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INVERSE-TYPE ESTIMATES
ON hp-FINITE ELEMENT SPACES AND APPLICATIONS

EMMANUIL H. GEORGOULIS

Abstract. This work is concerned with the development of inverse-type in-
equalities for piecewise polynomial functions and, in particular, functions be-
longing to hp-finite element spaces. The cases of positive and negative Sobolev
norms are considered for both continuous and discontinuous finite element
functions.The inequalities are explicit both in the local polynomial degree and
the local mesh size.The assumptions on the hp-finite element spaces are very
weak, allowing anisotropic (shape-irregular) elements and varying polynomial
degree across elements. Finally, the new inverse-type inequalities are used to
derive bounds for the condition number of symmetric stiffness matrices of hp-
boundary element method discretisations of integral equations, with element-
wise discontinuous basis functions constructed via scaled tensor products of
Legendre polynomials.

1. Introduction

Inverse-type estimates are widely used in the error analysis of many numerical
methods for partial differential equations and integral equations. Classical inverse-
type estimates are of the form

‖v‖Hs(τ) ≤ C(s, rτ , mτ )h−s
τ ‖v‖L2(τ),

where L2(τ ) and Hs(τ ) denote the standard (Hilbertian) Lebesgue and Sobolev
spaces (s ≥ 0), respectively, consisting of functions from a (usually, triangular
or quadrilateral) set τ ⊂ R

d, d = 2, 3, v being a polynomial function on τ ,
hτ := diam(τ ), mτ denotes the polynomial degree of v, and rτ the shape-regularity
constant. When the domain τ is anisotropic, i.e., its size varies substantially in
different space directions, the diameter hτ of τ does not provide the right scaling
for the inverse-type estimate described above. Instead, a sharper estimate reads

‖v‖Hs(τ) ≤ C(s, mτ )ρ−s
τ ‖v‖L2(τ),

where ρτ denotes the radius of the largest inscribed circle contained in τ .
Explicit knowledge of the dependence of the constant C(s, mτ ) on the polynomial

degree mτ is available. In particular, it is known that

‖v‖Hs(τ) ≤ C(s)m2s
τ ρ−s

τ ‖v‖L2(τ)

(see, e.g., [8]).
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Generalisations of the above inverse-type estimates for functions belonging to
finite-element-type spaces have been presented in [5, 4], in particular, in [5], inverse-
type inequalities of the form

C1(s, m)‖ρsu‖Hs(Ω) ≤ ‖u‖L2(Ω) ≤ C2(s, m)‖ρ−su‖H−s(Ω),

with H−s(Ω) and ‖·‖H−s(Ω) denoting the negative order Sobolev spaces and the
corresponding norms defined by duality; ρ is a mesh-dependent function represent-
ing the local ρτ ; C1(s, m) and C2(s, m) are positive constants depending on s and
on the (uniform) local polynomial degree m.

The results presented in this work extend the theory developed in [5] in three
ways. First, the inverse estimates derived below are explicit in the polynomial
degree of the finite element space; second, hp-finite element spaces are admissible,
i.e., the local polynomial degree in each element can vary. Finally, hanging nodes
in the mesh are now admissible in the analysis, allowing for meshes of greater
generality (e.g., meshes emerging from adaptive algorithms). Throughout this work,
the setting and much of the notation of [5] is followed. More specifically, inverse-
type inequalities of the form

‖m−2sρsu‖Hs(Ω) � ‖u‖L2(Ω) � ‖m2sρ−su‖H−s(Ω)

are proven below, where m is a mesh-dependent function representing the local
polynomial degree mτ ; here and in the following, A � B if and only if there exists
a constant C, independent of local mesh parameters and local polynomial degrees,
such that A ≤ CB. We also define A ∼ B if and only if A � B and B � A.

The paper is structured as follows. Section 2 introduces the admissible finite
element spaces for our analysis. Section 3 contains the main results of this work,
i.e., Theorems 3.3, 3.5 and 3.9. Finally, in Section 4, using the results of Section 3,
we prove bounds for the condition number of stiffness matrices for the hp-version
(conforming) boundary element method admitting discontinuous basis functions.

2. Finite element spaces

Let Ω ⊂ R
d be a bounded d-dimensional subset of R

3, for d = 2 or d = 3, i.e.,
when d = 3, Ω ⊂ R

3 is a bounded domain, and when d = 2, Ω is a piecewise smooth
Lipschitz manifold in R

3 (which may or may not have a boundary). (Of course, the
case of Ω ⊂ R

2 is included through the trivial imbedding into R
3.)

We assume the usual notion of a Hilbertian Sobolev space Hs(Ω) for a positive
integer s (see, e.g., [2]); Sobolev spaces with real positive index s ≥ 0 are defined
through the real or K-method of function space interpolation (see, e.g., [1]), and
Sobolev spaces with s < 0 are defined through duality, in a standard fashion. Since
we also consider Sobolev spaces on manifolds, we assume that the pull-backs are
also sufficiently smooth.

We consider subdivisions T of the set Ω, consisting of pair-wise disjoint elements
τ ∈ T , with τ ⊂ Ω, constructed in a standard fashion, as mappings

χτ : τ̂ → τ,

of a reference element τ̂ onto τ . We consider two choices for τ̂ : τ̂ := σ̂d, with σ̂d

denoting the d-dimensional simplex, or τ̂ := κ̂d, with κ̂d = (−1, 1)d. The above
maps are assumed to be constructed so as to ensure that the union of the closures
of the disjoint open elements τ ∈ T forms a covering of the closure of Ω, i.e.,
Ω̄ =

⋃
τ∈T τ̄ .
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Figure 1. Regular hanging node
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Hybrid meshes, i.e., meshes containing both (mapped) simplices and quadrilater-
als/hexahedrals are allowed. Moreover, we allow non-conforming meshes containing
regular hanging nodes, in the following sense.

Definition 2.1. Consider two neighbouring elements τ and τ ′, and let e ⊂ ∂τ and
e′ ⊂ ∂τ ′ denote the two element edges for which e ∩ e′ 	= ∅. If e 	= e′, then we say
that there exists a hanging node in the subdivision, say R (cf. Figure 1). We say
that R is a regular hanging node if

(2.1) r−1 ≤ meas1(e)/ meas1(e′) ≤ r,

for r > 0 uniformly in T ; we call r the regularity constant of the subdivision T .
We shall refer to a subdivision T as regular if it contains only one regular hanging
node per edge.

We continue with some more notation.

