	2.1. Fourier analysis on the sphere S2
	2.2. Associated Legendre functions and polynomials
	2.3. Discrete Fourier transforms on the sphere S2
	2.4. Matrix-vector notation
	2.5. A fast Fourier transform algorithm for arbitrary nodes on the sphere S2

	3. Fast Legendre function transform
	3.1. Existing algorithms
	3.2. An exact algorithm
	3.3. Stabilisation

	4. A factorization of the matrix BMn
	4.1. The First Step
	4.2. Steps = 1,…,t-1 (Cascade Summation)
	4.3. The Last Step

	5. Transposed fast Legendre function transform
	6. Examples
	References

