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AN ADAPTIVE PERFECTLY MATCHED LAYER TECHNIQUE
FOR 3-D TIME-HARMONIC ELECTROMAGNETIC

SCATTERING PROBLEMS

JUNQING CHEN AND ZHIMING CHEN

Abstract. An adaptive perfectly matched layer (PML) technique for solv-
ing the time harmonic electromagnetic scattering problems is developed. The
PML parameters such as the thickness of the layer and the fictitious medium

property are determined through sharp a posteriori error estimates. Combined
with the adaptive finite element method, the adaptive PML technique provides
a complete numerical strategy to solve the scattering problem in the frame-
work of FEM which produces automatically a coarse mesh size away from the
fixed domain and thus makes the total computational costs insensitive to the
thickness of the PML absorbing layer. Numerical experiments are included to
illustrate the competitive behavior of the proposed adaptive method.

1. Introduction

We propose and study an adaptive perfectly matched layer (PML) technique for
solving the time harmonic electromagnetic scattering problem with the perfectly
conducting boundary condition

∇×∇× E− k2E = 0 in R
3\D̄,(1.1)

n × E = g on ΓD,(1.2)

|x|
[
(∇× E) × x̂ − ıkE

]
→ 0 as |x| → ∞.(1.3)

Here D ⊂ R3 is a bounded domain with Lipschitz polyhedral boundary ΓD, E is the
electric field, g is determined by the incoming wave, x̂ = x/|x|, and n is the unit
outer normal to ΓD. We assume the wave number k ∈ R is a constant. We remark
that the results in this paper can easily be extended to solve the scattering prob-
lems with other boundary conditions such as Neumann or the impedance boundary
condition on ΓD, or to solve the electromagentic wave propagation through inho-
mogeneous media with a variable wave number k2(x) inside some bounded domain.

Since the work of Bérénger [5] which proposed a PML technique for solving the
time dependent Maxwell equations, various constructions of PML absorbing layers
have been proposed and studied in the literature (cf. e.g. Turkel and Yefet [24],
Teixeira and Chew [23] for the reviews). Under the assumption that the exterior
solution is composed of outgoing waves only, the basic idea of the PML technique is
to surround the computational domain by a layer of finite thickness with a specially
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designed model medium that would either slow down or attenuate all the waves that
propagate from inside the computational domain.

The convergence of the PML method is studied in Lassas and Somersalo [16],
Hohage, Schmidt and Zschiedrich [15] for the acoustic scattering problems and
in Bao and Wu [3], Bramble and Pasciak [7] for the electromagnetic scattering
problems. It is proved in [16, 15, 7] that the PML solution converges exponentially
to the solution of the original scattering problem as the thickness of the PML
layer tends to be infinite. We remark that in practical applications involving PML
techniques, one cannot afford to use a very thick PML layer if uniform meshes are
used because it requires excessive grid points and hence more computer time and
more storage. On the other hand, a thin PML layer requires a rapid variation of
the artificial material property which deteriorates the accuracy if too coarse a mesh
is used in the PML layer.

The adaptive PML technique was first proposed in Chen and Wu [10] for a
scattering problem by periodic structures (the grating problem) and in Chen and
Liu [8] for the acoustic scattering problem in which one uses the a posteriori error
estimate to determine the PML parameters. Combined with the adaptive finite ele-
ment method, the adaptive PML technique provides a complete numerical strategy
to solve the scattering problems in the framework of a finite element which auto-
matically produces a coarse mesh size away from the fixed domain and thus makes
the total computational costs insensitive to the thickness of the PML absorbing
layer.

A posteriori error estimates are computable quantities in terms of the discrete
solution and data that measure the actual discrete errors without the knowledge
of exact solutions. The adaptive finite element method based on a posteriori error
estimates provides a systematic way to achieve the optimal computational com-
plexity by refining the mesh according to the local a posteriori error estimator
on the elements. A posteriori error estimates for the Nédélec H(curl)-conforming
edge elements are obtained in Monk [17] for Maxwell scattering problems, in Beck,
Hiptmair, Hoppe and Wohlmuth [4] for eddy current problems, and in Chen, Wang
and Zheng [9] for Maxwell cavity problems. The restriction in [17, 4] that the
domain should be convex or have smooth boundary in order to ensure the regular-
ity of the function in the Helmholtz decomposition is removed in [9] by using the
Birman-Solomyak decomposition [6].

In this paper we extend the idea of using a posteriori error estimates to determine
the PML parameters for solving the electromagnetic scattering problem (1.1)-(1.3).
Our technique to prove the PML convergence is different from the methods used in
[7, 3]. The key ingredient in our analysis is the following uniform estimate for the
Hankel function H

(1)
ν (z) in [8]:

|H(1)
ν (z)| ≤ e

−Im(z)(1− Θ2

|z|2 )1/2

|H(1)
ν (Θ)|

for any z ∈ C such that Im(z) ≥ 0, Re(z) ≥ 0 and Θ ∈ R satisfying 0 < Θ < |z|.
This estimate, together with a uniform estimate of δn(z) = 1 + z

h(1)′
n (z)

h
(1)
n (z)

for z > 0

due to Nédeléc [20], leads to the following crucial exponentially decaying property
of the PML extension E(λ) (see (2.9) below for the definition):

‖ x̂ × E(λ) ‖H−1/2(Div;Γρ) ≤ C(1 + kR)e−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖λ ‖H−1/2(Div;ΓR).
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Based on this estimate and the stability estimates for the PML equation in the
PML layer, the following error estimate between the solution E of the scattering
problem and the solution Ê of the PML problem is proved (see Theorem 3.1 below):

‖E − Ê‖H(curl;ΩR) ≤ CĈ−1(1 + kR)3|α0|3e
−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖ x̂ × Ê ‖H−1/2(Div;ΓR).

