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ANALYSIS OF A FINITE ELEMENT PML APPROXIMATION
FOR THE THREE DIMENSIONAL TIME-HARMONIC

MAXWELL PROBLEM

JAMES H. BRAMBLE AND JOSEPH E. PASCIAK

Abstract. In our paper [Math. Comp. 76, 2007, 597–614] we considered the
acoustic and electromagnetic scattering problems in three spatial dimensions.
In particular, we studied a perfectly matched layer (PML) approximation to an

electromagnetic scattering problem. We demonstrated both the solvability of
the continuous PML approximations and the exponential convergence of the
resulting solution to the solution of the original acoustic or electromagnetic
problem as the layer increased.

In this paper, we consider finite element approximation of the truncated
PML electromagnetic scattering problem. Specifically, we consider approxima-
tions which result from the use of Nédélec (edge) finite elements. We show that
the resulting finite element problem is stable and gives rise to quasi-optimal
convergence when the mesh size is sufficiently small.

1. Introduction

The purpose of this paper is to analyze a finite element approximation of a
problem which results when the time-harmonic electromagnetic scattering problem
is approximated using a truncated PML approach. We shall demonstrate that
the finite element method is stable and convergent provided that the grid size is
sufficiently fine.

There are several aspects of the time-harmonic electromagnetic scattering prob-
lem which make it computationally challenging. First, the problem is not uniformly
elliptic since the gradient part of the field is not controlled by the form. In addition,
because of the time harmonic nature of the problem, the zeroth order term appears
with a sign opposite to that of the curl-curl term. This causes the problem to have
an indefinite character. The solvability of the continuous problem is, however, a
consequence of the Silver-Müller radiation condition imposed at infinity. Unfortu-
nately, the resulting solutions decay very slowly necessitating the use of either some
type of artificial boundary condition or a boundary integral approach.

The so-called PML technique is perhaps one of the most effective of the artificial
boundary condition approaches. This is because accurate solutions on a domain
near the scatterer can be achieved by increasing the size of the computational region
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by a factor of only around two. Moreover, implementation of the PML approach
in a reasonably general code developed for the bounded domain problem is quite
simple since it involves only a change in the coefficients.

Although there are many variants of the PML approach, we consider a version
which coincides with a complex change of coordinates based on a spherical layer.
This approach allows us to define a new problem (the infinite PML Problem) on
the complement of the scatterer which satisfies:

(1) The solutions of the original and PML problems coincide on the interior of
a ball of radius r0.

(2) The solution of the infinite PML problem decays exponentially for large
argument.

Because of the decay property, the solution of the infinite PML problem can be
well approximated by a truncated (bounded domain) PML problem (see, [2, 3]). In
particular, in [3] an inf-sup condition for the truncated domain problem is derived.
This is a critical estimate for the finite element analysis which we provide here.

In this paper, we consider approximating the truncated PML problem using curl-
conforming finite elements [5, 12, 13]. Our analysis uses many of the ideas developed
for curl-conforming finite element approximations to time-harmonic electromagnetic
problems on bounded domains [7, 9, 10, 11]. We use a duality approach reminiscent
of the argument of Schatz [14] with modifications to handle the lack of uniform
ellipticity similar to those used in [6, 9].

The remainder of the paper is outlined as follows. In Section 2, we introduce the
time-harmonic electromagnetic scattering problem and the infinite PML problem.
Section 3 defines the truncated PML problem and its Galerkin approximation. The
main result of the paper is stated and proved there.

2. The scattering problem and infinite PML approximation

Let Ω (the scatterer) be a bounded domain in R
3 with polyhedral boundary.

We will consider the time-harmonic electromagnetic scattering problem. We seek
vector fields E and H defined on the complement Ωc satisfying

(2.1)

−ikµH+ ∇×E = 0, in Ωc,

−ikεE − ∇×H = 0, in Ωc,

n × E = n × g, on ∂Ω,

lim
ρ→∞

ρ(µH× x̂ − E) = 0.

