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A SHARP CONVERGENCE ESTIMATE
FOR THE METHOD OF SUBSPACE CORRECTIONS

FOR SINGULAR SYSTEMS OF EQUATIONS

YOUNG-JU LEE, JINBIAO WU, JINCHAO XU, AND LUDMIL ZIKATANOV

Abstract. This paper is devoted to the convergence rate estimate for the
method of successive subspace corrections applied to symmetric and positive
semidefinite (singular) problems. In a general Hilbert space setting, a conver-
gence rate identity is obtained for the method of subspace corrections in terms
of the subspace solvers. As an illustration, the new abstract theory is used to
show uniform convergence of a multigrid method applied to the solution of the
Laplace equation with pure Neumann boundary conditions.

1. Introduction

Many mathematical models in practice lead to symmetric and positive semi-
definite problems. Simple examples include the variational formulations (or their
discretizations) of boundary value problems such as the Laplace equation with pure
Neumann boundary conditions (see Bochev and Lehoucq [3]) and the linear elastic-
ity equations with pure traction boundary conditions. Other examples of singular
problems are provided by the systems of equations corresponding to the generalized
finite element discretizations (see [1, 20, 19, 20, 21] and [26]).

For singular systems, direct methods based on Gaussian elimination may not
be appropriate and iterative methods can be much more efficient. The objective
of this paper is to study the convergence of the successive subspace correction
methods [25, 24] for semidefinite problems. Classic iterative methods such as the
Gauss-Seidel method, and many multigrid and domain decomposition methods fall
into this category of methods.

The convergence properties of the subspace correction methods for symmetric
and positive definite problems have been a subject of extensive research during the
last twenty years, since these iterative techniques provide very efficient solvers for
many practical problems; see e.g., Hackbusch [9], Xu [25], Yserentant [28], Bramble
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and Zhang [4], Trottenberg, Oosterlee and Schüller [23], Toselli and Widlund [22]
and the references cited therein.

Although, the convergence theory for the subspace correction methods applied
to symmetric and positive definite problems is rather complete, there are not so
many results available currently for the advanced iterative methods for semidefinite
problems. Convergence studies of the classical iterative methods for semidefinite
problems are presented in [10], [2], [12], and [6]. An algebraic convergence analysis
for the multiplicative Schwarz methods for semidefinite problems, can be found in
recent works by Chang and Sun [18], Marek and Szyld [13], and Nabben and Szyld
[14]. Related results are also found in Nepomnyaschikh [15], where a version of
the Schwartz alternating algorithm for a special class of semidefinite variational
problems is considered.

The new theory in this paper has many distinctive features in comparison with
the existing results on convergence of iterative methods for semidefinite problems
in the literature. First of all, our analysis provides a quantitative convergence
rate estimate of general iterative methods in the subspace correction framework.
In particular, our convergence results can be applied to study the convergence of
many iterative methods, including multigrid methods and domain decomposition
methods. Second, our result is sharp as it is given as an identity for the norm of
the error transfer operator under minimal assumptions on subspace solvers. These
assumptions are equivalent to the energy norm convergence of the general iterative
process as discussed in the recent work [11].

Our convergence analysis for the subspace correction method is an extension of
the study made by Xu and Zikatanov [24] for the convergence rate estimate of the
subspace correction methods for symmetric and positive definite problems. Such
an extension, is however surprisingly not straightforward, and requires many new
technical tools.

Throughout the paper, we shall use the following standard notation. Given a
Hilbert space V with an inner product (·, ·) and an induced norm ‖ · ‖, for any
closed space W ⊂ V , W⊥ denotes the orthogonal complement of W with respect
to the inner product, (·, ·); for two subspaces N and W of V with N being a closed
subspace of W , W/N denotes the quotient space of W and W is the closure of W
with respect to the norm ‖ · ‖. For a bounded operator T : V �→ V , N (T ) and
R(T ) denote the null space of T and the range of T respectively.

Let Ω ⊂ R
d be an open and bounded domain. L2(Ω) denotes the space of square

integrable functions and H1(Ω) denotes the standard Sobolev space consisting of
square integrable functions with square integrable (weak) derivatives of first order.
(·, ·)0 and (·, ·)1 denote the usual L2(Ω) inner product and H1(Ω) inner product,
respectively. Also ‖ · ‖0, ‖ · ‖1 and | · |1 denote the L2 norm, H1 norm and H1

seminorm, respectively.
Following [25], we write x1 � y1 and x2 � y2 whenever there exist constants

c1 and c2, independent of important parameters such as number of subspaces and
unknowns such that

(1.1) x1 ≤ c1y1 and x2 ≥ c2y2.

The rest of this paper is organized as follows. In Section 2, a variational frame-
work is introduced for the semidefinite problems and the method of successive
subspace corrections. After some technical results are presented in Section 3, the
convergence theory of the proposed method will be given in Section 4. The analysis
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of multigrid method for the Laplace equation with the pure Neumann boundary
conditions is given in Section 5. Some concluding remarks are made in Section 6.
A few illustrative examples, as well as an auxiliary result related to the symmetric
and positive definite system of equations are provided in the appendix.

2. Variational formulations of semidefinite problems

and the method of subspace corrections

In a general Hilbert space of infinite dimensions, it is more convenient to discuss
the semidefinite problems within a variational framework (without using the notion
of unbounded operators). Given a real Hilbert space V with an inner product (·, ·)
and an induced norm ‖ · ‖, we consider a symmetric positive semidefinite bilinear
form a(·, ·) : V × V → R and the following variational problem: Find u ∈ V such
that

(2.1) a(u, v) = 〈f, v〉, ∀v ∈ V

for some f ∈ V ∗. Here V ∗ denotes the space of bounded linear functionals on V .
We say that the bilinear form a(·, ·), is symmetric and positive semidefinite if

a(u, v) = a(v, u), and a(v, v) ≥ 0, ∀u, v ∈ V.

