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THE ABEL LEMMA AND THE ¢-GOSPER ALGORITHM

VINCENT Y. B. CHEN, WILLIAM Y. C. CHEN, AND NANCY S. S. GU

ABSTRACT. Chu has recently shown that the Abel lemma on summation by
parts reveals the telescoping nature of Bailey’s g1)¢ bilateral summation for-
mula. We present a systematic approach to compute Abel pairs for bilateral
and unilateral basic hypergeometric summation formulas by using the ¢g-Gosper
algorithm. It is demonstrated that Abel pairs can be derived from Gosper
pairs. This approach applies to many classical summation formulas.

1. INTRODUCTION

We follow the notation and terminology in [I0]. For |¢| < 1, the g-shifted factorial
is defined by

= (a;9)
(a:9)0e = | | (1 = ag®) and (a; q),, = —2-, for n € Z.
,EO (aq"™; q)oo

For convenience, we shall adopt the following notation for multiple ¢-shifted facto-
rials:

(a1,a2,...,a0m;Qn = (a1;9)n(a2; @)n -+ (Am3; @),

where n is an integer or infinity. In particular, for a nonnegative integer k, we have

1
1.1 a;q)—p = ———.
(1) (a9) (ag=*;q)x
The (unilateral) basic hypergeometric series ¢ is defined by
a, ag, ..., Qp > (alaa23"'7ar;q)k |: k (k):| Its—r k
NOPN : = —1 2
7%{517 ba, ..., bs ,q,z} Z(q7b17b27--~,bs;Q)k (=D o

k=0
while the bilateral basic hypergeometric series 15 is defined by

ay, Gz, ..., ar — (a1,as,...,a:59)k k(15 K
rys 7 4, = _1 2 .
1/) [ b17 b2, ceey bs q Z:| k;m (bl,bQ,...7bs;q)k |:( ) q :| &

Recently Chu [9] used the Abel lemma on summation by parts to give an el-
ementary proof of Bailey’s very well-poised gts-series identity [5] (see also, [10,
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Appendix 11.33]):

1

gaz, —qaz, b, c, d, e qa®
6¥s az, —a2, aq/b, agq/c, aq/d, aq/e;q’@
_ (q.aq,9/a,aq/bc,aq/bd, ag/be, aq/cd, ag/ce, ag/de; q)
~ (ag/b,aq/c,aq/d,aq/e,q/b,q/c,q/d, q/e, qa? [bede; q)oo”

where |ga?/bede| < 1.
The Abel lemma on summation by parts is stated as

Wl

(1.2)

(1.3) > Ap(Br—Bi_1) = > Bi(Ap— Agga)

k=—o00 k=—o0

provided that the series on both sides are convergent and ), AyBj is absolutely
convergent. Based on the Abel lemma, Chu found an Abel pair (A, B):

(ba c, d, q2a2/b6d; Q)k
(aq/b,aq/c,aq/d,bed/ag; q)r’

(ge,bed/as q) ( ga® \"*
(aq/e, q?a?/bed; q)r \ bede

which leads to the following iteration relation:
Qasb,c,d, e) = Qag; b, ¢, d, eq)
(1.4) a(l —e)(1 —aq)(1 —agq/bc)(1 — aq/bd)(1 — agq/cd)

k=

X e = a)(1 — ag/b)(1 — ag/e) (1 — ag/d)(1 — aZq/bede)’
where
(1.5)
1 1
az, —qa?, b, c, d, e 2
Q(a;bacadae)zﬁwﬁ ! 1 ! 1 a‘bﬂ
az, —az, aq/b, aq/c, aq/d, aq/e bede

Because of the symmetries in b, ¢, d, and e, applying the identity (L4]) three times
with respect to the parameters a and d, a and ¢, a and b, we arrive at the following
iteration relation:

Qa;b, ¢, d, e) = Qaq*; by, cq, dg, eq)
y a'¢® 1—ag® (1-0b)(1-c)(1—d)(1—e)
(1.6) bede 1—a (a?q/bcde; q)4
. (aa/be, aq/bd, aq/be, ag/cd, ag/ce, ag/de; q):
(ag/b,aq/c,aq/d,aq/e;q)s '

Again, iterating the above relation m times, we get
Q(a;b,c,d, e) = Qaq"™;bg™ , cq™, dg™, eq™)
% a4mq6m2 1- aq4m (bv ¢, da €] Q)m
(1.7) (bede)™ 1—a  (a%q/bcde; q)am
% (G‘Q/bcv aq/bd7 aq/be7 aq/Cda aq/cev QQ/de; Q)Qm
(aq/b,aq/c,aq/d,aq/e; q)3m '
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Replacing the summation index k by k—2m, we obtain the transformation formula:
(1.8)
Qa;b,e,d,e) = Q(a;bg™ ™ eq” ™, dg™ ™" eq”™)
y (aq/bc,aq/bd, aq/be, aq/cd, aq/ce,aq/de; q)am
(¢/b;q/c,q/d,q/e,aq/b,aq/c,aq/d, aq/e; q)m(aq/bede; q)am’

