
MATHEMATICS OF COMPUTATION
Volume 77, Number 262, April 2008, Pages 757–771
S 0025-5718(07)02039-X
Article electronically published on November 13, 2007

SUPERCONVERGENCE ANALYSIS
FOR MAXWELL’S EQUATIONS

IN DISPERSIVE MEDIA

QUN LIN AND JICHUN LI

Abstract. In this paper, we consider the time dependent Maxwell’s equations
in dispersive media on a bounded three-dimensional domain. Global supercon-
vergence is obtained for semi-discrete mixed finite element methods for three
most popular dispersive media models: the isotropic cold plasma, the one-pole
Debye medium, and the two-pole Lorentz medium. Global superconvergence
for a standard finite element method is also presented. To our best knowledge,
this is the first superconvergence analysis obtained for Maxwell’s equations
when dispersive media are involved.

1. Introduction

Recently there is a growing interest in finite element modeling and analysis of
Maxwell’s equations (e.g. [7, 5, 9, 13, 12, 15, 16, 33, 34, 8]). The readers can
find more references in some recent books [2, 18, 35] and conference proceedings
[1, 3, 10]. However, most work is restricted to simple media such as free space. Very
few papers are devoted to dispersive media using the finite element method (FEM),
though there are some publications in finite-difference time-domain (FDTD) mod-
eling of dispersive media started since 1990 [38, Ch. 9]. We want to remark that
dispersive media are ubiquitous, for example human tissue, soil, snow, ice, plasma,
fiber optics and radar-absorbing materials. In order to accurately perform wide-
band electromagnetic simulations, we have to consider the effect of medium disper-
sion in the modeling equations. Applications of time-domain finite element method
(TDFEM) for dispersive media have appeared only very recently [17, 32]. However,
there exists no theoretical error analysis except our initial efforts [20, 21, 22].

Superconvergence of FEM is a phenomenon that the convergence rate exceeds
what general cases can provide. Since the 1970s, many studies have been conducted
for superconvergence, which can be achieved for smoother solutions with structured
grids. More details can be found in [27, 4, 30, 19, 39] and the references therein.
In 1994, Monk [34] initiated the investigation on superconvergence for Maxwell’s
equations in simple media. Recently, Lin and his collaborators [29, 26] systemati-
cally developed global superconvergence, but still restricted it to simple media. To
our best knowledge, there exists no work in the literature which studies the super-
convergence error analysis of TDFEM for Maxwell’s equations in dispersive media.
This paper intends to make an initial effort in this direction. Here we develop
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global superconvergence error analysis for semi-discrete standard and mixed finite
element methods for Maxwell’s equations when dispersive media are involved. The
proof uses the powerful integral identity technique developed by Lin’s group in the
early 1990s [31, 24, 25] and applied later to many areas [23, 40, 14, 29, 30].

The rest of the paper is organized as follows. In Section 2, some notation and
preliminary results are introduced. Then in Section 3, a semi-discrete mixed finite
element scheme is developed for the isotropic cold plasma model. Superclose esti-
mates are obtained on the cubic Nédélec curl conforming element. Similar results
are derived for one-pole Debye medium and two-pole Lorentz medium. In Section
4, global superconvergence is proved for all three dispersive media by using the
integral identity technique. In Section 5, we extend the global superconvergence
analysis to a standard finite element method.

2. Notation and preliminary results

In this paper, C (sometimes with a sub-index) denotes a generic constant, which
is independent of the finite element mesh size h. We will introduce some notation
to be used in this paper. We define

H(curl; Ω) = {v ∈ (L2(Ω))3; ∇× v ∈ (L2(Ω))3},
Hα(curl; Ω) = {v ∈ (Hα(Ω))3; ∇× v ∈ (Hα(Ω))3},
H0(curl; Ω) = {v ∈ H(curl; Ω); n × v = 0 on ∂Ω},

where α ≥ 0 is a real number, and (Hα(Ω))3 is the standard Sobolev space equipped
with the norm ‖ · ‖α and semi-norm | · |α in a bounded polyhedral domain Ω of R3.
Specifically ‖ · ‖0 will mean the (L2(Ω))3-norm. Also H(curl; Ω) and Hα(curl; Ω)
are equipped with norms

‖v‖0,curl = (‖v‖2
0 + ‖curl v‖2

0)
1/2,

‖v‖α,curl = (‖v‖2
α + ‖curl v‖2

α)1/2.