Definition 2.2. For each τ ∈ T , we denote by |τ | its d-dimensional measure, by
hτ its diameter, by ρτ the diameter of the largest inscribed sphere contained in τ̄ ,
and by mτ := min(1, m̃τ ), where m̃τ is the polynomial degree of the local finite
element basis of τ . Furthermore, if t ⊂ Ω is an arbitrary simplex or quadrilat-
eral/hexahedron (not necessarily an element of T ), the local quantities ht and ρt

are defined completely analogously.

Also let Jτ denote the 3 × d Jacobian of the map χτ , and define the Gram
determinant of χτ by

gτ (x̂) :=
(
det(JT

τ (x̂)Jτ (x̂))
)1/2

,

which appears in the integral change-of-variable formula:∫
τ

f(x)dx =
∫

τ̂

f(χτ (x̂))gτ (x̂)dx̂.
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Throughout this work, we make the following assumptions (cf. Assumptions 2.2
and 2.6 in [5]).

Assumption 2.3 (Mapping Properties). We have

D−1|τ | ≤ gτ (x̂) ≤ D|τ |,
Eρ2

τ ≤ λmin(JT
τ (x̂)Jτ (x̂)),

uniformly in x̂ ∈ τ̂ , with positive constants D and E, independent of τ , and λmin(B),
λmax(B) denoting the minimum and the maximum eigenvalues of a square matrix
B.

Let {xp : p ∈ N} denote the set of nodes of T that are not hanging nodes, for
some index set N .

Assumption 2.4 (Finite Element Space Properties). For some c1, c2, c3 > 1 and
M ∈ N, we assume that, for all τ, τ ′ ∈ T with τ̄ ∩ τ̄ ′ 	= ∅, we have

hτ ≤ c1hτ ′ , ρτ ≤ c2ρτ ′ , mτ ≤ c3mτ ′ ,

max
p∈N

#{τ ∈ T : xp ∈ τ̄} ≤ M.

The above assumptions on the mesh are very weak, in the sense that they al-
low very general degenerate (anisotropic) meshes (in particular, power-graded and
geometrically-graded meshes are allowed); we refer to Section 2 of [5] for a detailed
discussion on the admissible meshes under the above assumptions.

Definition 2.5 (Finite Element Spaces). For m and τ̂ ∈ {σ̂d, κ̂d}, we define

P
m(τ̂) =

{
polynomials of total degree ≤ m on τ̂ , if τ̂ = σ̂d;
polynomials of coordinate degree ≤ m on τ̂ , if τ̂ = κ̂d.

We also define the polynomial degree vector m = (mτ : τ ∈ T ), with mτ as in
Definition 2.2. Then, we set

Sm
0 (T ) = {u ∈ L∞(Ω) : u ◦ χτ ∈ P

m̃τ (τ̂), m̃τ ≥ 0, τ ∈ T },
Sm

1 (T ) = {u ∈ C0(Ω) : u ◦ χτ ∈ P
m̃τ (τ̂), m̃τ ≥ 1, τ ∈ T }.

We present a generalisation of Proposition 2.9 (or Corollary 2.10) in [5].

Proposition 2.6. Let τ ∈ T and let t̂ be any simplex which is contained in the
associated unit element τ̂ ∈ R

d. Let P̂ ∈ P
mτ (t̂) denote any d-variate polynomial

of degree mτ on t̂ and define t = χτ (t̂), P = P̂ ◦ χ−1
τ , where χτ is assumed to be

affine, for simplicity. Then, for all 0 ≤ s ≤ k, we have

‖P‖Hs(t) � m2s
τ ρ−s

t̂
ρ−s

τ ‖P‖L2(t).

Proof. The proof is similar to the proof of Proposition 2.9 in [5]. Here we only note
that the crucial difference is in the use of the well-known inverse estimate

‖v‖H1(τ̂) � m2
τ‖v‖L2(τ̂),

for v = |P̂ ◦ ν| ∈ P
mτ (τ̂) (see, e.g., (4.6.5) in [8]) with the notation of the proof of

Proposition 2.9 in [5]. �



INVERSE-TYPE ESTIMATES ON hp-FINITE ELEMENT SPACES 205

3. Inverse estimates

We begin by introducing some notation.

Definition 3.1 (Mesh Function). For each p ∈ N , set ρp = max{ρτ : xp ∈ τ̄}.
The mesh function ρ is the unique function in S1

1 (T ) such that ρ(xp) = ρp, for each
p ∈ N .

Definition 3.2 (Polynomial Degree Function). For each p ∈ N , set mp = max{mτ :
xp ∈ τ̄}. The polynomial degree function m is the unique function in S1

1 (T ) such
that m(xp) = mp, for each p ∈ N .

Clearly ρ and m are positive, continuous functions on Ω, and by Assumption
2.4, it follows that if x ∈ τ , then ρ(x) ∼ ρτ and m(x) ∼ mτ , for all τ ∈ T .

The next result is a generalisation of Theorem 3.2 in [5].

Theorem 3.3. Let 0 ≤ s ≤ 1, −∞ < α < α < ∞, and −∞ < β < β < ∞. Then,

‖ ρα

mβ
u‖Hs(Ω) � ‖ ρα−s

mβ−2s
u‖L2(Ω),

uniformly in α ∈ [α, α] and β ∈ [β, β], u ∈ Sm
1 (T ).

Proof. We have

∇
( ρα

mβ
u
)

= αu
ρα−1

mβ
∇ρ − βu

ρα

mβ+1
∇m +

ρα

mβ
∇u.

For v ∈ P
m(τ ), we recall Markov’s inequality

(3.1) ‖∇v‖L∞(τ) ≤ Cm2ρ−1
τ ‖v‖L∞(τ),

where C is a constant that depends only on the shape of τ , but not its size (see,
e.g., in Theorem 4.76 in [8] for d = 2; for d = 3 the proof is analogous). Using this
together with Assumption 2.4 and Proposition 2.6, we have, respectively,

‖∇
( ρα

mβ
u
)
‖2

L2(τ) � ‖ρα−1

mβ
u‖2

L2(τ)‖∇ρ‖2
L∞(τ) + ‖ ρα

mβ+1
u‖2

L2(τ)‖∇m‖2
L∞(τ)

+‖ ρα

mβ
‖2

L∞(τ)‖∇u‖2
L2(τ)

� ρ2α−4
τ

m2β
τ

‖u‖2
L2(τ)‖ρ‖2

L∞(τ) +
ρ2α−2

τ

m2β+2
τ

‖u‖2
L2(τ)‖m‖2

L∞(τ)

+
ρ2α−2

τ

m2β−4
τ

‖u‖2
L2(τ)