Let Eh be the finite element solution of the PML problem. The following a posteriori
error estimate which is the basis of our adaptive PML method is derived (see
Theorem 4.1 below):

‖E− Eh‖H(curl;ΩR)

≤ C‖g − gh ‖H−1/2(Div;ΓD) + CĈ−1|α0|3(1 + kR)3R1/2
( ∑

K∈Mh

η2
K

)1/2

+CĈ−1|α0|3(1 + kR)3e−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖ x̂× Eh ‖H−1/2(Div;ΓR).

Here gh is the finite element approximation of the boundary value g and ηK is the
a posteriori error indicator on the element K of residual type.

The layout of the paper is as follows. In section 2 we recall the PML formulation
for (1.1)-(1.3). In section 3 we study the existence, uniqueness and convergence of
the PML formulation. In section 4 we introduce the finite element discretization.
In section 5 we derive the sharp a posteriori error estimate which lays down the
basis of the combined adaptive PML and finite element methods. In section 6 we
discuss the implementation of the adaptive method and present several numerical
examples to illustrate the competitive behavior of the method.

2. The PML equation

Let D be contained in the interior of the ball BR = {x ∈ R3, |x| < R} with
boundary ΓR. We first recall the series solution of the scattering problem (1.1)-
(1.3) outside the ball BR by following the development in Monk [18]. Let Y m

n (x̂),
m = −n, . . . , n, n = 1, 2, . . ., be the spherical harmonics which satisfy

∆∂B1Y
m
n (x̂) + n(n + 1)Y m

n (x̂) = 0 on ∂B1,(2.1)

where ∆∂B1 = 1
sin θ

∂
∂θ (sin θ ∂

∂θ ) + 1
sin2 θ

∂2

∂φ2 is the Laplace-Beltrami operator for the
surface of the unit sphere ∂B1. The set of all spherical harmonics {Y m

n (x̂) : m =
−n, . . . , n, n = 1, 2, . . .} forms a complete orthonormal basis of L2(∂B1).

Denote the vector spherical harmonics

Um
n =

1√
n(n + 1)

∇∂B1Y
m
n , Vm

n = x̂ × Um
n ,(2.2)

where ∇∂B1Y
m
n = ∂Y m

n

∂θ eθ + 1
sin θ

∂Y m
n

∂φ eφ, and {er, eθ, eφ} are the unit vectors of the
spherical coordinates. The set of all vector spherical harmonics {Um

n ,Vm
n : m =

−n, . . . , n, n = 1, 2, . . .} forms a complete orthonormal basis of L2
t (∂B1) = {u ∈

L2(∂B1)3 : u · x̂ = 0 on ∂B1}.
For any Φ ∈ H(curl, BR), x̂×Φ|ΓR

is in the trace space H−1/2(Div; ΓR), whose
norm, for any λ =

∑∞
n=1

∑n
m=−n anmUm

n + bnmVm
n , is defined by

‖λ ‖2
H−1/2(Div;ΓR) =

∞∑
n=1

n∑
m=−n

√
n(n + 1)|anm|2 +

1√
n(n + 1)

|bnm|2.(2.3)
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It is also known that for Φ ∈ H(curl; BR), the tangential component (x̂×Φ)×x̂|ΓR

belongs to H−1/2(Curl; ΓR) which is the dual space of H−1/2(Div; ΓR) with respect
to the scalar product in L2

t (ΓR) [20, Theorem 5.4.2, Lemma 5.3.1]. In the following
we will always denote by 〈·, ·〉ΓR

the duality pairing between H−1/2(Div; ΓR) and
H−1/2(Curl; ΓR).

Let h
(1)
n (z) be the spherical Hankel function of the first kind of order n. We

introduce the vector wave functions

Mm
n (r, x̂) = ∇× {xh(1)

n (kr)Y m
n (x̂)}, Nm

n (r, x̂) =
1
ık
∇× Mm

n (r, x̂),

which are the radiation solutions of the Maxwell equation (1.1) in R3\{0}. In the
domain R3\B̄R, the solution E of (1.1)-(1.3) can be written as

E(r, x̂) =
∞∑

n=1

n∑
m=−n

anmMm
n (r, x̂)

h
(1)
n (kR)

√
n(n + 1)

+
ıkRbnmNm

n (r, x̂)

z
(1)
n (kR)

√
n(n + 1)

,(2.4)

where z
(1)
n (kR) = h

(1)
n (kR) + kRh

(1)′
n (kR), and anm, bnm are determined by the

trace of E on ΓR through x̂×E|ΓR
=

∑∞
n=1

∑n
m=−n anmUm

n + bnmVm
n . The series

in (2.4) converges uniformly for r > R.
Now we turn to the introduction of the absorbing PML layer. We surround

the domain ΩR = BR\D̄ with a PML layer ΩPML = {x ∈ R3 : R < |x| < ρ}.
Throughout the paper we assume ρ ≤ CR for some generic constant C > 0. Let
α(r) = 1 + ıσ(r) be the model medium property which satisfies

σ ∈ C(R), σ ≥ 0, and σ = 0 for r ≤ R.

Denote by r̃ the complex radius defined by

r̃ = r̃(r) =
{

r if r ≤ R,∫ r

0
α(t)dt = rβ(r) if r ≥ R.