Setting m — oo, Chu obtained the g1 summation formula (L2) by Jacobi’s triple
product identity [10, Appendix I1.28]:

o0
2
(1.9) ¢" 2" = (0%, —42,—4/% ¢ ) oo
k=—o00
since
lim Q(a;bg™™,cq”™,dg"™, eq”™)
m—0oQ
1 1 —m —-m —-m —-m
. qaz, —qaz, bg s cq , dg , €q a2gim+1
= lim ¢¢s | | . 3D bede
m— oo az, —az, aqm+1/b, aqm+1/c, aqm+1/d, aqurl/e
oo oo
1—ag® 2k%—k 2k 1 k(%) k
= Y o = 3 G0 = (g a/a g0
k=—o0 k=—o00

This paper is motivated by the question of how to systematically compute the
Abel pairs for bilateral summation formulas. We find that the ¢g-Gosper algorithm
is an efficient mechanism for this purpose. The g-Gosper algorithm has been exten-
sively studied. Koorwinder gave a rigorous description of the ¢-Gosper algorithm in
[14]. Abramov, Paule, and Petkovsek [I] developed the package gHyper for finding
all g-hypergeometric solutions of linear homogeneous recurrences with polynomial
coefficients. Later Boing and Koepf [7] gave an algorithm for the same purpose.
The Maple package gsum.mpl was described by Boing and Koepf [7]. In [I8], Riese
presented a generalization of the ¢g-Gosper algorithm to indefinite bibasic hyperge-
ometric summations.

Recall that a function ¢y, is said to be a basic hypergeometric term if txy1/tx is a
rational function of ¢*. The g-Gosper algorithm is devised to answer the question
if there is a basic hypergeometric term z; for a given basic hypergeometric term t
such that

(1.10) tk = 2k+1 — k-

We observe that for an iteration relation of a summation formula, the difference
of the kth terms of the two sides is a basic hypergeometric term so that the g-Gosper
algorithm can be employed.

The main result of this paper is to present a general framework to deal with
basic hypergeometric identities based on the g-Gosper algorithm. We start with
an iteration relation derived from the original identity. Then we use the g-Gosper
algorithm to generate a Gosper pair (g, k) if it exists. This step can be regarded
as a verification of the iteration relation. Finally, we employ the iteration relation
to prove the desired identity by computing a certain limit value. In fact, once a
Gosper pair (g, h) is obtained, one can easily compute the corresponding Abel
pair. Tt turns out that the Abel pair for the g1 sum discovered by Chu [9] coincides
with the Abel pair derived from the Gopser pair by using our approach. In general,
our method is efficient for many classical summation formulas with parameters.
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As examples, we give Gosper pairs and Abel pairs of several well-known bilat-
eral summation formulas including Ramanujan’s 17 summation formula and two
formulas due to Schlosser [20]. In the last section we demonstrate that the idea
of Gosper pairs can be applied to unilateral summation formulas as well. We use
the ¢-Gauss 3¢ summation formula as an example to illustrate the procedure to
compute Gosper pairs. As another example, we derive a Gosper pair and an Abel
pair for the g¢5 summation formula.

In comparison to a recent approach presented by Chen, Hou, and Mu [§] for prov-
ing nonterminating basic hypergeometric series identities by using the ¢-Zeilberger
algorithm [T4] [T5] 17, 22], one sees that the method in this paper does not rely on
the introduction of the parameter n in order to establish recurrence relations, and
it only makes use of the g-Gosper algorithm.

2. THE GOSPER PAIRS FOR BILATERAL SUMMATIONS

In spite of its innocent appearance, the Abel lemma is intrinsic for some so-
phisticated bilateral basic hypergeometric identities. In this section, we introduce
the notion of Gosper pairs and show that one may apply the g-Gosper algorithm
to construct Gosper pairs which can be regarded as certificates like Abel pairs to
justify iteration relations for bilateral summations. Furthermore, it is easily seen
that one can compute Abel pairs from Gosper pairs.

Suppose that we have a bilateral series Y>> Fj(a1,as,...,a,) which has a
closed product form. Making the substitutions a; — a;q or a; — a;/q for some
parameters a;, the closed product formula induces an iteration relation for the
summation which can be stated in the following form:

(2.1) Z Fy(ai,ag,...,a,) = Z Gi(ar,ag,...,an).

k=—o00 k=—o00
A Gosper pair (g, hi) is a pair of basic hypergeometric terms such that
gr — hi = Fi(a1,a2,. .., a,),
gk — h’k‘-‘,—l = Gk(a’lv az, ... 7(1”)-

We assume that > po _ Fi(a1,a2,...,a,) and Y oo Gi(ay,a9,...,a,) are
both convergent. We also assume that

k—o0

Note that there are many bilateral summations with the above limit property.