� ρ2α−2
τ

m2β
τ

‖u‖2
L2(τ) +

ρ2α−2
τ

m2β
τ

‖u‖2
L2(τ) +

ρ2α−2
τ

m2β−4
τ

‖u‖2
L2(τ)

� ρ2α−2
τ

m2β−4
τ

‖u‖2
L2(τ) � ‖ ρα−1

mβ−2
u‖2

L2(τ),

and the proof for s = 1 follows by summation over τ ∈ T . The proof for s ∈ (0, 1)
follows by interpolation. �

Before considering the case of hp-inverse estimates for functions belonging to
Sm

0 (T ), we present the following auxiliary result.
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Lemma 3.4. Let τ̂ ⊂ R
d, d = 2, 3 denote the reference element, and let û : τ̂ → R

be a polynomial of degree m. Also let the function η̂δ : τ̂ → R be defined as

η̂δ(x̂) =
{

1, if dist(x̂, ∂τ̂ ) ≥ δ;
δ−1 dist(x̂, ∂τ̂), otherwise.

Then η̂δû ∈ H1
0 (τ̂), and the following estimates hold:

‖η̂δû‖2
L2(τ̂) ≤ ‖û‖2

L2(τ̂),(3.2)

‖(1 − η̂δ)û‖2
L2(τ̂) � δm2‖û‖2

L2(τ̂),(3.3)

‖∇(η̂δ)û‖2
L2(τ̂) � δ−1m2‖û‖2

L2(τ̂).(3.4)

The proof Lemma 3.4 is given in the Appendix to enhance the clarity of the
presentation.

The next result is a generalisation of Theorem 3.4 in [5].

Theorem 3.5. Let 0 ≤ s < 1
2 , −∞ < α < α < ∞, and −∞ < β < β < ∞. Then,

‖ ρα

mβ
u‖Hs(Ω) � ‖ ρα−s

mβ−2s
u‖L2(Ω),

uniformly in α ∈ [α, α] and β ∈ [β, β], u ∈ Sm
0 (T ).

Proof. We consider s > 0; for otherwise, the proof is trivial. For brevity, here we
denote ũ = ρα

mβ u.
We shall define the fractional order Sobolev space Hs(Ω) using the K -method

of function space interpolation (see, e.g., [1]): Hs(Ω) is defined as the interpola-
tion space between L2(Ω) and H1(Ω) with interpolation parameter s. The norm
‖ũ‖Hs(Ω) can be expressed through the, so-called, K -functional K(t, ũ), as

‖ũ‖Hs(Ω) :=
(∫ ∞

0

t−2sK2(t, ũ)
dt

t

) 1
2

,

where

K(t, ũ) :=
(

inf
ũ=u0+u1

u0∈L2(Ω),u1∈H1(Ω)

{
‖u0‖2

L2(Ω) + t2‖u1‖2
H1(Ω)

} ) 1
2

.

We now construct a suitable splitting u0 + u1 = ũ. For τ ∈ T , we define ητ
δ

by ητ
δ := η̂δ ◦ χ−1

τ , where η̂δ as in the statement of Lemma 3.4. We consider the
splitting ũ = u0 + u1, defined element-wise by

u0|τ :=
{

(1 − ητ
δ )ũ|τ , 0 ≤ t ≤ γ;

ũ|τ , t > γ
and u1|τ :=

{
ητ

δ ũ|τ , 0 ≤ t ≤ γ;
0, t > γ

with γ := ρτ/m2
τ . From Lemma 3.4, we know that u1 ∈ H1(Ω). Then, we have

K2(t, ũ) ≤ ‖u0‖2
L2(Ω) + t2‖u1‖2

H1(Ω)
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and, therefore,

‖ũ‖2
Hs(Ω) ≤

∫ ∞

0

t−2s−1
(
‖u0‖2

L2(Ω) + t2‖u1‖2
H1(Ω)

)
dt

=
∑
τ∈T

∫ ∞

0

t−2s−1
(
‖u0‖2

L2(τ) + t2‖u1‖2
H1(τ)

)
dt

≤
∑
τ∈T

∫ γ

0

t−2s−1
(
‖(1 − ητ

δ )ũ‖2
L2(τ) + t2‖ητ

δ ũ‖2
H1(τ)

)
dt

+
∑
τ∈T

∫ ∞

γ

t−2s−1‖ũ‖2
L2(τ)dt.(3.5)

For a function f : τ → R, we denote f̂ : τ̂ → R, with f̂ := f ◦ χ−1
τ . Then, the term

‖(1 − ητ
δ )ũ‖2

L2(τ) can be bounded as follows:

‖(1 − ητ
δ )ũ‖2

L2(τ) � ρ2α
τ

m2β
τ

‖(1 − ητ
δ )u‖2

L2(τ) � ρ2α
τ

m2β
τ

|τ |‖(1 − η̂τ
δ )û‖2

L2(τ̂)

� ρ2α
τ

m2β−2
τ

δ|τ |‖û‖2
L2(τ̂) � ρ2α

τ

m2β−2
τ

δ‖u‖2
L2(τ) � m2

τδ‖ũ‖2
L2(τ),(3.6)

where in the third inequality we have made use of (3.3), and in the second and
fourth inequality, we made use of Assumption 2.3.

For the term ‖ητ
δ ũ‖2

H1(τ), we work as follows:

‖ητ
δ ũ‖2

H1(τ) = ‖ητ
δ ũ‖2

L2(τ) + ‖∇(ητ
δ ũ)‖2

L2(τ) � ‖ũ‖2
L2(τ) + |τ |ρ−2

τ ‖∇̂(η̂δ
ˆ̃u)‖2

L2(τ̂)

� ‖ũ‖2
L2(τ) + |τ |ρ−2

τ

(
‖ˆ̃u∇̂η̂δ‖2

L2(τ̂) + ‖η̂δ∇̂ˆ̃u‖2
L2(τ̂)

)

� ‖ũ‖2
L2(τ) + |τ |ρ

2α−2
τ

m2β
τ

‖û∇̂η̂δ‖2
L2(τ̂) + |τ |ρ−2

τ ‖∇̂ˆ̃u‖2
L2(τ̂)

� ‖ũ‖2
L2(τ) + |τ | ρ2α−2

τ

m2β−2
τ

δ−1‖û‖2
L2(τ̂) + |τ |ρ−2

τ m4
τ‖ˆ̃u‖2

L2(τ̂)

� ‖ũ‖2
L2(τ) +

ρ2α−2
τ

m2β−2
τ

δ−1‖u‖2
L2(τ) + ρ−2

τ m4
τ‖ũ‖2

L2(τ)

� ρ−2
τ (δ−1m2

τ + m4
τ )‖ũ‖2

L2(τ);(3.7)

in the first inequality we made use of standard scaling (see, e.g., Theorem 3.1.2 [3]),
and in the fourth inequality we applied (3.4) and Theorem 3.3. Using the estimates
(3.6) and (3.7), (3.5) can be further bounded by

‖ũ‖2
Hs(Ω) �

∑
τ∈T

( ∫ γ

0

t−2s−1
(
m2

τδ+t2ρ−2
τ (δ−1m2

τ +m4
τ )

)
dt+

∫ ∞

γ

t−2s−1dt
)
‖ũ‖2

L2(τ).