In what follows, we also use the notation (·, ·)a for a(·, ·), and we denote the induced
seminorm by | · |a, that is,

(u, v)a = a(u, v), |u|a = a(u, u)1/2.

Associated with the bilinear form a(·, ·), we define the following two spaces,

N = {v ∈ V : a(v, w) = 0, ∀w ∈ V }
and the polar set N ◦ = {f ∈ V ∗ : 〈f, v〉 = 0, ∀v ∈ N}.

For the solvability of problem (2.1), we require that f ∈ N ◦, which is the usual
compatibility condition for f . In addition, we assume that the bilinear form a(·, ·)
is continuous and coercive on the quotient space,

a(v, w) � ‖v‖‖w‖, ∀v, w ∈ V,(2.2)

a(v, v) � ‖v‖2
V/N , ∀v ∈ V.(2.3)

The two inequalities (2.2), (2.3) together with the compatibility condition f ∈ N ◦

will be assumed throughout this paper.
We now introduce an abstract iterative method based on subspace corrections.

As a starting point, we split V into a finite sum of closed subspaces, and for such
a splitting we assume that

(A0): There exist a finite number of closed subspaces Vi ⊂ V (i = 1, · · · , J)
such that

(2.4) V =
J∑

i=1

Vi.

The assumption (A0) is needed to rule out decompositions such that

(2.5) V =
J∑

i=1

Vi, but V �=
J∑

i=1

Vi.
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Such a situation may occur when V and some of Vi are infinite dimensional, since
the sum of closed infinite dimensional subspaces is not necessarily closed (such
examples can be found in Deutsch [7] or Rudin [16]). In fact, for decompositions
that satisfy (2.5), the convergence of the subspace correction method cannot be
guaranteed even for the symmetric and positive definite a(·, ·) (see [24]).

Associated with each subspace Vi, we introduce the local null space Ni as follows:

Ni = {vi ∈ Vi : a(vi, wi) = 0, ∀wi ∈ Vi}.
We note that it is obvious that N ∩ Vi ⊂ Ni and the coercivity condition (2.3)
implies the reverse inclusion. Therefore, we have the following equality:

Ni = N ∩ Vi.

To define the subspace correction method, we naturally need the solvability of
the local problems, which can be guaranteed if conditions analogous to (2.2) and
(2.3) are satisfied. In particular, we assume that for each i = 1, · · · , J ,

(A1): a(vi, vi) � ‖vi‖2
Vi/Ni

, ∀vi ∈ Vi.

It is easy to see that (2.2) will hold on each subspace Vi, since Vi ⊂ V . However,
(A1), in general does not follow from (2.3) and it needs to be added as an additional
assumption (see Example A.1 in Appendix A). We now define the orthogonal
complement N⊥

i (as a subspace of Vi) as follows:

N⊥
i = {vi ∈ Vi : (vi, wi) = 0, ∀wi ∈ Ni}.

Note that N⊥
i is isometrically isomorphic to the quotient space Vi/Ni. Let Pi :

V �→ N⊥
i be the projection with respect to a(·, ·) defined by

(2.6) a(Piv, vi) = a(v, vi), ∀vi ∈ N⊥
i .

Thanks to (A1), the operator Pi is well-defined. In the algorithm given below, we
use inexact projections Ti : V �→ N⊥

i defined by

(2.7) Ti = RiPi, ∀i = 1, · · · , J,

where Ri : Vi �→ Vi are given linear operators. The general subspace correction
algorithm is as follows.

Algorithm 2.1. Let u0 ∈ V be given,
for l = 1, ... until convergence,

ul−1
0 = ul−1

for i = 1, · · · , J

ul−1
i = ul−1

i−1 + Tiei, where ei ∈ N⊥
i solves

(2.8) a(ei, vi) = 〈f, vi〉 − a(ul−1
i−1, vi), ∀vi ∈ Vi

endfor
ul = ul−1

J

endfor

We remark that by the coercivity (A1), the local problem (2.8) is solvable.
More importantly, by Tiei, we do not mean that the algorithm requires solving the
local problem exactly and then applying the operator Ti to the exact solution ei of
the local problem. Rather, we mean that we correct the current solution ul−1

i−1 by
adding the approximate correction Tiei. In particular, if Ri = I on Vi, then the
local problem on Vi is solved exactly.
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2.1. Relationship with the positive definite case. In this subsection, we shall
discuss several technical difficulties that arise in extending the convergence the-
ory for the symmetric and positive definite problems to the case of semidefinite
problems. We also point out some similarities between the two cases.

For the symmetric and positive definite problems, the bilinear form a(·, ·) can
play a role as an inner product (·, ·) on the space V and under appropriate assump-
tions (see [24], Section 4 and Appendix B), the convergence rate identity can be
obtained as follows:

|(I − TJ ) · · · (I − T1)|2a = 1 − 1
K

,

where K = sup|v|a=1 K(v) and with wk :=
∑J

i=k+1 vi and vi ∈ Vi,

(2.9) K(v) = inf∑
vk=v

J∑
k=1

(T̄−1
k (vk + T ∗

k wk), (vk + T ∗
k wk))a.

In equation (2.9), the operator T ∗
k is the Hilbert-adjoint of Tk with respect to the

inner product given by a(·, ·) and T̄k is the symmetrization of Tk,

T̄k = Tk + T ∗
k − T ∗

k Tk.

A simple observation is that, when a(·, ·) is semidefinite, a straightforward definition
of the Hilbert-adjoint T ∗

k is not obvious, since a(·, ·) is not an inner product. Fur-
thermore, even with an unambiguous definition of T̄k, the corresponding operator
T̄k does not necessarily have an inverse on Vk.

