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ARNOLDI AND JACOBI-DAVIDSON METHODS
FOR GENERALIZED EIGENVALUE PROBLEMS Ax = λBx

WITH SINGULAR B

JOOST ROMMES

Abstract. In many physical situations, a few specific eigenvalues of a large
sparse generalized eigenvalue problem Ax = λBx are needed. If exact linear
solves with A−σB are available, implicitly restarted Arnoldi with purification
is a common approach for problems where B is positive semidefinite. In this
paper, a new approach based on implicitly restarted Arnoldi will be presented
that avoids most of the problems due to the singularity of B. Secondly, if
exact solves are not available, Jacobi-Davidson QZ will be presented as a ro-
bust method to compute a few specific eigenvalues. Results are illustrated by
numerical experiments.

1. Introduction

Large sparse generalized eigenvalue problems of the form

(1.1) Ax = λBx, x �= 0,

with A, B ∈ Rn×n, x ∈ Cn and λ ∈ C, arise in physical situations like stability
analysis of the discretized Navier-Stokes equations. Typically, the matrix A is
nonsymmetric and of full rank, and B is singular. The pencil (A, B) is regular,
that is, A−γB is singular only for a finite number of γ ∈ C. Because B is singular,
(1.1) can have eigenvalues at infinity, which are of no physical relevance, but may
lead to numerical difficulties. In practice, one is often interested in the few left- or
rightmost finite eigenvalues that determine the stability, and hence one wants to
avoid approximations to eigenvalues at infinity. This paper is concerned with the
computation of a few left- or rightmost eigenvalues of large generalized eigenvalue
problems.

One way to compute a few eigenvalues of (1.1) close to σ ∈ C is to apply Arnoldi’s
method to the shift-and-invert transformation S = (A − σB)−1B:

(1.2) Sx = λ̃x, x �= 0.

An eigenpair (λ, x) of (1.1) corresponds to an eigenpair (λ̃ = (λ− σ)−1, x) of (1.2).
Hence, the infinite eigenvalues of (1.1) correspond to eigenvalues λ̃ = 0 of (1.2).
Arnoldi’s method may compute approximations θ̃ to λ̃ = 0. These approximations
are known as spurious eigenvalues and after back transformation via θ = θ̃−1 + σ,
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they may be hard to distinguish from wanted eigenvalues, which typically reside in
the exterior of the spectrum. This problem has been addressed for the symmetric
nondefective problem [5, 16] and for the defective problem [5]. The ideas presented
there are extended to the nonsymmetric defective case in [14], where the implicitly
restarted Arnoldi method [11, 22] is implemented with a B semi-inner product
and purification. Purification is a technique to remove unwanted components from
Arnoldi vectors and approximate eigenvectors, and will be explained in more detail
in section 3. A new strategy will be presented that, by exploiting the structure of
(1.1), reduces the corruption by unwanted components significantly.

The scheme based on the Arnoldi method fails to be applicable if the linear
system solves with A−σB, e.g. via the LU -factorization of A−σB, are inaccurate
or not computable within reasonable time. The Jacobi-Davidson QZ method [7]
has the advantage that it computes with the matrices A and B directly and that in
principle no inverses or exact solves are needed; furthermore, it poses no restrictions
on the matrices A and B, so it is also applicable if B is not symmetric positive
semidefinite or if both A and B are singular. In section 4, it is shown that the
Jacobi-Davidson method with harmonic Petrov values has some favorable properties
with respect to purification. If, additionally, a preconditioner is available in the
form of an LU -factorization, the correction equation can be solved efficiently and
purification is obtained automatically.

Throughout this paper, it will be assumed that the leftmost finite eigenvalues
are wanted. This is a natural assumption in practical situations where the stability
of steady states for a number of different parameter values is to be determined
(see for instance [1, 9]): not only the leftmost eigenvalue is of interest, but also
the eigenvalue(s) close to the leftmost that may become the leftmost for different
parameter values. The theory extends readily to problems where the rightmost
finite eigenvalues are wanted.

The outline of the paper is as follows. Some properties of generalized eigenvalue
problems are described in section 2. In section 3, the Arnoldi method with pu-
rification is explained and the new scheme is presented, illustrated by numerical
examples. The approach based on the JDQZ method is described in section 4.
Section 5 concludes.

2. Some properties of generalized eigenvalue problems

The central point of the discussion is the generalized eigenproblem

Ax = λBx, x �= 0,

with A, B ∈ R
n×n, x ∈ C

n and λ ∈ C. Only regular matrix pencils will be
considered, i.e. pencils (A, B) for which A− γB is singular only for a finite number
of γ ∈ C. Note that B is allowed to be singular. The corresponding ordinary
eigenproblem is

Sx = λ̃x, x �= 0,

with S = (A − σB)−1B for a σ such that A − σB is nonsingular. A generalized
eigenpair (λ, x) corresponds to an ordinary eigenpair (λ̃ = (λ − σ)−1, x) of (1.2).
The generalized eigenvalues can be computed via the relation λ = λ̃−1 + σ.

The eigenspace corresponding to the infinite eigenvalues is the null space N (S)
of S:

V∞ = N (S) = N (B) = {x ∈ R
n | Bx = 0}.



ARNOLDI AND JACOBI-DAVIDSON METHODS 997

The eigenvectors corresponding to the finite eigenvalues span a real invariant sub-
space of S and form a subspace of the range of Sjs , R(Sjs):

(2.1) Vfinite ⊆ R(Sjs) = {x ∈ R
n | ((A − σB)−1B)jsy = x, y ∈ R

n},
where js is the size of the largest Jordan block corresponding to the zero eigenvalue
of S. The generalized null space G(S) of S is defined as the complement in N (Sjs)
of N (S):

G(S) = N (Sjs)\N (S).

It follows that Rn = R(Sjs) + G(S) + N (S). Note that (2.1) becomes an equal-
ity if for all finite eigenvalues the algebraic multiplicity is equal to the geometric
multiplicity.

It is important to keep in mind that eigenvectors v corresponding to finite eigen-
values do not necessarily satisfy v ⊥ V∞. In other words, in general it does not
hold that R(S) ⊥ N (S). So restricting the search space to R(B), in order to avoid
approximations to infinite eigenvalues, is not effective. Only if A is block upper
triangular and B is block diagonal it is effective, but then the problem can also
easily be reduced to a smaller problem by considering the nonzero diagonal blocks.

This paper is concerned with block structured generalized eigenvalue problems
of the form

(2.2)
[

K C
CT 0

] [
u
p

]
= λ

[
M 0
0 0

] [
u
p

]
,

with n = m + k, C ∈ Rm×k of full rank, stiffness matrix K ∈ Rm×m, mass matrix
M = MT ∈ Rm×m, velocity u ∈ Cm and pressure p ∈ Ck, that arise in the
linearized stability analysis of steady state solutions of the Navier-Stokes equations
[1]. The corresponding ordinary eigenproblem is[

S1 0
S2 0

] [
u
p

]
= λ̃

[
u
p

]
, S1 ∈ R

m×m, S2 ∈ R
k×m,

and, as is also noted in [14], leads to the reduced problem

(2.3) S1u = λ̃u, S1 ∈ R
m×m.