Choosing δ := (4ρτ )−1t, for 0 ≤ t ≤ γ, and calculating the respective integrals, we
deduce

‖ũ‖2
Hs(Ω) �

∑
τ∈T

(m2
τ

ρτ

γ−2s+1

−2s + 1
+

m4
τ

ρ2
τ

γ−2s+2

−2s + 2
+

γ−2s

2s

)
‖ũ‖2

L2(τ).

Recalling that γ = ρτ/m2
τ , the result follows. (We note that, with this choice of γ,

we have δ ≡ (4ρτ )−1t < (2mτ )−2, for all τ ∈ T , yielding ητ
δ ∈ H1

0 (τ ).) �
We continue with some intermediate results of a technical nature.
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t̂ t̂1

t̂2

t̂3

t̂4

��
ε

(1,−1)

(1, 1)(−1, 1)

(−1,−1)
Figure 2. Splitting of τ̂ = κ̂2

Lemma 3.6. Let τ̂ be the reference element, and consider a set t̂ ⊂ τ̂ , having the
same shape as τ̂ and faces parallel to the faces of τ̂ such that dist(t̂, ∂τ̂ ) ≥ ε, for
some ε > 0 (i.e., t̂ is ε-away from the boundary of τ̂). Then, there exists a function
Pt̂ ∈ Hk(Rd), such that

Pt̂ ≡ 0 on R
d
�t̂, 0 ≤ Pt̂(x) ≤ 1 for all x ∈ t̂,

1
2
≤ Pt̂(x) ≤ 1 for all x ∈ t̂,

and ‖DiPt̂‖L∞(τ̂) � ε−i, for i = 1, 2, . . . , k.

Proof. This is a standard mollifier argument. We can choose Pt̂ = At̂
ε char(t̂), where

At̂
ε is the standard mollification operator (see, e.g., [2]), and char(ω) denotes the

characteristic function of a set ω. �

We continue with the following technical result (cf. Lemma 3.5 in [5]).

Lemma 3.7. Let τ̂ and P
m(τ̂) be as in Definition 2.5. Then, for each u ∈ P

m(τ̂),
there exists a set t̂ ⊂ τ̂ , having the same shape as τ̂ and faces parallel to the faces
of τ̂ , such that

ρt̂ ∼ 1 and ‖u‖L2(t̂) ≥
1
2
‖u‖L2(τ̂).

Proof. Consider a set t̂ ⊂ τ̂ whose faces are parallel to the faces of τ̂ at a distance
ε (see Figures 2 and 3 for a geometric representation of the setting for τ̂ = κ̂2 and
τ̂ = σ̂2, respectively).

We first consider the case τ̂ = κ̂d. To simplify the presentation consider the
case d = 2; the case for d ≥ 3 follows completely analogously, via a tensorization
argument. To this end, we subdivide τ̂ � t̂ into 4 subsets t̂i, i = 1, 2, 3, 4 as shown
in Figure 2. Then for t̂1, we have

‖u‖2
L2(t̂1)

=
∫ 1

−1+ε

∫ 1

1−ε

u2(x, y)dxdy =
∫ 1

−1+ε

‖u(·, y)‖2
L2(1−ε,1)dy

≤
∫ 1

−1+ε

ε‖u(·, y)‖2
L∞(1−ε,1)dy ≤

∫ 1

−1

ε‖u(·, y)‖2
L∞(−1,1)dy

≤
∫ 1

−1

2εCm2‖u(·, y)‖2
L2(−1,1)dy = 2εCm2‖u‖2

L2(τ̂),
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( 1
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2 )

(1, 0)
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(0, 0)

t̂

t̂1 t̂2

t̂3

Figure 3. Splitting of τ̂ = σ̂2

where in the third inequality we have used Bernstein’s inequality

(3.8) ‖v‖L∞(τ) � md|τ |− 1
2 ‖v‖L2(τ)

with d = 1 (see, e.g., Theorem 3.92 in [8] for d = 1, Theorem 4.76 in [8] for d = 2;
for d = 3 the proof is analogous). Quite similarly, we can deduce analogous bounds
for t̂i, i = 2, 3, 4, or when τ̂ is a simplex, to obtain

‖u‖2
L2(τ̂�t̂)

=
4∑

i=1

‖u‖2
L2(t̂i)

≤ 8εCm2‖u‖2
L2(τ̂).

Selecting ε = ( 32
3 Cm2)−1, we deduce ‖u‖2

L2(τ̂�t̂)
≤ 3

4‖u‖2
L2(τ̂). Using this, we have,

respectively,

‖u‖2
L2(t̂)

= ‖u‖2
L2(τ̂) − ‖u‖2

L2(τ̂�t̂)
≥ ‖u‖2

L2(τ̂) −
3
4
‖u‖2

L2(τ̂) =
1
4
‖u‖2

L2(τ̂).

Thus, t̂ ⊂ τ̂ has the same shape as τ̂ (and faces parallel to those of τ̂ , too) with
dist(t̂, ∂τ̂ ) � ε ∼ m−2. Hence, 1 ≥ ρt̂ � 1 − ε ∼ 1, and the proof is complete for
τ̂ = κ̂2.

Now, we consider the case τ̂ = σ̂d. We first consider the case d = 2 in detail.
We subdivide τ̂ � t̂ into 3 subsets t̂i, i = 1, 2, 3 as shown in Figure 3. Then for t̂1,
we have

‖u‖2
L2(t̂1)

=
∫ ε

0

∫ 1
2

0

u2(x, y)dxdy +
∫ 1

2

ε

∫ ε

0

u2(x, y)dxdy

≤
∫ 1

2

0

ε‖u(x, ·)‖2
L∞(0,ε)dx +

∫ 1
2

ε

ε‖u(·, y)‖2
L∞(0,ε)dy

≤
∫ 1

2

0

ε‖u(x, ·)‖2
L∞(0, 1

2 )dx +
∫ 1

2

0

ε‖u(·, y)‖2
L∞(0, 1

2 )dy

≤ εCm2‖u‖2
L2(A1)

,(3.9)

where A1 = (0, 1
2 )2.
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Figure 4. Splitting of τ̂ = σ̂3 (not drawn to scale). (a) The split-
ting of the face of the canonical tetrahedron that is an equilateral
triangle. (b) One of the 3 faces of the canonical tetrahedron that
are right triangles.