In addition, the theory in [24] for the symmetric and positive definite problems,
depends crucially on the fact that the operator I−Tk is contractive on Vk and R(Tk)
and R(T ∗

k ) are identical, (see Lemma 4.1 in [24]). The relationships between ranges
and null spaces of Tk, T ∗

k and T̄k for the semidefinite case are more complicated
and the technical results and assumptions that follow are needed to overcome the
difficulties related to such “shortcomings”. The goal that we would like to achieve,
is to obtain the following relation:

(2.10) K(v) = inf
c∈N

inf∑
vk=v+c

J∑
k=1

(T̄ †
k (vk + T ∗

k wk), vk + T ∗
k wk)a,

where wk =
J∑

i=k+1

vi and the operator T̄ †
k is an appropriate generalization of T̄−1

k

in (2.9), whose concrete definition is postponed to the next section. We point out
here that although (2.10) looks very similar to (2.9), we do not know any obvious
way to derive (2.10) from (2.9).

2.2. Some additional assumptions on the subspace solvers. In this subsec-
tion we introduce two additional assumptions (A2a) and (A2b) that are essential
for the convergence analysis, outlined in the previous section. We first introduce the
adjoint of the subspace solver Ti with respect to the bilinear form a(·, ·). Thanks
to (A1), we can define R∗

i : Vi �→ N⊥
i by the following relation:

a(R∗
i wi, vi) = a(wi, Rivi), ∀wi ∈ Vi, vi ∈ N⊥

i .

Using the operator R∗
i , we define the adjoint T ∗

i as follows:

(2.11) T ∗
i = R∗

i Pi.
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The following important relation is a consequence of definition (2.11):

a(Tiv, w) = a(v, T ∗
i w), ∀v, w ∈ V.

Note that this definition is consistent, namely, if a(·, ·) is an inner product, then T ∗
i

is the Hilbert-adjoint of Ti in this inner product. We now introduce T̄i : V �→ Vi,
the symmetrization of Ti in the usual way,

T̄i = Ti + T ∗
i − T ∗

i Ti.

The following assumptions on Ti are needed for analysis later: For each i = 1, · · · , J ,
(A2a): ∃ωi ∈ (0, 2) such that a(Tivi, Tivi) ≤ ωia(Tivi, vi), ∀vi ∈ Vi,
(A2b): ∃βi > 0 such that a(Tivi, Tivi) ≥ βia(vi, vi), ∀vi ∈ Vi.

These two assumptions are variational analogues of the assumptions provided in
[11] and they are necessary and sufficient for the energy norm convergence of the
iterates generated by the subspace solvers Ti (see also Lemma 2.1 below).

Since Ti = RiPi, we restate the assumptions (A2a) and (A2b) in a more con-
venient form, as follows:

(A2a’): ∃ωi ∈ (0, 2) such that a(Rivi, Rivi) ≤ ωia(Rivi, vi), ∀vi ∈ N⊥
i ,

(A2b’): ∃βi > 0 such that a(Rivi, Rivi) ≥ βia(vi, vi), ∀vi ∈ N⊥
i .

2.3. Preliminary results and a generalized inverse of T̄i. In this section, we
prove several technical results.

Lemma 2.1. Assume that (A1), (A2a) and (A2b) hold, then for each 1 ≤ i ≤ J ,
there exists δi ∈ [0, 1) such that

|(I − Ti)vi|2a ≤ δi|vi|2a, ∀vi ∈ Vi.

Proof. For any vi ∈ Vi, we have

0 ≤ |(I − Ti)vi|2a = |vi|2a − 2(vi, Tivi)a + |Tivi|2a
≤ |vi|2a − 2 − ωi

ωi
|Tivi|2a (by (A2a))(2.12)

≤
(

1 − βi
2 − ωi

ωi

)
|vi|2a (by (A2b)) ,

which completes the proof. �
Note that the proof of Lemma 2.1 shows that the constants βi in (A2b) satisfy

βi ≤ ωi

2−ωi
if (A2a) holds. The following inequalities are direct consequences of the

assumptions (A2a), (A2b) and the definitions of Ti, T ∗
i and T̄i.

Lemma 2.2. Under the assumptions (A2a) and (A2b), the following estimates
hold,

(2.13) |Tivi|a � |vi|a, |T ∗
i vi|a � |vi|a, and |T̄ivi|a � |vi|a.

The next lemma shows that the null spaces of Ti, T ∗
i and T̄i are all the same as

Ni when restricted to the subspace Vi.

Lemma 2.3. Assume that (A1), (A2a) and (A2b) hold. Then we have the fol-
lowing relations:

(2.14) N ⊂ N (Ti) ∩ N (T ∗
i ) ∩ N (T̄i)

and

(2.15) N (Ti) ∩ Vi = N (T ∗
i ) ∩ Vi = N (T̄i) ∩ Vi = Ni.
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Proof. The proofs of (2.14) and (2.15) follow directly from the definitions of Ti, T
∗
i

and T̄i, Lemma 2.2 and assumption (A1). �

The result stated in Lemma 2.3 gives an indication on the difference between
the study of the semidefinite problems and that of the symmetric and positive
definite problems. For the symmetric and positive definite problems [24], we have
that N (Ti) ∩ Vi = N (T ∗

i ) ∩ Vi = N (T̄i) ∩ Vi = {0} and hence, Ti : Vi �→ Vi

is an isomorphism. However, in the current settings, for semidefinite problems,
N (Ti)∩Vi = N (T ∗

i )∩Vi = N (T̄i)∩Vi = Ni, and Ni �= {0} in general. The discussion
in the rest of this subsection is devoted to the definition and the properties of an
appropriate generalized inverse of the operator T̄i.

Lemma 2.4. Under the assumptions (A1), (A2a) and (A2b) for i = 1, · · · , J ,
we have:

R(T̄i) is closed in Vi.

Furthermore,

(2.16) R(T̄i) ∩Ni = {0}.

Proof. The fact that T̄i is closed follows from Lemma 2.2. Now if T̄ivi ∈ R(T̄i)∩Ni,
then |T̄ivi|a = 0 and, again by Lemma 2.2, |vi|a = 0. vi ∈ Ni and hence T̄ivi = 0.
This proves (2.16). �

We need a generalized inverse T̄ †
i : V �→ Vi satisfying

(2.17) T̄ †
i c = 0, ∀c ∈ N .