It is easy to check that the vector wave functions satisfy

Mm
n (r, x̂) = h(1)

n (kr)∇∂B1Y
m
n (x̂) × x̂,(2.5)

Nm
n (r, x̂) =

1
ık
∇× Mm

n(2.6)

=

√
n(n + 1)

ıkr
z(1)
n (kr)Um

n (x̂) +
n(n + 1)

ıkr
h(1)

n (kr)Y m
n (x̂)x̂.

We introduce

M̃m
n (r̃, x̂) = h(1)

n (kr̃)∇∂B1Y
m
n (x̂) × x̂,(2.7)

Ñm
n (r̃, x̂) =

1
ık
∇̃ × M̃m

n(2.8)

=

√
n(n + 1)

ıkr̃
z(1)
n (kr̃)Um

n (x̂) +
n(n + 1)

ıkr̃
h(1)

n (kr̃)Y m
n (x̂)x̂,
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where ∇̃× is the curl operator with respect to the complex spherical variables
(r̃, θ, φ), that is, for Φ = Φrer + Φθeθ + Φφeφ,

∇̃ × Φ =
1

r̃ sin θ

(
∂

∂θ
(sin θΦφ) − ∂Φθ

∂φ

)
er

+
1
r̃

(
1

sin θ

∂Φr

∂φ
− ∂(r̃Φφ)

∂r̃

)
eθ

+
1
r̃

(
∂(r̃Φθ)

∂r̃
− ∂Φφ

∂θ

)
eφ.

It is easy to check that ∇̃×Φ = A∇×BΦ, where A = diag(β−2, α−1β−1, α−1β−1)
and B = diag(α, β, β) are 3 × 3 diagonal matrices.

We follow [18] to derive the PML equation. For any λ =
∑∞

n=1

∑n
m=−n anmUm

n +
bnmVm

n ∈ H−1/2(Div; ΓR), let E(λ)(r̃, x̂) be the PML extension given by

E(λ)(r̃, x̂) =
∞∑

n=1

n∑
m=−n

anmM̃m
n (r̃, x̂)

h
(1)
n (kR)

√
n(n + 1)

+
ıkRbnmÑm

n (r̃, x̂)

z
(1)
n (kR)

√
n(n + 1)

, r > R.(2.9)

For the solution E of the scattering problem (1.1)-(1.3), let Ẽ = E(x̂×E|ΓR
) be the

PML extension of x̂ × E|ΓR
. Since r̃ = r on ΓR, we know that x̂ × Ẽ = x̂ × E on

ΓR. On the other hand, since h
(1)
n (z) ∼ 1

z eı(z− 1
2 nπ− 1

2 π) asymptotically as |z| → ∞,
heuristically Ẽ(r̃, x̂) will decay exponentially for large r > R. It is obvious that Ẽ
satisfies

∇̃ × ∇̃ × Ẽ− k2Ẽ = 0 in R
3\B̄R,

which gives the desired PML equation in the spherical coordinates

∇× B(A∇× BẼ) − k2A−1Ẽ = 0 in R
3\B̄R.

The PML problem is then to find Ê, which approximates E in ΩR and BẼ in
ΩPML = Bρ\B̄R, as the solution of the following system:

∇× BA(∇× Ê) − k2(BA)−1Ê = 0 in Ωρ = Bρ\D̄,(2.10)

n × Ê = g on ΓD, x̂× Ê = 0 on Γρ.(2.11)

The well-posedness of the PML problem (2.10)-(2.11) and the convergence of its
solution to the solution of the original problem (1.1)-(1.3) will be studied in the
next section.

In the remainder of this section we introduce the equivalent variational form
of the scattering problem (1.1)-(1.3) and the PML problem (2.10)-(2.11) on the
bounded domain ΩR = BR\D̄ using the Calderon operators.

Given a tangential vector λ on ΓR, the Calderon operator Ge : H−1/2(Div; ΓR) →
H−1/2(Div; ΓR) is the Dirichlet to Neumann operator defined by

Ge(λ) =
1
ık

x̂ × (∇× Es),

where Es satisfies

∇×∇× Es − k2Es = 0 in R
3\B̄R,

x̂× Es = λ on ΓR,

|x|
[
(∇× Es) × x̂− ıkEs

]
→ 0 as |x| → ∞.
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Let λ =
∑∞

n=1

∑n
m=−n anmUm

n + bnmVm
n ; the function Es is given as in (2.4)

Es(r, x̂) =
∞∑

n=1

n∑
m=−n

anmMm
n (r, x̂)

h
(1)
n (kR)

√
n(n + 1)

+
ıkRbnmNm

n (r, x̂)

z
(1)
n (kR)

√
n(n + 1)

, r > R.

Since 1
ık∇× Mm

n = Nn
m, − 1

ık∇× Nm
n = Mm

n , we have

1
ık
∇× Es =

∞∑
n=1

n∑
m=−n

amnNm
n

h
(1)
n (kR)

√
n(n + 1)

− ıkRbmnMm
n

z
(1)
n (kR)

√
n(n + 1)

.

Thus, by (2.5)-(2.6),

Ge(λ) =
∞∑

n=1

n∑
m=−n

−ıkRbnmh
(1)
n (kR)

z
(1)
n (kR)

Um
n (x̂) +

anmz
(1)
n (kR)

ıkRh
(1)
n (kR)

Vm
n (x̂).(2.12)

Let a : H(curl, ΩR) × H(curl, ΩR) → C be the sesquilinear form

a(E,Φ) =
∫

ΩR

(∇× E · ∇ × Φ̄ − k2E · Φ̄)dx + ık〈Ge(x̂ × E), (x̂× Φ) × x̂〉ΓR
.

