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THE GENERALIZED TRIANGULAR DECOMPOSITION

YT JIANG, WILLIAM W. HAGER, AND JIAN LI

ABSTRACT. Given a complex matrix H, we consider the decomposition H =
QRP*, where R is upper triangular and Q and P have orthonormal columns.
Special instances of this decomposition include the singular value decompo-
sition (SVD) and the Schur decomposition where R is an upper triangular
matrix with the eigenvalues of H on the diagonal. We show that any diag-
onal for R can be achieved that satisfies Weyl’s multiplicative majorization
conditions:
k k K K
H‘T‘i‘gndi, 1<k<K, H|7‘Z’|=HJZ‘,
i=1 i=1 i=1 i=1

where K is the rank of H, o; is the i-th largest singular value of H, and r; is
the i-th largest (in magnitude) diagonal element of R. Given a vector r which
satisfies Weyl’s conditions, we call the decomposition H = QRP*, where R is
upper triangular with prescribed diagonal r, the generalized triangular decom-
position (GTD). A direct (nonrecursive) algorithm is developed for computing
the GTD. This algorithm starts with the SVD and applies a series of permu-
tations and Givens rotations to obtain the GTD. The numerical stability of
the GTD update step is established. The GTD can be used to optimize the
power utilization of a communication channel, while taking into account qual-
ity of service requirements for subchannels. Another application of the GTD
is to inverse eigenvalue problems where the goal is to construct matrices with
prescribed eigenvalues and singular values.

1. INTRODUCTION

Given a rank K matrix H € C™*", we consider the decomposition H = QRP*
where R is a K by K upper triangular matrix, Q and P have orthonormal columns,
and * denotes conjugate transpose. Special instances of this decomposition are, in
chronological order:

(a) The singular value decomposition (SVD) [2], 19
H-VEIW*,

where ¥ is a diagonal matrix containing the singular values on the diagonal.
(b) The Schur decomposition [22]

H=QUQ",
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where U is an upper triangular matrix with the eigenvalues of H on the
diagonal.

(¢) The QR factorization [5), [14]
H = QR,

where R is upper triangular and Q is unitary (here P =1T).
(d) The complete orthogonal decomposition [Tl [10]

H = Q:R2Qj,

where H* = QR is the QR factorization of H* and R} = Q2R3 is the
QR factorization of RJ.
(e) The geometric mean decomposition (GMD) [15] 177, 20] 27]

H = QRP*,

where R is upper triangular and the diagonal elements are the geometric
mean of the positive singular values.

In this paper, we consider the general class of decompositions H = QRP™, where
the diagonal r of R is prescribed. We show that such a decomposition exists if r
is “multiplicatively majorized” by the singular values of H. More precisely, given
two vectors a,b € R", we write a < b if

k k
H lag| < H |bry| whenever 1 <k <n,
i=1 i=1

where “[i]” denotes the component of the vector with i-th largest magnitude. If
a < b and

n n

[Tl =] i,

i=1 i=1
we write a < b. We show that for any vector r € CX, the decomposition
H = QRP” can be achieved if r < o, where o is the vector consisting of the
positive singular values of H. We call this decomposition the generalized triangular
decomposition (GTD) based on r.

Since singular values are invariant under unitary transformations, it follows that
H and R have the same singular values. Since R is upper triangular, its eigenvalues
are the diagonal elements r;, 1 < ¢ < K. By a theorem [24] of Weyl, r < 0. An
inverse result is given by Horn [I2]: For any r for which r < o, there exists an upper
triangular matrix R with diagonal elements r; and singular values o;, 1 <1 < K.
As a consequence of Horn’s result, we show in Section 2l that for any H € C™*"™ of
rank K and for any r € C¥ with r < o, where o is the vector of positive singular
values for H, there exist matrices Q and P with orthonormal columns such that
H = QRP*, where R € CK*K is upper triangular with diagonal equal to r.

In Section [B] we give an algorithm for evaluating the GTD. Similar to our algo-
rithm for the GMD, we start with the singular value decomposition, and apply a
series of permutations and Givens rotations to obtain H = QRP™. This is a direct
method, in contrast to Chu’s [4] recursive procedure for constructing matrices with
prescribed eigenvalues and singular values based on Horn’s divide and conquer proof
of the sufficiency of Weyl’s product inequalities. In Section [ we give another view
of the GTD update by expressing it in terms of unitary transformations applied
to the original matrix as opposed to Givens rotations applied to the singular value
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decomposition. Section [{] focuses on the numerical stability of the GTD update for
inexact arithmetic. Since the rotations in the GTD update are expressed in terms
of a ratio that reduces to zero over zero when two singular values coalesce, there
is a potential for instability. We show that the GTD update is stable, even when
singular values coalesce.

The GMD, where the diagonal of R is the geometric mean of the singular values
of H, is a solution of the following maximin problem, which arises when one tries to
optimize the data throughput of a multiple-input multiple-output (MIMO) system

[15, 7, 27]:
max min {r;:1<i< K}
QP

(1.1) subject to QRP*=H, Q*Q=1 P*P =1,
r;; =0 for all i > j, R € REXK,

Here H is the “channel matrix,” a matrix which describes the communication net-
work. The matrices P and Q correspond to filters applied to the transmitted and
received signals. The maximin problem () arises when we try to optimize the
worst possible error rate. The maximum data throughput is achieved when the fil-
ters P and Q are chosen to make the smallest r;; as large as possible. The GMD is
a special case of the GTD since the vector r whose entries equal the geometric mean
of the positive singular values of H is multiplicatively majorized by the singular
values of H.