If (λ̃, u) is an exact eigenpair of S1, then for nonzero λ̃, (λ̃, [u∗, p∗]∗) with p =
λ̃−1S2u is an exact eigenpair of S. It can be shown [14, section 2.3] that dim(N (S1))
= k, dim(R(S1)) = m − k and

u ∈ N (S1) ⇔
[
u
0

]
∈ G.

Hence, by reducing the problem to (2.3), the geometric multiplicity of the k eigen-
values λ̃ = 0 is reduced from 2 to 1.

3. Arnoldi methods with purification

In section 3.1, the implicitly restarted B-orthogonal Arnoldi method will be
described. In section 3.2, it will be shown how this method can be improved by
exploiting the specific structure of the generalized eigenproblem. A new strategy,
based on this known but previously not used fact, for the computation of a few
leftmost eigenvalues will be presented in section 3.3, followed by numerical examples
in section 3.4.
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3.1. Implicitly restarted B-orthogonal Arnoldi methods.

3.1.1. B-orthogonal Arnoldi. The B-orthogonal Arnoldi method is the standard
Arnoldi method with the usual inner product (x, y) = xT y replaced by the semi-
inner product (x, y)B = xT By. The B-orthogonal Arnoldi method constructs a
B-orthonormal basis v1, . . . , vk+1 for the Krylov subspace

Kk+1(S, v1) = span(v1, Sv1, . . . , S
kv1),

where S = (A − σB)−1B. The basis vectors are related by

(3.1) SVk = VkHk + hk+1,kvk+1e
T
k = Vk+1Hk, V T

k+1BVk+1 = I,

where Vk = [v1, . . . , vk] ∈ R
n×k and Hk ∈ R

k×k and Hk = [HT
k , hk+1,kek]T ∈

R(k+1)×k are upper Hessenberg.1 Relation (3.1) characterizes a k-step Arnoldi fac-
torization. As in the standard Arnoldi method, approximate eigenpairs (θi, Vkyi),
i.e. Ritz pairs, can be computed from eigenpairs (θi, yi) of Hk.

The usual criterion for convergence of a Ritz pair (θ, Vkx) with Hkx = θx is
derived from the relation

SVkx = VkHkx + hk+1,kvk+1e
T
k x = θVkx + hk+1,kvk+1e

T
k x.

If ||hk+1,kvk+1e
T
k x|| is smaller than a given tolerance τ , the Ritz pair (θ, Vkx) is

said to be converged. It follows that if the vi are orthonormalized in the 2-norm, it
suffices to inspect |hk+1,keT

k x|. Since for B-orthogonal Arnoldi the B-inner product
is used, the convergence criterion becomes

(3.2) |hk+1,keT
k x| · ||vk+1||2 < τ.

In [14] and [16], the use of the semi-inner product is motivated by the fact that
the B inner product is not affected by components of vi in the null space of B,
N (B), and hence Hk is independent of components in N (S). Note, however, that
Hk can be corrupted by components in the generalized null space G(S). Moreover,
because the B-inner product is not affected by components in the null space of B,
there is no reason to assume that components of vi in the null space of B will
not grow; for z ∈ N (B), x ∈ Rn and α ∈ R, one has ||x||B = ||x + αz||B . As a
consequence, the Ritz vector Vkyi will be spoiled with error components in N + G
(see also [14, Sect. 4.1] and [16, Sect. 2.3]).

The presence of components in N + G in the Arnoldi basis may not only cause
spurious eigenvalues and inaccurate Ritz vectors, it may also hamper convergence to
the wanted eigenvalues. Purification techniques aim at eliminating the components
in N + G from the Arnoldi vectors, with the following three goals:

• removal of spurious eigenpair approximations;
• improvement of wanted eigenpair approximations by removing N +G com-

ponents from the Ritz vectors;
• increase of the speed of convergence.

Following [14], the notion of purification can be used in several ways, but the idea
boils down to eliminating components in N +G of a vector x by applying Sjs to it,
either explicitly or implicitly. In exact arithmetic, the effect is that Sjsx ∈ R(Sjs),
i.e. Sjsx is in the wanted eigenspace. See [6] and [16] for the first occurences of the
term purification.

1Barred identifiers Hk are elements of R(k+1)×k, whereas Hk ∈ Rk×k.
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3.1.2. Implicitly restarted B-orthogonal Arnoldi with purification. In [14, Sect. 3.2],
an implicitly restarted Arnoldi method with B-inner product is proposed. The
method (see Algorithm 1) reduces the corruption of Hk by components in N and G
significantly (after the implicit restart), and only requires one additional purification
step of the Ritz vectors. The result of the implicit restart in step 4 is that the
Arnoldi vectors in Wk+1 and the upper Hessenberg Gk are the same as the ones
that would have been computed with starting vector Sv1/||Sv1||B . In other words,
the implicit restart removes the N part from Vk+2 and the G part from Hk+1, and
it maps the G part from Vk+2 to the N part of Wk+1. Note that because of the
B-inner product, Hk+1 and Gk are free of contributions of components in N . The
second purification, in step 6, removes the N part from the Ritz vector (the G
part was already removed by the implicit restart). The method can still fail due
to corruption of Hk+1 by rounding errors, but this can be detected by inspecting
||R−1

k ||2 [14, Thm. 4]: if ||R−1
k ||2 is large and growing for successive values of k,

spurious Ritz values may be computed. Secondly, purification of the Ritz vector
Wkyi may fail if the corresponding Ritz value θi is small, i.e. θi ∼ ε||S||.

Algorithm 1 Implicitly restarted B-orthogonal Arnoldi with purification

1: Choose an initial vector v1 ← S2v1

2: Do k + 1 steps of B-orthogonal Arnoldi to compute Vk+2 and Hk+1

3: Compute the QR-factorization Hk+1 = Q
k+1

Rk+1

4: Implicitly restart: Wk+1 = Vk+2Qk+1
, Gk = Rk+1Qk

5: Compute eigenpairs (θi, yi) of the upper k × k part of Gk

6: Purify the Ritz vectors: xi = S(Wkyi) = Wk+1Gkyi

7: The eigen approximations for the generalized problem are (1/θi + σ, xi)

3.2. Exploiting the structure of Ax = λBx. In [14, p. 670], [10, p. 8] and [2,
p. 1313] it is concluded that the reduced problem

S1u = λ̃u, S1 ∈ R
m×m

(see also (2.3)) is only of theoretical interest, because S1 and S2 depend on blocks
in A−1 which are unlikely to be known. However, matrix vector multiplications
with S1, the only operation with S1 that is required by the Arnoldi algorithm,
and with S2 can easily be performed by making use of the available multiplication
with S. Note also that in practical situations S is not available explicitly and
that matrix vector multiplications with S are for instance implemented using the
LU -factorization of A.