From Lemma 2.3 and Lemma 2.4, it follows that T̄i : N⊥
i → R(T̄i) is an isomor-

phism, and hence T̄−1
i : R(T̄i) → N⊥

i is well defined. We note that the classical
Moore-Penrose generalized inverse, T̄×

i of T̄i is a simple zero extension of T̄−1
i onto

Vi, (see [8]). More precisely, its definition is as follows:

T̄×
i w = 0, ∀w ∈ R(T̄i)⊥,

T̄×
i v = T̄−1

i v, ∀v ∈ R(T̄i).

The classical Moore-Penrose generalized inverse does not necessarily satisfy (2.17)
since T̄i is not self-adjoint in the classical sense and hence the Closed Range Theo-
rem cannot be applied to show that R(T̄i)⊥ = N (T̄i). To have the property (2.17)
hold true, we introduce T̄ †

i by

(2.18) T̄ †
i = (T̄ 2

i )×T̄i.

By Lemma 2.4 and the definition (2.18), the operator T̄ 2
i : N⊥

i → R(T̄ 2
i ) ⊆

R(T̄i) is an isomorphism, and T̄ †
i = T̄−1

i on R(T̄i). Hence, T̄ †
i is an extension of

T̄−1
i : R(T̄i) → N⊥

i on V , satisfying (2.17).

3. Reduction to the positive definite case

One key idea of the convergence analysis of Algorithm 2.1 is to use appropriate
restrictions of a(·, ·) and the subspace solvers Ti’s onto N⊥ and then apply the
theory for symmetric and positive definite problems.

We first introduce Q : V �→ N⊥, which is the orthogonal projection with respect
to the inner product (·, ·), defined as

(Qv, w) = (v, w), ∀v ∈ V, w ∈ N⊥.
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In order to perform the analysis in the aforementioned direction, for any continuous
operator Y : V �→ V , we define Ya : V �→ V by

Ya := QY

and for any closed subspace W ⊂ V , Wa denotes

Wa := {u ∈ V |u = Qw ; w ∈ W} = QW.

In the case when the operator or the subspace has a subscript, for example, Yi :
V �→ V and Wi ⊂ V , then Yi,a and Wi,a denote QYi and QWi respectively.

The following lemma gives some relationships between the subspace solvers and
the orthogonal projection Q.

Lemma 3.1. Let Y : V �→ V be such that N ⊂ N (Y ). Then Y Q = Y , and in
particular,

TiQ = Ti, T ∗
i Q = T ∗

i , and T̄iQ = T̄i.

Next we verify the relevant assumptions that are required by the theory in [24].

Lemma 3.2. Suppose that (A0), (A1), (A2a) and (A2b) hold. Then

(P0): Vi,a is closed and N⊥ =
∑J

i=1 Vi,a,
(P1): ∃ωi ∈ (0, 2) such that a(Ti,avi, Ti,avi) ≤ ωia(Ti,avi, vi), ∀vi ∈ Vi,a,
(P2): Ti,a : Vi,a �→ Vi,a is an isomorphism.

Proof. To prove (P0), we observe that by definition of Q and (A1), the following
bound holds:

‖Qvi‖2 � a(Qvi, Qvi) = a(vi, vi) � ‖vi‖2
Vi/Ni

, ∀vi ∈ Vi.

This implies Vi,a = QVi is closed since Vi/Ni is closed. Furthermore, we have, by
(A0), that

N⊥ = QV =
J∑

i=1

QVi =
J∑

i=1

Vi,a.(3.1)

This concludes the proof of (P0).
Next, we observe that for all vi ∈ Vi,

a(Ti,aQvi, Ti,aQvi) = a(Tivi, Tivi)
≤ ωia(Tivi, vi) (by (A2a))
= ωia(Ti,aQvi, Qvi),

which gives (P1). It remains to show (P2). First, by (A2b), for all vi ∈ Vi, we
have

a(Ti,aQvi, Ti,aQvi) � a(Qvi, Qvi),
which shows that Ti,a : Vi,a �→ Vi,a is injective and R(Ti,a) = Ti,a(Vi,a) is closed.
We now only need to show R(Ti,a) = Vi,a. Since a(·, ·) is symmetric and positive
definite on Vi,a, we can define T ∗

i,a : Vi,a �→ Vi,a, the adjoint of Ti,a : Vi,a �→ Vi,a,
with respect to the inner product a(·, ·). By the definition of T ∗

i,a : Vi,a �→ Vi,a, we
get that N (T ∗

i,a) = {0}. Thus, we may decompose Vi,a in the following way:

Vi,a = R(Ti,a) ⊕N (T ∗
i,a) = R(Ti,a) = R(Ti,a).

This completes the proof of (P2) and the lemma. �
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Let u ∈ V be a solution to (2.1) and {ul : l = 0, · · · } be the iterates generated
by Algorithm 2.1 respectively. The following relation is standard:

u − ul = EJ(u − ul−1) = . . . = El
J(u − u0), EJ = (I − TJ) · · · (I − T1).

The convergence rate can be estimated by bounding the following energy norm of
EJ :

|EJ |a = sup
v∈N⊥

|EJv|a
|v|a

.

By Lemma 3.1, we have

|EJv|2a = (EJv, EJv)a

= (EJ,av, EJ,av)a

= ((I − TJ,a)(I − TJ−1) · · · (I − T1)v, EJ,av)a

= ((I − TJ,a)(I − TJ−1,a) · · · (I − T1)v, EJ,av)a

= · · ·
= ((I − TJ,a)(I − TJ−1,a) · · · (I − T1,a)v, EJ,av)a

= ((I − TJ,a) · · · (I − T1,a)v, (I − TJ,a) · · · (I − T1,a)v)a.