We assume that the domain Ω is covered with a regular cubic mesh Th of maxi-
mum diameter h. Our mixed finite element spaces are [36]:

Uh = {φ ∈ (L2(Ω))3; φ|e ∈ Qk,k−1,k−1 × Qk−1,k,k−1 × Qk−1,k−1,k, ∀ e ∈ Th },(1)
Vh = {ψ ∈ H(curl; Ω); ψ|e ∈ Qk−1,k,k × Qk,k−1,k × Qk,k,k−1, ∀ e ∈ Th },(2)

where Qi,j,k denotes the space of polynomials whose degrees are less than or equal
to i, j, k for x, y, z, respectively. Note that we have [33, p. 114]:

(3) ∇× Vh ⊂ Uh.

Let PhE ∈ Uh be the standard (L2(Ω))3 projection operator defined as

(4) (PhE − E, φ) = 0, ∀ φ ∈ Uh.
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Furthermore, we define the interpolation operator HI ∈ Vh, which satisfies [29,
p. 163] ∫

li

(H − HI) · τqdl = 0, ∀ q ∈ Pk(li), i = 1, · · · , 12,

∫
σi

((H − HI) × n) · qdσ = 0, ∀ q ∈ Qk−2,k−1(σi) × Qk−1,k−2(σi), i = 1, · · · , 6,

∫
e

(H − HI) · qde = 0, ∀ q ∈ Qk−1,k−2,k−2 × Qk−2,k−1,k−2 × Qk−2,k−2,k−1,

where li, σi are edges and faces of the element e, τ is the unit tangent vector along
edge li, and n is the normal vector on face σi.

In this paper, we need the following proven results:

Lemma 2.1 ([29, Lemma 3.1]).∫
Ω

(∇× (H − HI)) · φdΩ = O(hk+1)||H||k+2||φ||0 ∀ φ ∈ Uh.

Lemma 2.2 ([29, Lemma 3.2]).∫
Ω

(H − HI) · ψdΩ = O(hk+1)||H ||k+1||ψ||0 ∀ ψ ∈ Vh.

Lemma 2.3 ([37, p. 13]). Let f ∈ L1(0, T ) be a non-negative function, and let
g and ϕ be continuous functions on [0, T ]. Moreover, g is non-decreasing. If ϕ
satisfies

ϕ(t) ≤ g(t) +
∫ t

0

f(τ )ϕ(τ )dτ ∀ t ∈ [0, T ].

Then

ϕ(t) ≤ g(t) exp(
∫ t

0

f(τ ) dτ ) ∀ t ∈ [0, T ].

3. Superclose estimates

In this section, we shall develop the superclose estimates for all three popular
dispersive media models.

3.1. Isotropic cold plasma. The governing equations that describe electromag-
netic wave propagation in isotropic non-magnetized cold electron plasma are [11, 6]

ε0
∂E

∂t
= ∇× H − J ,(5)

µ0
∂H

∂t
= −∇× E,(6)

∂J

∂t
+ νJ = ε0ω

2
pE,(7)

where E is the electric field, H is the magnetic field, ε0 is the permittivity of free
space, µ0 is the permeability of free space, J is the polarization current density,
ωp is the plasma frequency, and ν is the electron-neutral collision frequency.
Solving (7) with the assumption that the initial electron velocity is zero leads to
[6, equation (8)]

(8) J(x, t; E) = ε0ω
2
pe−νt

∫ t

0

eνsE(x, s)ds = ε0ω
2
p

∫ t

0

e−ν(t−s)E(x, s)ds,
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where x ∈ Ω. In this paper we let Ω be a bounded polyhedral domain in R3 with
boundary ∂Ω and unit outward normal n.

Substituting (8) into (5), we obtain the following system for E and H :

ε0Et −∇× H + J(E) = 0 in Ω × (0, T ),(9)
µ0Ht + ∇× E = 0 in Ω × (0, T ),(10)

where for simplicity we denote J(E) = J(x, t; E).
To complete the problem, we assume that the boundary of Ω is a perfect con-

ductor [35]:

(11) n × E = 0 on ∂Ω × (0, T ),

and the initial conditions are

(12) E(x, 0) = E0(x) and H(x, 0) = H0(x) for any x ∈ Ω,

where E0 and H0 are some given functions. Furthermore, H0 satisfies

(13) ∇ · (µ0H0) = 0 in Ω, H0 · n = 0 on ∂Ω.