In [I7, 18] [26, 27], it is shown that the equal diagonal solution to () significantly
improves the overall bit error rate performance while maximizing channel capacity
and reducing the encoding/decoding complexity. But when different subchannels
have different priorities and different quality of service (QoS) requirements, the
objective function may be different from that in (L)), and the optimal R may not
have all diagonal elements equal. For example, when transmitting both audio and
video data in a communication network, the video transmission may require greater
accuracy than the audio transmission. In this case, smaller diagonal elements may
be allowed for the audio (low accuracy) subchannels compared to the video (high
accuracy) subchannels.

A specific application of the GTD to communication with QoS constraints is
given in [I6], where we study the optimization problem

ming tr (FF*)

(1.2) subject to < Iilf‘ ) = QR

diag(R) = {vT+pi}i;.
Here “tr” denotes the trace, F € C"*! is the precoder, Iy, is the L by L identity
matrix, the p;, 1 < ¢ < L, are related to the specified subchannel capacities, and

diag(R) denotes the vector formed by the diagonal of R, the upper triangular factor
in the QR decomposition of the “augmented matrix”

HF
o (M),



1040 YI JIANG, WILLIAM W. HAGER, AND JIAN LI

The cost function tr (FF*) corresponds to the power utilization of the precoder.
The optimization problem amounts to finding the precoder which uses minimum
power, while providing the specified subchannel capacities.

In [I6] we obtain an explicit formula for the solution of (I2)) using the GTD.
In related work [8], Guess considers the QoS problem for a code-division multiple-
access (CDMA) system. His problem reduces to

ming tr (FF*)
subject to I+ F*F =R*R

diag(R) = {VI+pi}izy,

which is a special case of (L2) corresponding to H = I. Guess gives an algorithm
for solving this special case, as well as a recursive procedure for solving the more
general problem ([2). As explained in [10], there are several technical advantages
to our GTD-based solution. One important advantage is that the GTD can be
computed very efficiently by a direct algorithm (see the Matlab code posted on
William Hager’s web site). Another advantage is that our algorithm yields the
matrix Q, which is useful for communication applications. In contrast, Guess’
algorithm does not construct Q explicitly.

Another application of the GTD is to the construction of matrices that possess
a prescribed set of eigenvalues and singular values. As noted by Chu in [4], “Such
a construction might be useful in designing matrices with desired spectral speci-
fications. Many important properties, such as the conditioning of a matrix, are
determined by eigenvalues or singular values.” See [I1l Chapter 28] for a “gallery
of test matrices.” In [4] Horn’s proof of Weyl’s product inequalities is developed
into a recursive procedure SVD_EIG for generating a matrix with prescribed singular
values and eigenvalues. In contrast, our algorithm for the GTD is a direct method
based on a series of Givens rotations and permutations. Given the singular values
o and the eigenvalues A, with A < o, the GTD generates QRP* where X lies on
the diagonal of R and the singular values of R are o. Comparisons with Chu’s
recursive algorithm are given in Section [fl Note that Chu’s routine SVD_EIG does
not generate an upper triangular matrix; hence, it could not be used to obtain the
GTD.

2. EXISTENCE OF GTD
The following result is due to Weyl [24] (also see [13, p. 171]):
Theorem 2.1. If A € C"*" with eigenvalues X and singular values o, then A < o .
The following result is due to Horn [12] (also see [I3, p. 220]):

Theorem 2.2. If r € C" and o € R™ with r < o, then there exists an upper
triangular matriz R € C"*"™ with singular values o;, 1 < i < n, and with v on the
diagonal of R.

We now combine Theorems 2.1l and to obtain:

Theorem 2.3. Let H € C™*" have rank K with singular values o1 > o9 > ... >
ox > 0. There exists an upper triangular matriz R € CEXE and matrices Q and
P with orthonormal columns such that H = QRP* if and only if r < o.
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Proof. If H = QRP”, then the eigenvalues of R are its diagonal elements and the
singular values of R coincide with those of H. By Theorem 2] r < o. Conversely,
suppose that r < o. Let H = VXW™* be the singular value decomposition, where
¥ € REXK By Theorem 2] there exists an upper triangular matrix R € CK*K
with the r; on the diagonal and with singular values o;, 1 < i < K. Let R =
VoXW be the singular value decomposition of R. Substituting ¥ = VGRW| in
the singular value decomposition for H, we have

H = (VV))R(WW3)".
In other words, H = QRP" where Q = VV and P = WWy{,. O

3. THE GTD ALGORITHM

Given a matrix H € C™*" with rank K and with singular values o1 > o9 >
...> o0k >0, and given a vector r € CX such that r < o, we now give an algorithm
for computing the decomposition H = QRP”*, where P and Q have orthonormal
columns and R is upper triangular with r on the diagonal. This algorithm for the
GTD essentially yields a constructive proof of Theorem 2.2

Let VEW?* be the singular value decomposition of H, where ¥ is a K by K
diagonal matrix with the diagonal containing the positive singular values. We let
R € CEXE denote an upper triangular matrix with the following properties:

(a) TZ(jL) =0 when 4 > j or j >4 > L. In other words, the trailing principal
submatrix of R, starting at row L and column L, is diagonal.

(b) If r&) denotes the diagonal of R(™), then the first I — 1 elements of r and
rX) are equal. In other words, the leading diagonal elements of R(*) match
the prescribed leading elements of the vector r.

(¢) rp.g = réL:}(, where ry.x denotes the subvector of r consisting of compo-
nents L through K. In other words, the trailing diagonal elements of R (%)

multiplicatively majorize the trailing elements of the prescribed vector r.