Theorem 3.1. Let S ∈ R
n×n have the block structure[

S1 0
S2 0

]
,

with S1 ∈ Rm×m, S2 ∈ Rk×m, and let P = [Im, 0]T ∈ Rn×m, Q = [0, Ik]T ∈ Rn×k

with Im ∈ Rm×m be an identity matrix of dimension m. Then for x ∈ Cm,

S1x = PT SPx,

S2x = QT SPx.
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Proof. The results follow immediately from the identities S1 = PT SP and S2 =
QT SP . �

The operations with P and Q in Theorem 3.1 can be performed very efficiently,
and hence with virtually no additional costs the Arnoldi method can be applied to
S1. This leads to Algorithm 2, a modification of Algorithm 1. The Arnoldi basis
vectors have length m < n, which reduces the costs of orthogonalization (although
usually the costs of operations with S are dominant). In step 1, only a single explicit
purification of the initial vector is needed. Furthermore, the B-inner product, that
was used for its purifying property, and the purification in step 6, are no longer
needed, because the implicit restart removes all corruption by components in N
from Vk+2 and Hk+1. On the other hand, to recover the eigenvectors of the original
problem, an additional multiplication with S2 is needed.

Algorithm 2 Implicitly restarted Arnoldi for S1

1: Choose an initial vector v1 ← S1v1 ∈ Rm

2: Do k + 1 steps of Arnoldi with S1 to compute Vk+2 and Hk+1

3: Compute the QR-factorization Hk+1 = Q
k+1

Rk+1

4: Implicitly restart: Wk+1 = Vk+2Qk+1
, Gk = Rk+1Qk

5: Compute eigenpairs (θi, yi) of the upper k × k part of Gk

6: Compute pi = θ−1
i S2xi

7: The eigen approximations for the generalized problem are (1/θi + σ, [x∗
i , p

∗
i ]

∗)

3.2.1. Improved rounding error analysis. The most important consequence of The-
orem 3.1, however, is that the results of the error analysis in [14, section 5] improve
considerably. Following the notation and assumptions there, let PR1 and PN1 be
normalized projectors that map a vector into R1 = R(S1) and N1 = N (S1), re-
spectively, so x ∈ Cm can be decomposed uniquely as x = PR1x+PN1x. Note that
PN1S1 = 0. The computed Arnoldi vectors satisfy

hj+1,jvj+1 = Svj −
j∑

i=1

hijvi + ψj ,

hij = vT
i Svj + δij ,

vT
i vj =

{
1 + γij , j = i,
γij , j = 1, . . . , i + 1, j �= i.

In block form, the round-off errors ||Ψk+1||2, ||Γk+1||2 and ||∆k||2 for the k-step
Arnoldi factorization are given by the following relations:

Vk+1Hk = SVk + Ψk+1,(3.3)

V T
k+1Vk+1 = I + Γk+1,(3.4)

Hk = V T
k+1SVk + ∆k.(3.5)

Result 3.2. The N1 component in vj may increase as j increases.
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Proof. Repeating the proof in [14, section 4.1] leads to

hj,j+1PN1vj+1 = PN1S1vj −
j∑

i=1

hijPN1vi + PN1ψj

= −
j∑

i=1

hijPN1vi + PN1ψj .

There is no reason to assume that ||PN1vj+1|| does not increase. �

The improvement over the result in [14, section 4.1] is that for Arnoldi applied
to S, there may be an increase of both components in N and G, while here there
may only be a smaller increase of components in N1.

The following result shows the improved effect of the implicit purification via
xj = S(Vkzj) = Vk+1Hkzj , where zj is an eigenvector of Hkzj . Although this
purification is not needed in Algorithm 2, as will become clear in Result 3.4 and
Theorem 3.5, it is included here, however, to show that the relative contributions
of the N1 components are smaller than in the results in [14, section 4.2].

Result 3.3. The purification operation xj = Vk+1Hkzj produces an approximate
eigenvector with no N1 component. This step may fail if |θ−1

j | � ε−1
M , where εM is

the machine precision number.

Proof. From the proof in [14, section 4.2], it follows that the purified xj computed
by xj = Vk+1Hkzj with ||zj ||2 = 1 satisfies

PN1xj = PN1S1Vkzj + PN1ξj

= PN1ξj ,(3.6)

with

||ξj ||2 ≤ 3k3/2||Vk+1||F ||A−1||2εM + ||Ψk+1||2 + O(ε2M ).

If ||zj ||2 = 1 (note that Hkzj = θjzj), then ||Vkzj ||2 
 1 and ||xj ||2 
 θj , and hence
relative contributions of the N1 components in xj are obtained by dividing (3.6)
by θj . If θj is small, these relative contributions become large and purification may
fail. If |θ−1

j |||ξj ||2 � 1, then the N1 component in xj is removed. �

Result 3.4. One implicit restart of Arnoldi produces a Gk that is not corrupted
by N1 components, and a Wk+1 that has no N1 component. This step may fail if
||R−1

k+1||2 � ε−1
M .

Proof. Repeating the proof in [14, section 4.4] leads to

||PN1Wk+1||2 ≤ ||PN1Ξk+1||2 + O(ε2M ),

with

||Ξk+1||2 ≤ (k + 2)3/2||Vk+2||F εM

+(ω||Vk+1||2||A−1||2εM + ||Ψk+2||2)||R−1
k+1||2 + O(ε2M ),

and ω = O(1). If ||R−1
k+1||2 is small, Wk+1 has no significant components in N1.

If ||R−1
k+1||2 is large, then ||Ξk||2 � εM and Wk+1 can have components in N1.

Consequently, Gk is corrupted by the components in N1 and may cause spurious
Ritz values. �
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Figure 1. The size of ||Ψk+1||2 for B-orthogonal Arnoldi applied
to S = (A − 60B)−1B, and Arnoldi applied to S1.

Compared to the results in [14, section 4.4], the corruption in Wk+1 and Gk is
decreased.

The following theorem shows that, as a Ritz pair (λ̃, x) with λ̃ not too small
converges to an eigenpair of S1, it is purified automatically. This is consistent with
Results 3.3 and 3.4, and also explains why implicit purification of converged Ritz
pairs (step 6 in Algorithm 1) is not needed.

Theorem 3.5. Let (λ̃, x) be a converged Ritz pair of S1, with r = S1x − λ̃x and
||r||2 < ε. Then ||PN1x||2 ≤ ε/λ̃.

Proof. Write λ̃PN1x = PN1S1x − PN1r and note that PN1S1x = 0. �

Although failure of IRA if ||R−1
k ||2 is large is still possible, the results above show

that the (growth of the) corruption by N1 components is reduced. The rounding
errors made during the orthogonalization phase are also reduced, because the stan-
dard inner product is used instead of the B-inner product, and hence no additional
multiplications with B are needed.