The scattering problem (1.1)-(1.3) is equivalent to the following weak formulation:
Given g ∈ H−1/2(Div; ΓD), find E ∈ H(curl; ΩR) such that n×E = g on ΓD, and

a(E,Φ) = 0, ∀Φ ∈ HD(curl; ΩR),(2.13)

where HD(curl; ΩR) = {v ∈ H(curl; ΩR) : n × v = 0 on ΓD}.
The existence of a unique solution of the variational problem (2.13) is known

[18, 20]. Then the general theory in Babuška and Aziz [1] implies that there exists
a constant µ > 0 such that the following inf-sup condition holds:

sup
Φ∈HD(curl;ΩR)

|a(Ψ,Φ)|
‖Φ‖H(curl;ΩR)

≥ µ‖Ψ‖H(curl;ΩR), ∀Ψ ∈ HD(curl; ΩR).(2.14)

To study the convergence of the PML problem (2.10)-(2.11), we need to refor-
mulate it in the bounded domain ΩR by imposing the boundary condition

x̂ × (∇× Ê)|ΓR
= ıkĜe(x̂× Ê|ΓR

),

where the approximate Calderon operator Ĝe : H−1/2(Div; ΓR) → H−1/2(Div; ΓR)
is defined as

Ĝe(λ) :=
1
ık

x̂ × (∇× Ψ),(2.15)

with Ψ satisfying

∇× BA(∇× Ψ) − k2(BA)−1Ψ = 0 in ΩPML,(2.16)
x̂ × Ψ = λ on ΓR, x̂ × Ψ = 0 on Γρ.(2.17)

That the approximate Calderon operator Ĝe is well-defined will be studied in the
next section. Based on the operator Ĝe, let â : H(curl; ΩR)×H(curl; ΩR) → C be
the sesquilinear form

â(Ê,Φ) =
∫

ΩR

(∇× Ê · ∇ × Φ̄− k2Ê · Φ̄)dx + ık〈Ĝe(x̂× Ê), (x̂× Φ) × x̂〉ΓR
.

Then the weak formulation of (2.10)-(2.11) on the bounded domain ΩR is: Given
g ∈ H−1/2(Div; ΓD), find Ê ∈ H(curl; ΩR), such that n × Ê = g on ΓD, and

â(Ê,Φ) = 0, ∀Φ ∈ HD(curl; ΩR).(2.18)
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3. Convergence of the PML problem

We start by considering the Dirichlet problem of the PML equation in the layer

∇× BA∇× v − k2(BA)−1v = 0 in ΩPML,(3.1)
x̂ × v = 0 on ΓR, x̂ × v = q on Γρ,(3.2)

where q ∈ H−1/2(Div; Γρ). Introduce the sesquilinear form c : H(curl; ΩPML) ×
H(curl; ΩPML) → C as

c(v,Φ) =
∫

ΩPML
(BA∇× v · ∇ × Φ̄ − k2(BA)−1v · Φ̄)dx.

Then the weak formulation for (3.1)-(3.2) is: Given q ∈ H−1/2(Div; Γρ), find v ∈
H(curl; ΩPML) such that x̂ × v = 0 on ΓR, x̂× v = q on Γρ, and

c(v,Φ) = 0, ∀Φ ∈ H0(curl; ΩPML).(3.3)

We make the following assumption on the fictitious medium property σ, which
is rather mild in the practical application of the PML technique

(H1) σ = σ0

(
r − R

ρ − R

)m

for some constant σ0 > 0 and some integer m ≥ 1.

From (H1) we know that β(r) = 1 + ıσ̂(r), where

σ̂(r) =
1
r

∫ r

R

σ(t)dt =
σ0

m + 1
r − R

r

(
r − R

ρ − R

)m

.

Thus σ̂ ≤ σ for all r ≥ R. Notice that BA = diag(αβ−2, α−1, α−1); we have

Re
[
c(Φ,Φ)

]
=

∫
ΩPML

{1 − σ̂2 + 2σσ̂

(1 + σ̂2)2
|(∇× Φ)r|2 +

1
|α|2 |(∇× Φ)θ|2 +

1
|α|2 |(∇× Φ)φ|2

}
dx

−k2

∫
ΩPML

{1 − σ̂2 + 2σ̂σ

1 + σ2
|Φr|2 + |Φθ|2 + |Φφ|2

}
dx.

Since

1 − σ̂2 + 2σσ̂

(1 + σ̂2)2
≥ 1 + σσ̂

(1 + σ̂2)2
≥ 1

1 + σ2
0

,
1 − σ̂2 + 2σ̂σ

1 + σ2
≥ 1

1 + σ2
0

,

we know by using the spectral theory of compact operators that (3.3) has a unique
solution for every real k except possibly for a discrete set of values of k (see [12,
Theorem 2] for a similar discussion on the PML equation for acoustic scattering
problems). In this paper we will not elaborate on this issue and simply make the
following assumption:

(H2) The Dirichlet PML problem in the layer (3.3) has a unique solution.