Assuming the existence of smooth solutions to (9)-(13), we obtain the weak
formulation: find the solution (E, H) ∈ [C1(0, T ; (L2(Ω))3)∩C0(0, T ; H(curl; Ω))]2

of (9)-(13) such that

ε0(Et, φ) − (∇× H, φ) + (J(E), φ) = 0 ∀ φ ∈ (L2(Ω))3,(14)
µ0(Ht, ψ) + (E,∇× ψ) = 0 ∀ ψ ∈ H(curl; Ω)(15)

for 0 < t ≤ T with the initial conditions (12). Notice that the boundary condition
(11) is used in deriving (15) since (∇× E, ψ) = 〈n× E, ψ〉∂Ω + (E,∇× ψ).

Now we can construct our semi-discrete mixed method for solving (14)-(15): find
(Eh, Hh) ∈ [C1(0, T ;Uh) ∩ C1(0, T ;Vh)]2 such that

ε0(Eh
t , φh) − (∇× Hh, φh) + (J(Eh), φh) = 0 ∀ φh ∈ Uh,(16)

µ0(Hh
t , ψh) + (Eh,∇× ψh) = 0 ∀ ψh ∈ Vh(17)

for 0 < t ≤ T, subject to the initial conditions

(18) Eh(x, 0) = PhE0(x) and Hh(x, 0) = HI
0(x),

where HI
0 ∈ Vh is the interpolation of H0 defined in §2. Note that (16)-(18) is a

system of linear ordinary differential equations, which guarantees the existence and
uniqueness of solutions.

Theorem 3.1. Let (E(t), H(t)) and (Eh(t), Hh(t)) be the solutions of (14)-(15)
and (16)-(18) at time t, respectively. Then there is a constant C = C(ε0, µ0, ωp, ν),
independent of the mesh size h, such that

µ0||(HI − Hh)(t)||20 + ε0||(PhE − Eh)(t)||20

≤ Ch2(k+1)

∫ t

0

[||H(t)||2k+2 + ||Ht(t)||2k+1]dt,
(19)

where k is the degree of edge elements in the space V h.
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Proof. Subtracting (16)-(17) from (14)-(15) with φ = φh and ψ = ψh, respectively,
we have the error equations:

ε0((E − Eh)t, φh) − (∇× (H − Hh), φh)(20)

+ (J(E − Eh), φh) = 0 ∀ φh ∈ Uh,

µ0((H − Hh)t, ψh) + (E − Eh,∇× ψh) = 0 ∀ ψh ∈ Vh.(21)

Denote ξ(t) = (PhE − Eh)(t), η(t) = (HI − Hh)(t). Choosing φh = ξ, ψh = η
in (20)-(21), and rearranging terms lead to

ε0(ξt, ξ) − (∇× η, ξ) = ε0((PhE − E)t, ξ) − (∇× (HI − H), ξ) + (J(Eh − E), ξ),

µ0(ηt, η) + (ξ,∇× η) = µ0((HI − H)t, η) + (PhE − E,∇× η).

Adding the two equations above, we obtain

1
2

d

dt
(µ0||η(t)||20 + ε0||ξ(t)||20)

= −(∇× (HI − H), ξ) + (J(Eh − E), ξ) + µ0((HI − H)t, η)

=
3∑

i=1

(Err)i

(22)

where we used the definition of operator Ph and the fact that ∇× Vh ⊂ Uh.
Below we will constantly use the basic arithmetic-geometric mean inequality

(23) |ab| ≤ δa2 +
1
4δ

b2,

for any constant δ > 0.
Now we will estimate (Err)i one by one for i = 1, 2, 3.
Using Lemma 2.1 and (23), we have

(Err)1 = −(∇× (HI − H), ξ) ≤ Chk+1||H(t)||k+2||ξ(t)||0

≤ δ2ε0||ξ(t)||20 +
C1h

2(k+1)

4δ2ε0
||H(t)||2k+2.

By the linearity of J and the definition of Ph, we obtain

(Err)2 = (J(Eh − PhE) + J(PhE − E), ξ) = −(J(ξ), ξ)

≤ δ3ε0||ξ(t)||20 +
1

4δ3ε0
||J(ξ)||20.(24)

Using the definition of J and the Cauchy-Schwarz inequality, we have

||J(ξ)||20 =
∫

Ω

|ε0ω2
p

∫ t

0

e−ν(t−s)ξ(x, s)ds|2dΩ

≤ ε20ω
4
p

∫
Ω

(
∫ t

0

|e−ν(t−s)|2ds)(
∫ t

0

|ξ(x, s)|2ds)dΩ

= ε20ω
4
p

∫
Ω

1
2ν

(1 − e−2νt)(
∫ t

0

|ξ(x, s)|2ds)dΩ

≤
ε20ω

4
p

2ν

∫ t

0

||ξ(s)||20ds,(25)
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which together with (24) gives

(Err)2 ≤ δ3ε0||ξ(t)||20 +
ε0ω

4
p

8δ3ν

∫ t

0

||ξ(s)||20ds.

