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MODIFIED TAYLOR REPRODUCING FORMULAS
AND H-P CLOUDS

CARLOS ZUPPA

Abstract. We study two different approximations of a multivariate function

f by operators of the form
∑N

i=1 Tr [f, xi](x)Wi(x), where {Wi} is an m-
reproducing partition of unity and Tr[f, xi](x) are modified Taylor polynomials
of degree r expanded at xi. The first approximation was introduced by Xuli
(2003) in the univariate case and generalized for convex domains by Guessab
et al. (2005). The second one was introduced by Duarte (1995) and proved in
the univariate case. In this paper, we first relax the Guessab’s convexity as-
sumption and we prove Duarte’s reproduction formula in the multivariate case.
Then, we introduce two related reproducing quasi-interpolation operators in
Sobolev spaces. A weighted error estimate and Jackson’s type inequalities for
h-p cloud function spaces are obtained. Last, numerical examples are analyzed
to show the approximative power of the method.

Introduction

Recent developments made in the context of meshless methods have demon-
strated the simplicity of adding hierarchical refinements to a low order set of shape
functions (e.g. [2, 3, 4]). The basic idea of the method is to multiply functions
in a partition of unity {Wi}N

i=1 (i.e. MLSF) by Taylor’s polynomials at nodes xi.
The resulting functions, called h-p cloud shape functions, have good properties,
such as high regularity and compactness; linear combinations of these functions
can represent polynomials of degree p. This property allows the implementation
of p and h-p adaptivity leading in many situations to spectral convergence. This
combination has also been successfully used with FEM partitions of unity [11].

In this paper, we consider partitions of unity which have algebraic precision equal
to m ≥ 1, and we study quasi-interpolation operators of the form

(0.1) IS(x) :=
N∑

i=1

Ti[xi, x]Wi(x),

where Ti[xi, x] are modified Taylor polynomials of degree k expanded at xi.
It is important to know the algebraic precision that can be obtained with the

operator IS. In the univariate case, Xuli proved in [15] that an appropriate com-
bination of Taylor polynomials yields algebraic precision equal to p = m + k. This
result was generalized by Guessab et al. [8] to the multivariate case when the
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domain is convex. Xuli’s work, however, was preceded by Duarte. In fact, many
years before Xuli, Duarte [2, 3, 4] noted that the use of Taylor polynomials of the
same degree as those that are reproduced by {Wi} yield singular or near singular
stiffness matrices in Galerkin schemes. Then, he proposed using only polynomials
which are missing in the linear combinations of {Wi} and a reproduction formula
which he proved only in the univariate case [2].

These different approaches suggest different h-p cloud function spaces. We show
in the last section that, amazingly, the first approach produces better numerical
results, even if the linear system is ill conditioned. Therefore, further investigation
into this approach may be worthwhile.

Our first contribution in this paper deals with reproduction formulas:
• Xuli’s reproduction formula: we show that the convexity assumption in [8]

can be relaxed. In fact, it is only needed that the support of function Wi

be star shaped w.r.t. node xi, i = 1, ..., N .
• Duarte’s reproduction formula: we prove it in the multivariate case.

In the second contribution of this work, we introduce two quasi-interpolation
operators which are suggested by the reproduction formulas. Averaged Taylor
polynomials must be used to define the operators in Sobolev spaces and are a natural
generalization of the Verfürth’s quasi-interpolation operator [13]. Then, we prove
a general weighted error estimate for reproducing quasi-interpolation operators.
From these error estimates, Jackson’s type inequalities can be derived for h-p cloud
function spaces.

The paper is organized as follows. In Section 1 we give the basics of the
h-p clouds theory. Section 2 deals with the reproduction formulas of Xuli and
Duarte. We prove therein the generalization of Guessab’s result and Duarte’s
reproduction formula in the multivariate case. Section 3 is dedicated to quasi-
interpolation reproducing operators in Sobolev spaces, error estimates and con-
vergence. Finally, in Section 4, numerical experiments are analyzed to show the
approximative power of the h-p associated spaces.

1. h-p clouds

Let Ω be an open bounded domain in R
n with Lipschitz boundary ∂Ω. Given

u ∈ D′(Ω) and α ∈ N
n
0 we denote, as usual,

Dαu =
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

u, |α| = α1 + · · · + αn, α! = α1! · · · αn!.

For q ≥ 1 and s ∈ N0, we call W s
q (Ω) the Sobolev space which consists of all the

functions u ∈ Lq(Ω) such that Dαu ∈ Lq(Ω) for |α| ≤ s. Given j ∈ N0, 0 ≤ j ≤ s,
we define

|u | j,q =

⎛⎝ ∑
|α|=j

||Dαu ||qLq(Ω)

⎞⎠1/q

;

therefore, the usual norm in W s
q (Ω) is defined by

||u ||s,q =

⎛⎝ s∑
j=0

|u |qj,q

⎞⎠1/q

.
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If q = 2, we denote, as usual, W s
2 (Ω) = Hs(Ω). When explicit reference to the

domain is needed, we denote || · ||s,q = || · ||Ω,s,q and | · | j,q = | · |Ω, j,q.

Let QN be an arbitrarily chosen set of N points xi ∈ Ω referred to as nodes

QN = {x1, x2, ..., xN} , xi ∈ Ω,

and let IN := {ωi}N
i=1 be a finite open covering of Ω,

N⋃
i=1

ωi = Ω,

such that xi ∈ ωi , i = 1, ..., N.

Remark 1.1. We have assumed ωi ⊂ Ω, ∀i : i = 1, . . . , N . Then, the sets ωi are
relatively open in Ω.

Definition 1.2. Given d(IN ), m ∈ N, a class of functions SN := {Wi}N
i=1 will be

called a (d(IN ), m)-partition of unity subordinate to IN if:

• Wi ∈ C(Ω) ∩ W
d(IN )
∞ (Ω), ∀i : i = 1, . . . , N.

• supp (Wi) = ωi, ∀i : i = 1, . . . , N.
• SN has algebraic precision of degree m. That is, for every P ∈ Pm, we

have

P (x) =
N∑

i=1

P (xi)Wi (x) , ∀x ∈ Ω,

where Pm denotes the class of all polynomials of degree ≤ m.
• Every ωi is star shaped w.r.t. xi, that is,

[x, xi] ⊂ ωi, ∀x ∈ ωi,

where [x, xi] is the segment joining x and xi.