Evidently, once a Gosper pair is derived, the identity (2.1) immediately follows
from the telescoping relation:

o0 o0
(2.3) S (gk—he)= > (gk — his).
k=—o00 k=—o00

We are now ready to describe our approach. Let us take Ramanujan’s ;¢ sum

[10, Appendix I1.29] as an example:

a . _ (qvb/a7azuq/a'z§q)oo
(2.4) 141 [ ) ,q,z] = bafozbjarDn
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where [b/a| < |z| < 1. There are many proofs of this identity, see, for example,
Hahn [11], Jackson [13], Andrews [2] B], Ismail [I2], Andrews and Askey [4], Berndt
[6], and Schlosser [19].

Theorem 2.1. The following is a Gosper pair for Ramanujan’s 111 sum:

azk—i—l

bzt
(az = b) (b;q)i
Step 1. Construct an iteration relation from the closed product form, namely,

the right hand side of (Z4]).
Substituting b to bg in [24]), we get

hy =

a . _ (Q>bQ/a>a27Q/CLZ§(])oo
22) e l bg Z] (b, q/a,2,bq/az;q)0”
Define
(2.6) fla,b,2) = 191 [ Z ;q,Z] -

Comparing the right hand sides of (2Z4) and (231 gives the following iteration
relation (see also []):

(2.7) 1?1 [ ¢ ;q,Z] = 1 _(1 il 1% [ ¢ ;qazl .

b b)(1 —b/az) bq

Notice that both sides of the above identity are convergent.
Let Fy(a,b, z) and Gi(a, b, z) denote the kth terms of the left hand side and the
right hand side summations in (Z7), respectively, that is,

(1-1b/a)

(G;Q)kzk
(1-0)(1—-0b/az)

(b5 @)k
Step 2. Apply the ¢-Gosper algorithm to find a Gosper pair (gx, hx).
It is essential to observe that Fy(a,b,z) — Gr(a,b, z) is a basic hypergeometric
term. In fact, it can be written as

(1_bqk_ 1—b/a> (@ Qe x

(2.8)  Fi(a,b,2) =

and Gi(a,b,z) =

Fk(&,b(],Z)-

1=b/az) (b;q)k+1
Now we may employ the ¢-Gosper algorithm with respect to the equation
(29) Fk(a, b7Z) - Gk(a, b, Z) = hk+1 - hk,

and we find a solution
bz" (a;q)k
(az =) (b;q)r

which also satisfies the limit condition

(2.10) hi =

lim hk = klim hk = 0.

k—o0
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As far as the verification of (27]) is concerned, the existence of a solution hj and
the limit condition ([Z.2]) would guarantee that the identity holds. Now it takes one
more step to compute the Gosper pair:

azf*tl (a;q)k

(az =) (b;q)r

Step 3. Based on the iteration relation and the limit value, one can verify the
summation formula.

From the iteration relation ([2.7)), we may reduce the evaluation of the bilateral
series 111 to the special case

(2.11) gr = hi + Fk(a,b,z) =

(b/a;q)oo

(2.12) fla,b,2) = (b,b/2a;q)s0

f(a,0, 2).
Setting b = ¢ in [212), we get

_ (0,9/269) N~ (G0
Jla.0.2) = (¢/a:q)oo k; (k-

Invoking the relation (III), we see that 1/(q,q)—r = 0 for any positive integer k.
Consequently, the above bilateral sum reduces to a unilateral sum. Exploiting the
g-binomial theorem [I0, Appendix II.3]

(2.13) i (@ 9)k 1 _ (02 0)oo

el CH (2 @)oo

we get the evaluation

(¢/a,2:q)00
Hence the identity ([24]) follows from (ZI2]) and (ZI4).

It should be warned that it is not always the case that there is a solution hy to
the equation (29). If one encounters such a scenario, one still has an alternative to
try another iteration relation, as is done for the 313 sum in Example 2.4}

An Abel pair (Ag, By) can be easily constructed from a Gosper pair (g, hi).
Setting

(2.14) f(a,0,2) =

(215) gk = AkBk and hk = AkBk—la
then we see that
By, gk
2.16 ==,
(2.16) By hg

Without loss of generality, we may assume that By = 1. Iterating (2.I6]) yields an
Abel pair (Ag, By).

For Ramanujan’s 1¢; sum (Z4]), we can compute an Abel pair by using the
q-Gosper algorithm.

Theorem 2.2. The following is an Abel pair for Ramanujan’s 111 sum:
Ak: _ az (a7 q)k 9 F
az —b(b;q)r \a

B (%)
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It is routine to verify that (Ag, By) is indeed an Abel pair for the 11; sum. First
we have

o= () (5)

_(-Ya) (@ (b))
Ar = Ak =0 b)(1 —b/az) <bqu>kk (“> |

Then the iteration relation (27) is deduced from the Abel lemma

o0

az (a; k az az\k—
S (E) G

o0

. saz\k (1-1b/a) (a; ) b\
- ZOO(T) (1-0b)(1—b/az) (bq;;)kk (5)

(2.17)

Next we give some examples for bilateral summations.
Example 2.3. The sum of a well-poised 2t series ([I0], Appendix II.30):
(2.18)
Jibo b ¢ g4 _ (ag/be Q) (ag®/b?, ag® /3, 4%, aq, a/a; %)
aq/b, aq/c o be (aq/bv GQ/C, q/b7 q/C, _G'Q/bc; Q)oo

3

where |ag/be| < 1.