3.2.2. Numerical example. To illustrate the new results, the growth of ||Ψk+1||2
(see (3.3)) for S and S1 is compared. Figure 1 shows ||Ψk+1||2 at every Arnoldi
iteration for the example matrix pencil taken from [14, Sect. 3.3]. For S, the
B-orthogonal Arnoldi method is used, while for S1 Arnoldi with the usual inner
product is used. For both cases, the initial vector v1, with all entries equal to
one, was purified using v1 ← S2v1 and v1 ← S1v1, respectively. It is clear that
the growth of ||Ψk+1||2 is much smaller for S1. The growth of ||Ψk+1||2 for S
can be explained as follows: let wk be the new Arnoldi vector in iteration k, just
after orthogonalization against Vk, but before normalization. The B-inner product
neglects any components in N (B), but these components are normalized with the
same factor hk+1,k = ||wk||B . If hk+1,k < 1, then these components increase in
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2-norm. This may lead to an increase of ||Ψk+1||2. Typical values of hk+1,k in
this example were of order O(10−4). An explanation for the apparent stagnation
of the growth of ||Ψk+1||2 at some iterations may be: the new Arnoldi vector is
computed as Svk and S1vk respectively, which is in fact an explicit purification of
vk. Combined with hk+1,k not too small, this will cause only a limited increase.

A large ||Ψk+1||2 may not only prevent the implicit restart with zero shift from
purifying the factorization, it also reduces the effect of the implicit purification via
xj = Vk+1Hkzj , as can be deduced from Results 3.3 and 3.4 and their equivalents
in [14]. With this in mind, the choice for Arnoldi with S1 is obvious.

3.3. A new strategy.

3.3.1. Implicitly restarted Arnoldi with deflation. It is not clear from [14] how the
idea of the implicit restart with shift σ0 = 0 (Algorithm 1) is incorporated with
the implicitly restarted Arnoldi method with deflation [11, 22]. The IRA method
starts with a k-step Arnoldi factorization SVk = VkHk +hk+1,kvk+1e

T
k . Then, until

convergence, the following steps are iterated:
(1) Compute the Ritz values θi, i.e. the eigenvalues of Hk, and split them in a

set of wanted Ritz values {θ1 . . . θj} and unwanted Ritz values {σ1 . . . σp},
with k = j + p.

(2) Apply p QR-steps to Hk with shifts σi to remove the unwanted Ritz values.
(3) Extend the j-step Arnoldi factorization to a k-step Arnoldi factorization.

As in Algorithm 2, the idea now is to implicitly restart with σ0 = 0 just before the
computation of the Ritz values in step (1), i.e. just after the extension of the Arnoldi
factorization. Any detected spurious Ritz values can be removed by including these
as shifts for the implicit restarts. The algorithm is summarized in Algorithm 3.
For details about the implementation of implicit shifts, deflation and the locking
procedure, the reader is referred to [11, 22, 23].

Algorithm 3 Implicitly restarted Arnoldi for S1 with purification and deflation

1: Choose an initial vector v1 ← S1v1

2: Do k + 1 steps of Arnoldi to compute Vk+2 and Hk+1

3: while not all converged do
4: Purify by applying one restart with σ = 0: [Vk+1, Hk] = purify(Vk+2, Hk+1)
5: Compute λ(Hk) and lock converged wanted Ritz values
6: Select p shifts σ1, . . . , σp

7: Apply p implicit shifts to compute the (k − p) step Arnoldi factorization
S1Vk−p = Vk−p+1Hk−p

8: Extend S1Vk−p = Vk−p+1Hk−p to S1Vk+1 = Vk+2Hk+1

9: end while

3.3.2. Exploiting transformations to improve selection and convergence. Besides the
shift-and-invert transformation TSI(A, B, σ) = (A−σB)−1, the generalized Cayley
transformation

(3.7) TC(A, B, α1, α2) = (A−α1B)−1(A−α2B) = B+(α1−α2)TSI , α1, α2 ∈ R,

with α1 < α2 and α1 �= λi, i = 1, . . . , n, can be used for problems of the form (2.2);
see [1, 2, 10]. The eigenvalues µi of TC are related to the eigenvalues of (A, B) by
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the relation µi = (λi −α1)−1(λi −α2), and the infinite eigenvalues are transformed
to 1. Eigenvalues close to α1 are mapped to eigenvalues far from the unit circle,
while eigenvalues close to α2 are mapped to eigenvalues with small magnitude.
The property that is of most use is that eigenvalues with Re(λi) < (α1 + α2)/2 are
mapped outside the unit circle, while eigenvalues with Re(λi) > (α1 + α2)/2 are
mapped inside the unit circle. The modified Cayley transformation is defined by

(3.8) TM (A, B, α1, α2, α3) =
[
K − α1M C

CT 0

]−1 [
K − α2M α3C

α3C
T 0

]
,

and has the same properties as the generalized Cayley transform, except that the
infinite eigenvalues are transformed to α3 [1, 2, 10].

In [10], an algorithm is described where Cayley transformations are combined
with shift-and-invert Arnoldi. The algorithm is based on the hybrid algorithm
presented in [1, section 2.3] and consists of two phases. In the first phase, an r-step
Arnoldi factorization is computed using B-orthogonal Arnoldi with purification.
The corresponding r Ritz values are used to determine the parameters α1, α2 ∈ R

of the (modified) Cayley transform TC . In the second phase, implicitly restarted
B-orthogonal Arnoldi with purification is applied to TC to compute the wanted
eigenvalues. The parameters α1, α2 are updated during the restarts.

The Ritz values that are computed in phase 1 may not have converged (moreover,
in [10] there is no convergence testing for the Ritz pairs of phase 1, to avoid accepting
wrong eigenvalues), and there may be spurious Ritz values as well. Also in the
second phase spurious Ritz values may be computed that make the determination
of α1, α2 more difficult. In [10] a selection strategy is used to deal with spurious
Ritz values. The approach presented here makes such a strategy unnecessary and
also reduces the number of different Cayley transformations needed.

Assume that the k = 2 leftmost eigenvalues of (2.2) are wanted (complex conju-
gate pairs counted as one eigenvalue), including any eigenvalues with negative real
part. The algorithm is readily adjustable for any number of wanted eigenvalues.

Simply computing the leftmost eigenvalues of S = TSI(A, 0) = A−1B is not
advisable for several reasons. First, even if there are eigenvalues with negative real
part, the process will most likely be disturbed by spurious Ritz values, as has been
explained in the previous sections. Second, the leftmost eigenvalues of S do not
necessarily correspond to the leftmost eigenvalues of (A, B). The extremal eigen-
values λ̃i of S that correspond to the eigenvalues λi = 1/λ̃i of (A, B), however, can
be computed safely, efficiently and accurately with IRA. These eigenvalues, sorted
in increasing real part order, that are also not necessarily the leftmost eigenvalues
of (A, B), can be used to compute α1, α2 for the modified Cayley transform:

• If Im(λ1) = 0, then α1 = λ1 + Re(λ2)−λ1
2 .