The star shaped condition in (1.2) is a necessary ingredient in the reproducing
formulas of the next section. Furthermore, this condition is met in almost all cases
of practical interest.

Remark 1.3. If m > 1, the usual assumption of a partition of unity Wi ≥ 0 is not
valid.

Remark 1.4. For simplicity, from this point on, we assume without explicit mention
that we are dealing with a (d(IN ), m)-partition of unity.

Definition 1.5. For each set T ⊆ Ω, let i(T ) be the set of indexes defined by

i(T ) := {i : ωi

⋂
T �= ∅}.

The set
T̂ :=

⋃
i∈i(T )

ωi

is called the super-cloud of T .

The diameters
hi := sup

x,y∈ωi

||x − y ||

and
dT̂ := sup

x,y∈T̂

||x − y ||

are usually key ingredients in error estimates.
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Let r ≥ 0 be any integer. For i = 1, ..., N, Pr
i denotes the vector space of r-Taylor

polynomials at xi,

Pr
i :=

⎧⎨⎩Q : Q(x) =
∑

0≤|ν|≤r

aν (x − xi)ν

⎫⎬⎭ .

Definition 1.6. Let H be some space of functions. Given a linear operator

(1.1) T t : H →
N∏

i=1

Pr
i ,

the associated r-modified approximation operator is the linear operator ST : H →
C(Ω) defined by

ST [u] :=
N∑

i=1

T r
i [u] · Wi, u ∈ H and T r[u] = (T r

i [u])i=1,...,N .

In this work, we are mainly interested in the case where (H, || · ||H) is some
Sobolev space of functions over Ω and the approximation operators increase the
algebraic precision. That is,

ST [P ] = P, ∀P ∈ Pm+r

for some integer r > 0.
Two modified formulas will be studied in this paper: the first one is based on the

works of Xuli [15] and Guessab et al. [8]; the other one refers to the investigation
of Duarte and Oden [3].

The h-p approximation operators can be used to estimate the approximating
power of h-p cloud shape functions of Duarte and Oden [3].

Definition 1.7. Let PN := {Qi}N
i=1 such that

• Qi is a vectorial subspace of Pri
i , ri ≥ 1, ∀i : i = 1, ..., N .

• Qi contains the constant polynomials, ∀i : i = 1, ..., N .
The associated cloud shape function space is the vectorial space defined by

F(PN ) :=

{
w |w =

N∑
i=1

Pi Wi, Pi ∈ Qi, ∀i : i = 1, ..., N

}
.

The finite vectorial space F(PN ) can be used in Galerkin approximation of the
solution of a boundary value problem. It is well known that a main tool in error
estimates for the solution of the boundary value problem is

inf
w∈F(PN )

||u − w ||H.

2. Reproducing formulas

In this section we study linear operators

T m+r : C∞(Ω)→
N∏

i=1

Pm+r
i , r ∈ N0,

such that the associated (m+r)-modified approximation operator ST has algebraic
precision of degree p = m + r.

We shall first state an auxiliary result.
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Lemma 2.1. For every multi-index β ∈ N
n
0 , 1 ≤ |β| ≤ m, we have

N∑
i=1

(x − xi)β = 0, ∀x ∈ Ω.

Proof. Writing
(x − xi)β =

∑
0≤δ≤β

λβ,δ xβ−δ xδ
i ,

we have
N∑

i=1

(x − xi)β Wi(x) =
∑

0≤δ≤β

λβ,δ xβ−δ

(
N∑

i=1

xδ
i Wi(x)

)
=

∑
0≤δ≤β

λβ,δ xβ−δ xδ

= (x − x)β = 0. �

In the univariate case, Xuli [15] discovered that the operator

ST [u](x) :=
N∑

i=1

T m+r
i [u](x)Wi(x),

where

T m+r
i [u](x) :=

r∑
j=0

amrj
u(j)(xi)

j!
(x − xi)j ,

and

amrj =
(m + r − j)! r!

(m + r)! (r − j)!
,

reproduces polynomials up to degree m + r.
This result was extended to the multivariate case by Guessab et al. [8] when Ω

is convex. In fact, the convexity of Ω is a severe restriction that is not needed in
the proof. As we shall see, the star shaped condition in (1.2) suffices.

Given numbers cα ∈ N
n
0 , |α| ≤ r, we shall consider the linear operators T m+r

i,c

defined by the modified Taylor polynomials

T m+r
i,c [u](x) :=

r∑
|α|=0

cαDαu(xi) (x − xi)α.

For x ∈ Ω, let ωx be defined by

ωx := {i : Wi(x) �= 0}.

Therefore,

ST [u](x) =
N∑

i=1

T m+r
i,c [u](x)Wi(x)

=
∑
i∈ωx

T m+r
i,c [u](x)Wi(x).

It is clear from (1.2) that, if i ∈ ωx, then [x, xi] ⊂ ωi.
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Theorem 2.2. There exist constants cα ∈ N
n
0 , |α| ≤ r, cα = c(m, r, α) with c1 = 1,

and constants σβ ∈ N
n
0 , |β| = m + r + 1, σβ = σ(m, r, β), such that

u(x) =
∑
i∈ωx

T m+r
i,c [u](x)Wi(x)

+
∑
i∈ωx

Ri(x)Wi(x),

where

Ri(x) =
∑

|β|=m+r+1

σβ

(∫ 1

0

Dβu(xi + t(x − xi))dt

)
(x − xi)β .

Proof. We only need to adapt the proof given in [8]. We shall give the details mainly
because they will be useful in the analysis of the Duarte and Oden reproducing
operator. For i ∈ ωx, we introduce the univariate function gi : [0, 1] → R defined
by

g(t) := u(xi + t(x − xi)).
By Taylor’s theorem, we have

(2.1) g
(j)
i (0) =

m+r∑
k=j

(−1)k−j

(k − j)!
g
(k)
i (1) −

1∫
0

(−t)m+r−j

(m + r − j)!
g
(m+r+1)
i (t) dt.

Next, we multiply both sides by amrj/j! and sum over j from 0 to r. Then, we can
write

r∑
j=0

amrj

j!

m+r∑
k=j

(−1)k−j

(k − j)!
g
(k)
i (1) =

m+r∑
k=0

⎛⎝ k′∑
j=0

(−1)k−jamrj

j!(k − j)!