Initially, we set R() = X. Clearly, (a)(c) hold for L = 1. Proceeding
by induction, suppose we have generated upper triangular matrices R\, L =
1,2,...,k, satisfying (a)—(c), and unitary matrices Qr, and P, such that RZHD =
QER(L)PL for 1 < L < k. We now show how to construct unitary matrices Qg
and Py, such that R*+Y) = Qi R® Py, where R satisfies (a)-(c) for L = k+1.

Let p and ¢ be defined as follows:

(3.1) p = arg min{|r{”|: k <i <K, [r{] > |rl},

(3.2) ¢ = arg max{|r?]:k<i <K 07| < |ril, i # ),

where rgk) is the i-th element of r*). Since ry.x < r,(f}(, there exists p and ¢
satisfying (BI) and (32). Let IT be the matrix corresponding to the symmetric
permutation TI*R®TI which moves the diagonal elements rl()’;) and ré’;) to the k-th
and (k + 1)-st diagonal positions respectively. Let d; = 7"1(,];,) and dy = 7’,(1];) denote
the new diagonal elements at locations k and k + 1 associated with the permuted
matrix IT*R(®TI.

Next, we construct unitary matrices G; and Gy by modifying the elements in
the identity matrix that lie at the intersection of rows k and k + 1 and columns
k and k + 1. We multiply the permuted matrix IT*R"1II on the left by G35 and
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Column &

X X X X X X X X X X X X
X X X X X X X X X X
””” 0/0 0 X X 0 0

Row k !
X000 X000
X 0 X 0
X X

R ——— R PG =g
FIGURE 3.1. The operation displayed in (83)

on the right by G;. These multiplications will change the elements in the 2 by
2 submatrix at the intersection of rows k and k + 1 with columns k£ and k + 1.
Our choice for the elements of G; and Gs is shown below, where we focus on the
relevant 2 by 2 submatrices of G5, II*R®TI, and G:

e oy 8o 01 0 c —s _ Ty T
(3.3) Irel® | —sdy ey 0 02 s ¢ 0 vy |’
(G3) (IFRWI)  (Gy) (RH1)
If |61] = |02] = |rk|, we take ¢ = 1 and s = 0; if |§1] # |d2], we take

[ Ire]* — 162]? 2
(34) Cc = m and s = 1-— Cz.

In either case,

o 51527'k

592 — 1612
T = e (el ll‘ )" and = 5 -
x| |7k

Figure B depicts the transformation from IT*R®II to GIT*RMIIG,. The
dashed box is the 2 by 2 submatrix displayed in (833)). Notice that ¢ and s, defined
in (B4, are real scalars chosen so that

(3.6) A+s2=1 and 62|(51|2 + 82|52|2 = \Tk|2-

With these identities, the validity of (B3] follows by direct computation. By the
choice of p and ¢, we have

(3.7) 02| < |re] < [0

(3.5)

If |61] # |92], it follows from (B7) that ¢ and s are real nonnegative scalars. It can
be checked that the 2 by 2 matrices in (B3] associated with G; and GJ are both
unitary. Consequently, both G; and G are unitary. We define

REH) — (IIG,)*RF(IIG,) = Q. RM Py,
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where Qi = IIG, and P;, = IIG,. By [&3) and Figure B1, R(**Y has properties
(a) and (b) for L = k + 1. Now consider property (c).

We write a ~ b if a and b are equal after a suitable reordering of the components.
Let a, b, at, and b™ be vectors whose components are ordered in decreasing
magnitude, and which satisfy

k k+1
(3.8) a~TLE, b~ r,(a%(, a® ~rpi1.x, and bt~ I'Ec+1:%<-

Thus a; is the i-th largest (in magnitude) component of ri.. By the induction
hypothesis, we have a < b. To establish (c), we need to show that at < bT. Let
the index s be chosen so that as; = 7, and let the index t be chosen so that

(3.9) |be] = |ri| = [begal-

By the definition of p and ¢, rg;,) = b; and 7“((,];) = by11. As seen in B8], at is
obtained from a by deleting as = r,. The vector r*t1) is obtained from r*) by a
unitary transformation that changes the value of two elements. In particular, b™
is obtained from b by replacing the adjacent pair by and b;y1 by

_ bibi 17
|re|?
By B9) [b¢] > [y| > [bs41]. Consequently,
(3.10) b =y.

We partition the proof of (c) into 2 cases.
Case 1: s <t. Since a < a; for alli, a < b, and b; = bj for 1 <i < t, we have

1
(3.11) al, ) <an 1 <bi 1 =bf, .

For j >t > s, it follows from the induction hypothesis and the connection between
a and a® that

Jj—1 j—1 J J
(3.12) rel [T 1a 1 = las| TT a1 = T lail < T T 10sl.
i=1 i=1 i=1 i=1
Since G; and Gg are unitary, the determinant of (B3] gives
(3.13) 161621 = P 7] = bubysa] = [yl = reb? |
where the last equality in (3.I3) comes from ([BI0). Hence, for j > ¢, it follows that

{11 = e (i) ( 111

i=t+2
t—1 j—1 j—1
(3.14) = |rellbf| (Hb?> ( I1 Ib;*|> = [ral TT 1671,
i=1 i=t+1 i=1

Combining (311, (B12), and (3I4)), we have at < b™.
Case 2: s > t. As before, (BI1) holds. For t < j < s, we have

J J J Jj—1
[Tlai 1 =11 lail < TT10il = Il TT 1051,
i=1 i=1 i=1 i=1
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where the first equality comes from the relation j < s, the middle inequality is the
induction hypothesis, and the last equality is ([B.I4]). Rearranging this gives

j—1 j—1
(3.15) (M> [T a1 < T 1oi -
el /) 35 i=1
Since |a;|/|7x] = |aj|/|as| > 1 when j < s, we deduce from (B.13]) that
afj 1 = bl j—1

when j < s. This also holds for j > s due to (312)) and (3I4]). This completes the
proof of (c).