Here g results from a given incidence field, µ is the magnetic permeability, ε is the
electric permittivity, k is the wave number, and n is the outward unit normal on ∂Ω.
Also x̂ is a unit vector in the direction of x and ρ = |x|. The last line corresponds
to the Silver-Müller condition at infinity. We assume that the coefficients µ and ε
are real and positive, bounded away from zero and constant outside of some ball
(of radius r0).

We note that Ωc need not be simply connected and we do not assume that
its boundary is simply connected. We let Γj , j = 1, . . . , p denote the connected
components of ∂Ωc.

We introduce some notation that will be used in the remainder of the paper. For
a domain D, let L2(D) be the space of (complex valued) square integrable functions
on D and L2(D) = (L2(D))3 be the space of vector valued L2-functions. We shall
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use (·, ·)Ω to denote the (vector or scalar Hermitian) L2(Ω) inner product and 〈·, ·〉Γ
to denote the (vector or scalar Hermitian) L2(Γ) boundary inner product. For a
real number s, the scalar and vector Sobolev spaces on D will be denoted Hs(D)
and Hs(D) respectively. Let H(curl; D) be the set of vector valued functions
which, along with their curls, are in L2(D). H0(curl; D) denotes the functions f
in H(curl; D) satisfying n × f = 0 on ∂Ω. We assume that n × g above is the
trace n × ĝ of a function ĝ ∈ H(curl; Ωc) supported close to ∂Ω.

For a subdomain D contained in our computational domain Ω∞, by extension
by zero, we identify H1

0 (D) with

{v ∈ H1
0 (Ωc) : supp(v) ⊆ D̄}

and H0(curl; D) with

{v ∈ H0(curl; Ωc)) : supp(v) ⊆ D̄}.

For convenience, we shall take µ = ε = 1 in (2.1) as all of our results extend to
the more general case as long as the coefficients are constant outside of a ball of
radius r0. We can reduce (2.1) to a single equation involving E by eliminating H.
This gives

(2.2)

− ∇× ∇×E + k2E = 0 in Ωc,

n × E = n × g on ∂Ω,

lim
ρ→∞

ρ((∇×E) × x̂ − ikE) = 0.

As in [3], we introduce bounded subdomains of Ωc with spherical outer bound-
aries. Let 0 < r0 < r1 < r2 be real numbers and let Ωi denote (the interior of) the
open ball Bi of radius ri excluding Ω̄. We assume that r0 is large enough so that
the corresponding ball contains Ω̄ and that the origin is contained in Ω. We denote
the outer boundary of Ωi by Γi. The domain Ω2 is contained in our computational
domain which we denote by Ω∞. Here Ω∞ is a bounded subset of Ωc with a poly-
hedral boundary, part of which is ∂Ω. The outer boundary of Ω∞ is denoted by
Γ∞.

As discussed in [4], the PML problem can be viewed as a complex coordinate
transformation. Following [8], a transitional layer based on spherical geometry is
defined which results in a constant coefficient problem outside the transition. Given
σ0, r1, and r2, we start with a function σ̃ ∈ C2(R+) satisfying

σ̃(ρ) = 0, for 0 ≤ ρ ≤ r1,

σ̃(ρ) = σ0, for ρ ≥ r2,

σ̃(ρ) increasing for ρ ∈ (r1, r2).

We define
ρ̃ = ρ(1 + iσ̃) ≡ ρd̃.

One obvious construction of such a function σ̃ in the transition layer r1 ≤ ρ ≤ r2

with the above properties is given by the fifth degree polynomial,

σ̃(ρ) = σ0

( ∫ ρ

r1

(t−r1)2(r2−t)2 dt

)( ∫ r2

r1

(t−r1)2(r2−t)2 dt

)−1

, for r1 ≤ ρ ≤ r2.

A smoother σ̃ can be constructed by increasing the exponents in the above formula.
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Each component, u, of the solution E of (2.2) satisfies the Helmholtz equation
with Sommerfeld radiation condition, i.e.,

(2.3)
∆u + k2u = 0, for ρ > r0,

lim
ρ→∞

ρ(∇u · x̂ − iku) = 0.