⎞⎠ g
(k)
i (1),

where k′ = min{k, r}. Furthermore, it was shown in [15] that
k′∑

j=0

(−1)k−jamrj

j!(k − j)!
= 0 (k = m + 1, ..., m + r).

Hence, noting that amr0 = 1, we obtain

(2.2)
r∑

j=0

amrj

j!

m+r∑
k=j

(−1)k−j

(k − j)!
g
(k)
i (1) = gi(1) +

m∑
k=1

⎛⎝ k′∑
j=0

(−1)k−jamrj

j!(k − j)!

⎞⎠ g
(k)
i (1).

Therefore,

r∑
j=0

amrj

j!
g
(j)
i (0) = u(x) +

m∑
k=1

⎛⎝ k′∑
j=0

(−1)k−jamrj

j!(k − j)!

⎞⎠ g
(k)
i (1)(2.3)

−(−1)m

1∫
0

tm(1 − t)r

(m + r)!
g
(m+r+1)
i (t) dt.

Finally, we multiply both sides of (2.3) by Wi(x) and sum over i in ωx. Then, it
follows that ∑

i∈ωx

⎛⎝ m∑
k=1

⎛⎝ k′∑
j=0

(−1)k−jamrj

j!(k − j)!

⎞⎠ g
(k)
i (1)

⎞⎠Wi(x)
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can be rewritten as
m∑

k=1

⎛⎝ k′∑
j=0

(−1)k−jamrj

j!(k − j)!

⎞⎠ (∑
i∈ωx

g
(k)
i (1)Wi(x)

)
.

Now, it is important to analyze the expression∑
i∈ωx

g
(k)
i (1)Wi(x), (k = 1, ..., m).

By Leibnitz’s rule, it follows that

g
(k)
i (1) =

∑
|β|=k

νβDβu(x)(x − xi)β.

Hence ∑
i∈ωx

g
(k)
i (1)Wi(x) =

∑
|β|=k

νβDβu(x)

(∑
i∈ωx

(x − xi)βWi(x)

)

=
∑
|β|=k

νβDβu(x)

(
N∑

i=1

(x − xi)βWi(x)

)
= 0

by (2.1). Finally, we can write

∑
i∈ωx

⎛⎝ r∑
j=0

amrj

j!
g
(j)
i (0)

⎞⎠ Wi(x) = u(x) +
∑
i∈ωx

Ri(x)Wi(x),

where

Ri(x) = −(−1)m

1∫
0

tm(1 − t)r

(m + r)!
g
(m+r+1)
i (t) dt,

and the theorem follows. �

Corollary 2.3. There exist constants cα ∈ N
n
0 , 1 ≤ |α| ≤ r, cα = c(m, r, α), such

that for every P ∈ Pm+r,

(2.4)
N∑

i=1

⎛⎝P (xi) +
∑

1≤|α|≤r

cαDαP (xi)(x − xi)α

⎞⎠ Wi(x) = P (x), ∀x ∈ Ω.

Remark 2.4. Constants cα can be effectively calculated and depend on Xuli’s con-
stants amrj and the constants appearing in Leibnitz’s rule of composite derivatives.

We observe that the modified Taylor polynomials expanded at nodes xi contain
polynomials of low degree that are reproduced by the class {Wi}. It was observed
by Duarte and Oden [3] that this situation produces singular or nearly singular
stiffness matrix in Galerkin approaches because shape functions in the h-p cloud
space are not linearly independent. To overcome this drawback, they propose an
enrichment that only uses monomials of degree between m + 1 and m + r. The
following result was proved by Duarte and Oden in the univariate case and we shall
extend it to the multivariate case.
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Theorem 2.5. There exist constants c̃α ∈ N
n
0 , m+1 ≤ |α| ≤ m+r, c̃α = c(m, r, α),

such that for every P ∈ Pm+r,
(2.5)

N∑
i=1

⎛⎝P (xi) +
∑

m+1≤|α|≤m+r

c̃αDαP (xi)(x − xi)α

⎞⎠ Wi(x) = P (x), ∀x ∈ Ω.

Proof. Setting u = P and proceeding as in the theorem above, we have

(2.6) g
(j)
i (0) =

m+r∑
k=j

(−1)k−j

(k − j)!
g
(k)
i (1).

We consider first case j = 0. Then

g
(0)
i (0) =

m+r∑
k=0

(−1)k

k!
g
(k)
i (1).

Next, we multiply both sides of (2.6) by a constant bj that must be chosen and we
add the sum over j from m + 1 to m + r to (2.6). That is,

g
(0)
i (0) +

m+r∑
j=m+1

bjg
(j)
i (0) =

m+r∑
k=0

(−1)k

k!
g
(k)
i (1)

+
m+r∑

j=m+1

bj

⎛⎝m+r∑
k=j

(−1)k−j

(k − j)!
g
(k)
i (1)

⎞⎠ .

Now, we shall show that constants bj can be chosen so that the right term is equal
to

m∑
k=0

(−1)k

k!
g
(k)
i (1),

that is, we must eliminate all terms g
(k)
i (1) with k > m. These terms can be

rewritten as
m+r∑

k=m+1

⎛⎝ (−1)k

k!
+

k∑
j=m+1

bj
(−1)k−j

(k − j)!

⎞⎠ .

It is easy to see that constants bj can be determined by induction from m + 1 to
m + r. Hence, we can effectively write

(2.7) g
(0)
i (0) +

m+r∑
j=m+1

bjg
(j)
i (0) =

m∑
k=0

(−1)k

k!
g
(k)
i (1).

Next, we multiply both sides of (2.7) by Wi(x) and sum over i from i in ωx:

∑
i∈ωx

⎛⎝g
(0)
i (0) +

m+r∑
j=m+1

bjg
(j)
i (0)

⎞⎠Wi(x) = P (x)

+
m∑

k=1

(−1)k

k!

(∑
i∈ωx

g
(k)
i (1)Wi(x)

)
.
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Finally, because of the same reason as before∑
i∈ωx

g
(k)
i (1)Wi(x) = 0, ∀x ∈ Ω, k = 1, ..., m.