Hence

(3.2) |EJ |a = sup
v∈N⊥

|(I − TJ,a) · · · (I − T1,a)v|a
|v|a

.

From the relation (3.2), Lemma 3.2 and the fact that a(·, ·) : N⊥ ×N⊥ �→ R is
symmetric and positive definite, we obtain the following auxiliary result (see [24]):

Lemma 3.3. Suppose that (A0), (A1), (A2a) and (A2b) hold. Then

|(I − TJ,a) · · · (I − T1,a)|2a = 1 − 1
K

,

where K = sup|v|a=1 K(v) and with wk,a :=
∑J

i=k+1 vi,a and vi,a ∈ Vi,a,

(3.3) K(v) = inf∑
vk,a=v

J∑
k=1

(T̄−1
k,a(vk,a + T ∗

k,awk,a), (vk,a + T ∗
k,awk,a))a.

Proof. The proof is provided in Appendix B. �

In (3.3), T ∗
i,a and T̄i,a denote the adjoint and the symmetrization of Ti,a : N⊥ �→

Vi,a with respect to the inner product a(·, ·), respectively. By the definition of T ∗
i,a,

we have that

(3.4) T ∗
i,a = QT ∗

i

and by Lemma 3.1, we have

(3.5) T̄i,a = Ti,a + T ∗
i,a − T ∗

i,aTi,a = Q(Ti + T ∗
i − T ∗

i Ti) = QT̄i.

Thus, the notation doesn’t cause any confusion, and (3.4) and (3.5) will be applied
directly in what follows.
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4. Convergence rate identities for the MSSC method

The main result of this paper is given in the next theorem and it is an expression
for K(v) in Lemma 3.3 in terms of Ti, T ∗

i and T̄i (which are used in the algorithm),
without using projections on Vi,a.

We first prove a lemma that relates T̄−1
i,a and the generalized inverse T̄ †

i on Vi,a.

Lemma 4.1. Suppose that (A1), (A2a) and (A2b) hold. Then for each 1 ≤ i ≤ J ,
we have

(4.1) QT̄ †
i = (QT̄i)−1 on Vi,a.

Proof. For any given vi ∈ Vi, assume that vi = wi +ci where wi ∈ N⊥
i and ci ∈ Ni.

Then we have

(4.2) QT̄ †
i QT̄i(Qvi) = Q(T̄ 2

i )×T̄iQT̄ivi = Q(T̄ 2
i )×T̄iT̄iwi = Qwi = Qvi.

By Lemma 2.2 and Lemma 2.4, T̄i is symmetric and positive definite on R(T̄i)
with respect to a(·, ·). As a direct consequence, R(T̄i) = R(T̄ 2

i ). Then there exists
ui ∈ N⊥

i such that T̄ivi = T̄ 2
i ui. By Lemma 2.3, we have vi − T̄iui ∈ Ni. Finally

we get that

(4.3) QT̄iQT̄ †
i (Qvi) = QT̄i(T̄ 2

i )×T̄ivi = QT̄i(T̄ 2
i )×T̄ 2

i ui = QT̄iui = Qvi.

(4.2) and (4.3) clearly show (4.1). �

The following theorem is the main result of this paper.

Theorem 4.1. Under the assumptions, (A0), (A1), (A2a) and (A2b), the K in
Lemma 3.3 is given by K = sup|v|a=1,v∈N⊥ K(v), where

K(v) = inf
c∈N

inf∑
vk=v+c

J∑
k=1

(T̄ †
k (vk + T ∗

k wk), vk + T ∗
k wk)a,

with wk =
J∑

i=k+1

vi.

Proof. We first prove the following equality,
J∑

k=1

(T̄−1
k,a(vk,a + T ∗

k,awk,a), vk,a + T ∗
k,awk,a)a(4.4)

=
J∑

k=1

(T̄ †
k (vk + T ∗

k wk), (vk + T ∗
k wk))a,

where vk,a = Qvk for some vk ∈ Vk with k = 1, · · · , J , wk,a =
∑J

i=k+1 vi,a and
wk =

∑J
i=k+1 vi.

Observe that with χk,a = vk,a + T ∗
k,awk,a ∈ Vk,a,

(T̄−1
k,aχk,a, χk,a)a = ((QT̄k)−1χk,a, χk,a)a

= (QT̄ †
kχk,a, χk,a)a (by Lemma 4.1)

= (T̄ †
kχk,a, χk,a)a

= (T̄ †
k (Qvk + QT ∗

k wk), (Qvk + QT ∗
k wk))a

= (T̄ †
k (vk + T ∗

k wk), (vk + T ∗
k wk))a.
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In the last two equalities above, we used Lemma 2.3 and the property of T̄ †
i that

T̄ †
i c = 0 for all c ∈ N . Equation (4.4) then follows from the above equalities.
Thanks to Lemma 3.2 and Lemma 3.3, for K(v) we have

(4.5) K(v) = inf∑
vk,a=v

J∑
k=1

(T̄−1
k,a(vk,a + T ∗

k,awk,a), vk,a + T ∗
k,awk,a)a.

To complete the proof, we need to show that K(v) defined in (4.5) is equal to the
following quantity:

(4.6) K̃(v) = inf
c∈N

inf∑
vk=v+c

J∑
k=1

(T̄ †
k (vk + T ∗

k wk), vk + T ∗
k wk)a.

We first show K̃(v) ≤ K(v). Let {vk,a}, vk,a ∈ Vk,a be a decomposition satis-
fying

∑J
k=1 vk,a = v. Such a decomposition exists because N⊥ =

∑J
k=1 Vk,a. By

the definition of Vk,a, there exist vk ∈ Vk such that Qvk = vk,a for all k = 1, . . . , J .
Moreover, we have that c =

∑J
k=1(vk − vk,a) ∈ N . Applying (4.4) for the decom-

positions {vk,a} and {vk}, together with the definition of K̃(v), gives that

K̃(v) ≤
J∑

k=1

(T̄ †
k (vk + T ∗

k wk), vk + T ∗
k wk)a

=
J∑

k=1

(T̄−1
k,a(vk,a + T ∗

k,awk,a), vk,a + T ∗
k,awk,a)a.