Hence, there exists an upper triangular matrix R, with ry.x_; occupying the
first K — 1 diagonal elements, and unitary matrices Q; and P;, i =1,2,..., K — 1,
such that

(3.16) R5) = (Q;_,...Q5Q))Z(P1P;... Pi_y).

Equating determinants in ([BI0) and utilizing the identity rl(k) =r; forl <i<
K — 1, we have

Hﬂm|“K<Hm0ﬁmﬁm,

where the last equality is due to the assumption r < o. It follows that \r X% )| = |rk|.
Let C be the dlagonal matrix obtained by replacing the (K, K) element of the

identity matrix by rK )/rK The matrix C is unitary since \rk|/\r(K)| = 1. The
matrix
(3.17) R = C*'RX)

has diagonal equal to r due to the choice of C.
Combining [B.I6]) and (BI7) with the singular value decomposition H = VEIW*
gives
H=VQ:Q:...Qt_1CRP;_,...P;PIW".
Hence, we have obtained the GTD with

K—1 K—1
Q:V<H Qi>C and P:W<H PZ).

i=1 i=1

Finally, note that if r is real, then G; and Gy are real, which implies R is real.
We summarize the steps of the GTD algorithm as follows. To make it easier to

distinguish between the elements of the matrix R and the elements of the given
diagonal vector r, we use R;; to denote the (i, 7) element of R and 7; to denote the
i-th element of r.

1. Let H = VXW* be the singular value decomposition of H, and suppose
we are given r € CX with r < o. Initialize Q = V, P = W, R = X, and
k=1

2. Let p and ¢ be defined as follows:

p = arg min{|R;|:k <i< K, [Ril > |ril},
1
q = arg m?X{\RM tk <i <K, |Ry| <|ril, i # p}.



THE GENERALIZED TRIANGULAR DECOMPOSITION 1045

In R, P, and Q, perform the following exchanges:

(Riks Riq1,k+1 (Rpps Ryq),

) >

(Rig—1,5 Rik—1641) < (Rig—1,p, Rik—1,4):

P, Poyr1) < (Pp Py,
(Quk, Qurv1) < (Q ,pvQ 7q)

3. Construct the matrices Gy and Gg shown in [B3]). Replace R by G5RGq,
replace Q by QGs, and replace P by PGj.

4. If k = K — 1, then go to step 5. Otherwise, replace k by k + 1 and go to
step 2.

5. Multiply column K of Q by Rxx/rk; replace Rxk by rix. The product
QRP" is the GTD of H based on r.

The numerical stability of this algorithm is analyzed in Section Bl In particular,
the division by the possibly small denominator in (4] is safe, and the algorithm
is stable. A MATLAB implementation of our GTD algorithm is posted on the
web site of William Hager. Given the SVD, this algorithm for the GTD requires
O((m + n)K) flops. For comparison, reduction of H to bidiagonal form by the
Golub-Kahan bidiagonalization scheme [6] (also see [7, @, 23], 25]), often the first
step in the computation of the SVD, requires O(mnK) flops.

4. THE GTD UPDATE

In this section, we give the rationale behind the GTD update ([B3]). The pre-
scribed diagonal element ry satisfies the relation |d1| > |rg| > |d2]. The first column
of 1 is chosen so that the vector

(5 2]

has length equal to |rg|. When ¢ = 1, p has length |§;], and when s = 1, p has
length |d2]. Hence, as (¢, s) travels along the unit circle from (1,0) to (0,1), there
exists a point where the length of p is |rg|. The second column of Gy is chosen to
be orthogonal to the first column of G;. The second column of Gy is also chosen to
be orthogonal to p, while the first column of G is orthogonal to the second column
of Ga. Since the second column of Gy is perpendicular to p, the (k+ 1, k) element
of R¥*+1 is 0. Since multiplication by Gy preserves length, the (k,k) element of
R+ has length |r|. Finally, we multiply G2 by a complex scalar of magnitude
1 in order to make the (k, k) element of R 1 equal to 7.

In principle, the procedure outlined above could be applied to the entire matrix,
rather than to the diagonal matrix in the SVD. That is, we first construct a unit
vector p; € C™ such that |[Hp,|| = |r1|. Let Py be a unitary matrix with first
column p;. The matrix P; can be expressed in terms of a Householder reflection
[9, p. 210]. Let Q; be a unitary matrix with first column (ry/|r;|?>)Hp;. For these
matrices, we have

. Tz
Q1I‘11P1=[01 };2}7

where H; = H, z, € C"!, and H, € Cm—Dx(n-1),
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The reduction to triangular form would continue in this same way; after k — 1
steps, we have

k—1 k—1
(@) ar=qle)-| 5 5.

where Ry, is a k by k upper triangular matrix with r1, ro, ..., 7y on the diagonal,
Q; and P; are unitary, and 0 denotes a matrix whose entries are all 0. In the next
step, we take

where I, is a k by k identity matrix. The first column p of P is chosen so that
|Hip|| = |7+ 1], while the first column of Q is (7411 /|7k41|>) HiD-

The vector p may be generated by a Lanczos process (see [6] or [2I, Chap. 13]).
That is, we first compute unit vectors vy and vs such that

(4.3) [Hivill = [ria| = [Hyvall.

Let v(0) be the vector obtained by rotating v; through an angle 6 towards va.
By continuity of the norm, there exists a value of 6 such that ||Hiv(0)|| = |rr,1].
For the GMD, where all the elements of r equal the geometric mean of the positive
singular values of H, we establish in [I5] the existence of vectors v and vy satisfying
[@3). For a general r satisfying r < o, the existence (or nonexistence) of v; and
vy satisfying ([@3) is an open problem. Hence, the algorithm in (@I)-E3) is
conceptual in the sense that the existence of vi and vo satisfying (£3]) has only
been established for the GMD.