Constants c̃α are now determined from constants bj and the constants appearing
in Leibnitz’s rule. �

We now have two different operators

T m+r : C∞(Ω)→
N∏

i=1

Pm+r
i

which can be used in order to construct (m + r)-reproducing formulas. We define
T m+r
X ,i and T m+r

D,i by

(2.8) T m+r
X ,i [u](x) := u(xi) +

r∑
|α|=1

cαDαu(xi) (x − xi)α,

and

(2.9) T m+r
D,i [u](x) := u(xi) +

m+r∑
|α|=m+1

c̃αDαu(xi) (x − xi)α,

where constants {cα} and {c̃α} are determined in (2.2) and (2.5) respectively.

3. Quasi-interpolation operators in Sobolev spaces

To simplify we shall denote p = m + r. In this section we derive from formu-
las (2.8) and (2.9) two quasi-interpolation operators in the Sobolev space W p

q (Ω)
(1 ≤ s < ∞) that are p-reproducing. These operators are generalizations of those
introduced by R. Verfürth in [13]. The formulas cannot be applied directly because
punctual values do not have the usual meaning for functions in Sobolev spaces.
Nonetheless, we can use the Verfürth’s projection operators defined in [14].

We shall derive weighted local and global error estimates for these quasi-inter-
polation operators. In case m = 0, error estimates for h-p clouds were obtained in
[16].

Remark 3.1. Procedures for obtaining error estimates are in general a little cum-
bersome though standard. We sketch the proofs but some details are omitted.
Furthermore, even if the interpolation operators could be defined generally, we
shall consider from now on the case q = 2, which is important in applications.
Consequently, several simplifications in notation will clarify the main arguments.
In particular, we shall drop the subindexes q on norms and seminorms.

For every i, i = 1, ..., N , we define a projection operator pp,i of Hp(ωi) onto Pp
i

which have the following properties:

(3.1) Dβ(pp,iu) = pp−j,i(Dβu),

(3.2)
∫

ωi

Dβ(u − pp,iu) = 0
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for all u ∈ Hp(ωi) , all 0 ≤ j ≤ p, and all β ∈ N
n
0 with |β| = j. To this end, we

shall follow [14]. We denote by

πiu :=
1

|ωi|

∫
ωi

u

the mean value. For any u ∈ Hp(ωi), polynomials Ps,i(u), ..., P0,i(u) are defined
recursively by

(3.3) Ps,i(u) :=
∑
|α|=s

1
α!

(x − xi)απi[Dαu],

and, for k = p, p − 1, ..., 1,

(3.4) Pp−1,i(u) := Pp,i(u) +
∑

|α|=k−1

1
α!

(x − xi)απi[Dα(u − Pk,i(u))].

Finally, we set
pp,i := P0,i.

Properties (3.1) and (3.2) are proved in [14]. Furthermore, it is easy to see that

pp,i(P ) = P, ∀P ∈ Pp.

Proposition 3.2. There exist constants Cα,β = C(α, β), |α| < |β| ≤ s, such that,
for all i = 1, ..., N , if

pp,i[u](x) =
∑
α

ai,α[u] (x − xi)α,

then

| ai,α[u] | ≤ |ωi|−1/2

⎛⎝ 1
α!

||Dαu||ωi,0 +
∑

|α|<|β|≤p

Cα,β h
|β|−|α|
i ||Dβu||ωi,0

⎞⎠ ,

for all u ∈ Hp(ωi).

Proof. Using
|πi[(x − xi)δ] | ≤ h

|δ|
i

and
|πi[Dγu] | ≤ 1

|ωi|
(||Dγu||ωi,0 ||χωi

||ωi,0) = |ωi|−1/2||Dγu||ωi,0,

the result follows in a standard way by induction from (3.3) and (3.4). �

Definition 3.3. We now define the h-p cloud function spaces Fm,r
X := F({Pr

i }N
i=1)

and Fm,r
D := F({Qi}N

i=1), where

Qi := R ⊕ Pm+1,m+r
i ,

Pm+1,m+r
i :=

⎧⎨⎩S : S =
∑

m+1≤|β|≤m+r

aβ(x − xi)β

⎫⎬⎭
and linear operators ST X : Hp(Ω) → Fm,r

X and ST D : Hp(Ω) → Fm,r
D by

ST X [u] :=
N∑

i=1

T s
X ,i[ps,i(u)] Wi
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and

ST D[u] :=
N∑

i=1

T s
D,i[ps,i(u)] Wi

respectively, for u ∈ Hp(Ω).

Using (2.2), (2.5) and the properties of pp,i, it follows easily that ST X and ST D
are p-reproducing.

Proposition 3.4. ST X and ST D have algebraic precision equal to p.

Error estimates for two quasi-interpolation linear operators will be considered
later in this section. From now on, we shall only consider operator ST X . Similar
results, however, can be stated for ST D.

In what follows, the following estimate is needed.

Proposition 3.5. There exist constants Cα,β = C(s, α, β), 0 ≤ |β| ≤ |α| ≤ s, such
that, for all i = 1, ..., N , and all u ∈ Hp(Ω), we have

(3.5) ||Dβ(T s
X ,i[ps,i(u)] ) ||ωi,0 ≤ |ωi|−1/2

∑
|β|≤|α|≤s

Cα,β h
|α|−|β|
i ||Dαu||ωi,0.

Proof. (3.5) can be deduced from (3.2), taking into account the constants that
modify Taylor polynomials in (2.2) and (2.5). �

Given u ∈ Hp(Ω), note that ST X [u] belong to Hκ(Ω) where κ := min(p, d(IN ))
(remember that d(IN ) is the class of weak differentiability of functions Wi.

We shall now be concerned with estimates of

||u − ST X [u] ||k, 0 ≤ k ≤ κ, u ∈ Hp+1(Ω).

The usual ingredients in error estimates, which are assumed from now on, are:
A1. Constants Dj,α, j = 1, ..., N and 0 ≤ |α| ≤ dIN

, such that

||DαWj ||L∞(ωi) ≤
Dj,α

h
|α|
j

.

Hence,

(3.6) ||DαWj ||ωi,0 ≤ Dj,α

h
|α|
j

|ωj |1/2.

A2. Approximation on super-clouds: there exist constants Bi,k, i = 1, ..., N,
such that for every u ∈ Hp+1(ω̂i), there exists a polynomial Pi[u] of degree
p which satisfies

(3.7) ||u − Pi[u] ||ω̂i,k ≤ Bi,k dp+1−k
i |u |ω̂i,p+1, k = 0, ..., p.