Using Lemma 2.2 and (23), we obtain

(Err)3 = µ0((HI − H)t, η) ≤ Cµ0h
k+1||Ht(t)||k+1||η(t)||0

≤ δ4µ0||η(t)||20 +
C2µ0h

2(k+1)

4δ4
||Ht(t)||2k+1.

Combining all the estimates obtained for (Err)i, i = 1, 2, 3, we shall have

d

dt
(
µ0

2
||η(t)||20 +

ε0
2
||ξ(t)||20) ≤ (δ2 + δ3)ε0||ξ(t)||20 + δ4µ0||η(t)||20

+
C1h

2(k+1)

4δ2ε0
||H(t)||2k+2 +

ε0ω
4
p

8δ3ν

∫ t

0

||ξ(s)||20ds +
C2µ0h

2(k+1)

4δ4
||Ht(t)||2k+1.(26)

Integrating both sides of (26) with respect to t and using the fact that ξ(0) =
η(0) = 0, we obtain

µ0||η(t)||20 + ε0||ξ(t)||20 ≤ C3

∫ t

0

(µ0||η(s)||20 + ε0||ξ(s)||20)ds

+C4h
2(k+1)

∫ t

0

[||H(t)||2k+2 + ||Ht(t)||2k+1]dt,(27)

where we denote

C3 = 2 · max{δ2 + δ3 +
tω4

p

8δ3ν
, δ4}, C4 = 2 · max{ C1

4δ2ε0
,
C2µ0

4δ4
}.

By the Gronwall’s inequality (Lemma 2.3), we obtain

(28) µ0||η(t)||20 + ε0||ξ(t)||20 ≤ Ch2(k+1)

∫ t

0

[||H(t)||2k+2 + ||Ht(t)||2k+1]dt,

which completes the proof. �

3.2. Debye medium. For the single pole model of Debye, the governing equations
can be written as [22]: find E and H, which satisfy

ε0ε∞Et −∇× H +
(εs − ε∞)ε0

t0
E − J̃(E) = 0 in Ω × (0, T ),(29)

µ0Ht + ∇× E = 0 in Ω × (0, T ),(30)

with the same boundary and initial conditions as those stated previously for plasma.
Here we introduce the pseudo polarization current

(31) J̃(E) ≡ J̃(x, t; E) =
(εs − ε∞)ε0

t20

∫ t

0

e−
(t−s)

t0 E(x, s)ds

in order to carry out our earlier analysis for plasma easily to the Debye medium.
Furthermore, ε∞ is the permittivity at infinite frequency, εs is the permittivity at
zero frequency, t0 is the relaxation time, and the rest have the same meaning as
those stated previously for the plasma model.
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From (29)-(30), we can easily obtain the weak formulation: find the solution
(E, H) ∈ [C1(0, T ; (L2(Ω))3) ∩ C0(0, T ; H(curl; Ω))]2 such that

ε0ε∞(Et, φ) − (∇× H , φ)(32)

+
(εs − ε∞)ε0

t0
(E, φ) − (J̃(E), φ) = 0 ∀ φ ∈ (L2(Ω))3,

µ0(Ht, ψ) + (E,∇× ψ) = 0 ∀ ψ ∈ H(curl; Ω)(33)

for 0 < t ≤ T with the initial conditions

(34) E(x, 0) = E0(x) and H(x, 0) = H0(x).

The semi-discrete mixed finite element scheme for our Debye model can be for-
mulated as follows: (Eh, Hh) ∈ C1(0, T ;Uh) × C1(0, T ;Vh) such that

ε0ε∞(Eh
t , φh) − (∇× Hh, φh)(35)

+
(εs − ε∞)ε0

t0
(Eh, φh) − (J̃(Eh), φh) = 0 ∀ φh ∈ Uh,

µ0(Hh
t , ψh) + (Eh,∇× ψh) = 0 ∀ ψh ∈ Vh(36)

for 0 < t ≤ T, subject to the initial conditions

(37) Eh(x, 0) = PhE0(x) and Hh(x, 0) = HI
0(x).

Theorem 3.2. Let (E(t), H(t)) and (Eh(t), Hh(t)) be the solutions of (32)-(33)
and (35)-(36) at time t, respectively. Then there is a constant C =C(ε0, µ0, ε∞, εs, t0),
independent of the mesh size h, such that

µ0||(HI − Hh)(t)||20 + ε0ε∞||(PhE − Eh)(t)||20

≤ Ch2(k+1)

∫ t

0

[||H(t)||2k+2 + ||Ht(t)||2k+1]dt,
(38)

where k is the degree of edge elements in the space V h.