The uniqueness and existence of the Dirichlet PML problem for the acoustic scat-
tering problem is proved in [8] for sufficiently large σ0 > 0. How to extend the
analysis in [8] to the electromagnetic PML problem in the layer is an interesting
open problem.
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For any Φ ∈ H(curl; ΩPML), we define

‖Φ‖2
∗,ΩPML =

∫
ΩPML

[
1 + σσ̂

(1 + σ̂)2
|(∇× Φ)r|2 +

1
1 + σ2

|(∇× Φ)θ|2

+
1

1 + σ2
|(∇× Φ)φ|2 + k2

(1 + σ̂σ

1 + σ2
|Φr|2 + |Φθ|2 + |Φφ|2

)]
dx.

It is clear that ‖Φ‖∗,ΩPML is an equivalent norm of H(curl; ΩPML). Thus by (H2),
there exists a constant Ĉ > 0 such that

(3.4) sup
Ψ∈H0(curl;ΩPML)

|c(Φ,Φ)|
‖Φ‖∗,ΩPML

≥ Ĉ‖Ψ‖∗,ΩPML , ∀Ψ ∈ H0(curl; ΩPML).

Without loss of generality we assume Ĉ ≤ 1. The following theorem is the main
result of this section.

Theorem 3.1. Let (H1)-(H2) be satisfied. Then for sufficiently large σ0 > 0, the
PML problem (2.10)-(2.11) has a unique solution Ê ∈ H(curl; Ωρ). Moreover, we
have the following estimate

‖E − Ê‖H(curl;ΩR) ≤ CĈ−1(1 + kR)3|α0|3e
−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖ x̂ × Ê ‖H−1/2(Div;ΓR),

where α0 = 1 + ıσ0.

The proof of this theorem will be given in section 3.3 which depends on the
exponential decay estimates for the PML extension and the stability estimates of
the Dirichlet problem of the PML equation in the layer.

3.1. Estimates for the PML extension. We first recall some estimates for the
Hankel functions. The following estimate which is proved in [8] based on the Mac-
donald formula will play an important role in our analysis.

Lemma 3.2. For any ν ∈ R, z ∈ C++ = {z ∈ C : Im(z) ≥ 0, Re(z) ≥ 0} and
Θ ∈ R such that 0 < Θ < |z|, we have

|H(1)
ν (z)| ≤ e

−Im(z)(1− Θ2

|z|2 )1/2

|H(1)
ν (Θ)|.

We also need the following important estimate of the spherical Hankel functions
[20, p.195].

Lemma 3.3. For any Θ > 0, δn(Θ) = z(1)
n (Θ)

h
(1)
n (Θ)

satisfies |δn(Θ)| ≥ n(n+1)
2Θ2+n+1 .

Lemma 3.4. For any λ =
∑∞

n=1

∑n
m=−n anmUm

n + bnmVm
n ∈ H−1/2(Div; ΓR), let

E(λ)(r̃, x̂) be the PML extension in (2.9). Then we have

1
ık
∇̃ × E(λ) =

∞∑
n=1

n∑
m=−n

amnÑm
n

h
(1)
n (kR)

√
n(n + 1)

− ıkRbmnM̃m
n

z
(1)
n (kR)

√
n(n + 1)

,

x̂ × E(λ) =
∞∑

n=1

n∑
m=−n

h
(1)
n (kr̃)

h
(1)
n (kR)

anmUm
n +

R

r̃

z
(1)
n (kr̃)

z
(1)
n (kR)

bnmVm
n ,

1
ık

x̂ × (∇̃ × E(λ)) =
∞∑

n=1

n∑
m=−n

−ıkRbmnh
(1)
n (kr̃)

z
(1)
n (kR)

Um
n +

amnz
(1)
n (kr̃)

ıkr̃h
(1)
n (kR)

Vm
n .



AN ADAPTIVE PML TECHNIQUE 681

Proof. The first equality follows since 1
ık ∇̃ × M̃m

n = Ñm
n and − 1

ık ∇̃ × Ñm
n = M̃m

n .
From the definition of the vector spherical harmonics in (2.2), we derive from (2.7)
and (2.8) that

x̂× M̃m
n =

√
n(n + 1)h(1)

n (kr̃)Um
n ,(3.5)

x̂× Ñm
n =

√
n(n + 1)

1
ıkr̃

z(1)
n (kr̃)Vm

n .(3.6)

This proves the second and third equalities. �

The following exponential decay estimate of the PML extension provides the first
hint of the convergence of the PML problem (2.10)-(2.11).

Lemma 3.5. For any λ ∈ H−1/2(Div; ΓR), let E(λ) be the PML extension in (2.9).
Then, for any r > R, we have

‖ x̂× E(λ) ‖H−1/2(Div;Γr) ≤ C(1 + kR)e−Im(kr̃)(1− R2

|r̃|2 )1/2

‖λ ‖H−1/2(Div;ΓR).

Proof. By Lemma 3.2 and using the relation h
(1)
n (z) =

√
π
2z H

(1)
n+1/2(z), we obtain

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣ ≤ ∣∣∣R
r̃

∣∣∣1/2

e
−Im(kr̃)(1− R2

|r̃|2 )1/2

≤ e
−Im(kr̃)(1− R2

|r̃|2 )1/2

.(3.7)

Since h
(1)
n (z) = −n+1

z h
(1)
n (z) + h

(1)
n−1(z), we have

∣∣∣R
r̃

z
(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣ =
∣∣∣R
r̃

h
(1)
n (kr̃) + kr̃h

(1)′
n (kr̃)

z
(1)
n (kR)

∣∣∣(3.8)

=
∣∣∣R
r̃

−nh
(1)
n (r̃) + kr̃h

(1)
n−1(kr̃)

z
(1)
n (kR)

∣∣∣
≤

(
n
∣∣∣ h

(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣ + kR
∣∣∣ h

(1)
n−1(kr̃)

h
(1)
n−1(kR)

h
(1)
n−1(kR)

h
(1)
n (kR)

∣∣∣
) ∣∣∣h(1)

n (kR)

z
(1)
n (kR)

∣∣∣
≤ (n + kR)|δn(kR)|−1e

−Im(kr̃)
(
1− R2

|r̃|2

)1/2

,

where we use the inequality that |h(1)
n−1(kR)| ≤ |h(1)

n (kR)|, which is a consequence
of the Nicholson integral (see [8, (2.18)]).