Given a fixed i, we set Ri := u − Pi[u]. Then

ST X [u] = Pi + ST X [Ri]

and
u − ST X [u] = Ri − ST X [Ri].

We can write

||u − ST X [u] ||ωi,k ≤ ||Ri||ωi,k + || ST X [Ri] ||ωi,k.
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By (3.7) we have

(3.8) ||Ri||ωi,k ≤ ||Ri||ω̂i,k ≤ Bi,k dp+1−k
i |u |ω̂i,s+1, k = 0, ..., p.

Now, we shall try to estimate || ST X [Ri] ||ωi,k for k = 0, ..., κ.
In ωi we can write

ST X [Ri] =
∑
j∈î

T p
X ,j [pp,j(Ri)] Wj .

Hence, for β, 0 ≤ |β| ≤ κ, we have

||Dβ(ST X [Ri]) ||ωi,0 ≤
∑
j∈î

||Dβ(T p
X ,j [pp,j(Ri)]Wj) ||ωj ,0.

Remark 3.6. In what follows we shall need to use the expression T p
X ,j [ps,j(Ri)] at

several stages. Then, to simplify, we set

R̃j,i := T p
X ,j [pp,j(Ri)].

For j ∈ î, by Leibnitz’s rule we have

Dβ(R̃j,i Wj) =
∑

γ+δ=β

C(β, γ, δ)DγR̃j,iD
δWj .

Therefore,

(3.9) ||Dβ(R̃j,i Wj) ||ωj ,0 ≤
∑

γ+δ=β

C(β, γ, δ) ||DγR̃j,i||ωj ,0||DδWj ||ωj ,0.

On the other hand, recalling (3.5) and (3.6), we get

||DγR̃j,i||ωj ,0 ≤ |ωj |−1/2
∑

|γ|≤|α|≤κ

Cα,β h
|α|−|γ|
j ||DαRi||ωj ,0

and
||DδWj ||ωj ,0 ≤ Dj,δ

h
|δ|
j

|ωj |1/2.

Then,

||DγR̃j,i||ωj ,0||DδWj ||ωj ,0 ≤ Dj,δ

∑
|γ|≤|α|≤κ

Cα,β h
|α|−|β|
j ||DαRi||ωj ,0

≤ Dj,δ

∑
|γ|≤|α|≤κ

Cα,β h
|α|−|β|
j ||DαRi||ω̂j ,0.

Hence,

(3.10) ||DγR̃j,i||ωj ,0||DδWj ||ωj ,0 ≤ Cj,δ,γ,i h
|α|−|β|
j d

p+1−|α|
i |u |ω̂i,p+1,

where
Cj,δ,γ,i := Dj,δ

∑
|γ|≤|α|≤s

Cα,βBi,|α| .

Since hj ≤ di, we obtain

(3.11) ||DγR̃j,i||ωj ,0||DδWj ||ωj ,0 ≤ Cj,δ,γ,i d
p+1−|β|
i |u |ω̂i,p+1.

Now inserting (3.11) into (3.9), we get

(3.12) ||Dβ(R̃j,i Wj) ||ωj ,0 ≤ C̃i,j,β d
s+1−|β|
i |u |ω̂i,p+1,
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where
C̃i,j,β = C(Dj,δ, Bi,k, n, s, β, cρ).

Finally, summing up over j and adding the bounds in (3.8), we have proved the
following local error estimate:

Theorem 3.7. Assume A1 and A2. Then, for every i, i = 1, ..., N , there exist
constants Ci,k = Ci,k(Dj,δ, Bi,k, n, s, β, cρ), such that

(3.13) ||u − ST X [u] ||ωi,k ≤ Ci,k dp+1−k
i |u |ω̂i,p+1,

for all k = 0, ..., κ and all u ∈ Hp+1(Ω).

Inequality (3.11) can be written in a different way if we assume:

A3. For every i, i = 1, . . . , N , there are constants Ai, Ai, such that

Ai di ≤ hj ≤ Ai di , ∀j ∈ i(ωi).

Using Ai, Ai, (3.10) becomes

||DγR̃j,i||ωj ,0||DδWj ||ωj ,0 ≤ Cj,δ,γ,β h
p+1−|β|
j |u |ω̂i,s+1,

where
Cj,δ,γ,β := Dj,δ

∑
|γ|≤|α|≤s

Cα,β Bi,|α|

(
A

−(p+1−|α|)
i

)
,

and, instead of (3.12), we now get

||Dβ(R̃j,i Wj) ||ωj ,0 ≤ C̃i,j,β h
p+1−|β|
j |u |ω̂i,p+1.

The local estimate can be written in a weighted form. In fact, let

{C̃i,β}, 0 ≤ |β| ≤ s; i = 1, ..., N

be constants such that∫
ωi

|Dβ(u − ST X [u]) |p ≤ C̃p
i,β d

(s+1−|β|)p
i |u |pω̂i,s+1

≤ C̃p
i,β d

(s+1−|β|)p
i

⎛⎝∑
j∈î

|u |pωj ,s+1

⎞⎠ .

Now we define functions gi,β := C̃i,β d
(s+1−|β|)
i χωi

and gβ := maxi=1,...,N{gi,β}.
Then, it follows easily that

(3.14)
∫

ωi

|Dβ(u − ST X [u]) |p ≤
∑
j∈î

⎛⎝ ∑
|α|=s+1

∫
ωj

gp
β |Dαu |p

⎞⎠ .

The local estimate and a measure of the overlap of clouds,

M = sup
i=1,...,N

{# î} ,

where #S denotes the number of elements in a finite set S, are cornerstones in
obtaining weighted global error estimates. In fact, by Lemma 3.3 of [16] and (3.14),
we get
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Corollary 3.8. Assume A1 and A2. Then, for all β ∈ N
n
0 , 0 ≤ |β| ≤ s, we have

||Dβ(u − ST X [u]) ||Ω,0 ≤ M

⎛⎝ ∑
|α|=s+1

∫
Ω

g2
β |Dαu |2

⎞⎠1/2

for all u ∈ Hp+1(Ω).