Since the decomposition {vk,a} of v is arbitrary, we have

K̃(v) ≤ inf∑J
k=1 vk,a=v

J∑
k=1

(T̄−1
k,a(vk,a + T ∗

k,awk,a), vk,a + T ∗
k,awk,a)a = K(v).

To show the reverse inequality K(v) ≤ K̃(v) we use a similar argument. Let
c ∈ N and v ∈ N⊥ be fixed. Then by (A0), there exists a decomposition {vk}J

k=1

such that
∑J

k=1 vk = v+c. Now we define vk,a = Qvk and observe that this implies∑J
k=1 vk,a = v. Again, from (4.4), we have

K(v) ≤
J∑

k=1

(T̄ †
k (vk + T ∗

k wk), vk + T ∗
k wk)a.

Since {vk} can be any decomposition of v + c, we may take an infimum over all
such decompositions, to obtain that

K(v) ≤ inf∑J
k=1 vk=v+c

(T̄ †
k (vk + T ∗

k wk), vk + T ∗
k wk)a.(4.7)

Observe that the left side of the above inequality is independent of c ∈ N . Then
we conclude the proof by taking infimum over c ∈ N on the right side of (4.7). �

If Ti = Pi for all i, namely, only exact subspace solvers are employed, which is
an important special case, we have the following result.
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Corollary 4.1. Assume Ti = Pi for i = 1, · · · , J . Then under the assumptions
(A0) and (A1) the following equality holds:

K = sup
|v|a=1,v∈N⊥

inf
c∈N

inf∑
vk=v+c

J∑
k=1

(
Pk

J∑
i=k

vi,
J∑

i=k

vi

)
a

.

This result will be used for the analysis of multigrid method with Gauss-Seidel
smoothing in Section 5.

In passing to the main application of our theory for the multigrid methods,
we shall make a simple illustration by considering the following linear system of
equations:

(4.8) Au = f,

where A ∈ R
n×n is symmetric and a positive semidefinite matrix with positive di-

agonal elements, and f ∈ R
n is assumed to belong to the range of A for consistency.

We now apply the abstract results to the Gauss-Seidel method for (4.8). It is well
known, that the Gauss-Seidel method corresponds to a matrix splitting A = M−N
with

M = D − L and N = Lt,

where D is the diagonal, −L is the strictly lower triangular part of A, and Lt

denotes the transpose of L. In this case, the error propagation matrix E is given
by

E = (I − (D − L)−1A) = (I − Pn) · · · (I − P1),

where Pi = (Aei,·)
(Aei,ei)

ei with {e1, · · · , en} being the canonical basis for R
n.

The energy norm convergence rate is then given by

(4.9) |E|A =

(
sup

v∈N (A)⊥

(Ev, Ev)A

(v, v)A

)1/2

,

where (·, ·)A = (A·, ·) with (·, ·) = (·, ·)�2 being the usual �2 inner product. Since
D is assumed to be positive definite, a simple application of Theorem 4.1, leads to
the following convergence result.

Corollary 4.2. If A is symmetric and positive semidefinite with positive diagonal,
then the energy norm convergence rate given by |E|A of the Gauss-Seidel iterative
method is given as follows:

|E|2A = 1 − K−1,

where with S = LD−1LT ,

K = 1 + sup
v∈N (A)⊥

inf
c∈N (A)

(S(v + c), (v + c))
(v, v)A

.

5. Multigrid method for Neumann problems

In this section we apply Theorem 4.1 to obtain a convergence result for a multi-
grid method applied to a pure Neumann boundary value problem. One main idea
in our analysis is to estimate K(v) by taking special decomposition of the finite
element space on the finest grid into a sum of one-dimensional subspaces spanned
by nodal basis functions on all levels.
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We consider the following Neumann boundary problem:

(5.1) −∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω,

where ∂u
∂n is the exterior normal derivative of u and Ω is a polygonal domain in R

d

with d = 1, 2 or 3. The variational problem corresponding to (5.1) can be given as
follows: Find u ∈ H1(Ω) such that

(5.2) a(u, v) = 〈f, v〉, ∀v ∈ H1(Ω),

where
a(u, v) =

∫
Ω

∇u · ∇vdx and 〈f, v〉 =
∫

Ω

fvdx.

The null space N of a(·, ·) is given by

N = span{1}
and it is well-known that for the solvability of (5.2), it is necessary that f satisfies
the following compatibility condition:∫

Ω

f dx = 0.

It is then easy to see that the solution to (5.1) exists and is unique (in the weak
sense) on the quotient space H1(Ω)/N .

Throughout this section, we also assume that Ω is triangulated with a nested
sequence of quasi-uniform triangulations Tk = {τ i

k}. As usual, the mesh size is
denoted by hk, and we assume that the quasi-uniformity constants are independent
of k and hk ∼ γk with γ ∈ (0, 1), for k = 1, · · · , L. Associated with each Tk, we
have the finite element space of continuous piecewise linear functions Vk ⊂ H1(Ω).
We then obtain a finite number of nested spaces,

V1 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ VL.

As a basis in Vk we choose the standard nodal Courant basis functions φi
k, namely

Vk = span
{
φ1

k, · · · , φnk

k

}
=

nk∑
i=1

V i
k ,

where V i
k = span{φi

k} and each φi
k is the usual finite element basis function, that

is, one at the node xi
k and zero at the other nodes and nk is the dimension of Vk,

or the number of grid nodes, {xj
k}

nk
j=1 for Vk.

We are interested in solving the following equations resulting from the finite
element discretization (with an abuse of notation): find u ∈ V with h = hL and
V = VL such that

(5.3) a(u, v) = 〈f, v〉, ∀v ∈ V.

To solve problem (5.3), we first decompose the space V in the following manner:

(5.4) V =
L∑

k=1

nk∑
i=1

V i
k .