It follows that the solution of (2.2) can be expanded

(2.4) E =
∞∑

n=0

n∑
m=−n

an,mh1
n(kρ)Y m

n (θ, φ), for ρ ≥ r0.

Here h1
n(r) are spherical Bessel functions of the third kind (Hankel functions),

Y m
n are spherical harmonics (see, e.g., [10] for details) and an,m are vector valued

constants.
The (infinite domain) PML solution is defined by

Ẽ =

⎧⎪⎨
⎪⎩

E(x), for |x| ≤ r1,
∞∑

n=1

n∑
m=−n

an,mh1
n(kρ̃)Y m

n (θ, φ), for ρ = |x| ≥ r1.

By construction Ẽ and E coincide on Ω1. Furthermore, the complex shift in the
argument of h1

n above (kρ replaced by kρ̃) guarantees exponential decay of Ẽ as ρ
tends to infinity.

The PML solution defined above satisfies a differential equation involving ρ̃ and
dρ̃
dρ . A simple computation shows that

dρ̃

dρ
= (1 + iσ(ρ)) ≡ d

where

σ(ρ) = σ̃(ρ) + ρσ̃′(ρ).

It follows that σ is in C1(R+) and satisfies

σ(ρ) = 0, for 0 ≤ ρ ≤ r1,

σ(ρ) > σ̃(ρ), for ρ ∈ (r1r2),

σ(ρ) = σ0, for ρ ≥ r2.

The solution Ẽ satisfies Maxwell’s equations using the spherical coordinates
(ρ̃, θ, φ) [10]. More precisely,

(2.5)

−∇̃ × ∇̃ × Ẽ + k2Ẽ = 0 in Ωc,

n × Ẽ = n × g on ∂Ω,

Ẽ bounded at ∞.

For Ẽ expanded in spherical coordinates,

Ẽ = Ẽρeρ + Ẽθeθ + Ẽφeφ,
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we have

(2.6)

∇̃ × Ẽ =
1

d̃ρ sin θ

(
∂

∂θ
(sin θ Ẽφ) − ∂Ẽθ

∂φ

)
eρ

+
1

d̃ρ

(
1

sin θ

∂Ẽρ

∂φ
− 1

d

∂

∂ρ
(d̃ρẼφ)

)
eθ

+
1

d̃ρ

(
1
d

∂

∂ρ
(d̃ρẼθ) −

∂Ẽρ

∂θ

)
eφ.

3. The truncated PML problem and its Galerkin approximation

Since the solution of (2.5) coincides with that of (2.2) on Ω1 while rapidly decay-
ing as ρ tends to infinity, it is natural to truncate to a finite computational domain
Ω∞ and impose convenient boundary conditions on the outer boundary Γ∞. We
shall always require that the transitional region is contained in Ω∞, i.e., Ω̄2 ⊂ Ω∞.

The truncated PML approximation is then given as the vector function Ẽt de-
fined on Ω∞ satisfying

(3.1)

−∇̃ × ∇̃ × Ẽt + k2Ẽt = 0 in Ω∞,

n × Ẽt = n × g on ∂Ω,

n × Ẽt = 0 on Γ∞.

We shall assume that Ω∞ is sufficiently large so that we can apply the results of
[3] to conclude existence and uniqueness of solutions of (3.1).

We can write the derivatives in (3.1) in terms of cartesian coordinates. Following
[10], we define the diagonal matrices (in spherical coordinates)

Av = d̃−2vρeρ + (d̃d)−1(vθeθ + vφeφ)

and
Bv = dvρeρ + d̃(vθeθ + vφeφ).

Then, ∇̃ × Ẽ = A ∇× (BẼ). The matrices A and B have simple representations
in cartesian coordinates, e.g.,

A = (d̃d)−1I +
d̃−2 − (d̃d)−1

ρ2

⎛
⎝ x2

1 x1x2 x1x3

x2x1 x2
2 x2x3

x3x1 x3x2 x2
3

⎞
⎠ .