• If Im(λ1) �= 0, then α1 = λ1.
• In both cases, α2 = 2 × Re(λ2) − α1.

With these choices for α1, α2, eigenvalues with Re(λi) < Re(λ2) correspond to
eigenvalues λ̃i of SM = TM (A, B, α1, α2, 0) with |λ̃i| > 1, while eigenvalues with
Re(λi) > Re(λ2) are transformed inside the unit circle. Hence also any missed
eigenvalues between λ1 and λ2 correspond to eigenvalues µi of SM with |µi| > 1.
The eigenvalues of SM with largest magnitude can again be computed by IRA, and
because the infinite eigenvalues are transformed to α3 = 0, there is virtually no
danger that spurious Ritz values will be selected as wanted eigenvalues. As soon as
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eigenvalues inside the unit circle are computed, it can be safely concluded that the
leftmost eigenvalues (including the eigenvalues with negative real part) are found.
The strategy is shown in Algorithm 4.

Algorithm 4 Strategy for computing the 2 leftmost eigenvalues of (A, B)

PHASE 1
1: Compute the r ≥ 2 largest eigenvalues λ̃i of S1 with Algorithm 3
2: Order λi = 1/λ̃i, i = 1, . . . , r, by increasing real part

PHASE 2
3: Determine α1 and α2, and α3 = 0
4: SM = TM (A, B, α1, α2, α3)
5: Compute the largest 2 eigenvalues µi of SM1 with Algorithm 3
6: The eigenvalues of (A, B) are λi = α1µi−α2

µi−1

The strategy consists of two phases: in phase 1 (steps 1-2), the largest eigenvalues
(in magnitude) of S are computed. Phase 2 (steps 3-6) checks for any missed
eigenvalues using the Cayley transformation. In step 1, a larger number r will
increase the chance of computing the leftmost eigenvalue already in this phase.
In step 4, one could also take α1 = 0, but because any missed eigenvalues are
expected to be close to λ1, this is not preferred. Additional verification of any
missed eigenvalues can be done by choosing new α1, α2 based on the eigenvalues
found in step 7 to compute the largest eigenvalues of the new SM , or by using
techniques described in [15].

The difference with existing approaches is that in the determination of α1, α2

rather accurate eigenvalue approximations are used, with as advantages that fewer
updates of SM are needed and that the risk of missing eigenvalues is reduced.
Furthermore, the possible disturbance by spurious Ritz values is reduced by first
computing only the largest eigenvalues of S1. Note that with the choice α3 = 0,
SM can be reduced to SM1 in the same way as S to S1, as described in section 3.2.
If (µ, u) is an exact eigenpair of SM1, then for nonzero µ, (µ, [u∗, p∗]∗) with p =
µ−1SM2u is an exact eigenpair of SM . If (µ, [u∗, p∗]∗) is an eigenpair of the modified
eigenvalue problem (3.8), then (α1µi−α2

µi−1 , [u∗, q∗]∗), with q = (µ−α3)/(µ−1)p, is an
eigenpair of the original generalized eigenvalue problem (2.2), provided µ /∈ {1, α3}
(see [8, 10]).

It may seem that there is no advantage in using SM = TM (α1, α2, 0) instead of S,
since in exact arithmetic, due to shift-invariance of Krylov subspaces, Arnoldi for S
and SM produces the same eigenvalue estimates of (A, B) [15, lemma 2.5]. However,
when using Arnoldi for S, the spurious Ritz values may be hard to distinguish from
wanted leftmost Ritz values, as both may be close to zero, while when using Arnoldi
for SM , the spurious Ritz values (near zero) are clearly separated from the wanted
Ritz values (magnitude larger than 1).

3.4. Realistic examples. The strategy in Algorithm 4 is applied to two large
scale examples. The first example is the stability analysis of the flow over a back-
ward facing step, a well known benchmark problem from fluid dynamics [9]. The
second example is the flow in a driven cavity [4, section 7.1.3]. When referring to
(finite) eigenvalues λi, it is assumed that the λi are sorted in increasing real part
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order, i.e. λ1 is the leftmost eigenvalue. For more information about the bifurcation
analysis of such nonlinear systems, see [3].

The method eigs of Matlab 6.5, which is a wrapper around ARPACK [12], is
used in all experiments. The stopping criterion is τ = 10−6, and the size of the
Arnoldi factorization is k = 20.

3.4.1. Flow over a backward facing step. The matrices A and B with n = m + p =
21, 730+7, 872 = 29, 602, were obtained using the package IFISS [18]. The Reynolds
number was Re = 800 (see [4, p. 315]). Table 1 shows statistics for Algorithm 4
with r = 2, both for S and the reduced problem S1. The leftmost eigenvalues
λ1 = 6.04 · 10−2 and λ2,3 = 7.97 · 10−2 ± i1.92 · 10−2 were already found in the first
phase of the algorithm: the validtion in phase 2 did not result in new eigenvalues.
Although the running times for both the reduced and the unreduced problem are
equal, as expected, the residuals are better for the reduced problem. The claim in
[9], that the steady state flow at a Reynolds number Re = 800 is stable, is confirmed
by the results.

Table 1. Statistics for Algorithm 4 for the flow over a backward
facing step with Reynolds number Re = 800 (section 3.4.1): num-
ber of restarts, time, found eigenvalues and residuals after each
phase.

reduced unreduced
phase 1 phase 2 phase 1 phase 2

#restarts 3 2 3 3
time (s) 118 95 120 97
eigenvalues λ1, λ2,3 λ1, λ2,3 λ1, λ2,3 λ1, λ2,3

maxi ||Axi − λiBxi|| 1 · 10−12 1 · 10−12 9 · 10−11 9 · 10−11

3.4.2. Flow in a driven cavity. The matrices A and B with n = m + p = 8, 450 +
1, 089 = 9, 539, for Reynolds number Re = 500, were obtained using the package
IFISS [18]. Table 2 shows statistics for Algorithm 4 with r = 2 and r = 5, for the
reduced problem S1. The eigenvalues λ1 = 3.21 · 10−2 and λ4 = 1.01 · 10−1 were
found in the first phase of the algorithm. The validation in phase 2 identified the
missed eigenvalue pair λ2,3 = 6.20 · 10−2 ± i4.61 · 10−1. Increasing r does not help
finding the missed eigenvalue in phase 1, while it increases the running time.

Table 2. Statistics for Algorithm 4 for the driven cavity with
Reynolds number Re = 500 (section 3.4.2): number of restarts,
time, found eigenvalues and residuals after each phase.

r = 2 r = 5
phase 1 phase 2 phase 1 phase 2

#restarts 1 4 6 4
time (s) 33 112 106 112
eigenvalues λ1, λ4 λ1, λ2,3 λ1, λ4−7 λ1, λ2,3

maxi ||Axi − λiBxi|| 1 · 10−16 1 · 10−14 1 · 10−10 1 · 10−14



ARNOLDI AND JACOBI-DAVIDSON METHODS 1007

4. Jacobi-Davidson methods, preconditioning and purification

If the linear system solves with A−σB are inaccurate or not computable within
reasonable time, the strategy based on the implicitly restarted Arnoldi method is
no longer applicable, although an inexact variant could be considered [13]. Here
a scheme based on the Jacobi-Davidson QZ method [7] is proposed, one that does
not require exact solves with (A − σB).