It remains to estimate |δn(Θ)| for Θ > 0. Since h
(1)′
n (z) = n

z h
(1)
n (z) − h

(1)
n+1(z),

we have

δn(Θ) =
z
(1)
n (Θ)

h
(1)
n (Θ)

= n + 1 − Θ
h

(1)
n+1(Θ)

h
(1)
n (Θ)

,

which implies, for Θ ≥ 2n+1, |δn(Θ)| ≥ Θ−(n+1) ≥ n and thus |δn(Θ)|−1 ≤ n−1.
For Θ ≤ (2n + 1), we resort to the estimate of Nédeléc in Lemma 3.3 to get

|δn(Θ)|−1 ≤ 1
n

(1 + 4Θ), Θ ≤ 2n + 1.

Hence

(n + kR)|δn(kR)|−1 ≤ 3(1 + 4kR).(3.9)
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Substitute it into (3.8); we conclude that

∣∣∣R
r̃

z
(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣ ≤ C(1 + kR)e−Im(kr̃)(1− R2

|r̃|2 )1/2

.(3.10)

The lemma now follows from the second equality in Lemma 3.4 by using the esti-
mates (3.7), (3.10) and the definition (2.3). �

3.2. The PML equation in the layer. In this subsection we derive the stability
estimates for the Dirichlet problem of the PML equation in the layer. We need the
following weighted norm of H(curl; ΩPML):

‖Φ‖curl;ΩPML = (‖∇ × Φ ‖2
L2(ΩPML) + R−2‖Φ ‖2

L2(ΩPML))
1/2.

Lemma 3.6. Let (H1)-(H2) be satisfied. There exists a constant C > 0 indepen-
dent of k, R, ρ and σ0 such that the following estimates are satisfied:

‖v ‖curl;ΩPML ≤ CĈ−1|α0|2‖q‖H−1/2(Div;Γρ),(3.11)

‖ x̂ × (∇× v) ‖H−1/2(Div;ΓR) ≤ CĈ−1(1 + kR)2|α0|2‖q ‖H−1/2(Div;Γρ),(3.12)

where α0 = 1 + ıσ0.

Proof. From the definition of the sesquilinear form c it is easy to see that

|c(v,Φ)| ≤
∫

ΩPML

{
|αβ−2||(∇× v)r||(∇× Φ)r|(3.13)

+|α|−1|(∇× v)θ||(∇× Φ)θ| + |α|−1|(∇× v)φ||(∇× Φ)φ|

+k2(|α−1β2||vrΦr| + |α||vθΦθ| + |α||vφΦφ|)
}

dx

≤ C(1 + kR)|α0|‖v‖∗,ΩPML‖Φ‖curl;ΩPML .

To show (3.11), let Ψ ∈ H(curl; ΩPML) be such that x̂×Ψ = 0 on ΓR and x̂×Ψ = q
on Γρ; then Φ = v − Ψ ∈ H0(curl; ΩPML). Thus c(v,v − Ψ) = 0 by (3.3), and
consequently

|c(v,v)| = |c(v,Ψ)| ≤ C(1 + kR)|α0|‖v‖∗,ΩPML‖Ψ‖curl;ΩPML .

Thus by (3.4),

‖v‖∗,ΩPML ≤ CĈ−1(1 + kR)|α0|‖Ψ‖curl;ΩPML ,

for any Ψ such that x̂×Ψ = 0 on ΓR and x̂×Ψ = q on Γρ. By the trace theorem,
we obtain

‖v‖∗,ΩPML ≤ CĈ−1(1 + kR)|α0|‖q ‖H−1/2(Div;Γρ).(3.14)

This proves (3.11) since

‖v‖2
∗,ΩPML ≥ |α0|−2‖∇ × v ‖L2(ΩPML) + k2|α0|−2‖v ‖L2(ΩPML)

≥ |α0|−2(1 + k2R2)‖v ‖2
curl;ΩPML .

To show (3.12), noticing that v satisfies the differential equation (3.1), we inte-
grate by parts to get, for any Φ ∈ H(curl; ΩPML) such that x̂ × Φ = 0 on Γρ,

c(v,Φ) = −〈x̂ × (∇× v), (x̂× Φ) × x̂〉ΓR
.
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Thus, by (3.13) and (3.14),

‖ x̂ × (∇× v) ‖H−1/2(Div;ΓR) ≤ sup
Φ∈HD(curl;ΩPML)

|c(v,Φ)|
‖Φ‖curl;ΩPML

≤ C(1 + kR)|α0|‖v ‖∗,ΩPML

≤ CĈ−1(1 + kR)2|α0|2‖q ‖H−1/2(Div;Γρ).