Proof. Subtracting (35)-(36) from (32)-(33) gives the error equations:

ε0ε∞((E − Eh)t, φh) − (∇× (H − Hh), φh) +
(εs − ε∞)ε0

t0
(E − Eh, φh)(39)

−(J̃(E − Eh), φh) = 0 ∀ φh ∈ Uh,

µ0((H − Hh)t, ψh) + (E − Eh,∇× ψh) = 0 ∀ ψh ∈ Vh.(40)

Choosing φh = ξ, ψh = η in (39)-(40), and rearranging terms lead to

ε0ε∞(ξt, ξ) − (∇× η, ξ) +
(εs − ε∞)ε0

t0
(ξ, ξ) = ε0ε∞((PhE − E)t, ξ)

−(∇× (HI − H), ξ) +
(εs − ε∞)ε0

t0
(PhE − E, ξ) + (J̃(E − Eh), ξ),

µ0(ηt, η) + (ξ,∇× η) = µ0((HI − H)t, η) + (PhE − E,∇× η).
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Adding the above two equations together and using the definition of Ph, we
obtain

d

dt
(
ε0ε∞

2
||ξ(t)||20 +

µ0

2
||η(t)||20) +

(εs − ε∞)ε0
t0

||ξ(t)||20

= −(∇× (HI − H), ξ) + (J̃(E − Eh), ξ) + µ0((HI − H)t, η)

=
3∑

i=1

(Err)i.

(41)

The rest of the proof is omitted because it is very similar to the plasma case. �

3.3. Lorentz medium. The Lorentzian two pole model can be represented by the
governing equations [22]:

ε0ε∞Et −∇× H + Ĵ(E) = 0 in Ω × (0, T ),(42)
µ0Ht + ∇× E = 0 in Ω × (0, T ),(43)

with the same boundary and initial conditions as those stated previously for plasma.
We use Ĵ to represent the polarization current for the Lorentz medium:

Ĵ(E) ≡ Ĵ(x, t; E) = β̃

∫ t

0

e−δ(t−s) · sin(γ − α(t − s)) · E(x, s)ds,(44)

= Im(β̃ejγ

∫ t

0

e−(δ+jα)(t−s)E(x, s)ds) ≡ Im(J(E)), j =
√
−1,(45)

where β̃ = (εs − ε∞)ε0ω3
1/

√
ω2

1 − ν2

4 , and Im(A) denotes the imaginary part of a
general complex number A. Furthermore, in addition to the notation defined earlier,
ω1 is the resonant frequency, ν is the damping coefficient, δ = ν

2 , α =
√

ω2
1 − δ2

and ejγ = δ
ω1

+ j α
ω1

. Note that ω1 > δ in real applications [17].
From (42)-(43), we can easily obtain the weak formulation: find the solution

(E, H) ∈ [C1(0, T ; (L2(Ω))3) ∩ C0(0, T ; H(curl; Ω))]2 such that

ε0ε∞(Et, φ) − (∇× H , φ) + (Ĵ(E), φ) = 0 ∀ φ ∈ (L2(Ω))3,(46)
µ0(Ht, ψ) + (E,∇× ψ) = 0 ∀ ψ ∈ H(curl; Ω)(47)

for 0 < t ≤ T with the initial conditions

(48) E(x, 0) = E0(x) and H(x, 0) = H0(x).

The semi-discrete mixed finite element scheme for the Lorentz medium is formu-
lated as follows: find Eh ∈ Uh, Hh ∈ Vh such that

ε0ε∞(Eh
t , φh) − (∇× Hh, φh) + (Ĵ(Eh), φh) = 0 ∀ φh ∈ Uh,(49)

µ0(Hh
t , ψh) + (Eh,∇× ψh) = 0 ∀ ψh ∈ Vh(50)

for 0 < t ≤ T, subject to the initial conditions

(51) Eh(x, 0) = PhE0(x) and Hh(x, 0) = HI
0(x).

Theorem 3.3. Let (E(t), H(t)) and (Eh(t), Hh(t)) be the solutions of (46)-(47)
and (49)-(50) at time t, respectively. Then there is a constant

C = C(ε0, µ0, εs, ε∞, ω1, ν),
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independent of the mesh size h, such that

µ0||(HI − Hh)(t)||20 + ε0ε∞||(PhE − Eh)(t)||20

≤ Ch2(k+1)

∫ t

0

[||H(t)||2k+2 + ||Ht(t)||2k+1]dt,
(52)

where k is the degree of edge elements in the space V h.