For t̂2, we make the (linear) change of variables (x, y) → (x̃, ỹ), where x̃ = x + y
and ỹ = y. Then, we have

‖u‖2
L2(t̂2)

≤
∫ ε

0

∫ 1

1
2

u2(x̃ − ỹ, ỹ)dx̃dỹ +
∫ 1

2

ε

∫ 1

1−ε

u2(x̃ − ỹ, ỹ)dx̃dỹ

≤
∫ 1

1
2

ε‖u(x̃ − ·, ·)‖2
L∞(0,ε)dx̃ +

∫ 1
2

ε

ε‖u(· − ỹ, ỹ)‖2
L∞(1−ε,1)dỹ

≤
∫ 1

1
2

ε‖u(x̃ − ·, ·)‖2
L∞(0, 1

2 )dx̃ +
∫ 1

2

0

ε‖u(· − ỹ, ỹ)‖2
L∞( 1

2 ,1)dỹ

≤ εCm2‖u‖2
L2(A2)

,(3.10)

where A2 denotes the parallelogram with vertices ( 1
2 , 0), (1, 0), ( 1

2 , 1
2 ), (0, 1

2 ).
For t̂3, we make the (linear) change of variables (x, y) → (x̃, ỹ), where x̃ = x and

ỹ = x + y. Then, completely analogously to the case of t2, we obtain

(3.11) ‖u‖2
L2(t̂3)

≤ εCm2‖u‖2
L2(A3)

,

where A3 denotes the parallelogram with vertices ( 1
2 , 0), ( 1

2 , 1
2 ), (0, 1), (0, 1

2 ).
Combining (3.9), (3.10), and (3.11), we deduce

‖u‖2
L2(τ̂�t̂)

≤ 3εCm2‖u‖2
L2(τ̂),

and selecting ε = (4Cm2)−1, the result follows.
The case d = 3 follows by considering the splitting described in Figure 4, whereby

the internal lines are understood to be the traces of the intersection of the domain t̂
with planes perpendicular to the faces. Considering now the corresponding prisms
that contain each of the parts of t̂ and are in turn contained in the tetrahedron,
the result follows by a suitable change of variables, in an analogous fashion to the
two-dimensional case. �

Combining the two lemmata above, we have the following result.
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Proposition 3.8. Let u ∈ P
m(τ̂), t̂ ⊂ τ̂ as in Lemma 3.7 with dist(t̂, ∂τ̂ ) � m−2,

and Pt̂ as in Lemma 3.6. Then, we have

(3.12) ‖uPt̂‖Hk(τ̂) � m2k‖u‖L2(τ̂).

Proof. We prove the result for k = 1; then, the result for general k ∈ N follows by
induction.

We have, respectively,

‖∇(uPt̂)‖L2(τ̂) ≤ ‖(∇u)Pt̂‖L2(τ̂) + ‖u(∇Pt̂)‖L2(τ̂)

≤ ‖Pt̂‖L∞(τ̂)‖∇u‖L2(τ̂) + ‖∇Pt̂‖L∞(τ̂)‖u‖L2(τ̂)

� m2‖u‖L2(τ̂) + m2‖u‖L2(τ̂) ∼ m2‖u‖L2(τ̂),

where in the last inequality we have made use of Proposition 2.6 and the L∞-bounds
of Pt̂ and its first derivative, from Lemma 3.6. �

The next result is a generalisation of Theorem 3.6 in [5].

Theorem 3.9. Let i ∈ {0, 1}, 0 ≤ s ≤ k, −∞ < α < α < ∞, −∞ < β < β < ∞,
and assume that m̃τ ≥ i, for all τ ∈ T . Then,

‖ ρs+α

m2s+β
u‖L2(Ω) � ‖ ρα

mβ
u‖H−s(Ω),

uniformly in α ∈ [α, α] and β ∈ [β, β], u ∈ Sm
i (T ).

Proof. The result is clear for s = 0. We prove it for s = k ∈ N; the result then
follows by interpolation. Without loss of generality we assume u 	= 0, for otherwise
the result is trivial. We want to construct w ∈ Hk(Ω) such that

|( ρα

mβ
u, w)| � ‖ ρk+α

m2k+β
u‖2

L2(Ω)

and

‖w‖Hk(Ω) � ‖ ρk+α

m2k+β
u‖L2(Ω);

then the result follows immediately from the definition of the dual norm.
To construct w, we work as follows. For any τ ∈ T , we have û := u ◦ χ−1

τ ∈
P

mτ (τ̂), and by Lemma 3.7, there exists t̂(τ ) ⊂ τ̂ such that

ρt̂(τ) ∼ 1 and ‖û‖L2(t̂) ≥
1
2
‖û‖L2(τ̂).

Scaling yields

(3.13) ρt(τ) ∼ ρτ and ‖u‖L2(t(τ)) ≥
1
2
‖u‖L2(τ),

for t(τ ) := t̂(τ ) ◦ χ−1
τ . Let τ ⊂ Ω be an element, and consider t(τ ) ⊂ τ as above.

Then, from the proof of Lemma 3.7, we have dist(t(τ ), ∂τ) � m−2
τ . Now, using

Lemma 3.6 and Proposition 3.8, there exists a function Pt(τ) ∈ Hk(Rd) such that

Pt(τ) ≡ 0 on R
d

� τ, 0 ≤ Pt(τ)(x) ≤ 1 for all x ∈ τ,

1
2
≤ Pt(τ)(x) ≤ 1 for all x ∈ t,

and

(3.14) ‖uPt(τ)‖Hk(τ) � m2k
τ ρ−k

τ ‖u‖L2(τ),

with the last inequality resulting from (3.12) through a standard scaling argument.
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We are now in a position to define

w =
∑
τ∈T

m−4k−β
τ ρ2k+α

τ uPt(τ).