Here I denotes the 3 × 3 identity matrix.
Following [10], we first define a weak form of the PML problem (3.1) by setting

Ẽt = ĝ − w and setting up a variational problem for Ξ = Bw ∈ H0(curl; Ω∞),
i.e.,

(3.2) A(Ξ,Ψ) = A(Bĝ,Ψ), for all Ψ ∈ H0(curl; Ω∞).

Here the sesquilinear form A is given by

A(Θ,Ψ) ≡ (µ−1 ∇× Θ, ∇×Ψ) − k2(µΘ,Ψ), for all Θ,Ψ ∈ H(curl; Ωc)

and µ = (AB)−1. For convenience, we have used the notation (·, ·) above to denote
the inner product on Ω∞, as inner products on Ω∞ will be used extensively in the
remainder of the paper.
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We consider the Nédélec finite element approximation to problem (3.2) which
we restate as

(3.3) A(Ξ,Ψ) = F (Ψ) for all Ψ ∈ H0(curl; Ω∞).

Here F denotes the functional corresponding to the right hand side of (3.2).
For convenience, let Qh denote the curl conforming approximation subspace of

Nédélec elements on tetrahedra shaped elements consisting of piecewise polynomi-
als of maximum degree r [5, 10, 12, 13]. Our results extend to the brick shaped
elements. The finite element approximation to (3.3) is: Find Ξh ∈ Qh satisfying

(3.4) A(Ξh,Φ) = F (Φ) for all Φ ∈ Qh.

The main result of this paper is contained in the following theorem. Its proof will
be given in the remainder of this section.

Theorem 3.1. There exists h0 > 0 such that if h ≤ h0, problem (3.4) has a unique
solution Ξh which satisfies

‖Ξh − Ξ‖H(curl;Ω∞) ≤ C inf
V∈Qh

‖V − Ξ‖H(curl;Ω∞).

The proof of the above theorem is based on a perturbation argument and duality.
Such arguments have been applied to uniformly elliptic problems [14] as well as time
harmonic Maxwell problems on bounded domains [9, 10].

In spherical coordinates, the matrix function µ is represented by multiplication
by a diagonal matrix with complex diagonal entries {D11, D22, D33} ≡ {d̃2/d, d, d}.
Because of the assumptions on σ̃ it follows that there are constants c0, c1 satisfying

(3.5) c0 ≤ Re(Djj) ≤ c1 and c0 ≤ Re(D−1
jj ) ≤ c1.

Setting
Â(W , V) = k2(µW , V) + (µ−1 ∇× W , ∇×V)

for W , V ∈ H(curl; Ω∞), it follows that

(3.6) ‖W ‖2
H(curl;Ω∞) ≤ CRe(Â(W , W ))

and

(3.7) ‖θ‖2
H1(Ω∞) ≤ CRe(µ∇θ,∇θ), for all θ ∈ H1

0 (Ω∞).

We will first prove the inf-sup condition corresponding to problem (3.2), namely
that for V ∈ H0(curl; Ω∞),

(3.8) ‖V‖H(curl;Ω∞) ≤ C sup
Θ∈H0(curl;Ω∞)

|A(V,Θ)|
‖Θ‖H(curl;Ω∞)

.

This will be a consequence of an inf-sup condition proved in [3].
We follow [3] and set

XN (Ω∞) = H0(curl; Ω∞) ∩ H0(div; µ, Ω∞),

where H0(div; µ, Ω∞) = {U ∈ L2(Ω∞) : ∇ · (µU) = 0}. It was shown in [3] that
for v ∈ XN (Ω∞),

(3.9) ‖v‖H(curl;Ω∞) ≤ C sup
φ∈XN (Ω∞)

|A(v, φ)|
‖φ‖H(curl;Ω∞)

.

Let V be in H0(curl; Ω∞) and set V = v + ∇ψ where ψ ∈ H1
0 (Ω∞) solves

(µ∇ ψ, ∇ θ) = (µV , ∇ θ), for all θ ∈ H1
0 (Ω∞),
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so that v is in XN (Ω∞). Thus,

(3.10)

‖v‖H(curl;Ω∞) ≤ C sup
φ∈X(Ω∞)

|A(V , φ)|
‖φ‖H(curl;Ω∞)

+ C‖∇ψ‖L2(Ω∞)

≤ C sup
Θ∈H0(curl;Ω∞)

|A(V ,Θ)|
‖Θ‖H(curl;Ω∞)

+ C‖∇ψ‖L2(Ω∞).