5. THE GTD ALGORITHM WITH INEXACT ARITHMETIC

The numerical stability of the GTD algorithm (the 5 steps summarized at the
end of Section[B)) hinges on the computation of the product (3], where ¢ and s are
given in ([B4]). When §; and d, are close together, there is a large relative error in
the evaluation of ¢ in finite precision floating point arithmetic (see [9), Sect. 1-4]).
In this section, we show that these large errors in the evaluation of ¢ and s are
harmless.

Following the notation in [I1], we put a hat over a quantity to denote its com-
puted, numerical value (a floating point number). We also let fi(-) stand for the
floating representation of an expression which is evaluated using floating point arith-
metic. If an expression is not surrounded by fl(+), then all the operations are done
using exact arithmetic. The “unit roundoff” (or machine epsilon) is denoted wu.
Typically, u is on the order of 108 or 107!6 in single or double precision respec-
tively. We assume that floating point arithmetic is performed in accordance with
IEEE standard 754 [1]. If 2, y, and z denote three floating point numbers, then
some implications of the IEEE standard, which are used in our analysis, are the
following:

F1. If “op” denotes either +, —, x, or <+, then fl(x op y) = (z op y)(1+¢€) where
le] < .

F2. 1(v/z) = /z(1 + €) where |¢] < u.

F3. f & >y >0and z > 0, then 0 < fl(y/x) < 1.

F4. Ifx >y >z, thenfllz —2) > fl(z —y) >0 a

F5. If 0 < 2 < 1, then 0 < fi(y/z) < 1.
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In this section, let G; and Gy denote the 2 by 2 matrices depicted in (33). The
floating point versions CA-‘q and a'g of these matrices are obtained as follows: First,
the floating point representation ¢ of ¢ is formed by substituting floating point
numbers d1, do, and r in [B4]) and performing floating point arithmetic. Then ¢ is
inserted in the equation for s in (4] to obtain the floating point value §. Finally,
the floating point numbers ¢ and §, along with floating point arithmetic, are used
to construct the matrices Gy and Gs in (B3).

Our main result in this section concerns how close the matrices él and ég
are to unitary matrices, and how close the numerical version of the identity (3.3)
agrees with the exact version. Our analysis uses the following notation: If g(u) is
a scalar-valued function of the unit roundoff and M > 0 is a scalar, then we write

g(u) = O(Mu) if

: lg(w)
1 — <1.
St Mu =
If 2z =x + yi is a complex, floating point number, then by (F1), we have
fi(z*) = fi(e® +3?) = (@1 +ea)+y*(L+e))(l+e)

= Z2 + y2 —+ (61 + 63)%2 —+ (62 + 63)y2 —+ 6163%2 + 6263y2,

where |¢;| < w for i =1,2,3. The (1 +¢;) and (1 + €2) factors are due to the error
in the floating point squaring of x and y. The (1 + €3) factor is due to the error in
the floating point addition operation. It follows that

[fi(2* + %) = (@* + 7)) < Qu+u?)(@® + %) = O2u)(2” +y?).
Hence, we have
(5.1) fi(]2?) = |2>(1 4+ O(2u)).

Let f2, fZ, and f3 denote the floating point representations of |ry|?, |61]%, and
|62|? respectively. Here the superscript 2 in f2 does not mean that f,. is squared;
rather, f2 is notation for the floating point representation of |ry|2.

Lemma 5.1. If f2 > f2 > f2, 2 > f2, and the floating point arithmetic satisfies
IEEFE standard 754, then we have

(5.2) &2+ 32 =1+ 0(4u),

(5.3) &2 = (;:;ﬁ) (1+0(uw), and0<3é<1.

Note: In accordance with our convention, the expression é? + 32 is evaluated
by squaring (with exact arithmetic) the floating point numbers ¢ and § and then
adding (with exact arithmetic) the squares.

Proof. Since f? > f2 > f2, it follows from F4 that
A(f7 = f2) = A(f? = f3) = 0.

ff—fzg)
ﬂ Jr_ _Ja
0= (f%f%

By F3, we have

<1
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Hence, F5 yields

1/2
ﬁ—ﬁ)/<1
2 2 =5
Ji—f3
which gives the inequality for ¢ in (E3)).
We now apply F1 and F2 to the expression for ¢:

(=N =N (a0
(5:5) c‘ﬂ(f%—ﬁ> ‘(f%—ﬁ) < 0t ) (1t ea),

where |¢;| < w for 1 < i < 4. The (1 + ¢) and (1 + e3) factors are connected

with the subtractions, the (1 + €3) factor comes from the division of numerator by

denominator, and the (1 + ¢;) factor comes from the square root. Squaring (5.0)

and utilizing the bound |¢;| < u, 1 < i < 4, yields the estimate for é2 in (G.3)).
Finally, we apply F1 and F2 to s:

(5.4) ogezﬂ(

(5.6) s=A(1-)" = (1-20+a)(1+e)? (1 +e),

where |¢;| < w for i = 1,2,3. The (1 + ¢;) factor reflects the error in the squaring
of ¢, the (1 + e2) factor is due to the subtraction, and the (1 + €3) factor is due to
the square root. Squaring (5:6) and utilizing (54), we see that

(5.7) 2 =1-¢4+0(4u),
which establishes (5.2)). By F5, (54), and (G0]), we conclude that 0 < § < 1,
completing the proof of (G.3)). O

Using Lemmal[5.T], we show that the floating point matrices G; and G are nearly
unitary. The estimate for Gy is based on the following computation of its entries:

~ 1 2 2 2
(5.8) G; =1fl(r,U), where U=1 7| 7l

5 c
oo [ ) s [ =
GORICD

Lemma 5.2. If f2 > f2 > f2, 2 > f2, and the floating point arithmetic satisfies
IEEFE standard 754, then we have
1 { 1+0(17u) 0 ]

(5:9) UU=1r 0 1+ O(17u)

Proof. Since the factors multiplying d; and d2 in (B8] are real, it follows that the
floating point matrix U has the following structure:

o 0= 5 8] amala (5] v-afs ()]

Hence, the off-diagonal elements of U*U vanish. Now consider the diagonal ele-
ments. Suppose that 7 = x + yi, where x and y are the real and imaginary parts
of 6*. Observe that

ofc xé yé
" =Uy = fif = )ﬂ( >+ﬂ< >i
H (mP |ri|? 71|

(‘%ﬁ) (1+e)(l+e)+ (%) (1+e)(1+ i,

(5.11)
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where the (1 + ¢;) factor is due to the division of ¢ by f?, and the (1 + e3) and
(1+¢€) factors are associated with the multiplication by = and by y. Here |¢;| < u,
i =1,2, and |€,| < u. Taking the norm and squaring yields:

(2 +y*)& |51|262> (11 O(4u))

Uy |? = (W) (1+0(4u)) = ( 722

Using (G.0)), we substitute |ry|?(1 + O(2u)) for one f? factor in the denominator to
obtain

AR
Unf? = AR < 1},26 > (1+0(6u)).

Again, using (EJ]), we replace |d1|? in the numerator by fZ(1+ O(2u)) to obtain
P = () (4 ogsu))
RN '

In the same fashion,

1 752
[Ua|* = PAE (—f;g )(1+O(8u)).
Hence, we have
1 1 R R
(512 (UUn =00+ [Unf = g (5 ) (764 £28) (14 0(su))

Let C? and S? be defined by

2R3 R S | e 11
C'—fl2_f22 and S =1 C_f12— 7
Observe that
(5.13) f1C? + 138° = f2.
By Lemma 51l we can write
(5.14) &* =C?+e, where e =0(5u)C? = O(5u) (fi — f2§> .
fi= 1
Also, by Lemma [5.1] we have
32 =52 — e+ O(4u).
These substitutions in (B12]) yield
(UU)y = ﬁ (%) (F262 + f28%) (1 + O(8u))
- ﬁ (%) (FA(C? +€) + f2(S? — e+ O(4w)) (1 + O(8u))
= o () (O 4 5% 4 (2 = e+ £0(1) 1+ 0(3u)
1 -1
(5.15) - om {1+ < 7 )e+0(4u)] (1+ O(8u))
(5.16) = ﬁ [+ O(5u) + O(4w)](1 + O(8u)

- < ! >(1+O(17u)).

i ?
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To obtain (G.I5]), we utilize the identity (5I3) and the assumption f3 < f2. To
obtain (5.I6]), we also use the estimate (B.14]) for e (established in Lemma[5.1). O

Theorem 5.3. If f2 > f2 > f2, f# > f2, and the floating point arithmetic satisfies
IEEFE standard 754, then we have

(5.17) GiG1 = [ L o ] i
S oae [ 14+0(23u)  O(6u)
(5.18) GGy = [ O(6u) 1+ 0(23u) }

Proof. The identity (5.IT) comes from (5.2]). Now consider (B.I8). Recall that ry
and J; are in general complex. By Lemma 3.5 in [I1], we have

fi(red7) = redi (1 + O(2v/2)).
Using the notation in (.I0), it follows that

~ [ (rra®)(1+0(2v2u))  rb* (14 O(2v2u))
(5:19) Gz =1(nU) = [ —(rb)(1 4+ 0(2v320))  rra(l + 0(2v2w)) ] :
Hence,
(G2GH11 = [l (laf* + [b*) (1 + O(2v2u))?
(5.20) = |ril?(Ja]® + [p]*)(1 + O(4v2u)).

By Lemma B2 |ry|?(Ja|® + [b]*) = 1 + O(17u). Making this substitution in (G.20)
gives

(G2G3)11 (1+0(17u))(1 + O(4v/2u))
< 1+0(17u)(1+0(6u)) =1+ O(23u).
This establishes the expression in (B.I8]) for the the (1,1)-element. The (2,2)-element
is similar.
The (2,1)-element in (BI8) can be expressed as

(G2G)a1 = Irila’d (14 0(2V3W)? — (14 0(2V3u)?).
Hence,
(5.21) (G2G3)or | < [rel?lal|blO(8v2u).
By Lemma [5.2] we have

1

1 1
< 2 2 _ * — -
el < 5o + ) = (U0 = (5

) (1+0(17u)).
It follows from (B2I)) that
(G2G3)a1] < (1 + O(17u))O(4v2u) < O(6u).

The (1,2)-element in (BI8)) is similar. O

Theorem does not imply that al is close to Gy, 1 = 1,2. It only states that
when the G; are evaluated using floating point arithmetic, the resulting floating
point matrices are nearly unitary, even though the respective elements of G; and
G; could differ by as much as one. Next, we show that when these nearly unitary

matrices are used to evaluate the product (33), the elements on the diagonal and
the subdiagonal of the product are close to their correct values. We do not analyze
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the (1,2) (superdiagonal) element in the product since its value is not important
(and in fact, its value need not be close to the exact matrix element); what is
important is that G, and G, are nearly unitary and the computed product is
nearly upper triangular, with the diagonal elements and the subdiagonal element
close to the exact elements.