Then,

|( ρα

mβ
u, w)| �

∑
τ∈T

m−4k−2β
τ ρ2k+2α

τ

∫
τ

u2Pt(τ) ≥
∑
τ∈T

m−4k−2β
τ ρ2k+2α

τ

∫
t(τ)

u2Pt(τ)

≥
∑
τ∈T

m−4k−2β
τ ρ2k+2α

τ

1
2

∫
t(τ)

u2 ≥
∑
τ∈T

m−4k−2β
τ ρ2k+2α

τ

1
8

∫
τ

u2

� ‖ ρk+α

m2k+β
u‖2

L2(Ω),

where in the third step we used the fact that Pt(τ) ≥ 1
2 on t(τ ), and in the fourth

step we made use of (3.13).
Also, we have

‖w‖2
Hk(Ω) =

∑
τ∈T

‖w‖2
Hk(τ) ≤

∑
τ∈T

m−8k−2β
τ ρ4k+2α

τ ‖uPt(τ)‖2
Hk(τ),

and, using (3.14), we obtain

‖w‖2
Hk(Ω) �

∑
τ∈T

m−8k−2β
τ ρ4k+2α

τ m4k
τ ρ−2k

τ ‖u‖2
L2(τ)

�
∑
τ∈T

m−4k−2β
τ ρ2k+2α

τ ‖u‖2
L2(τ) � ‖ ρk+α

m2k+β
u‖2

L2(Ω),

and the result now follows. �

Remark 3.10. In [5], where the local polynomial degree is assumed to be uniform
and constant, the relation

(3.15) c(mτ )‖u‖L∞(τ)|τ |
1
2 ≤ ‖u‖L2(τ) ≤ ‖u‖L∞(τ)|τ |

1
2

was used extensively in the proofs presented in that work, with c(m) > 0 being
included in the generic constants. When the explicit dependence on the polynomial
degree of u is required, as is the case in the present work, (3.15) becomes

‖u‖L∞(τ)|τ |
1
2 m−d

τ � ‖u‖L2(τ) � ‖u‖L∞(τ)|τ |
1
2 ,

using Bernstein’s inequality (3.8). Note that the lower bound involves the polyno-
mial degree raised to the negative power equal to the dimension of the computa-
tional domain. However, the dimension of the computational domain is not present
in conjunction with the polynomial degree in the classical hp-inverse estimates (for
polynomials) of the form

hs

m2s
‖u‖Hs(τ) � ‖u‖L2(τ) � m2s

hs
‖u‖H−s(τ),

and, thus, the same is expected for the inverse estimates on hp-finite element spaces.
Hence, we systematically avoided using ‖u‖L∞(τ) in the proofs of Theorems 3.3, 3.5
and 3.9 above, making use instead of tensor-product-type constructions.

Next, we present an application of the above developments, regarding the esti-
mation of the condition number of stiffness matrices arising in hp-boundary element
methods.
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4. The conditioning of hp-boundary element matrices

emerging from discontinuous subspaces

Most boundary integral equations arising from elliptic partial differential equa-
tions have a variational formulation in a low order Sobolev space. A typical example
is the classical single layer potential for the Laplacian, whose solutions belong to
H−1/2(Γ), where Γ is either a domain in R

d or a d-dimensional manifold in R
d+1,

satisfying the same assumptions as Ω in Section 2. We are interested in approximat-
ing the solutions to such integral equations using the hp-version boundary element
method and in studying the conditioning of the resulting stiffness matrices.

We consider the general linear integral equation

(λI + K)uan(x) := λuan(x) +
∫

Γ

k(x, y)uan(y)dy = f(x), x ∈ Γ,

for some given scalar λ ∈ R, kernel function k, analytic solution uan and sufficiently
smooth right-hand side f . The corresponding weak form is

Find uan ∈ Hs(Γ) such that a(uan, v) := ((λI + K)uan, v) = (f, v) ∀v ∈ Hs(Γ),

where we assume −1 ≤ s < 1/2, and s is such that

(4.1) a(u, u) ∼ ‖u‖2
Hs(Γ).

Remark 4.1. The equivalence (4.1) is assumed in the subsequent discussion. How-
ever, for particular cases of integral operators, it is possible to prove that relations
of type (4.1) hold, for corresponding values of s; we refer, e.g., to [7] for details.

Remark 4.2. The spaces H̃s(Γ), defined by

H̃s(Γ) := {u ∈ Hs(R) : supp ⊂ Γ̄}, with norm ‖u‖H̃s(Γ) := ‖u‖Hs(R),

are often used in the analysis of integral equations. Since for −1 ≤ s < 1/2, we
have H̃s(Γ) ≡ Hs(Γ), we shall be working with classical Sobolev spaces instead.

Let T be a subdivision of Γ, consisting of quadrilateral elements, satisfying the
assumptions in Section 2. Since s < 1/2, we can choose an element-wise dis-
continuous finite-dimensional subspace Sm(T ), constructed from tensor-product
Legendre-polynomial local basis functions.

The corresponding discrete problem reads

(4.2) Find u ∈ Sm(T ) such that a(u, v) := ((λI +K)u, v) = (f, v) ∀v ∈ Sm(T ),

where u is the hp-boundary element approximation to uan.
Let Li denote the Legendre polynomial of degree i defined on (−1, 1). It is known

that the Legendre polynomials form an orthogonal basis of L2(−1, 1). Hence, for
any û ∈ P

m(−1, 1) ⊂ L2(−1, 1), there exist Ûi ∈ R, i ∈ N0, such that

û =
m∑

i=0

ÛiLi;

the corresponding Parseval’s identity reads

(4.3) ‖û‖2
L2(−1,1) =

m∑
i=0

Û2
i

2
2i + 1

.
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On the reference element τ̂ ≡ κ̄d := (−1, 1)d, d = 2, 3, we consider the tensor-
product polynomial basis

span{Li1 . . . Lid
: 0 ≤ ij ≤ m, ij ∈ N0, j = 1, . . . , d}.

Thus, every polynomial û : τ̂ → R of degree at most m in each variable can be
expressed in terms of the above basis, i.e., there exist U τ̂

i1,...,id
∈ R such that

û(x̂1, . . . , x̂d) =
∑

0≤ij≤m
j=1,...,d

U τ̂
i1,...,id

d∏
j=1

Lij
(x̂j).

Using (4.3), along with Fubini’s Theorem, we deduce

(4.4) ‖û‖2
L2(τ̂) =

∑
0≤ij≤m
j=1,...,d

(
Û τ̂

i1,...,id

)2
d∏

j=1

2
2ij + 1

.