Now
‖∇ψ‖2

L2(Ω∞) ≤ C|A(∇ψ,∇ψ)| = C|A(V,∇ψ)|,
from which it follows easily that

(3.11) ‖∇ψ‖H(curl;Ω∞) = ‖∇ψ‖L2(Ω∞) ≤ C sup
Θ∈H0(curl;Ω∞)

|A(V ,Θ)|
‖Θ‖H(curl;Ω∞)

.

The inf-sup condition (3.8) then follows from the triangle inequality, (3.10) and
(3.11).

Because of (3.6), we can define a Galerkin projector: P̂h : H(curl; Ω∞) → Qh

satisfying

(3.12) Â(Φ, P̂hV) = Â(Φ, V), for all Φ ∈ Qh.

Clearly, P̂h is bounded and gives rise to quasi-optimal convergence. We then have
the following lemma which we shall prove at the end of this section.

Lemma 3.1. Let P̂h be defined by (3.12). Then, for Vh ∈ Qh, Θ ∈ H0(curl; Ω∞),
and for some s > 1/2,

(3.13) |(µVh,Θ− P̂hΘ)| ≤ Chs‖Θ‖H(curl;Ω∞)‖Vh‖H(curl;Ω∞).

Using the above lemma, we can now prove Theorem 3.1.

Proof of Theorem 3.1. It is clear that the theorem will follow if we verify the dis-
crete inf-sup condition: For Vh ∈ Qh,

(3.14) ‖Vh‖H(curl;Ω∞) ≤ C sup
Θ∈Qh

|A(Vh,Θ)|
‖Θ‖H(curl;Ω∞)

.

Applying (3.8) with V = Vh ∈ Qh, we have

C‖Vh‖H(curl;Ω∞) ≤ sup
Θ∈H0(curl;Ω∞)

|A(Vh,Θ)|
‖Θ‖H(curl;Ω∞)

≤ sup
Θ∈H0(curl;Ω∞)

|A(Vh,Θ− P̂hΘ)|
‖Θ‖H(curl;Ω∞)

+ sup
Θ∈H0(curl;Ω∞)

|A(Vh, P̂hΘ)|
‖Θ‖H(curl;Ω∞)

= sup
Θ∈H0(curl;Ω∞)

2k2|(µVh,Θ− P̂hΘ)|
‖Θ‖H(curl;Ω∞)

+ sup
Θ∈H0(curl;Ω∞)

|A(Vh, P̂hΘ)|
‖Θ‖H(curl;Ω∞)

.

Applying the lemma and stability of P̂h in H0(curl; Ω∞), we have that

C‖Vh‖H(curl;Ω∞) ≤ hs‖Vh‖H(curl;Ω∞) + sup
Θ∈H0(curl;Ω∞)

|A(Vh, P̂hΘ)|
‖P̂hΘ‖H(curl;Ω∞)

= hs‖Vh‖H(curl;Ω∞) + sup
Θh∈Qh

|A(Vh,Θh)|
‖Θh‖H(curl;Ω∞)

.

Thus, (3.14) follows for h sufficiently small. �
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We need an additional result for the proof of the lemma. To this end, we intro-
duce

XT (Ω∞) = H(curl; Ω∞) ∩ H0
0(div; µ, Ω∞),

where H0
0(div; µ, Ω∞) = {U ∈ H0(div; Ω∞) : ∇ · (µU) = 0}. The following

proposition was proved in [3] for XN (Ω∞). The proof for XT (Ω∞) is similar.

Proposition 3.1. XN (Ω∞) and XT (Ω∞) are contained in Hs(Ω∞) for some s >
1/2. Moreover,

(3.15) ‖V‖Hs(Ω∞) ≤ C‖V‖H(curl;Ω∞), for all V ∈ XN (Ω∞) ∪ XT (Ω∞).