The Jacobi-Davidson method [20] combines two principles to compute eigen-
pairs of eigenvalue problems Ax = λx. The first principle is to apply a Ritz-
Galerkin approach with respect to a subspace spanned by v1, . . . , vk, the search
space. The second principle is the computation of a correction orthogonal to the
current eigenvector approximation. The Jacobi-Davidson method for generalized
eigenvalue problems will be briefly explained in sections 4.1 and 4.2. For a more
detailed description, the reader is referred to [7, 19, 20].

In section 4.3, it will be shown that when an exact preconditioner is used to
solve the correction equation, purification is obtained automatically. In section 4.4,
this fact will be combined with other properties of Jacobi-Davidson to obtain an
efficient method for the computation of a few selected eigenvalues.

4.1. The Jacobi-Davidson method for generalized eigenproblems. Given
the generalized eigenvalue problem

Ax = λBx, x �= 0,

with A, B ∈ R
n×n, the Jacobi-Davidson method applies a Petrov-Galerkin con-

dition to compute approximate eigenpairs. If the search space is spanned by
v1, . . . , vk, with Vk = [v1, . . . , vk] orthogonal, and the test space is spanned by
w1, . . . , wk, with Wk = [w1, . . . , wk] orthogonal, the Petrov-Galerkin condition be-
comes

AVks − θBVks ⊥ {w1, . . . , wk}.

This leads to the reduced k × k system

W ∗
k AVks = θW ∗

k BVks,

which can be solved using full space methods like QZ to compute eigenpair approx-
imations (θi, qi = Vksi) of (4.1).

Given such an eigenpair approximation (θi, qi), the question is how to expand
the search and test space to improve the approximation. With the corresponding
residual vector given by

ri = (Aqi − θiBqi),

the Jacobi-Davidson method computes a correction t ⊥ qi from the Jacobi-Davidson
correction equation

(4.1) (I − ziz
∗
i )(A − θiB)(I − qiq

∗
i )t = −ri,

where the test vector zi = µAqi + νBqi for a suitable pair µ, ν ∈ C. The search
space is expanded with t and the test space is expanded with µAt + νBt. A Ritz
pair is accepted if ||ri||2 = ||(Aqi − θiBqi)||2 is smaller than a given tolerance.
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4.2. Jacobi-Davidson QZ. In [7, 19], the Jacobi-Davidson method is extended
with deflation. The Jacobi-Davidson QZ (JDQZ) method computes a partial
generalized Schur form of the pencil (A, B). Let the current approximate partial
generalized Schur form be given by

AQk = ZkSk, BQk = ZkTk,

with Qk, Zk n×k matrices and Sk, Tk upper triangular k×k matrices. The problem
of finding the next Schur triple (qk+1, zk+1, (αk+1, βk+1)) with θk+1 = αk+1/βk+1

can be rewritten as a deflated generalized eigenvalue problem

(4.2) Q∗
kqk+1 = 0, (I − ZkZ∗

k)(βk+1A − αk+1B)(I − QkQ∗
k)qk+1 = 0,

which can be solved by the Jacobi-Davidson method. With the search space rep-
resented by the orthogonal matrix V and the test space by the orthogonal matrix
W , so that V ∗Qk = W ∗Zk = 0, the reduced system matrices become

MA ≡ W ∗(I − ZkZ∗
k)A(I − QkQ∗

k) = W ∗AV,

MB ≡ W ∗(I − ZkZ∗
k)B(I − QkQ∗

k) = W ∗BV.

The generalized Schur decomposition of (MA, MB) is computed using QZ:

Z∗
MMAQM = SA, Z∗

MBQM = SB.

The generalized Schur form is ordered with respect to the target τ , and an approx-
imate Petrov triple for (4.2) is obtained as

(q̃, z̃, (α̃, β̃)) = (V QMe1, WZMe1, (sA,11, sB,11)).

Given a Petrov triple (q̃, z̃, (α̃, β̃)) for the deflated problem, the corresponding
generalized deflated correction equation becomes

(4.3) (I − z̃z̃∗)(I − ZkZ∗
k)(β̃A − α̃B)(I − QkQ∗

k)(I − q̃q̃∗)t = −r̃i,

where the residual r̃ is

r̃ = (I − ZkZ∗
k)(β̃A − α̃B)(I − QkQ∗

k)q̃,

and Q∗
kt = Z∗

k z̃ = Q∗
k q̃ = 0, q̃∗t = 0, ||t||2 = 1. The search space is expanded with

the orthogonal complement of t, and the test space is orthogonally expanded with
(I − ZkZ∗

k)(µA + νB)(I − QkQ∗
k)t.

If the correction equation is solved exactly, the Jacobi-Davidson method con-
verges asymptotically quadratically. In fact, the method can be shown to be a
Newton scheme. Solving the correction equation exactly may be too expensive in
practice and therefore Krylov subspace methods with preconditioning are used to
solve the correction equation approximately. With a preconditioner K ≈ A − τB,
the correction equation (4.3) can be preconditioned by

(I − z̃z̃∗)(I − ZkZ∗
k)K(I − QkQ∗

k)(I − q̃q̃∗).

With Qk := [Qk, q̃], Zk := [Zk, z̃], Yk = K−1Zk and Hk = Q∗
kZk, the left precondi-

tioned correction equation becomes

(4.4) (I − YkH−1
k Q∗

k)K−1(βA − αB)(I − YkH−1
k Q∗

k)t = −r,

where r = (I − YkH−1
k Q∗

k)K−1r̃.
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4.3. Purification. Jacobi-Davidson style methods select a new Petrov pair accord-
ing to some criterion, for instance the leftmost Petrov pair, at every iteration. In
the absence of infinite eigenvalues, selecting the leftmost Petrov pair will usually
result in convergence to the leftmost eigenvalue, assuming that the initial search
space contains components in that direction. In the presence of infinite eigenvalues,
however, this will no longer be a smart strategy: Petrov values will go to infinity,
without a proper mechanism to identify them as infinite eigenvalue approximations.

If the search space is restricted to R(Sj), approximations to infinite eigenvalues
can be avoided. Projection of the search space vectors onto R(Sj) is not attrac-
tive because an orthogonal basis for R(Sj) is not cheaply available. The following
lemmas are needed for proving Theorem 4.6, which states that if an exact precondi-
tioner2 is used for the correction equation and if the initial search space V0 ⊂ R(Sj),
then, in exact arithmetic, no spurious eigenvalues are computed during the Jacobi-
Davidson process.