Write the kth term of the left hand side of (2I]) as
(b, c; )k aq*
2.19 Fi(a,bc) = — 20Dk (——) .
(219 MO0 = Taa b aafes i e
Substituting b with b/q in (2I8]), we are led to the iteration relation

- O
200 2 ) = ) (T g a2 PR

k=—oc0 =—00

Let
(1 —aq/be)(1 — ag®/b?)
(1+ aq/be)(1 = q/b)(1 — aq/b)
Implementing the ¢-Gosper algorithm, we obtain a Gosper pair
(b°cq” — ag?)
aq +be)(bg* — q)
by(c — ag")
(ag + be)(bg* — g)
The companion Abel pair is given below:
(b, ;@)1 (b*cq"” — ag®)
(aq/b,b%c/aq; q)r(aq + be)(—q + bgk)’
2 ) k
B, = °¢/ag )k (_%) .
(ag/c;@)r \ be

(2.21) Gr(a,b,c) = Fi(a,b/q,c).

9k = ( Fk(avbac)7

th Fk.(a,b,c).

A =
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Noticing that ([2I8)) is symmetric in b and ¢, we have
Z Fk((l,b,C) = Z Fk(a,b/Q7C/q)
(2.22) k=0 h=—so
o (1 — ag/be)(1 — ag®/be)(1 — ag?/b*)(1 — ag?/c?)
(1+ aq/bc)(1+ aq?/be)(1 — q/b)(1 — q/c)(1 — aq/b)(1 —aq/c)
Finally, we can reach (2I8) by iterating (2.22]) infinitely many times and by
using Jacobi’s triple product identity (L)) as the limit case.

Example 2.4. Bailey’s sum of a well-poised 313 ([10], Appendix I1.31):

(2.23) 313 booe d gL = (q,q/be, q/bd, q/cd; q) oo
q/b, qfe, q/d 7 bed (q/b.q/c.q/d,q/bed; q)oo’

where |q/bed| < 1.

Substituting d with d/q in ([Z23]), one obtains the iteration relation

b, c, d
393 l i 4, i}

(2.24) /b, qfe, q/d " bed

(1 —gq/bd)(1 — g/cd)

¢ q, & d/q q q2
= 3¥3 475
(1 —q/d)(1 — q/bed) a/b, qfe, ¢?/d " bed

We remark that this sum is in fact an example for which the ¢-Gosper algo-
rithm does not succeed for the iteration relation derived from a straightforward
substitution such as d — dq or d — d/q. Instead, using an idea of Paule [16] of
symmetrizing a bilateral summation, we replace k by —k on the left hand side of

223) to get

(2 25) ,(/} b, C, d q2
' g, afe, qrd Phed|

Let Fy(b, c,d) be the average of the kth summands of [223) and (Z25]), namely,

_ (bvcad§q)k 9 k1+qk
(2.26) Flbend) = o Tiran Ged) —7
and let
(2.27) Galb e, dy = L= =a/ed) p oy

(1= q/d)(1 = q/bed)
With regard to Fg (b, ¢,d) — Gg(b, ¢, d), the ¢-Gosper algorithm generates a Gosper
pair:

bdg* ! + cdg® T — bed?q* — ¢ + dg*tt + bedgFt! — bed?¢?F — ¢F 12
(1+¢*)(bed — q)(q — dg*)

9k =
X Fk(ba C, d)a

d(b—q*)(c—q")

M = 9) (g — bed)(1 — dg™ 1)

Fk(b7 C, d)a
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which implies the iteration relation (2:24]). Invoking the symmetric property of the
parameters b, ¢, and d, we have

(2.28)
w% b, e d q} (1— q/be)(1 — ¢%/be) (1 — q/bd) (1 — ¢ /bd)

/b afe, q/d Tbed| T (= q/b)(1— q/c)(1— q/d)(1 — q/bed)

(1 - q/ed)(1 — ¢2/cd) w[b/q, /g, d/q q4].

X 4,
(1= 2/bed)(1— ¢ bed) **° | 2/, /e, q2jd " bed

The above relation enables us to reduce the summation formula (2Z23]) to Jacobi’s
triple product identity.

Example 2.5. A basic bilateral analogue of Dixon’s sum [10, Appendix 11.32]

’ —gaz, b, c, d 'q@
4%4 ) ,de

(2.29) —a®, aq/b, ag/c, aq/d

aq,aq/be,aq/bd,aq/cd, qaz /b, qa? [c, qa? /d, q,qa;q) o
aq/b,aq/c,aq/d, q/b,q/c,q/d,qa?,qa" % qa? [bed; @)oo

:<
(
where |ga? /bed| < 1.