This concludes the proof. �

3.3. Convergence of the PML problem. We start by introducing the propaga-
tion operator P : H−1/2(Div; ΓR) → H−1/2(Div; Γρ). For any λ ∈ H−1/2(Div; ΓR),
we define P(λ) = x̂ × E(λ)(ρ̃, x̂), where E(λ) is the PML extension of λ in (2.9).
By Lemma 3.5, we know that

‖P(λ) ‖H−1/2(Div;Γρ) ≤ C(1 + kR)e−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖λ ‖H−1/2(Div;ΓR).(3.15)

Lemma 3.7. Let (H1)-(H2) be satisfied. We have

‖ ık(Ĝe − Ge)(λ) ‖H−1/2(Div;ΓR)

≤ CĈ−1(1 + kR)3|α0|3e
−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖λ ‖H−1/2(Div;ΓR).

Proof. For any λ ∈ H−1/2(Div; ΓR), by (2.12) and the third equality in Lemma 3.4,
we know that

Ge(λ) =
1
ık

x̂× (∇̃ × E(λ))|ΓR
.

Since ∇̃ × E(λ) = A∇× BE(λ) and A = diag{1, 1, 1} on ΓR, we have

Ge(λ) =
1
ık

x̂× (∇× BE(λ))|ΓR
.

Now by (2.16)-(2.17), we know that (Ge−Ĝe)(λ) = 1
ık x̂×(∇×w), where w satisfies

∇× BA(∇× w) − k2(BA)−1w = 0 in ΩPML,

x̂× w = 0 on ΓR, x̂× w = BP(λ) on Γρ.

By Lemma 3.6 and (3.15), we have

‖ x̂× (∇× Bw) ‖H−1/2(Div;ΓR)

≤ CĈ−1(1 + kR)2|α0|2‖BP(λ) ‖H−1/2(Div;Γρ)

≤ CĈ−1(1 + kR)3|α0|3e
−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖λ ‖H−1/2(Div;ΓR).

This completes the proof. �

Now we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. The existence of a unique solution for (2.18) follows from
Lemma 3.7 by using the small perturbation argument the same as that in [10,
Theorem 2.4]. Next, by (2.13) and (2.18) we have, for any Φ ∈ HD(curl; ΩR),

a(E− Ê,Φ) = â(Ê,Φ) − a(Ê,Φ) = ık〈(Ĝe − Ge)(x̂× Ê), (x̂× Φ) × x̂〉ΓR
.

This yields the desired estimate upon using Lemma 3.7 and (2.14). �
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4. Finite element discretization

We start by introducing the weak formulation of the PML problem (2.10)-(2.11).
Let

b(Ψ,Φ) =
∫

Ωρ

(BA∇× Ψ · ∇ × Φ̄ − k2(BA)−1Ψ · Φ̄)dx.(4.1)

Then the weak formulation of (2.10)-(2.11) is: Given g ∈ H−1/2(Div; ΓD), find
Ê ∈ H(curl, Ωρ), such that n × Ê = g on ΓD, x̂ × Ê = 0 on Γρ, and

b(Ê,Φ) = 0, ∀Φ ∈ H0(curl; Ωρ).(4.2)

Let Γh
ρ , which consists of piecewise triangles whose vertices lie on Γρ, be an

approximation of Γρ. Let Ωh
ρ be the subdomain of Ωρ bounded by ΓD and Γh

ρ . Let
Mh be a regular triangulation of the domain Ωh

ρ . We will use the lowest order
Nédeléc edge element [19] for which the finite element space Uh over Mh is defined
by

Uh = {u ∈ H(curl; Ωh
ρ) : u|K = aK + bK × x, ∀aK ,bK ∈ R

3, ∀K ∈ Mh}.

Degrees of freedom of functions u ∈ Uh on every K ∈ Mh are
∫

ei
u ·dl, i = 1, . . . , 6,

where e1, . . . , e6 are the six edges of K. Denote
◦
Uh = Uh ∩ H0(curl; Ωh

ρ). In the

following, we will always assume that the functions in
◦
Uh are extended to the

domain Ωρ by zero so that any function u ∈
◦
Uh is also a function in H0(curl; Ωρ).

The finite element approximation to (4.2) reads as follows: Find Eh ⊂ Uh such
that n × Eh = gh on ΓD, n × Eh = 0 on Γh

ρ , and

b(Eh,Φh) = 0, ∀Φh ∈
◦
Uh.(4.3)

Here gh is some edge element approximation of g on ΓD. Notice that the integral
in b(Eh,Φh) is actually over Ωh

ρ since Φh = 0 in Ωρ\Ωh
ρ by our convention. The

existence and uniqueness of the discrete problem (4.3) is a difficult problem due
to the non-coerciveness of the sesquilinear form b : H(curl; Ωρ) × H(curl; Ωρ) →
C. Based on a general argument in Schatz [21], the unique existence of (4.3) for
sufficiently small mesh size h < h∗ can be proved by using the unique existence of
the continuous problem (4.2). In this paper we are interested in a posteriori error
estimates and the associated adaptive algorithm. Thus in the following, we simply
assume the discrete problem (4.3) has a unique solution Eh.