Proof. Subtracting (49)-(50) from (46)-(47) with φ = φh = ξ(t) and ψ = ψh =
η(t), respectively, we can obtain the error equations:

ε0ε∞(ξt, ξ) − (∇× η, ξ) = ε0ε∞((PhE − E)t, ξ)

− (∇× (HI − H), ξ) − (Ĵ(E − Eh), ξ),

µ0(ηt, η) + (ξ,∇× η) = µ0((HI − H)t, η) + (PhE − E,∇× η).

Adding the above two equations and using the definition of Ph, we obtain
d

dt
(
µ0

2
||η(t)||20 +

ε0ε∞
2

||ξ(t)||20)

= −(∇× (HI − H), ξ) − (Ĵ(E − Eh), ξ) + µ0((HI − H)t, η)

=
3∑

i=1

(Err)i.

(53)

The estimates of (Err)i follow the proof for the plasma case. The only different
term is (Err)2.

By the linearity of Ĵ and the definition of Ph, we obtain

(Err)2 = −(Ĵ(E − PhE) + J(PhE − Eh), ξ) = −(Ĵ(ξ), ξ)

≤ δ3ε0ε∞||ξ(t)||20 +
1

4δ3ε0ε∞
||Ĵ(ξ)||20.(54)

It is easy to see that

||Ĵ(ξ)||20 ≤ ||J(ξ)||20 = β̃2

∫
Ω

|ejγ

∫ t

0

e−(δ+jα)(t−s)ξ(x, s)ds|2dΩ)

≤ β̃2 1
2δ

∫ t

0

||ξ(s)||20ds,

which together with (54) gives

(Err)2 ≤ δ3ε0ε∞||ξ(t)||20 +
β̃2

8δ3ε0ε∞δ

∫ t

0

||ξ(s)||20ds.

The rest of the proof follows exactly the same as the plasma case. �

4. Global superconvergence

To prove global superconvergence, we need some postprocessing operators intro-
duced by Lin and Yan [29].

For each component wj , j=1, 2, 3 of w∈Uh, we define Π2hwj |ê∈Qk,2k−1,2k−1(ê)
such that ∫

ei

(Π2hwj − wj)q = 0, ∀ q ∈ Qk,k−1,k−1(ei), i = 1, 2, 3, 4,

where ê =
∑4

i=1 ei.
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Another postprocessing operator Π̂2h is defined for the function v ∈ Vh. For the
first component v1 of v, we define Π̂2hv1|ě ∈ Q2k−1,k,k(ě) such that∫

li

(Π̂2hv1 − v1)qdx = 0, ∀ q ∈ Pk−1(li), i = 1, · · · , 8,

∫
τi

(Π̂2hv1 − v1)qdxdy = 0, ∀ q ∈ Qk−1,k−2(τi), i = 1, · · · , 4,

∫
τj

(Π̂2hv1 − v1)qdxdz = 0, ∀ q ∈ Qk−1,k−2(τj), j = 1, · · · , 4,

∫
ei

(Π̂2hv1 − v1)qdxdydz = 0, ∀ q ∈ Qk−1,k−2,k−2(ei), i = 1, 2,

where ě = e1∪e2, li are edges parallel to the x-axis, τi, τj are surfaces perpendicular
to the z-axis or y-axis, respectively. Π̂2h can be defined similarly for the second
and third components of v ∈ Vh.

Lin and Yan [29] proved the following properties:

Lemma 4.1.

(i) ||Π2hw − w||0 ≤ Chk+1||w||k+1, ||Π̂2hv − v||0 ≤ Chk+1||v||k+1,
∀ w,v ∈ (Hk+1(Ω))3,

(ii) ||Π2hw||0 ≤ C||w||0, ||Π̂2hv||0 ≤ C||v||0, ∀ w ∈ Uh,v ∈ Vh,
(iii) Π2hw = Π2hPhw, Π̂2hv = Π̂2hvI, ∀ w ∈ Uh,v ∈ Vh,

where Phw∈Uh and vI ∈ Vh are the interpolations of w and v defined in Section 2.

Using these postprocessing operators, we can achieve the following global super-
convergence for all three dispersive media:

Theorem 4.1.

||Π2hEh − E||0 + ||Π̂2hHh − H||0

≤ Chk+1[||E||k+1 + ||H ||k+1 + (
∫ t

0

(||H ||2k+2 + ||Ht||2k+1)ds)1/2],

where k is the degree of edge elements in the space V h.