Under the above settings, we observe that the subspace correction method based
on the subspace decomposition (5.4) with exact subspace (local) solver for each
subspace V j

k for k = 1, · · · , L and j = 1, · · · , nk can be understood as the well-
known “/” multigrid algorithm with one Gauss-Seidel sweep in each subspace Vk
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for k = 1, · · · , L, (see [25]). For such a multigrid method, Theorem 4.1 can be
applied, since the error transfer operator E for such a method can be written as a
product of nonexpansive operators, namely

(5.5) E =
L∏

k=1

nk∏
j=1

(I − P j
k ),

where P l
k is the exact projection onto the one-dimensional space V l

k , (see also [25]).
By a direct application of Corollary 4.1, we obtain that

(5.6) |E|2a = 1 − K−1,

where

(5.7) K = sup
v∈N⊥

inf
c∈N

inf∑L
k=1

∑nk
i=1 vi

k=v+c

∑L
k=1

∑nk

i=1 |P i
k(

∑
(l,j)≥(k,i) vj

l )|2a
(v, v)a

,

where nk is the number of nodal points in each subspace Vk with k = 1, · · · , L and

∑
(l,j)≥(k,i)

vj
l =

nk∑
j=i

vj
k +

L∑
l=k+1

nl∑
j=1

vj
l .

The next theorem, which is the main result of this section, gives a uniform bound
on the constant K, and thus of the norm |E|a.

Theorem 5.1. The norm of the error transfer operator, given by (5.5) is bounded
as follows:

(5.8) |E|2a ≤ δ < 1,

with δ independent of the mesh size h and the number of levels L.

Proof. Given v ∈ N⊥, we consider the following decomposition:

v =
L∑

k=1

vk =
L∑

k=1

nk∑
i=1

vi
k, vi

k ∈ V i
k ,

where

vk =
nk∑
i=1

vi
k = (Qk − Qk−1)v,

and Qk is the L2 projection onto Vk and Q0 is the L2 projection onto span{1}.
Note that QLv = v, Q0v = 0 and

∑
(l,j)≥(k,i)

vj
l =

nk∑
j=i

vj
k +

L∑
l=k+1

nl∑
j=1

vj
l =

nk∑
j=i

vj
k + v − Qkv.
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Since for all w ∈ V , and for all vi
k ∈ V i

k , we have

a(P i
kPkw, vi

k) = a(Pkw, vi
k) = a(w, vi

k) = a(P i
kw, vi

k),

and a(·, ·) is V i
k -elliptic, it follows that P i

kPkw = P i
kw ∀w ∈ V . Hence

P i
k

∑
(l,j)≥(k,i)

vj
l = P i

k

nk∑
j=i

vj
k + P i

k(v − Qkv)(5.9)

= P i
k

nk∑
j=i

vj
k + P i

kPk(v − Qkv)

= P i
k

nk∑
j=i

vj
k + P i

k(Pkv − Qkv).

This then yields (with Ωi
k = suppφi

k)

nk∑
i=1

|P i
k

∑
(l,j)≥(k,i)

vj
l |

2
a =

nk∑
i=1

|P i
k

nk∑
j=i

vj
k + P i

k(Pkv − Qkv)|2a

�

⎛⎝ nk∑
i=1

|P i
k

nk∑
j=i

vj
k|

2
a +

nk∑
i=1

|P i
k(Pkv − Qkv)|2a

⎞⎠
�

⎛⎝ nk∑
i=1

∑
j∈Nk(i)

|vj
k|

2
a,Ωi

k
+

nk∑
i=1

|(Pkv − Qkv)|2a,Ωi
k

⎞⎠ ,

where Nk(i) = {j ∈ {1, · · · , nk} : Ωj
k ∩ Ωi

k �= ∅}. Now by (Qk − Qk−1)2 = (Qk −
Qk−1) and a standard error estimate for ‖(Qk − Qk−1)v‖2

0 it follows that

nk∑
i=1

∑
j∈Nk(i)

|vj
k|2a,Ωi

k
�

nk∑
i=1

∑
j∈Nk(i)

|vk(xj
k)|2hd−2

k � h−2
k

nk∑
i=1

hd
k|vk(xj

k)|2

� h−2
k ‖vk‖2

0 � h−2
k ‖(Qk − Qk−1)vk‖2

0

� h−2
k h2

k−1|vk|2a � γ−2|vk|2a,

where we have used that hk ∼ γk with γ ∈ (0, 1). Hence

nk∑
i=1

|P i
k

∑
(l,j)>(k,i)

vj
l |2a �

(
|vk|2a + |(Pk − Qk)v|2a

)
�

(
|(Qk − Qk−1)v|2a + |(Pk − Qk)v|2a

)
.

The proof is completed by applying the following well-known estimates (see Bramble
and Zhang [4] or Xu [25]):

L∑
k=1

(
|(Qk − Qk−1)v|2a + |(Pkv − Qkv)|2a

)
� |v|2a, ∀v ∈ H1(Ω). �



846 Y-J. LEE, J. WU, J. XU, AND L. ZIKATANOV

6. Concluding remarks

In this paper, we have established a sharp convergence estimate for the succes-
sive subspace correction methods applied to the symmetric and positive semidefinite
(singular) problems. As an illustration, using our abstract theory, we have shown
that the multigrid method with the Gauss-Seidel smoothing applied to the Laplace
equation with pure Neumann boundary conditions converges at an optimal rate
independent of the mesh parameter and also the number of levels. Our new multi-
grid analysis presented in this paper has led to a very transparent convergence rate
estimate and it can also be applied to many other elliptic problems.

Appendix A. Some examples

In this appendix, we provide several examples to clarify our assertions made in
the paper.