If d := maxi=1,...,N , it is nowadays standard, using the results above, to obtain
error estimates in the form

||u − ST X [u] ||k ≤ Ckds+1−r|u |s+1, ∀u ∈ Hp+1(Ω), k = 0, ..., κ

and, as a corollary, Jackson type inequalities

(3.15) sup
u∈Hp+1(Ω)

inf
w∈Fm,r

X

|u − w |k
|u |p+1

≤ Ckdp+1−k, k = 0, ..., κ

if uniform bounds are assumed for all constants involved.
In a similar way, we can obtain

(3.16) sup
u∈Hp+1(Ω)

inf
w∈Fm,r

D

|u − w |k
|u |p+1

≤ Ckdp+1−k, k = 0, ..., κ.

3.1. FEM partitions of unity. A convergence result. Up to now, we have
seen that the key tools in order to obtain error estimates for the interpolation
operators are the usual ones:

• A control over the derivatives of the basis functions {Wi}.
• A control of the overlapping of the clouds.
• The Poincaré constants involved in local approximation by polynomials.

For general partition of unity, it is not clear how these ingredients can be con-
trolled by simple geometrical properties.

We shall now discuss this problem and convergence results for the simplest case
of FEM partitions of unity (see [11]). Therefore, we assume that Ω is a polyhedral
domain and let {Th} be a family of conforming triangulations of Ω. Let h stand for
the mesh-size; namely h := maxT∈Th

hT , with hT being the diameter of the simplex
T . For each Th we denote with Vh ⊂ H1(Ω) the standard finite element space of
continuous piecewise linear elements and {Wh,i} are the standard shape functions
at the nodes xi of the triangulations Th. Here, of course, dIN

= 1. The discussion
that follows is valid, however, for FEM partitions of unity of higher order algebraic
precision.

We assume that the meshes {Th} satisfy some regularity condition. For example,
we may assume the following weak regularity assumptions:

Condition 3.9. For K ≥ 1 and ε > 0, the mesh Th satisfies

|T | ≥ ε hn
T , for all T ∈ Th,

and
hT ≤ K hS , for all neighboring elements T, S ∈ Th.

Then, it is clear that the first two items can be uniformly controlled indepen-
dently of Th. We shall discuss the third one.



MODIFIED TAYLOR REPRODUCING FORMULAS AND H-P CLOUDS 257

First, we introduce some notation. For T ∈ Th we define Ad(T ) := {S ∈ Th :
S ∩ T �= ∅} ,

T̂ :=
⋃

S∈Ad(T )

S =
⋃

xi∈T

ωi,

and we denote by {cT̂ ,p} the set of Poincaré constants associated to T̂ . That is,

the constants appearing in approximating functions u ∈ Hp+1(T̂ ) by polynomials
of degree p as in (3).

With exactly the same proof, Theorem 3.7 can now be stated in the following
form:

Theorem 3.10. For every simplex T ∈ Th, there exist constants

CT,k = CT,k(K, ε, cT̂ ,p)

such that

(3.17) ||u − ST X [u] ||T,k ≤ CT,k

⎛⎝ ∑
S∈Ad(T )

hp+1−k
S |u |Si,p+1

⎞⎠ ,

for k = 0, 1 and all u ∈ Hp+1(T̂ ).

The necessity of using constants {cT̂ ,p} over all T̂ is somewhat unsatisfactory
and it is a fault of our proof. It would be better if we could obtain an estimate that
uses constants {cωj ,p} for xj ∈ T . The clouds ωj are star-shaped and constants
{cωj ,p} can be obtained by Verfürth’s formula [13, 14]. In contraposition, T̂ could
be non-star-shaped. Anyway, even if the bounds may not be the optimal one, it
is true that constants {cT̂ ,p} can be uniformly bounded by constants depending on
K, ε.

Now we shall see the main arguments for justifying this assertion.
The best estimates of Poincaré’s constants which are known to us for star shaped

domains are due to Verfürth [14] and Durán [5]. Verfürth’s bounds do not depend
on eccentricity in the case of convex sets. Moreover, for non-convex domains with
a re-entrant corner, the bounds are uniform w.r.t. the exterior angle. In order to
state Verfürth’s results for non-convex but star-shaped domains U , we need to state
some more definitions. For z ∈ U, we define

χ(z) := max
y∈∂U

||y − z|| / min
y∈∂U

||y − z|| .

Now, assume that U is non-convex but star-shaped w.r.t. at least one point and
let SU := { z ∈ U : U is star-shaped w.r.t. z}. It is clear that there exists a point
zU ∈ U , such that χ(zU ) = minz∈S{χ(z)}. Then, the number µ is defined by

µU := χ(zU ).

The main Verfürth’s result in [14] is:

Theorem 3.11. Let U be a domain star-shaped w.r.t. at least one point. For p ∈
N0, there exist constants cp,j , 0 ≤ j ≤ m, such that

||u − Qm
BU

u || j ≤ cp,j dp+1−j
U |u |p+1 , ∀u ∈ Hp+1(U),

where dU is the diameter of U . When U is a convex domain, BU = U and cp,j =
cp,j(n, p), i.e., the bounds cp,j depend only on n and p. In the non-convex case,
BU = B(zU , 
), 
 =dist(zU , ∂U), and cp,j = cp,j(n, p, µU).
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We can obtain uniform estimates for Poincaré’s constants of clouds ωi for any
partition Th. In fact, the regularity (3.9) enables us to obtain two constants
a(K, ε), b(K, ε) such that

a(K, ε) ≤ µωi
≤ b(K, ε)

for all ωi and all Th. Hence, by using (3.11) we obtain the uniform estimates

(3.18) a(K, ε) ≤ cωi,k
≤ b(K, ε), k = 0, ..., p

for all ωi and all Th.
Now, let T ∈ Th and ρT the diameter of the maximal ball BT included in

T . Using the regularity (3.9) again, we can see that there exist two constants
c(K, ε), c(K, ε), such that

(3.19) c(K, ε) ρT ≤ dT̂ ≤ d(K, ε) ρT

for all T ∈ Th and all Th.
If T̂ is star-shaped, the Poincaré’s constants can be estimated by Verfürth’s

result and the regularity of the meshes.
The following result, which relates the Sobolev norm of polynomials at different

balls can be easily obtained.

Proposition 3.12. For each p ∈ N0 there exist two constants α = α(ρT , dT , p), β =
β(ρT , dT , p) such that

(3.20) α ||P ||BT ,p ≤ ||P ||T̂ ,p ≤ β ||P ||BT ,p, ∀P ∈ Pp.