We will now prove the lemma.

Proof of Lemma 3.1. For i = 1, . . . , p, define ψ̂i to be the function in H1(Ω∞)
satisfying

−∆ψ̂i = 0, in Ω∞,

ψ̂i = 0, on Γj (j = 1, . . . , p,∞, j �= i),

ψ̂i = 1, on Γi.

Let Wd be the p-dimensional space spanned by {ψ̂i} for i = 1, . . . , p and set
H̃1

0 (Ω∞) = H1
0 (Ω∞) + Wd. It is an easy consequence of Theorem 3.17 and Corol-

lary 3.16 of [1] that the sequence

H̃1
0 (Ω∞) ∇−−−−→ H0(curl; Ω∞) ∇×−−−−→ H0(div; Ω∞)

is exact.
On the discrete level, we introduce the space S̃h which is defined to be the

H1(Ω∞) conforming space consisting of functions which are piecewise polynomials
of degree r, are constant on Γi, i = 1, . . . , p and vanish on Γ∞. It is an easy
consequence of Lemma 5.3 (Chapter 3) of [5] that if q ∈ Qh satisfies ∇×q = 0,
then q = ∇p for some p ∈ S̃h.

For Θ ∈ H0(curl; Ω∞), set e = Θ − P̂hΘ and let Vh be in Qh. We decompose
e as e = e0 + ∇ ψ, where ψ ∈ H̃1

0 (Ω∞) satisfies

(3.16) (µ∇ ψ, ∇ Φ) = (µe, ∇Φ), for all Φ ∈ H̃1
0 (Ω∞).

Note that e0 is in XN (Ω∞).
We then decompose Vh as Vh = V0,h + ∇ψh, where ψh ∈ S̃h satisfies

(3.17) (µ∇ ψh, ∇ Φ) = (µVh, ∇ Φ), for all Φ ∈ S̃h.

Thus, since ∇ ψh ∈ Qh,

(µVh, e) = (µV0,h, e) + (µ∇ψh, e) = (µV0,h, e) + k−2Â(∇ ψh, e) = (µV0,h, e).

Hence

(3.18) (µVh, e) = (µV0,h, e0) + (µV0,h, ∇ψ).

We will estimate the two terms in (3.18) separately. To estimate (µV0,h, e0)
note that (µV0,h, V0,h) = (µV0,h, Vh). Thus, it follows from (3.5) that

‖V0,h‖L2(Ω∞) ≤ C‖Vh‖L2(Ω∞).

Hence

(3.19) |(µV0,h, e0)| ≤ C‖Vh‖L2(Ω∞)‖e0‖L2(Ω∞).
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To estimate the right hand side above, we will use a duality argument. The
bound for (3.19) is similar to an argument in [10] modified to take into account
a multiply connected boundary and complex coefficients appearing from the PML
operator.

Let z ∈ H0(curl; Ω∞) satisfy

(3.20) Â(z,Φ) = (µe0,Φ), for all Φ ∈ H0(curl; Ω∞).

Because of (3.6), this problem is well posed. In addition, the solution satisfies
(µz, ∇ θ) = 0 for all θ in H̃1

0 (Ω∞) and thus z is in XN (Ω∞) so the proposition
implies that it is in Hs(Ω∞) for some s > 1/2. Also, v = µ−1 ∇× z is in XT (Ω∞)
and the proposition implies that it, too, is in Hs(Ω∞). As µ is smooth, this implies
that ∇×z is in Hs(Ω∞) and

(3.21) ‖z‖Hs(Ω∞) + ‖ ∇× z‖Hs(Ω∞) ≤ C‖e0‖L2(Ω∞).

For any zh ∈ Qh,

(3.22) ‖e0‖2
L2(Ω∞) ≤ C|(µe0, e0)| = C|Â(z, e0)| = C|Â(z, e)| = C|Â(z − zh, e)|.

By the approximation properties of the Nédélec spaces,

(3.23)
inf

zh∈Qh

|Â(z − zh, e)| ≤ C inf
zh∈Qh

‖z − zh‖H(curl;Ω∞)‖e‖H(curl;Ω∞)

≤ Chs‖e0‖L2(Ω∞)‖e‖H(curl;Ω∞).