For the above formula, we may consider the substitution d — d/q in ([2:29) which
suggests the iteration relation

1/} _qa%v ba C, d qa%
4YPa 1 14y 7

—az, aq/b, aq/e, aq/d bed
(1 — ag/bd)(1 — ag/cd)(1 — ga? /d)

(2.30) — :
(1 —aq/d)(1 - q/d)(1 - qaz /bed)
_qa,%7 b, c, d/q Za%
X 474 . 14, Tazy
—az, aq/b, aq/c, aq*/d bed
Let
1 b d 3 k
(2.31) Fy(a,b,c,d) = 1(_qa )9, 6y aQ)k qa
(—az,aq/b,aq/c,aq/d;q)x \ bed
and let

(1~ ag/bd)(1 — ag/ed)(1 ~ ga? /d)
(1 - aq/d)(1 —q/d)(1 — qa? /bed)
By computation, we obtain a Gosper pair

<_abqu+l — acdg*™! + q2a% + a?¢ht? — bcda%q’Hl — da%qu
9k =

(2.32) Gi(a,b,c,d) = Fr(a,b,c,d/q).

(dg* — q)(1 + azg*)(bed — aZq)
bed?q* + bcd2a%q2k

(dg* — q)(1 + a2 g*)(bed — azq)
d(ag® — ¢)(ag” = b)

hk = T 3 Fk(a,b,qd).
(dg*=" = 1)(1 + a2¢*)(bed — ga2)

) Fk(avba c, d)v




1066 VINCENT Y. B. CHEN, WILLIAM Y. C. CHEN, AND NANCY S. S. GU

So the iteration relation (Z30) holds. From the symmetric property of the param-
eters b, ¢, and d, we have

(2.33)
fqa%, b, c, d qa%
494 L 14—
l —az, aq/b, aq/c, aq/d de]
_ (I—aq/bc)(1 — aq?/bc)(1 — aq/bd)(1 — aq?/bd)(1 — aq/cd)(1 — aq?/cd)
 (1—ag/b)(1 - ag/c)(1 — ag/d)(1 — q/b)(1 — q/c)(1 — q/d)(1 — qa? /bed)
L (1—qaz/b)(1 — ga?/c)(1 — ga? /d)
(1 — q2a? /bed)(1 — q3a? /bed)
—qaz, blg, cfa, dfq @]
—az, ag®/b, aq®/c, aq®/d " hed |
By iteration, it follows that

><41/J4[

d] [qaév ba C, d qagl
44 1 4y 7
(2.34) —az, agq/b, agq/c, aq/d bed
_ (aq/be, aq/bd, aq/cd, qoz%/b7 qa%/c, qa%/d; q)OOH(a)
(agq/b, aq/c,aq/d,q/b,q/c,q/d, qa? [bed; q)oo ’
where
o~ (—aa%; @)k 5(5) s\ k
(2.35) Ha) = Y 1Dk () (L gat)"
k:z_:oo (_CLE?q)k ( )

Taking b = —a? and ¢,d — oo in @34) and by Jacobi’s triple product identity
(T3, it can be verified that
(2.36) Hia) = (qvlaq,q{oi; oo
(qaz,qa™2;q)c

which leads to (2229]).
Example 2.6. Bailey’s very well-poised gig-series identity (L2).

Let us denote the kth term of (L)) by
(qaéqua%,bv ¢, dae;Q)k < qa2 )k

2.37 Qr(a;b,c,d,e) = — .
(237 H ) (az,—az,aq/b,aq/c,aq/d,aq/e;q), \bede

Set Fj, = Q(a;b,¢,d,e) and
a(l —e)(1 — ag)(bc — ag)(bd — ag)(cd — aq)
(1 —a)(b—aq)(c— aq)(d — aq)(bede — aq)
By computation, we find the following Gosper pair:
a(bedg” — aq)(1 — eq")

Ik = (bede — a2q)(1 — aq?*)
(e — aq®)(bed — aq*+1)
(bede — a2q)(ag?s — 1)
We observe that the Abel pair derived from the above Gosper pair coincides with
the Abel pair given by Chu [9].

(2.38) G = Q(ag;b,c,d, eq) x

Qk (a; bv &) da 6),

hi = Qi(a;b,c,d,e).
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Next we give another Gosper pair which leads to a different iteration relation of
the g1 series by setting e — e/q in (LL2), that is,

(1 —ag/be)(1 — ag/ce)(1 — ag/de)

(1—ag/e)(1—q/e)(1 — a*q/bede)’
We will see that the above iteration has the advantage that it directly points to

the identity (L8) by taking into account the symmetries in b,¢,d, and e. On the

other hand, the Gosper pair does not have a simple expression in this case.
Set Fy, = Qg(a;b, ¢, d,e) and

(2.39)  Q(a;b,c,d,e) =Q(a;b,c,d,e/q) x

(1= ag/be)(1 — ag/ce)(1 — ag/de)
(1 —ag/e)(1—q/e)(1 — a’q/bede)’
From the above iteration relation ([2:39), we obtain the Gosper pair

<a26qk+1 T a3 — a2¢? — a2beq®* ! — aZceq® ! — a2deq® ! — bede®qF

(2.40) G = Qi (a3 b, c,d,e/q) x

I = (bede — qa?)(eq® — q)(ag?s — 1)
abceg® ! +abdeq® ! +acdegt ! 4+ abede® g% — abedeg? !
Qk(aa b7 c, da 6),
(bede — qa?)(eq” — q)(ag®* — 1)
P N A R
p, = Aeb —aq”)(c — aq")(d — aq”) Qulasb, e, d,e).