As T̂ =
⋃

xi∈T ωi and BT ⊂ ωi ∩ ωj if xi, xj ∈ T , we can use the arguments of
Theorem 7.1 in [6], (3.18) and (3.20) to obtain

Theorem 3.13. There exists a constant C = C(K, ε, p) such that

cT̂ ,k ≤ C, k = 0, ..., p,

for all T ∈ Th.

As a consequence, we finally obtain

Corollary 3.14. There exists a constant M = M(K, ε, ν), where ν := #{xi ∈ T}
such that

||u − ST X [u] ||Ω,k ≤ M

( ∑
T∈Th

hp+1−k
T |u |T,p+1

)

for all u ∈ Hp+1(Ω) and k = 0, ..., κ.

This results grants the h-convergence of the interpolator ST X under the simplest
geometrical condition of FEM theory.

Remark 3.15. In order to study p-convergence, it is clearly necessary to know the
asymptotic behavior of Poincaré’s constant; but this is beyond the scope of this
work.
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4. Boundary value problems

Taking into account the Jackson type inequalities (3.15) and (3.16), spaces Fm,r
X

and Fm,r
D could be used in Galerkin schemes to solve numerically boundary value

problems (see [3, 11]).
We have remarked that, if m ≥ 1 as is the case when the h-p cloud space is over

a FEM partition of unity [11], Fm,r
X yields a singular or almost singular stiffness

matrix. That is why Duarte and Oden introduce the space Fm,r
D . There are,

however, several reasons for the interest in Fm,r
X :

• The Generalized Finite Element Method can also yield a sparse positive
semi-definite linear system. However, in [12], the use of direct solvers like
subroutines MA27 and MA47 of the Harwell Subroutine Library was suc-
cessful even when the nullity of the stiffness matrix was large. It was also
shown in [12] that round-off errors did not play a significant role in solving
the linear system, i.e., the round-off error was also the same as when the
finite element linear system was solved. An iterative algorithm was also
given in [12]. Therefore, there exist nowadays efficient solvers to deal with
singular or near singular linear systems.

• Even if it leads to singular linear systems, Fm,r
X yields better results than

Fm,r
D .

4.1. A 1-dimensional numerical experiment. We consider the model problem

−u′′ = f in Ω = [0, 1],
u|∂Ω = 0,

where f is such that the exact solution is

u(x) = sin(2 π x).

We first make all settings in our experiment explicit.

• SN := {Wi}N
i=1 will be the standard (1, 1)-partition of unity of FEM of

linear precision.
• Tests with both random and uniformly spaced nodes at several widths h =

1/4, 1/8, 1/16, 1/32 have been performed. In the former case, nodes were
generated by adding a random perturbation of value 0.25h to a uniform
grid with h-spacing. Computed errors in the random distribution points
case, correspond to averages over ten runs.

• F1,r
X and F1,r

D have been compared at equal algebraic precision ap = 2, 3, 4.

In F1,r
X . ap = 1 + r while ap = r for F1,r

D .
• An (r + 1)-point Gaussian quadrature has been used at interior cells. Note

that, at equal algebraic precision, less points are used for F1,r
X .

• Two relative errors have been computed:

erel :=
|| ûh − uexact||L2(Ω)

||uexact ||L2(Ω)

and

exrel :=
|| (ûh − uexact)x||L2(Ω)

||( uexact)x ||L2(Ω)
.

In these tests, errors have been calculated using a 5-point Gaussian quad-
rature at interior cells.
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• In order to prevent numerical instabilities, polynomials in Pr
i must be nor-

malized by a measure of the size of the grid at xi. That is, the basis of Pr
i

(or Qi in the F1,r
D -scheme) must be written in the form{

1,

(
x − xi

hi

)
, ...,

(
x − xi

hi

)r}
.

• In all tests, linear systems have been solved with the standard solver of
MATLAB c©The MathWorks, without any additional precaution.

4.1.1. p adaptivity. In the first test we have fixed a uniform grid with h = 0.125,
varying ap from 4 to 2. Errors erel and exrel from computations are summarized
in Tables 1 and 2 respectively.

Table 1. Error erel, h = 0.125, varying ap.

ap 4 3 2

F1,r
X 3.7229−6 1.2562−4 2.7428−3

F1,r
D 4.8678−5 1.1703−3 1.2426−2

Table 2. Error exrel, h = 0.125, varying ap.

r 4 3 2

F1,r
X 7.5158−5 1.5181−3 2.2906−2

F1,r
D 8.9651−4 1.3084−2 8.0095−2

4.1.2. h adaptivity. In this test with random grids, we have fixed ap = 2, varying
h from 1/4 to 1/32. Errors erel and exrel from computations are summarized in
Tables 3 and 4 respectively.

Table 3. Error erel, ap = 2, varying h.

h 1/32 1/16 1/8 1/4

F1,1
X 5.4401−6 4.3487−5 3.4686−4 2.7428−3

F1,2
D 2.1963−5 1.7785−4 1.4657−3 1.2426−2

Table 4. Error exrel, ap = 2, varying h.

h 1/32 1/16 1/8 1/4

F1,1
X 3.5917−4 1.4364−3 5.7419−3 2.2906−2

F1,2
D 1.4187−3 5.5980−3 2.1708−2 8.0095−2
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We may appreciate that the F1,r
X -method has a more equal convergence rate

than the F1,r
D -method, but F1,r

X produces accurate solutions with one more digit of
precision.

4.2. 2-dimensional numerical experiments. We consider Ω ⊂ R
2 and the

weak formulation of a Poisson model problem

−∆u = f in Ω,

u = g on Γd ⊂ ∂Ω,

un =
∂u

∂n
= q on Γn ⊂ ∂Ω.

Adding Taylor polynomials at nodes xj ∈ Γd clearly presents a problem even if
the partition of unity {Wi} satisfies the delta-Kroenecker condition Wi(xj) = δi,j .
Furthermore, the Taylor polynomials could improve interpolation at the boundary
by using an appropriate treatment of Dirichlet data.