Theorem 5.4. If f2 > f2 > f2, f? > f2, and the floating point arithmetic satisfies
IEEFE standard 754, then with exact arithmetic, we have

(5.22) G;AG; = { o(12uw)|6|  y(1+ O(11u)) } ’
where
0 O
A - |: O 52 :| 9

and y = 81697k /|1x|? is the exact (2,2) element appearing in ([B.5).

In each step of the GTD algorithm, we multiply a 2 by 2 diagonal matrix by the
Givens rotations appearing in ([B.3]). With exact arithmetic, we should obtain an
upper triangular matrix with r;, and y on the diagonal. According to Theorem [£.4]
if the numerically evaluated Givens rotations are multiplied against the diagonal
matrix, then with exact arithmetic we obtain almost the correct result. That is, the
(2,1) element differs from zero by a small multiple of «, and the diagonal elements
are close, in a relative sense, to their correct values. Hence, if we simply put zero
in the (2,1) position and 7, and y on the diagonal, then we achieve nearly the
same result that we would have gotten using exact arithmetic. The (1,2) element
in (&22)), shown as *, is not analyzed in the theorem since any error in it has
no impact on the computation of the subsequent rotations. In each step of the
GTD algorithm, the computation of the Givens rotations is expressed in terms
of two diagonal elements in the partially triangularized matrix; as we show, the
numerically evaluated rotations generate nearly the correct diagonal elements ry,
and y of the triangular matrix.

Proof. Combining (B.11) and (B.19]), we have

@ = (

’I’MST@
f?

where |e;| < u, i = 1,2. The (1,2)-element of G} has the same form, but with ¢
replaced by s and with §; replaced by do:

@ha =

) (14 a)(1 +ea)(1+ O@v2u)),

T‘k(5§§
f?

where |e}| < w for ¢ = 1,2. When the product G3AG; is evaluated with exact
arithmetic, we obtain

) (14 €)(14 €)1+ 0(2v2u)),

Tk|51|262

I?

Tk|52|2§2 v 6/ 6/
+(7f3 )(1+0(2\/§ )1+ €)(1+€).

(GEAG));, = ( >(1+0(2\/§u))(1+61)(1+62)
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Hence, we have

e261]% + 8
I?

We replace |§1|% and |62]? by fZ(1+ O(2u)) and f3(1 + O(2u)) respectively, using

), to obtain

(@AG)L - (%) (1 4+ 0(2u))(1 + O(5u))

(G3AG)1 rk( 2|52|2> (1+ O(5u)).

(5.23) = (M) (14 O(7u)).
In the proof of Lemma (2] in equation (BI6]), we show that
eI+ 81
12
Combining this with (523]) gives
(G3AG )11 = 71(1 + O(9u))(1 + O(7u)) = (1 + O(16u)),
the (1, 1)-element in (£.22)).

1
The (2,1)-element can be expressed

=14+0(u).

’I’k§65152

72 ) (1+0(2vV2u)(1 + €1)(1 + €2)

Tk §é(51 52
— f2

(GiAG)y = (

) (1+0(2V2u)) (14 €) (1 + €).

Taking absolute values, we obtain
o~ o~ $¢|re||01]]6

Using (1)), we replace +/f2 by |ri|v/(14+ O(2u)) and we replace |da| by
V/ f2y/1 4 O(2u). Since 0 < §,é < 1 (see Lemma [5.1]), we have
PO |51|¢gm
(G3AG )21 | = Ou).
VIE/1+0(2u)

Since f3 < f? and /1 + O(2u) = 1+ O(u), it follows that
e A A 0 214+ 0
(G3AG)21] = <| %\{j?l(+g(:;))> O(10u) = 161|0(12u).

In a similar fashion, the (2,2) element can be expressed as

7”“;352) (8% + &) (1 + O(5u)).

Substituting for §2 + ¢? using (5-2) and substituting for f2 using (5.1]), we obtain

o < 70102
Iri[2(1+ O(2u))

(GEAG )2 = (

(G3AG )2 ) (14 0(4u))(1 + O(5u))
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A MATLAB code implementing the GTD is posted at the following web site:
http://www.math.ufl.edu/~hager/papers/GTD.

In our implementation of the GTD algorithm, we do not use floating point arith-
metic to evaluate the product é;Aal, rather we insert r; and y on the diagonal
of the product, and 0 on the subdiagonal. Theorem [5.4] shows that if we compute
the product C‘.;Aél with exact arithmetic, then the diagonal and subdiagonal
elements are close to ri, y, and 0.

In our analysis of the key step (B3] in the GTD algorithm, it was assumed that
f2 > f% > f2. On the other hand, due to the error terms in (5.22)), there may not
exist an index p satisfying ([B]) or there may not exist an index ¢ satisfying (3.2]).
In the MATLAB code, we handle these cases in the following ways:

e If we cannot find an index p satisfying (BI]), then we set
(5.24) p = arg max{|f§k)| ck<i< K}

e If we cannot find an index ¢ satisfying [32), then we set
(5.25) p = arg mjn{|f§k)\ ck<i< K}
In either case, the following exchanges are performed:

Ry < Rpp7
Rir—1x < Rpyg—1,p,
P:,k e P:,p7
Q:,k g Q:,p~
We choose G; = I, while G3 is the identity matrix with the k-th diagonal element
veplaced by (ri/|r])(3%/131)).

The motivation for these choices is the following: If the index p in BI]) does
not exist, then the maximum in (E24) must be very close to |rg|. A symmetric
permutation is performed to move the absolute largest diagonal element to the
(k, k) position. The k-th diagonal element of G} is chosen to have unit magnitude;
its complex argument is chosen so that its product with §; is a positive multiple
of 11, the desired k-th diagonal element of R. When the index ¢ in ([B.2]) does not

exist, then the minimum in (B25) must be very close to 7. The choice of G and
G, is the same as before.