(bede — qa?)(1 — ag?*)(eq* — q)
Since the parameters b, ¢,d, and e are symmetric in (.2, we obtain
(2.41)
Qas b, ¢,d,e) = Qa; b/q,¢/q,d/q,¢/q)
(1 —aq/bc)(1 — aq?/bec)(1 — aq/bd)(1 — aq?/bd)
(1 —ag/b)(1 —ag/c)(1 — aq/d)(1 — aq/e)
(1 — ag/be)(1 — ag®/be)(1 — ag/cd)(1 — aq?/cd)
(1—q/b)(1 —q/c)(1 —q/d)(1—q/e)
" (1 —aq/ce)(1 — aq®/ce)(1 — aq/de)(1 — aq?/de)

(1 — a2q/bede)(1 — a2q? /bede) (1 — a?q? /bede) (1 — a2q* /bede)

Again, the limit value can be given by Jacobi’s triple product identity, so that we

arrive at (L2) in view of (Z4I]).

The following is Shukla’s very-well-poised gig summation [2I]. Note that the
relation we aim to verify is not an iteration relation. Instead, we establish the
identity based on the observation that the product formula contains the factors in
Bailey’s g1g identity.

Example 2.7. Shukla’s very-well-poised gig summation formula:
(2.42)
qaz, —qa?, b, c, d, e, 7, aq®/f a2
88 . . 4
[ az, —az, QQ/bv aq/c, aq/d, O“Q/ea QQ/f7 f/q bede
_ <1 (I =bc/a)(1 —bd/a)(1 - be/a) ) o (1= f/bg)(1 —bf/aq)
(1—bq/f)(1 —bf/aq)(1 — bede/a?) (L= f/aq)(1 = f/a)
(¢;aq, q/a,aq/bc, aq/bd, aq/be, aq/cd, aq/ce, aq/de; q)
(ag/b,aq/c,aq/d,aq/e,q/b,q/c,q/d,q/e, a’q/bede; q)oo”
where |a?/bede| < 1.
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Observe that the right hand side of (2:42) can be rewritten as
(- ba)(—bdfa)(—beja) \ (L f/)(1~bffaq)
(1 TP oot o) = e b ol

where Q(a;b, ¢, d, e) denotes the i series as given by (LH).
Let F} denote the kth term of the left hand side of (2.42]), namely,

(2.43) F = (ga?, —qa?,b,¢,d.e, f,aq®/f; )i ( a? )k
(a2,—a2,aq/b,aq/c,aq/d, ag/e,aq/ [, f/q; a)x \bede
and let
_ . (1 =bc/a)(1 = bd/a)(1 - be/a) )
(2.44) G = ulabeadi ) x (1 (1—bg/f)(1 —bf/aq)(1 — bede/a?)

o 1= f/ba)(1 —bf/aq)

(1= flaq)(X = f/q)
where Qi (a;b,c,d, e) is the kth term of the gi)s series Q(a;b, ¢, d,e), as given by
@37). With the aid of the ¢-Gosper algorithm for Fj, — Gy, we find

f(b—ag®)(c — ag®)(d — ag®)(e — ag®)
"= f — @)(f — aq)(bede — a?)(1 — ag®)

Thus ([Z42]) can be deduced from the telescoping relation (23) and the gtbg formula
@2).

We now turn to two identities due to Schlosser [20] derived by matrix inverse .

(2.45) i =

Qx(a;b,c,d,e).

Example 2.8. Let a, b, ¢, d, e, and u be indeterminates. Then
(2.46)

i 1—ag®  (b,c;q)k (dq, eq; @)k (a2 >k
L= (1—a) (ag/b,aq/c;q)k (aq/d,aq/e; q)x \ bede

- (I—de/a)(1 - ug®) (1 — a?q* /bcu)
(- s )
(qa aq, q/a, QQ/bcv QQ/bda G'Q/be> aq/0d7 aq/ce, a/de; Q)oo (1 — a/cu)(l — bu/a’)

(a/b,aq/b,q/c,aq/c,1/d, aq/d,1/e, aq/e,aq/bcde; q) oo (b—ajc) ’
provided |a?/bede| < 1.

As in the preceding example, the right hand side of ([2:46) contains the product
of the g1bg sum. We may proceed in the same manner. Write the kth term of the
left hand side of (2.48) as F}, that is,

B, = L—ag® (b (dg, eq; )k ( a? )k
(2.47) (1 —a) (agq/b,aq/c;q)x (aq/d,aq/e; q)x \ bede
" (1 ~ (I—de/a)(1 - ug®) (1 — aqu/bcu))
(1 —a/be)(1 —dg*)(1 —eq*) )’
and let
(2.48) G, = (I —a/eu)(1—bu/a)(1—a/de) Qs b, d, ).