Proof. By Lemma 4.1 and Theorems 3.1–3.3, we have

||Π2hEh − E||0 = ||Π2h(Eh − PhE) + (Π2hE − E)||0
≤ C||Eh − PhE||0 + Chk+1||E||k+1

≤ Chk+1[(
∫ t

0

(||H||2k+2 + ||Ht||2k+1)ds)1/2 + ||E||k+1].(55)

Similarly, we have

||Π̂2hHh − H ||0 = ||Π̂2h(Hh − HI) + (Π̂2hH − H)||0
≤ C||Hh − HI ||0 + Chk+1||H ||k+1

≤ Chk+1[(
∫ t

0

(||H ||2k+2 + ||Ht||2k+1)ds)1/2 + ||H ||k+1],(56)

which, along with (55), completes the proof. �
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5. Extension to a standard finite element method

In this section, we will extend the global superconvergence to a standard finite
element method. For simplicity, we will restrict our discussion to the cold plasma
model, generalizations to other models are similar.

Instead of solving the coupled system (5)-(7) with both the electric and magnetic
fields as unknowns, we eliminate H by taking the time derivative of (5) and using
(6)-(8), to obtain the second order electric field equation

(57) ε0Ett + ∇× (µ−1
0 ∇× E) + ε0ω

2
pE − νJ(E) = 0,

with boundary condition (11) and initial conditions

(58) E(x, 0) = E0(x) and Et(x, 0) = E1(x),

where E1(x) = ε−1
0 ∇× H0(x), which is obtained from (5), (8), and (12).

Multiplying (57) by φ ∈ H0(curl; Ω), and using integration by parts [35, (3.27)],
we can easily obtain the weak formulation: find E(t) ∈ H0(curl; Ω) such that

(59)
ε0(Ett, φ) + µ−1

0 (∇× E,∇× φ) + ε0ω
2
p(E, φ)

− ν(J(E), φ) = 0 φ ∈ H0(curl; Ω),

subject to the initial conditions (58).
Taking the boundary condition (11) into account, we define

V 0
h = {vh ∈ V h | n × vh = 0 on ∂Ω}.

Then we can formulate a standard finite element scheme for (57) as follows: find
Eh(t) ∈ V 0

h such that

(60) ε0(Eh
tt, φ)+µ−1

0 (∇×Eh,∇×φ)+ε0ω
2
p(Eh, φ)−ν(J(Eh), φ) = 0 ∀φ ∈ V 0

h,

subject to the initial conditions

(61) Eh(x, 0) = EI
0(x), Eh

t (x, 0) = EI
1(x),

where EI
0 and EI

1 are the interpolations of E0 and E1 defined in §2, respectively.

Theorem 5.1. Let E(t) and Eh(t) be the solutions of (59) and (60) at time t,
respectively. Then there is a constant C = C(ε0, µ0, ωp, ν), independent of the mesh
size h, such that

ε0||(EI − Eh)t(t)||20 + µ−1
0 ||∇ × (EI − Eh)(t)||20 + ε0ω

2
p||(EI − Eh)(t)||20

≤ Ch2(k+1)[||E||2k+2 +
∫ t

0

(||Ett||2k+1 + ||Et||2k+2 + ||E||2k+1)ds].

Proof. Denote ξ(t) = (EI −Eh)(t). Subtracting (60) from (59) with φ = ξt(t), and
rearranging terms, we obtain the error equation

ε0(ξtt, ξt) + µ−1
0 (∇× ξ,∇× ξt) + ε0ω

2
p(ξ, ξt)

= ε0((EI − E)tt, ξt) + µ−1
0 (∇× (EI − E),∇× ξt)

+ ε0ω
2
p(EI − E, ξt) + ν(J(E − EI), ξt) + ν(J(ξ), ξt).

(62)
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Integrating (62) with respect to t and using integration by parts and the fact
that ξ(0) = ξt(0) = 0, we obtain

1
2
(ε0||ξt||20 + µ−1

0 ||∇ × ξ||20 + ε0ω
2
p||ξ||20)

≤ ε0

∫ t

0

((EI − E)tt, ξt)ds + µ−1
0 (∇× (EI − E),∇× ξ)

− µ−1
0

∫ t

0

(∇× (EI − E)t,∇× ξ)ds

+ ε0ω
2
p(EI − E, ξ) − ε0ω

2
p

∫ t

0

((EI − E)t, ξ)ds

+ ν

∫ t

0

(J(E − EI), ξt)ds + ν

∫ t

0

(J(ξ), ξt)ds =
7∑

i=1

(Err)i.