Combining the above gives a bound for the first term of (3.18), i.e.,

|(µV0,h, e0)| ≤ Chs‖e‖H(curl;Ω∞)‖Vh‖L2(Ω∞).

We finally bound the last term in (3.18). Let Ψ ∈ H̃1
0 (Ω∞) solve

(µ∇ Ψ, ∇ θ) = (µV0,h, ∇ θ), for all θ ∈ H̃1
0 (Ω∞)

and set V0 = V0,h − ∇ Ψ. Then,

(3.24) (µV0,h, ∇ ψ) = (µ(V0,h − V0), ∇ψ), for all ψ ∈ H̃1
0 (Ω∞).

The above proposition shows that V0 is in Hs(Ω∞).
Let Rh denote the corresponding conforming H0(div; Ω∞) approximation sub-

space appearing in the discrete de Rham sequence, e.g., if Qh is the lowest or-
der Nédélec curl-conforming finite element space, Rh is the lowest order Raviart-
Thomas div-conforming finite element space. The curl of V0 is piecewise polynomial
since it coincides with that of V0,h (and hence is in Rh). It follows that the natural
interpolation operator rh (onto Qh) is well defined on V0 and satisfies

‖V0 − rhV0‖L2(Ω∞) ≤ C(hs‖V0‖Hs(Ω∞) + h‖ ∇× V0‖L2(Ω∞))

(see, e.g., Theorem 5.41 in [10]).
The natural interpolation operators rh and πh for Qh and Rh, respectively, along

with the curl operator satisfy πh(∇×u) = ∇×(rhu) (for sufficiently smooth u)
from which it follows that

∇×(rhV0 − V0,h) = 0.

The above discussion implies that rhV0−V0,h = ∇ φh for some φh ∈ S̃h. It follows
that (µ(V0 − V0,h), rhV0 − V0,h) = 0. Hence

(3.25) (µ(V0 − V0,h), V0 − V0,h) = (µ(V0 − V0,h), V0 − rhV0).
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The estimate
‖V0 − V0,h‖L2(Ω∞) ≤ C‖V0 − rhV0‖L2(Ω∞) ≤ Chs‖V0‖H(curl;Ω∞)

≤ Chs‖Vh‖H(curl;Ω∞)

follows easily. Combining the above gives
(µV0,h, ∇ ψ) ≤ Chs‖Vh‖H(curl;Ω∞)‖∇ ψ‖L2(Ω∞)

≤ Chs‖Vh‖H(curl;Ω∞)‖e‖L2(Ω∞).

This gives the desired bound for the second term of (3.18) and completes the proof
of the lemma. �

References

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-dimensional
non-smooth domains. Math. Methods Appl. Sci., 21(9):823–864, 1998. MR1626990
(99e:35037)

[2] G. Bao and H. Wu. Convergence analysis of the perfectly matched layer problems for time-
harmonic Maxwell’s equations. SIAM J. Numer. Anal., 43(5):2121–2143 (electronic), 2005.
MR2192334

[3] J. H. Bramble and J. E. Pasciak. Analysis of a finite PML approximation for the three di-
mensional time-harmonic maxwell and acoustic scattering problems. Math. Comp., 76 (2007),
597–614.

[4] F. Collino and P. Monk. The perfectly matched layer in curvilinear coordinates. SIAM J.
Sci. Comp., 19(6):2061–2090, 1998. MR1638033 (99e:78029)

[5] V. Girault and P. Raviart. Finite Element Approximation of the Navier-Stokes Equations.
Lecture Notes in Math. 749, Springer-Verlag, New York, 1979. MR0548867 (83b:65122).

[6] J. Gopalakrishnan and J. E. Pasciak. Overlapping Schwarz preconditioners for indefinite time
harmonic Maxwell equations. Math. Comp., 72(241):1–15, 2003. MR1933811 (2003i:78020)

[7] F. Kukuchi. On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci.
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