6. INVERSE EIGENVALUE PROBLEMS

In [4] Chu presents a recursive procedure for constructing matrices with pre-
scribed eigenvalues and singular values. His algorithm, which he calls SVD_EIG,
is based on Horn’s divide and conquer proof of the sufficiency of Weyl’s product
inequalities. In general, the output of SVD_EIG is not upper triangular. Conse-
quently, this routine could not be used to generate the GTD. Chu notes that to
achieve an upper triangular matrix would require an algorithm “one order more
expensive than the divide-and-conquer algorithm.”

Given a vector of singular values o € R™ and a vector of eigenvalues A € C™, with
A = o, we can use the GTD to generate a matrix R with A on the diagonal and with
singular values o. In this section, we compare the solution to the inverse eigenvalue
problem provided by the GTD to Chu’s algorithm. In our initial experimentation,
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TABLE 6.1. Comparison of SVD_EIG and GTD for inverse eigenvalue
problems (CPU time in seconds, relative errors in singular values
and eigenvalues in sup-norm)

Time O error A error
Dimension | SVD_EIG  GTD | SVD_EIG GTD | SVD_EIG GTD
100 0.61 0.20 | 1.9e—16 2.0e—16 | 6.6e—16
200 2.24  0.38 | 2.0e—16 1.7e—16 | 5.9e—15

400 13.84 0.86 | 3.4e—16 1.8e—16 | 1.Te—15
800 97.50 2.30 | 2.5e—16 1.8e—16 | 3.7e—13
1200 317.83  5.67 | 1.8e—16 2.1e—16 | 2.5e—12
1600 746.77 10.77 | 4.0e—16 1.8e—16 | 9.6e—7

[ecil el en I e M e M en)

we discovered that the algorithm of Chu, as presented in [4], did not work. When
this was pointed out, Chu provided an adjustment in which the parameter p in [4,
(2.2)] was replaced by pAi/|A1]. With this adjustment, it was possible to solve 4
by 4 and 5 by 5 test cases that previously caused failure. The results reported in
this section use the adjusted algorithm.

Both MATLAB routines and svD_EIG [4] require O(n?) flops, so in an asymptotic
sense, the approaches are equivalent. In Table we compare the actual running
times of GTD and SVD_EIG for matrices of various dimensions. These computer runs
were performed on a Sun Workstation with 2 GB memory. In making these runs,
the portion of the GTD code connected with the updating of the matrices P and
Q was deleted since SVD_EIG does not accumulate the unitary matrices. The input
arrays o and X were generated in the following way: Using the MATLAB routine
RAND, we randomly generated a square matrix whose element lies between 0 and
1. The singular values o were computed using the MATLAB routine svD, and
the eigenvalues A were computed using MATLAB’s EIG. By the theorem of Weyl
[24], A < 0. We then used both SVD_EIG and GTD to generate matrices with the
specified singular values and eigenvalues. Five different matrices of each dimension
were generated, and the average running time is reported in Table

The times shown in Table indicate that GTD becomes increasingly more
efficient than SVD_EIG as the matrix dimension increases. For a dimension of 100,
GTD is about three times faster than svD_EIG. For a dimension of 1600, GTD is
about 70 times faster than SVD_EIG.

In Table[G Il we also compare the specified singular values and eigenvalues to those
obtained by applying MATLAB’s SvD and EIG routines to the generated matrices.
That is, for each matrix output by either SVD_EIG or GTD, we use MATLAB’s
routines to compute the singular values and eigenvalues. The relative difference
between the singular values and eigenvalues generated by MATLAB’s routines and
the specified singular values and eigenvalues is evaluated in the sup-norm. The
errors reported in Table[6.I] are the average errors for the 5 random matrices of each
dimension. Both routines generate matrices with singular values that match those
computed by MATLAB’s SVD routine to within 16 digits. Observe that GTD always
matches exactly the prescribed eigenvalues since the generated matrix is triangular,
with the specified eigenvalues on the diagonal. The error in the eigenvalues of
the matrix generated by SVD_EIG was comparable to the singular value error for
matrices of dimension up to 400. Thereafter, the error in the eigenvalues grew
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quickly. When the matrix dimension doubled from 400 to 800, the error increased
roughly by the factor 102. Also, when the matrix dimension doubled again from
800 to 1600, the error increased roughly by the factor 10°.

A recursive algorithm can require a significant amount of memory. While
SVD_EIG executed, we monitored the memory usage with the Unix “top” command.
We observed that for a matrix of dimension 1600, the memory consumption grew
to 319 MB. Since a complex double precision matrix of dimension 1600 occupies
about 41 MB memory, the recursion required more than 7 times as much space as
the matrix itself.

7. CONCLUSIONS

By the theorem of Weyl [24], the generalized triangular decomposition represents
the most general unitary decomposition H = QRP*. That is, the diagonal r of
R must satisfy r < o, where o is the vector of singular values for H, while for
any diagonal r with r < o, we can write H = QRP*. The GTD includes, as
special cases, the singular value decomposition, the Schur decomposition, the QR
decomposition, and the geometric mean decomposition. Given the SVD, the GTD
based on r can be evaluated using a series of Givens rotations and permutations.
The GTD algorithm provides a new proof of Horn’s theorem [12]. Applications
of the GTD include transceiver design for MIMO communications [I6], 17, 18] and
inverse eigenvalue problems, surveyed extensively in [3]. In terms of CPU time
and memory requirements, GTD is superior to a recursive approach for generating
matrices with specified singular values and eigenvalues. The GTD update step
is backed by a rigorous numerical stability theory developed in Section The
numerical results reported in Section [f] are an indication that the overall algorithm
has strong stability properties.
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