Lemma 4.1. Let q = ((A − σB)−1B)jx ∈ R(Sj) and K = A − τ0B. Then
r = (βA − αB)q ∈ R(BSj−1).

Proof. The result follows from some linear algebra:

(βA − αB)q = β((A − σB) + (σ − α/β)B)q

= β((σ − α/β)Bq + (A − σB)((A − σB)−1B)j)x
= βB((σ − α/β)q + ((A − σB)−1B)j−1)x ∈ R(BSj−1),

where in the last step R(BSj) ⊆ R(BSj−1) is used. �
Lemma 4.2. Let y = BSj−1x ∈ R(BSj−1) and K = A − τ0B. Then K−1y ∈
R(Sj).

Proof. With basic linear algebra, one finds

K−1y = (A − τ0B)−1y

= (A − τ0B)−1BSj−1x

= (A − σB)−1(I + (τ0 − σ)B(A − τ0B)−1)BSj−1x ∈ R(Sj).

�
Lemma 4.3. Let r ∈ R(Sj), K = A − τ0B, AQk = ZkSA, BQk = ZkSB,
q ∈ R(Sj), z = νAq + µBq, Yk = K−1[Zk, z] and Hk = [Qk, q]∗Zk. Then
(I − YkH−1

k [Qk, q]∗)r ∈ R(S).

Proof. First note that R(Zk) = R(AQk) = R(BQk). It follows from Lemma
4.1 that z ∈ R(BSj−1) and hence R(K−1[Zk, z]) ⊆ R(Sj). Consequently, (I −
YkH−1

k [Qk, q]∗)r ∈ R(Sj). �
Lemma 4.4. Let r ∈ R(Sj), K = A − τ0B, AQk = ZkSA, BQk = ZkSB, q ∈
R(Sj), z = νAq + µBq, Yk = K−1[Zk, z] and Hk = [Qk, q]∗Zk. Then

Kj((I − YkH−1
k Q∗

k)K−1(βA − αB)(I − YkH−1
k Q∗

k), r) ⊆ R(Sj).

Proof. The result follows from applying subsequently Lemmas 4.3, 4.1, 4.2 and
again 4.3. �

2In this paper, an exact preconditioner is a preconditioner K = A − τ0B for which linear
systems of the form Kx = y can be solved exactly, for instance by using an exact LU-factorization
LU = K.
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This lemma not only enables one to use a Krylov solver for the correction equa-
tion, it also has consequences for purification in Jacobi-Davidson.

Lemma 4.5. If the initial search space V0 ⊂ R(Sj) and the Jacobi-Davidson cor-
rection equation is solved using an exact preconditioner, then all subsequent search
spaces Vk ⊂ R(Sj).

Proof. The result follows from Lemma 4.4. �

Theorem 4.6. If the initial search space V0 ⊂ R(Sj) and the Jacobi-Davidson
correction equation is solved using an exact preconditioner, then in exact arithmetic
no spurious eigenpairs are computed during the Jacobi-Davidson process.

Proof. The reduced system is (MA, MB) = (W ∗AV, W ∗BV ) with test space W =
νAV + µBV . Applying Lemma 4.1 to W gives W ⊂ R(BSj−1), and no spurious
eigenvalues are computed. From Lemma 4.5 it follows that the Petrov vectors
qi = Vksi satisfy qi ∈ R(Sj). �

The last theorem says that, in exact arithmetic, if the Jacobi-Davidson method
with exact preconditioning starts with V0 ⊂ R(Sj), then Vk ⊂ R(Sj) and W ⊂
R(BSj−1), and no spurious eigenpairs are computed. In other words, with exact
preconditioning the search space is purified automatically. The effect is evenly
enforced because usually more than one iteration of the Krylov solver is needed.

However, in finite arithmetic, components in N+G may still arise due to rounding
errors, and if an exact preconditioner is not available, Theorem 4.6 is also not
applicable. Fortunately, there is a result similar to Theorem 3.5. Let PR, PN and
PG be normalized projectors that map a vector into R = R(A−1B), N = N (A−1B)
and G = G(A−1B), respectively, so x ∈ C

m can be decomposed uniquely as x =
PRx + PNx + PGx. The following theorem shows that a converged Petrov pair
(λ, x) is purified automatically, provided |λ|, ||A−1||2 and ||B||2 are not too large.

Theorem 4.7. Let (λ, x) be a converged Petrov pair of (A, B), with r = Ax−λBx
and ||r||2 < ε. Then

||PNx||2 ≤ ε||A−1||2(1 + |λ|||A−1||2||B||2),
||PGx||2 ≤ ε||A−1||2.

Proof. Use x = A−1(r + λBx), PN (A−1B) = (A−1B)PG and PG(A−1)B = 0. �

4.4. Harmonic Ritz-values, exact targets and purification. Numerical ex-
periments show that the JDQZ process with harmonic Petrov values and a target
equal to an eigenvalue does not converge to this eigenvalue, but to eigenvalues
closest to the target. This observation can be understood from a theoretical point
of view, as will be explained next, and may be of use in avoiding convergence to
eigenvalues at infinity.

First consider the Jacobi-Davidson process for the ordinary eigenproblem

Ax = λx.

In [20] it is shown that the harmonic Ritz values of A are equal to the eigenvalues
of the k × k matrix

H̃k = (W ∗
k Vk)−1W ∗

k AVk = (W ∗
k Vk)−1
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with Wk = AVk and W ∗
k Wk = I. Note that H̃−1

k = W ∗
k Vk = W ∗

k A−1Wk, the
projection of A−1 with respect to an orthonormal basis Wk. In practice it is not
necessary to invert H̃−1

k , because the harmonic Ritz values of A are the reciprocals
of the eigenvalues of H̃k = W ∗

k Vk. Hence, no problems are encountered if W ∗
k Vk is

singular, which may happen if A has an eigenvalue at zero.

Theorem 4.8. Let A ∈ R
n×n be a normal matrix and τ ∈ R. If τ exactly equals

an eigenvalue of A, then, in exact arithmetic, the Jacobi-Davidson process with
harmonic Ritz values and target τ will not converge to the eigenvalue λ = τ .

Proof. Without loss of generality, let τ = λ = 0: if τ = λ �= 0, the proof follows for
A− τI. Denote the null space of A by N and the range of A by R. The eigenspace
corresponding to the eigenvalue λ = 0 is (a subset of) the null space N . However,
because of the normality of A, the space spanned by the columns of Wk = AVk does
not contain any elements of the eigenspace of λ = 0. Because the eigenspaces of A
and A−1 are the same, the proof would be complete if A−1 would exist. However,
in this case there is an eigenvalue λ = 0 and hence A−1 does not exist.