(63)

Now we have to estimate all (Err)i, i = 1, · · · , 7.
Using Lemma 2.2 and the inequality (23), we have

(Err)1 = ε0

∫ t

0

((EI − E)tt, ξt)ds ≤ ε0

∫ t

0

Chk+1||Ett||k+1||ξt||0ds

≤
∫ t

0

δ1ε0||ξt||20ds +
∫ t

0

Cε0h
2(k+1)

4δ1
||Ett||2k+1ds.

Using Lemma 2.1 and the inequality (23) leads to

(Err)2 = µ−1
0 (∇× (EI − E),∇× ξ) ≤ µ−1

0 Chk+1||E||k+2||∇ × ξ||0

≤ δ2µ
−1
0 ||∇ × ξ||20 +

Ch2(k+1)

4δ2µ0
||E||2k+2,

and

(Err)3 = −µ−1
0

∫ t

0

(∇×(EI−E)t,∇×ξ)ds≤µ−1
0

∫ t

0

Chk+1||Et||k+2||∇×ξ||0ds

≤
∫ t

0

δ3µ
−1
0 ||∇ × ξ||20ds +

Ch2(k+1)

4δ3µ0

∫ t

0

||Et||2k+2ds.

Similarly, by Lemma 2.2 and the inequality (23), we obtain

(Err)4 = ε0ω
2
p(EI − E, ξ) ≤ ε0ω

2
pChk+1||E||k+1||ξ||0

≤ δ4ε0ω
2
p||ξ||20 +

ε0ω
2
pCh2(k+1)

4δ4
||E||2k+1,

and

(Err)5 = −ε0ω
2
p

∫ t

0

((EI − E)t, ξ)ds ≤ ε0ω
2
p

∫ t

0

Chk+1||Et||k+1||ξ||0ds

≤
∫ t

0

δ5ε0ω
2
p||ξ||20ds +

ε0ω
2
pCh2(k+1)

4δ5

∫ t

0

||Et||2k+1ds.



SUPERCONVERGENCE ANALYSIS FOR MAXWELL’S EQUATIONS 769

Note that

(J(E − EI), ξt) = ε0ω
2
p(

∫ t

0

e−ν(t−s)(E − EI)(x, s)ds, ξt(x, t))

≤ ε0ω
2
p

∫ t

0

Chk+1||E||k+1||ξt||0ds,

from which we have

(Err)6 = ν

∫ t

0

(J(E − EI), ξt)ds ≤ νε0ω
2
pt

∫ t

0

Chk+1||E||k+1||ξt||0ds

≤
∫ t

0

δ6ε0||ξt||20ds +
ε0ω

4
pt2Ch2(k+1)

4δ6

∫ t

0

||E||2k+1ds.

Finally, using the inequality (23), we have

(Err)7 = ν

∫ t

0

(J(ξ), ξt)ds ≤
∫ t

0

δ7ε0||ξt||20ds +
ν2

4δ7ε0

∫ t

0

||J(ξ)||20ds

≤
∫ t

0

δ7ε0||ξt||20ds +
νε0ω

4
pt

8δ7

∫ t

0

||ξ||20ds,

where in the last step we used the estimate (25).
Substituting the above estimates for (Err)i into (63), choosing constants δ2, δ4 <

1
2 and absorbing the first terms in (Err)2 and (Err)4 by the corresponding terms
on the left hand side of (63), we obtain

1
2
(ε0||ξt||20 + µ−1

0 ||∇ × ξ||20 + ε0ω
2
p||ξ||20)

≤ C1

∫ t

0

(ε0||ξt||20 + µ−1
0 ||∇ × ξ||20 + ε0ω

2
p||ξ||20)ds

+ C2h
2(k+1)

∫ t

0

(||Ett||2k+1 + ||Et||2k+2 + ||E||2k+1)ds

+ C3h
2(k+1)||E||2k+2,

(64)

where we absorbed the explicit dependence of physical parameters into the generic
constants C1, C2 and C3.

Our proof concludes by using the Gronwall inequality (Lemma 2.3) to (64). �

Using the postprocessing operator Π̂2h defined in the last section, we can eas-
ily achieve the following global superconvergence for the standard finite element
method:

Theorem 5.2.

||Π̂2hEh − E||0 + ||(Π̂2hEh − E)t||0

≤ Chk+1[||E||k+2 + ||Et||k+1 + (
∫ t

0

(||Ett||2k+1 + ||Et||2k+2 + ||E||2k+1)ds)1/2],

where k is the degree of edge elements in the space V h.

Remark 5.1. When Ω is not a cubic domain, global superconvergence of order
O(hk+ 1

2 ) can be achieved on the almost cubic meshes by easily extending the results
of Lin and Yan [29, p. 175].
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