In the early 1970s, J. Nitsche developed a general approach for the treatment of
essential boundary conditions where the shape functions do not have to fulfil the
boundary conditions [10]. In this work, we have used a non-stabilized Nitsche’s
method. Roughly speaking, we have considered the weak formulation:

Find u ∈ Fh such that∫
Ω

∇u · ∇v −
∫

Γd

[unv + uvn] + β

∫
Γd

uv =
∫

Ω

fv +
∫

Γd

g(βv − vn) +
∫

Γn

qv,

for all v ∈ Fh.
We refer to [7] for a complete description of the method.
The settings for experiments are:

• The triangle mesh generator Easymesh ( c©Bojan Niceno) was used in order
to obtain triangulations using data nodes at the boundary. In Ω = [0, 1] ×
[0, 1], three meshes have been generated for uniform data in ∂Ω at several
mesh widths h = 1/4, 1/8, 1/16.

• Four relative errors: erel, exrel, eyrel and e∞,rel have been calculated
using a 7-point quadrature formula at interior cells.

• Errors for the standard linear FEM F1,0 and quadratic FEM F2,0 have
been computed for the sake of comparison.

• We write Fm,0(s),Fm,r(s, t) to indicate that an s-point quadrature formula
has been used at interior cells and a t-point quadrature formula has been
used at boundary cells.

4.2.1. Model 1. We consider the problem

uxx + uyy = f(x, y) in Ω = [0, 1] × [0, 1],
u|∂Ω = 0,

and choose f such that the exact solution is

u(x, y) = arctan
(

100(
x + y√

2
) (x − x2) (y − y2)

)
.

Errors for several Galerkin spaces Fh are summarized in Tables 5, 6, 7, 8, 9 and
10. The results clearly show the superiority of F1,r

X (it is also useful to compare
our results with those in [7]).
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Table 5. Error exrel, ap = 2, varying h.

h 1/32 1/16 1/8 1/4

F1,1
X 3.5917−4 1.4364−3 5.7419−3 2.2906−2

F1,2
D 1.4187−3 5.5980−3 2.1708−2 8.0095−2

Table 6. Model 1, Vh = F1,0(1).

Dof erel exrel eyrel e∞,rel

60 6.9342−2 3.2427−1 3.1235−1 1.2834−1

267 1.9699−2 1.6170−1 1.5594−1 4.2933−2

1131 5.3033−3 7.9956−2 7.9705−2 1.2670−2

Table 7. Model 1, Vh = F2,0(3).

Dof erel exrel eyrel e∞,rel

269 1.3409−2 4.7132−2 4.5140−2 2.8684−2

1129 1.3842−3 1.3368−2 1.2610−2 4.1615−3

4649 1.1739−4 3.7489−3 3.6917−3 8.3689−4

Table 8. Model 1, Vh = F1,1
X (3, 2).

Dof erel exrel eyrel e∞,rel

244 8.0937−3 4.1408−2 4.1401−2 1.8508−2

929 9.2963−4 1.1114−2 1.0462−2 2.5599−3

3649 8.9332−5 3.1773−3 3.1075−3 4.4461−4

Table 9. Model 1, Vh = F1,2
D (3, 2).

Dof erel exrel eyrel e∞,rel

333 2.3245−2 1.4096−1 1.3446−1 4.3396−2

1196 2.6080−3 4.0184−2 3.7808−2 7.2470−3

4908 3.4064−4 1.2078−2 1.1671−2 1.7633−3
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Table 10. Model 1, Vh = F1,2
X (7, 5).

Dof erel exrel eyrel e∞,rel

520 1.006−3 8.0796−3 7.5917−3 2.7966−3

1858 1.1419−4 1.8740−3 1.6288−3 4.7398−4

7426 7.7560−6 2.3461−4 2.3087−4 4.0117−5

4.2.2. Model 2. This test example is a Poisson equation with a harmonic source.
Neumann boundary conditions are imposed:

−(uxx + uyy) + u = (8π2 + 1) cos(2πx) sin(2πy) in Ω = [0, 1] × [0, 1],
un|∂Ω = us,n,

where the exact solution is

us(x, y) = cos(2πx) sin(2πy).

Results for F1,1
X and F2,0 are summarized in Tables 11 and 12.

Table 11. Model 1, Vh = F1,3
D (7, 5).

Dof erel exrel eyrel e∞,rel

704 2.8760−3 2.3741−2 2.2613−2 6.5160−3

2520 2.8020−4 4.3350−3 3.8011−3 9.4980−4

9944 4.1614−5 1.0973−3 1.0740−3 2.8198−4

Table 12. Model 2, Vh = F2,0(3).

Dof erel exrel eyrel e∞,rel

333 4.2717−3 3.3197−2 3.4645−2 7.6092−3

1257 5.3919−4 8.6610−3 8.2048−3 1.1223−3

4905 6.4327−5 2.2884−3 1.8482−3 1.2913−4

Table 13. Model 2, Vh = F1,1
X (3, 2).

Dof erel exrel eyrel e∞,rel

276 5.0433−3 3.5308−2 3.6448−2 9.2298−3

993 5.7019−4 8.9559−3 8.3591−3 1.1162−3

3777 6.5773−5 3.3225−3 1.8579−3 1.3052−4



264 CARLOS ZUPPA

Remark 4.1. It is clear that F1,1
X ⊂ F2,0, but F1,1

X (3, 2) produces in general equal
or better results than F2,0(3) with smallest DOF. This is an amazing fact in the
context of Galerkin approximation.

It appears that this methodology has a number of useful features. Even if the
stiffness matrix is singular, the method seems to be robust. Dirichlet boundary
conditions are easily handled with Nitsche’s method.
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[12] T. Strouboulis, I. Babuška and K. Copps, The design and analysis of the generalized finite
element method, Comput. Methods Appl. Mech. Engrg. 181 (2001), pp. 43-69. MR1734667
(2000h:74077)

[13] R. Verfürth, Error estimates for some quasi-interpolation operators, RAIRO Modél. Anal.
Numér. 33 (1999), pp. 695–713. MR1726480 (2001a:65149)

[14] R. Verfürth, A note on polynomial approximation in Sobolev spaces, RAIRO Modél. Anal.
Numér. 33 (1999), pp. 715–719. MR1726481 (2000h:41016)

[15] H. Xuli, Multi-node higher order expansions of a functions, J. Approx. Theory 124 (2003),
pp. 242-253. MR2016674 (2004k:41059)

[16] C. Zuppa, Jackson-type inequalities for h-p clouds and error estimates, Comput. Methods
Appl. Mech. Engrg. 194 (2005), pp. 1875-1887. MR2121320 (2005j:65152)
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