If δ ∈ C\Λ(A), then (A + δI)−1 exists and the eigenspaces of A, A + δI, and
(A + δI)−1 are the same, but the eigenvalues are λ, λ + δ, and (λ + δ)−1, re-
spectively. With the iteration vectors wk still generated by Avk, and hence Wk

containing no components of the null space of A and the eigenspace Vδ of A + δI,
it follows that the eigenvalue δ−1 will not be contained in the set of eigenvalues of
W ∗

k (A + δI)−1Wk. �
In finite arithmetic, Wk can still contain components of the (generalized) null

space of A, which may hamper convergence to the desired eigenvalues or even cause
convergence to the undesired, perturbed eigenvalue. If the starting vector is in the
null space of A, Jacobi-Davidson with harmonic Ritz values will break down.

The proof for the Jacobi-Davidson QZ process for generalized eigenproblems is
similar. In [21] these observations are used to derive a selection strategy for Ritz
pairs.

4.5. A strategy with JDQZ. The strategy in Algorithm 5 is conceptually the
same as Algorithm 4, with JDQZ instead of IRA. By considering the pencil (B, A)
instead of (A, B), the infinite eigenvalues are transformed to zero. The extremal
eigenvalues of (B, A) can be computed safely, efficiently and accurately by JDQZ
with harmonic Petrov values and target τ = 0 (see Theorem 4.8). These eigen-
values can be used to determine α1, α2 and α3 = 0 for the modified Cayley trans-
form (see also section 3.3), here formulated as the generalized eigenvalue problem
A(α2, α3)x = µB(α1)x with

A(α2, α3) =
[
K − α2M α3C

α3C
T 0

]
, B(α1) =

[
K − α1M C

CT 0

]
.

Eigenpairs that are found in phase 1 (steps 1-3) can be deflated from the problem
in phase 2 (steps 4-6).
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Algorithm 5 Strategy for computing the 2 leftmost eigenvalues of (A, B)

PHASE 1
1: Choose a suitable preconditioner for the correction equation
2: Compute the r ≥ 2 largest eigenvalues λ̃i of (B, A) with JDQZ (τ = 0)
3: Order λi = 1/λ̃i, i = 1, . . . , r, by increasing real part

PHASE 2
4: Determine α1 and α2, and α3 = 0
5: Compute the largest 2 eigenvalues µi of (A(α2, α3),B(α1)) with JDQZ
6: The eigenvalues of (A, B) are λi = α1µi−α2

µi−1

4.6. Realistic examples. The strategy in Algorithm 5 is applied to the test prob-
lems of section 3.4. To make a fair comparison with the IRA strategy in Algorithm 4,
two situations were considered:

• The correction equation is not solved exactly, but with 20 steps of (un-
restarted) GMRES [17] with preconditioner A (stopping earlier if the rela-
tive residual norm drops below ε = 10−6).

• The correction equation is solved exactly and an initial search space of size
jmin is computed with Arnoldi.

In both situations, the initial vector v1 had all entries one and was not purified. The
search and test space dimensions are limited by jmin = 15 and jmax = 20, and the
residual tolerance was 10−6 (see [7] for more details about the several parameters
and sophisticated stopping criteria). In situation 1, solves with preconditioner A are
needed, and hence one could argue that in that case the IRA strategy in Algorithm 4
could also be used. The goal here however is to show that even if the correction
equation is not solved exactly and the initial search space is not constructed with
Arnoldi, JDQZ is able to compute the leftmost eigenvalues. In this way, situation
1 resembles the situation where indeed solves with A are not possible and the
IRA strategy is not applicable. The quality of the preconditioner influences the
speed of convergence of the GMRES process, but this paper is not concerned with
designing a good preconditioner (see [4, chapter 8] and the references therein for
preconditioners of related systems). For the experiments, a variant of the JDQZ
algorithm, that keeps the search and test spaces real, is used (RJDQZ [24]).

4.6.1. Flow over a backward facing step. Table 3 shows statistics for Algorithm 5
with r = 2, for both exact and inexact solutions of the correction equation. The
leftmost eigenvalues λ1 = 6.04 · 10−2 and λ2,3 = 7.97 · 10−2 ± i1.92 · 10−2 were
already found in the first phase of the algorithm: the validation in phase 2 did not
result in new eigenvalues. The differences in residual norms can be explained by the
asymptotically quadratical convergence of the exact variant. Concerning the higher
computing times for the inexact variant, one should keep in mind that for stability
analysis the quality of the solution (no missed eigenvalues) is the most important.
Furthermore, it may be expected that the times can be decreased by using a more
effective preconditioning, but this goes beyond the scope of this paper. The exact
variant is faster than implicitly restarted Arnoldi (cf. Table 2).
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Table 3. Statistics for Algorithm 5 for the backward facing step
with Reynolds number Re = 800 (section 4.6.1): number of iter-
ations, restarts, time, found eigenvalues and residuals after each
phase. No restarts were needed.

Inexact Exact
phase 1 phase 2 phase 1 phase 2

#iterations 18 9 4 2
time (s) 1400 1000 85 80
eigenvalues λ1, λ2,3 λ1 λ1, λ2,3 λ1, λ2,3

maxi ||Axi − λiBxi|| 1 · 10−11 1 · 10−11 1 · 10−15 1 · 10−15

4.6.2. Flow in a driven cavity. Table 4 shows statistics for Algorithm 5 with r = 2,
for both exact and inexact solutions of the correction equation. The eigenvalues
λ1 = 3.21 ·10−2 and λ4 = 1.01 ·10−1 were found in the first phase of the algorithm.
The validation in phase 2 found the missed eigenvalue λ2,3 = 6.20·10−2±i4.61·10−1.
The exact variant is faster than implicitly restarted Arnoldi (cf. Table 2).

Table 4. Statistics for Algorithm 4 for the driven cavity with
Reynolds number Re = 500 (section 4.6.2): number of restarts,
time, found eigenvalues and residuals after each phase. No restarts
were needed.

Inexact Exact
phase 1 phase 2 phase 1 phase 2

#iterations 13 12 3 3
time (s) 330 340 21 58
eigenvalues λ1, λ4 λ1,λ2,3 λ1, λ4 λ1,λ2,3

maxi ||Axi − λiBxi|| 1 · 10−10 1 · 10−10 1 · 10−15 1 · 10−15

5. Conclusions

The strategy based on implicitly restarted Arnoldi is a reliable and fast method
to compute the leftmost eigenvalues of large scale eigenvalue problems, if the solves
needed for the shift-and-invert and Cayley transformations can be done efficiently
and exactly. By exploiting the structure of the generalized eigenvalue problem and
by choosing suitable parameters for the modified Cayley transformation, the trou-
bles caused by infinite eigenvalues are circumvented and no purification is needed.

If the solves that are needed for the transformations cannot be done exactly, the
Jacobi-Davidson QZ method is a good alternative. Following the same strategy,
JDQZ is able the compute the leftmost eigenvalues, without corruption due to infi-
nite eigenvalues. If solves can be done exactly, it is faster than implicitly restarted
Arnoldi. Jacobi-Davidson puts no requirements on the matrix pencil: it can handle
both regular and singular pencils.
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