For a typical u ∈ Sm(T ), we have u|τ := ûτ ◦ χ−1
τ , where

ûτ (x̂1, . . . , x̂d) =
∑

0≤ij≤mτ

j=1,...,d

Uτ
i1,...,id

d∏
j=1

Lτ
ij

(x̂j),

for some real numbers Uτ
i1,...,id

with 0 ≤ ij ≤ mτ , j = 1, . . . , d, τ ∈ T .
Let A denote the symmetric stiffness matrix of the discrete problem (4.2). Then,

for U := (Uτ
i1,...,id

: 0 ≤ ij ≤ mτ , j = 1, . . . , d, τ ∈ T ), we have

UT AU = a(u, u) ∼ ‖u‖2
Hs(Γ) and UTU =

∑
τ∈T

mτ∑
0≤ij≤m
j=1,...,d

(
Uτ

i1,...,id

)2
.

Thus, if we show the bounds

Λmin

∑
τ∈T

mτ∑
0≤ij≤m
j=1,...,d

(
Uτ

i1,...,id

)2 � ‖u‖2
Hs(Γ) � Λmax

∑
τ∈T

mτ∑
0≤ij≤m
j=1,...,d

(
Uτ

i1,...,id

)2
,

we shall immediately have λmax(A) � Λmax and λmin(A) � Λmin.

Lemma 4.3. If 0 ≤ s < 1/2, we have

λmin(A) � min
τ∈T

{m−d
τ |τ |} and λmax(A) � max

τ∈T
{m4s

τ |τ |ρ−2s
τ }.

Proof. Let d = 2. We have

(4.5) ‖u‖2
L2(Γ) ≤ ‖u‖2

Hs(Γ) � ‖ ρ−s

m−2s
u‖2

L2(Γ),

where the first inequality is trivial, and the second inequality follows from Theorem
3.5. Parseval’s identity (4.4), along with scaling, yields

‖u‖2
L2(Γ) =

∑
τ∈T

‖u‖2
L2(τ) ∼

∑
τ∈T

|τ |‖û‖2
L2(τ̂) =

∑
τ∈T

|τ |
mτ∑

i,j=0

(
Uτ

i,j

)2 2
2i + 1

2
2j + 1

.
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Hence, in view of (4.5), we have

‖u‖2
Hs(Γ) ≥ ‖u‖2

L2(Γ) �
∑
τ∈T

|τ |
mτ∑

i,j=0

(
Uτ

i,j

)2
m−2

τ � min
τ∈T

{m−2
τ |τ |}

∑
τ∈T

mτ∑
i,j=0

(
Uτ

i,j

)2
,

and, thus, the lower bound on λmin(A) follows.
On the other hand, Parseval’s identity gives

‖ ρ−s

m−2s
u‖2

L2(Γ) =
∑
τ∈T

‖ ρ−s

m−2s
u‖2

L2(τ) ∼
∑
τ∈T

m4s
τ ρ−2s

τ ‖u‖2
L2(τ)

∼
∑
τ∈T

m4s
τ ρ−2s

τ |τ |‖û‖2
L2(τ̂)

=
∑
τ∈T

m4s
τ ρ−2s

τ |τ |
mτ∑

i,j=0

(
Uτ

i,j

)2 2
2i + 1

2
2j + 1

�
∑
τ∈T

m4s
τ ρ−2s

τ |τ |
mτ∑

i,j=0

(
Uτ

i,j

)2

≤ max
τ∈T

{m4s
τ ρ−2s

τ |τ |}
∑
τ∈T

mτ∑
i,j=0

(
Uτ

i,j

)2
.

Hence, in view of (4.5), the upper bound on λmax(A) is shown.
The corresponding bounds for d = 3 follow in a completely analogous fashion. �

Lemma 4.4. If −1 ≤ s ≤ 0, we have

λmin(A) � min
τ∈T

{m4s−d
τ |τ |ρ−2s

τ } and λmax(A) � max
τ∈T

|τ |.

Proof. Let d = 2. We have

(4.6) ‖ ρ−s

m−2s
u‖2

L2(Γ) � ‖u‖2
Hs(Γ) ≤ ‖u‖2

L2(Γ),

where the first inequality follows from Theorem 3.9, and the second inequality
follows from the dual imbedding. Parseval’s identity (4.4), along with scaling,
yields

‖ ρ−s

m−2s
u‖2

L2(Γ) =
∑
τ∈T

‖ ρ−s

m−2s
u‖2

L2(τ)

∼
∑
τ∈T

m4s
τ ρ−2s

τ ‖u‖2
L2(τ) ∼

∑
τ∈T

m4s
τ |τ |ρ−2s

τ ‖û‖2
L2(τ̂)

=
∑
τ∈T

m4s
τ |τ |ρ−2s

τ

mτ∑
i,j=0

(
Uτ

i,j

)2 2
2i + 1

2
2j + 1

�
∑
τ∈T

m4s
τ |τ |ρ−2s

τ

mτ∑
i,j=0

(
Uτ

i,j

)2
m−2

τ .

Hence, in view of (4.6), we have

‖u‖2
Hs(Γ) ≥ ‖ ρ−s

m−2s
u‖2

L2(Γ) � min
τ∈T

{m4s−2
τ |τ |ρ−2s

τ }
∑
τ∈T

mτ∑
i,j=0

(
Uτ

i,j

)2
,

and, thus, the lower bound on λmin(A) follows.
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On the other hand, Parseval’s identity gives

‖u‖2
L2(Γ) =

∑
τ∈T

‖u‖2
L2(τ) ∼

∑
τ∈T

|τ |‖û‖2
L2(τ̂) =

∑
τ∈T

|τ |
mτ∑

i,j=0

(
Uτ

i,j

)2 2
2i + 1

2
2j + 1

�
∑
τ∈T

|τ |
mτ∑

i,j=0

(
Uτ

i,j

)2 ≤ max
τ∈T

{|τ |}
∑
τ∈T

mτ∑
i,j=0

(
Uτ

i,j

)2
.

Hence, in view of (4.6), the upper bound on λmax(A) is shown.
The corresponding bounds for d = 3 follow in a completely analogous fashion. �

Remark 4.5. A different upper bound for λmax is presented in Lemma 4.4 of [6], for
nodal finite element bases using arguments involving dual Sobolev embedding. It
would be interesting to investigate further the sharpness of each bound with respect
to different meshes.

Finally, recalling that the condition number cond(A) of a symmetric positive
definite matrix A is given by

cond(A) =
λmax(A)
λmin(A)

,

an upper bound for the condition number of A is now immediate.