(b—a/c)(1=1/d)(1 - 1/e)



THE ABEL LEMMA AND THE ¢-GOSPER ALGORITHM 1069

where (), is the same notation as in the preceding example. Employing the g-Gosper
algorithm with respect to Fj, — G, we obtain

(b — ag®)(c — ag")(d — ag")(e — ag")

(2.49) hy = ag®(1—d)(1 — e)(a — be)(1 — ag?F)

Qi (a;b,c,d,e).

Then we get the desired identity.

The next example is a gig summation formula which can be verified by using
our method. It turns out that the limit identity is a special case of Bailey’s ¢
sum.

Example 2.9. Let a, b, ¢, and d be indeterminates. Let j be an arbitrary integer
and N a nonnegative integer. Then

qaz, —qaz, b, ¢, dg’, aqg /e, aqg**N /b, aq N /d
s az, —az, aq/b, aq/c, aq'™/d, cq'ti, bg~ N, dg'+N b
_ (ag/bec,cq/b,dg,dg/a;q)n (cd/a,bd/a,cq,cq/a,dg" ™ /b,q" "5 q);
~ (cdq/a,dq/c,q/b,aq/b;q) N (q,cq/b,d/a,d,becq=™ /a,cdg*+N /a; q);

(4,4, aq,q/a, cdg/a, ag/cd, cq/d, dg/c; q)o
(cq,q/c,dq,q/d, cq/a,aq/c,dq/a,aq/d;q)

Let A(a, b, c,d) denote the above g1)g summation, and let A (a, b, ¢,d) be the kth
term of this sum, namely,

(qaz,—qa2,b,c,dg’,ag7 /c,aq"*N /b aqg™™ /d; @)k,

(2.51) Ag(a,b,c,d) = — . . _
(az,—az,aq/b,aq/c,aq =7 /d, cq*+3,bg=N , dg*+N; q)

Substituting the parameter b with b/q leads to an iteration relation:

(2.52)
 Aabe oy L= aa/be) (L~ ca/b)(L — g /b)(L — agN T b)
A(a,b,¢,d) = A(a,b/q,c,d) (1—q/b)(1 — ag/b)(1 — agV 1 /be)(1 — cqN+1/b)
(1 —bdg’ " /a)(1 — dg™N*1 /b)(1 — beg™ N1 Ja) (1 — cq? 1 /D)
(1—bd/aq)(1 — cq/b)(1 — dgN Tt /b)(1 — beg N+i—1/a)

Let Fy(a,b,c,d) = Ak(a,b,c,d), and let

_ (1 — ag/be)(1 — cg/b)(1 — ¢¥ 1 /b)(1 — ag™*'/b)
Civla by, d) = Aela, b/, e d) X 3= fy A aa b} (1 — ag 1 /be) (1 — eq™ 1)
(1 —bdg’~"/a)(1 — dg™*!/b)(1 — beg" " /a) (1 — cg’*' /b)
(1 = bd/aq)(1 — cq/b)(1 — dgN+I+1/b)(1 — beq=N*i~1/a) -

By the g-Gosper algorithm for Fj, — G, we get

b(1 — dgV ) (bg" — ¥ H)(1 = cg" )
¢ (beg? — aq™+1) (b — dgN+i+1) (aq — bd)
(dg’ — ag®)(c — ag®)(b* — agV+?)

(b—cgN*+)(1 — ag?*)(1 — bgk—1)’

hy = Ak(a, b, C, d) X
(2.53)
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The limit identity can be verified as follows:
; -M
A/}linooA(a’ bg— ", ¢, d)
= blirn A(a,b, ¢, d)

qaév _qa% ) a’q_N/da ¢, dq]7 aq_j/c
_ ¢ .q qNJrl
6 %6 1 1 14N 1 14 s 4
az, —az, dq ’ aq/c, aq ]/da cq J
250 (g.aq,q/a,dg" " fe, NI edg Nt fa,ag' fed, ¢ cq/d; g)oo

~ (dgNt1ag/c,aq' T /d, cq? L, dgNt Ja, q/c, ¢V d, cqi TV [a, gV @) s
_ _(dg,dg/a;q)n (cd/a,cq,cq/a,qa"";q); (@)j
(cdg/a,dgq/c;q)n (q,d/a,d,cdg* N /a;q); \ ¢
(¢,9,aq,q/a,cdq/a,aq/cd, cq/d,dq/c; q) s
(cq,q/c,dq,q/d,cq/a,aq/c,dq/a,aq/d;q)

Thus ([Z350) can be deduced from (252) and (2.354]).

3. THE GOSPER PAIRS FOR UNILATERAL SUMMATIONS

The idea of Gosper pairs can be adapted to unilateral summation formulas with
a slight modification. We also begin with an iteration relation suggested by a closed
product formula which can be stated in the following form:

(3.1) ZFk(al,ag,...,an):ZGk(al,ag,...,an).
k=0 k=0

For the same reason as in the bilateral case, we see that
Fy(ai,ag,...,a,) — Gilar,ag, ... a,)

is a basic hypergeometric term so that we can resort to the g-Gosper algorithm to
solve the following equation:

(32) Fk(al,ag,...7an)—Gk(al,ag,...7an):hk+1—hk, kZO

We assume that > - Fr(a1,a2,...,a,) and Y ro Gi(a1,as,...,a,) are con-
vergent. Moreover, we assume that the following limit condition holds:

(3.3) lim o = ho.
A Gosper pair (gg, hi) is defined by the equations
gk — hi. = Fi(a1, a2, ..., an),
gk — hir1 = Grlag, az,. .. an).