Example A.1 (Assumption (A1) is necessary in general). We consider V = �2 (the
Hilbert space of all square summable sequences). Let {e1, e2 · · · } be the canonical
Euclidean basis in it, i.e. (ei)j = δij , where δij is the Kronecker delta function. We
introduce a bilinear form a(·, ·) defined by the following equations:

(A.1) a(e2i−1, e2j−1) = 0 and a(e2i, e2j) = δij , ∀i, j = 1, · · · .

By definition,

(A.2) N = span{e2i−1 : i = 1, · · · } and N⊥ = span{e2i : i = 1, · · · }.
We take the subspaces V1 ⊂ V to be as follows:

(A.3) V1 = span{w1, · · ·wi · · · }, wi = αi

(
e2i−1 +

1
2i

e2i

)
.

Here αi = 1√
1+ 1

4i

� 1 are chosen so that ‖wi‖ = 1. Hence a(wi, wj)=δijαiαj2−(i+j)

for all wi ∈ V1. On the other hand, we have that ‖wi‖V1/N1 = ‖wi‖ = 1, since
N1 = V1 ∩ N = {0}. Thus, for the bilinear form a(·, ·) defined by (A.1), the
assumption (A1) does not hold, although the coercivity condition (2.3) holds.

Finally, we provide an example that shows although W ⊂ V is a closed subspace,
Q(W ) may not necessarily be closed, hence assumption (A1) is necessary in general.

Example A.2. For convenience, we shall use the same notation used in Example
A.1. We observe that

(A.4) Qwi =
1√

1 + 4i
e2i.

Hence, Q(W ) = N⊥. Namely, Q(W ) is dense in N⊥. We shall now show that there
exists w̆ ∈ N⊥ for which no pre-image in W of Q exists. Namely, Q : W �→ N⊥ is
not surjective and so Q(W ) is not closed. Let us choose w̆ ∈ N⊥ as follows:

w̆ = {0, 1, 0, 1/2, 0, 1/4, 0, · · · } =
∑
i=1

2−ie2i

and assume there exists w ∈ W such that Qw = w̆. It is clear then that w should
be of the following form:

w =
∑
i=1

µiwi =
∑
i=1

µiαi

(
e2i−1 + 2−ie2i

)
=

∑
i=1

(
e2i−1 + 2−ie2i

)
.
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This gives that µi = α−1
i and as a consequence we obtain that the norm of w grows

unboundedly, since

‖w‖2 =
∑
i=1

(
1 + 4−i

)
= ∞,

and hence we are led to a contradiction.

Appendix B. Proof of Lemma 3.3

In this appendix, we prove Lemma 3.3. First, we state two lemmas, Lemma B.1
and Lemma B.2 without proof since they can be found in [24]. Second, using the
lemmas and Theorem 4.2 in [24], we obtain our main auxiliary result, Lemma 3.3.

Through this appendix, (·, ·)A is a symmetric and positive definite inner product.

Lemma B.1. The following identity holds, for k = 1, · · · , J :

(B.1) I + TkT̄−1
k T ∗

k (I − T−1
k ) = TkT̄−1

k .

Lemma B.2. The following identity holds, for k = 1, · · · , J :

(B.2) (T ∗−1
k − I)TkT̄−1

k T ∗
k (T−1

k − I) = T̄−1
k − I.

Finally, the next lemma uses the above two results and Theorem 4.2 in [24] to
obtain Lemma 3.3.

Lemma B.3. Let v ∈ V ,
∑J

k=1 vk = v and wk =
∑J

i=k+1 vi. For

c0(v) =
J∑

k=1

(
TkT̄−1

k T ∗
k (wk + (I − T−1

k )vk), wk + (I − T−1
k )vk

)
A

,

and

K(v) =

{
(

J∑
k=1

(T̄−1
k (vk + T ∗

k wk), (vk + T ∗
k wk))A

}
,

one has

K(v) = ‖v‖2
A + c0(v).

Proof. A straightforward calculation gives

(v, v)A +
J∑

k=1

(
TkT̄−1

k T ∗
k (wk + (I − T−1

k )vk), wk + (I − T−1
k )vk

)
A

= (
J∑

k=1

vk,

J∑
k=1

vk)A

+
J∑

k=1

(
TkT̄−1

k T ∗
k (wk + (I − T−1

k )vk), wk + (I − T−1
k )vk

)
A

=
J∑

k=1

[(vk, vk)A + 2(vk, wk)A

+
(
TkT̄−1

k T ∗
k (wk + (I − T−1

k )vk), wk + (I − T−1
k )vk

)
A

]
.
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For each term in the sum above we have

(vk, vk)A + 2(vk, wk)A +
(
TkT̄−1

k T ∗
k (wk + (I − T−1

k )vk), wk + (I − T−1
k )vk

)
A

= (vk, vk)A + (TkT̄−1
k T ∗

k (I − T−1
k )vk, (I − T−1

k )vk)A

+ 2
[
(vk, wk)A + (TkT̄−1

k T ∗
k (I − T−1

k )vk, wk)A

]
+ (TkT̄−1

k T ∗
k wk, wk)A.

We use Lemma B.1 and Lemma B.2 to obtain that
(vk, vk)A + 2(vk, wk)A +

(
TkT̄−1

k T ∗
k (wk + (I − T−1

k )vk), wk + (I − T−1
k )vk

)
A

= (T̄−1
k vk, vk)A + 2((I + TkT̄−1

k T ∗
k (I − T−1

k ))vk, wk)A + (T̄−1
k T ∗

k wk, T ∗
k wk)A

= (T̄−1
k vk, vk)A + 2(TkT̄−1

k vk, wk)A + (T̄−1
k T ∗

k wk, T ∗
k wk)A.

Finally,

(v, v)A + c0(v) =
J∑

k=1

(T̄−1
k vk, vk)A + 2

J∑
k=1

(T̄−1
k vk, T ∗

k wk)A

+
J∑

k=1

(T̄−1
k T ∗

k wk, T ∗
k wk)A

=
J∑

k=1

(T̄−1
k (vk + T ∗

k wk), vk + T ∗
k wk)A. �
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