Theorem 4.6. The condition number of the stiffness matrix A, arising in the
boundary element method (4.2) with tensor-product Legendre local polynomial basis,
can be bounded as follows: if 0 ≤ s < 1/2, we have

cond(A) � maxτ∈T {m4s
τ |τ |ρ−2s

τ }
minτ∈T {m−d

τ |τ |}
,

and if −1 ≤ s < 0, we have

cond(A) � maxτ∈T |τ |
minτ∈T {m4s−d

τ |τ |ρ−2s
τ }

.
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Appendix: Proof of Lemma 3.4

Proof. Since η̂δ ∈ H1
0 (τ̂) and û ∈ C∞(τ̂), we have η̂δû ∈ H1

0 (τ̂). The proof of the
estimate (3.2) is trivial.

Next, we prove the bounds (3.3) and (3.4) in two dimensions via a tensor-product
construction. The proof for three dimensions is analogous. Let τ̂ = (−1, 1)2, and
consider the splitting of τ̂ into 5 subregions as drawn in Figure 5. Consider η̂δ on
τ̂1 ⊂ τ̂ . It is immediate that

η̂δ(x, y) = δ−1(x + 1), for (x, y) ∈ τ̂1.
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��

�� ��
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τ̂ τ̂3

τ̂4
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τ̂2
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δ

��δ

Figure 5. Domain of definition for η̂δ

Thus

‖(1 − η̂δ)û‖2
L2(τ̂1)

≤
∫ 1

−1

∫ −1+δ

−1

(1 − δ−1(x + 1))2û2dxdy

≤
∫ 1

−1

‖û‖2
L∞((−1,−1+δ)×{y})

∫ −1+δ

−1

(1 − δ−1(x + 1))2dxdy

�
∫ 1

−1

δ‖û‖2
L∞((−1,−1+δ)×{y})dy ≤

∫ 1

−1

δ‖û‖2
L∞((−1,1)×{y})dy

�
∫ 1

−1

δm2‖û‖2
L2((−1,1)×{y})dy = δm2‖û‖2

L2(τ̂),

where in the fifth inequality we made use of Bernstein’s inequality (3.8) in one
dimension. Also, we have

‖∇(η̂δ)û‖2
L2(τ̂1)

= ‖∂η̂δ

∂x
û‖2

L2(τ̂1)
= ‖δ−1û‖2

L2(τ̂1)
≤

∫ 1

−1

∫ −1+δ

−1

δ−2û2dxdy

≤
∫ 1

−1

δ−1‖û‖2
L∞((−1,−1+δ)×{y})dy

≤
∫ 1

−1

δ−1‖û‖2
L∞((−1,1)×{y})dy

�
∫ 1

−1

δ−1m2‖û‖2
L2((−1,1)×{y})dy = δ−1m2‖û‖2

L2(τ̂).

The proof for τ̂i, i = 2, 3, 4 is completely analogous.
Now, we consider the case τ̂ = σ̂d. First, we consider the case d = 2. We

subdivide τ̂ � t̂ into 3 subsets t̂i, i = 1, 2, 3 as shown in Figure 3, with ε = δ. We
observe that for the quadrilateral with vertices (0, 0), (δ, δ), (δ, 1

2 ), (0, 1
2 ), we have

η̂δ = δ−1x, and for the quadrilateral with vertices (0, 0), (δ, δ), ( 1
2 , δ), ( 1

2 , 0), we have
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η̂δ = δ−1y. Thereby, for t̂1, we have

‖(1 − η̂δ)û‖2
L2(t̂1)

≤
∫ δ

0

∫ 1
2

0

(1 − y

δ
)2u2(x, y)dxdy

+
∫ 1

2

δ

∫ δ

0

(1 − x

δ
)2u2(x, y)dxdy

�
∫ 1

2

0

δ‖u(x, ·)‖2
L∞(0,δ)dx +

∫ 1
2

δ

δ‖u(·, y)‖2
L∞(0,δ)dy

≤
∫ 1

2

0

δ‖u(x, ·)‖2
L∞(0, 1

2 )dx +
∫ 1

2

0

δ‖u(·, y)‖2
L∞(0, 1

2 )dy

� δm2‖û‖2
L2(A1)

,(4.7)

where A1 = (0, 1
2 )2. Also, we have

‖∇(η̂δ)û‖2
L2(t̂1)

≤
∫ δ

0

∫ 1
2

0

( ∂

∂y
(1 − y

δ
)
)2

u2(x, y)dxdy

+
∫ 1

2

δ

∫ δ

0

( ∂

∂x
(1 − x

δ
)
)2

u2(x, y)dxdy

� δ−1m2‖û‖2
L2(A1)

,(4.8)

similarly as in the case of τ̂ = κ̂2. For t̂2, we make the (linear) change of variables
(x, y) → (x̃, ỹ), where x̃ = x+y and ỹ = y. Observing also that for the quadrilateral
with vertices ( 1

2 , 0), ( 1
2 , δ), (1−

√
2δ, δ), (1, 0), we have η̂δ = δ−1(x+y−1), we deduce

‖(1 − η̂δ)û‖2
L2(t̂2)

≤
∫ δ

0

∫ 1

1
2

(1 − ỹ

δ
)2u2(x̃ − ỹ, ỹ)dx̃dỹ

+
∫ 1

2

δ

∫ 1

1−δ

(1 − x̃ − 1
δ

)2u2(x̃ − ỹ, ỹ)dx̃dỹ

� δm2‖û‖2
L2(A2)

,(4.9)

where A2 denotes the parallelogram with vertices ( 1
2 , 0), (1, 0), ( 1

2 , 1
2 ), (0, 1

2 ). Com-
pletely analogously, we have

(4.10) ‖∇(η̂δ)û‖2
L2(t̂2)

� δ−1m2‖û‖2
L2(A2)

.

For t̂3, we make the (linear) change of variables (x, y) → (x̃, ỹ), where x̃ = x and
ỹ = x + y. Then, analogously to the case of t2, we obtain

(4.11) ‖(1 − η̂δ)û‖2
L2(t̂3)

� δm2‖û‖2
L2(A3)

,

where A3 denotes the parallelogram with vertices ( 1
2 , 0), ( 1

2 , 1
2 ), (0, 1), and (0, 1

2 ).
Straightforward calculation also yields

(4.12) ‖∇(η̂δ)û‖2
L2(t̂3)

� δ−1m2‖û‖2
L2(A3)

.

Combining (4.7), (4.9), and (4.11), the bound (3.3) follows, and combining (4.8),
(4.10), and (4.12), the bound (3.4) follows.

The case d = 3 follows by considering the splitting described in Figure 4, whereby
the internal lines are understood to be the traces of the intersection of the domain
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t̂ with planes perpendicular to the faces, completely analogously to the proof of
Lemma 3.7. �
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