Therefore, the identity (Bl can be demonstrated by the Gosper pair (gg, hi) be-
cause of the telescoping relation

(3.4) Z gk — hk Z gk — hk+1
k=0 k=0

and the limit condition klim hy = ho.
—00
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Given a Gosper pair it is easy to compute the corresponding Abel pair which
implies iteration relation ([B.]) by the following unilateral form of the Abel lemma:

(3.5) > Ap(Br — Bro1) = Y Br(Ar — Agia).

k=0 k=0

Note that we also need the limit condition

khm AkBk—l = A()B_l.

As will be seen, we will encounter only the case B_; = 0 due to the fact 1/(¢;¢)—1 =
0 by (D).

The above approach is suitable for many classical unilateral summation formulas
including the ¢-Gauss sum [10, Appendix I1.8], the ¢-Kummer (Bailey-Daum) sum
[10, Appendix I1.9], the ¢-Dixon sum [10, Appendix I1.13], a g-analogue of Watson’s
3F5 sum [10, Appendix I1.16], and a g-analogue of Whipple’s 3 F; sum [10, Appendix
I1.18], just to name a few. Here we give only two examples to demonstrate this
technique.

Example 3.1. The ¢g-Gauss sum

a b el (c/ac/bq)x
(3.6) 201 [ S E] = (e c/abig)e
where |c/ab| < 1.
Set
a, b Cc
. b, ¢) = L
(3 7) f(CL, 76) 2¢1 [ c y 4, ab]
Write the kth term of (B1) as
(a,b;0)k (c\F
. F = —— | — .
35 Mot e) = e <ab)

The substitution ¢ — ¢q in ([B.6]) implies
(1 —¢/a)(1 = ¢/b)

(3.9) f(a,b,c) = A= —c/ab) fla, b, cq).
Let
(3.10) G(abe) = L=DA =) b p ey,

(1 —-¢)(1—c/ab)

Applying the ¢-Gosper algorithm to Fj(a,b, c) — Gr(a,b, c), we arrive at a Gosper
pair
¢ — abg” F,
c—ab
ab(1 — ¢*)
c—ab

gk = (avba C)v

hy, = Fi(a,b,c).
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So we have an Abel pair
1 —abg*/c) (a,b;q)
(1 —ab/c) (c,abg/c;q)s’
(abg/c; @)k (¢ \*
By = "LUEDk (N
T @ (ab)
We see that identity ([B:6) is true because of (B3] and the limit value f(a,b,0) = 1.

A =

Example 3.2. The sum of Rogers’ nonterminating very-well-poised g5 series [10,
Appendix 11.20]:

a, qa%7 _qaév b7 c, d aq
605 i N v
az, —az, GQ/ba GJQ/Ca aq/d ¢
_ (aq,aq/bc,aq/bd, aq/cd; q) o
(ag/b,aq/c,aq/d,aq/bed; q) o0’

where |ag/bed| < 1.

(3.11)

Let us write

a, qa’%a _qa%7 ba c, d a
(312) f(a, bv &) d) = 6¢5 1 1 34, ﬁ .
az, —az, aq/b, aq/c, aq/d C
Denote the kth term of (B.12) by
3. _gas . k
(313) Fk(a,b, C7d) _ (1CL,(]G,1, qa vba C, d7 q)k (ﬂ) )
(Qaa§7 —CL§7(IQ/b7 O“Q/Cv G’Q/da Q)k‘ bed
The substitution a — ag in BII) leads to the iteration relation
(1 —ag)(1 —ag/cd)(1 — ag/bc)(1 — aq/bd)

3.14 a,b,c,d) = aq,b,c,d).
(14 flaberd) = T T = afe) (T = ag (1 = agfbed)? 00D
Let
(3.15) Galab,c,d) = L= 00U =ag/ed)(l = ag/be)(1 = ag/bd) oy

(1 —aq/b)(1 - aq/c)(1 — aq/d)(1 — aq/bcd)
Then we get a Gosper pair
(1 — ag")(¢" — ag/bed)
97 (1~ ag?)(1 - ag/bed)
1—¢")(1 - a?¢**! /bed)
(1 —ag®*)(1 — aq/bed)
The corresponding Abel pair is as follows:
(bedq® — aq) (b,c,d,a’q?/bed; q) .
(bed — aq) (aq/b,aq/c,aq/d,bed/a; q)r’
B, — _ag,bed/a; )i (ﬂ)k
(¢, a?q?/bed; q)i \bed

Therefore, the identity (3I1)) is a consequence of the unilateral Abel lemma (3.3)
and the limit value f(0,b,¢,d) = 1.

Fk(avba c, d)v

hy =

Fi(a,b,c,d).

Ay =
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