For any K ∈ Mh, we denote by hK its diameter. Let Fh be the set of all faces
of the mesh Mh that do not lie on ΓD and Γh

ρ . For any F ∈ Fh, hF stands for its
diameter. For any interior face F which is a common face of K1 and K2 in Mh,
we define the following jump residuals across F :

[[n × (BA∇× Eh)]] = nF × (BA∇× (Eh|K1 − Eh|K2)),
[[k2(BA)−1Eh · n]] = k2(BA)−1(Eh|K1 − Eh|K2) · nF ,
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using the convention that the unit norm vector nF to F points from K2 to K1.
The local error indicator ηK for any K ∈ Mh is defined as

η2
K = h2

K‖ k2(BA)−1Eh −∇× (BA∇× Eh) ‖2
L2(K)

+ h2
K‖ div(k2(BA)−1Eh) ‖2

L2(K)

+ hK‖ [[n × (BA∇× Eh)]] ‖2
L2(∂K) + hK‖ [[k2(BA)−1Eh · n]] ‖2

L2(∂K).

The following theorem is the main result of this paper.

Theorem 4.1. Let (H1)-(H2) be satisfied. There exists a constant C depending
only on the minimum angle of the mesh Mh such that the following a posteriori
error estimate is valid:

‖E− Eh‖H(curl;ΩR)

≤ C‖g − gh ‖H−1/2(Div;ΓD) + CĈ−1|α0|3(1 + kR)3R1/2
( ∑

K∈Mh

η2
K

)1/2

+CĈ−1|α0|3(1 + kR)3e−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖ x̂× Eh ‖H−1/2(Div;ΓR).

The proof of this theorem will be given in Section 5.3. One of the key ingredients
of the a posteriori error analysis is the Birman-Solomyak decomposition theorem in
Lipschitz domains [6, 14, 9]. More precisely, the following result whose proof can
be found in [14, 9] will be used.

Lemma 4.2. For any u ∈ H0(curl, Ωρ), there exists a Φ ∈ H0(curl, Ωρ)∩H1(Ωρ)3

and a ϕ ∈ H1
0 (Ωρ) such that u = Φ + ∇ϕ in Ωρ, and

‖ϕ ‖H1(Ωρ) + ‖Φ ‖H1(Ωρ) ≤ C‖u‖H(curl;Ωρ).

Let Vh be the standard H1-conforming piecewise linear finite element space

over Mh and
◦
V h = H1

0 (Ωh
ρ) ∩ Vh. In the following, we will also assume that

the functions in
◦
V h are extended to the domain Ωρ by zero so that any function

in
◦
V h is also a function in H1

0 (Ωρ). In §5.3, we will use the Clément operator

rh : H1
0 (Ωρ) →

◦
V h [11] and the Beck-Hiptmair-Hoppe-Wohlmuth interpolation op-

erator πh : H1(Ωρ)3∩H0(curl; Ωρ) →
◦
Uh [4] which satisfy the following estimates:

‖ϕ − rhϕ ‖L2(K) ≤ ChK‖∇ϕ ‖L2(K̃), ‖ϕ − rhϕ ‖L2(F ) ≤ Ch
1/2
F ‖∇ϕ ‖L2(F̃ ),

(4.4)

‖Φ − πhΦ ‖L2(K) ≤ ChK‖∇Φ ‖L2(K̃), ‖Φ − πhΦ ‖L2(F ) ≤ Ch
1/2
F ‖∇Φ ‖L2(F̃ ),

(4.5)

where Ã is the union of elements on Mh with non-empty intersection with A,
A = K ∈ Mh or F ∈ Fh.

5. A posteriori error analysis

In this section, we prove the a posteriori error estimates in Theorem 4.1. To begin
with, let Ψ ∈ H(curl; ΩR) such that n × Ψ = g − gh on ΓD; then E − Eh − Ψ ∈
HD(curl; ΩR). Thus by (2.14) we have

‖E − Eh − Ψ‖H(curl;ΩR) ≤ C sup
Φ∈HD(curl;ΩR)

|a(E− Eh − Ψ,Φ)|
‖Φ‖H(curl;ΩR)

.
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Since |a(Ψ,Φ)| ≤ C‖Ψ‖H(curl;ΩR)‖Φ‖H(curl;ΩR), we obtain

‖E− Eh‖H(curl;ΩR) ≤ C‖Ψ‖H(curl;ΩR) + C sup
Φ∈HD(curl;ΩR)

|a(E− Eh,Φ)|
‖Φ‖H(curl;ΩR)

.

The above estimate is valid for any Ψ ∈ H(curl; ΩR) such that n×Ψ = g− gh on
ΓD, we get by the trace theorem

‖E − Eh‖H(curl;ΩR) ≤ C‖g − gh ‖H−1/2(Div;ΓD)(5.1)

+ C sup
Φ∈HD(curl;ΩR)

|a(E− Eh,Φ)|
‖Φ‖H(curl;ΩR)

.

5.1. Error representation formula. For any Φ ∈ HD(curl; ΩR) which satisfies
n × Φ = 0 on ΓD, we extend Φ to ΩPML, denoted by Φ̂, through the following
conditions:

∇× BA∇× Φ̂ − k2(BA)−1Φ̂ = 0 in ΩPML,(5.2)

x̂× Φ̂ = x̂× Φ on ΓR, x̂× Φ̂ = 0 on Γρ.(5.3)

By (H2) we know that Φ̂ is well-defined.

Lemma 5.1. Let (H2) be satisfied. For any Φ,Ψ ∈ H(curl; ΩR), we have

〈Ĝe(x̂× Φ), (x̂× Ψ) × x̂〉ΓR
= 〈Ĝe(x̂× Ψ̄), (x̂× Φ̄) × x̂〉ΓR

.

Proof. By the definition of the approximate Calderon operator Ĝe in (2.16)-(2.17)
we know that

Ĝe(x̂× Φ|ΓR
) =

1
ık

x̂ × (∇× w)|ΓR
,

where w satisfies

∇× BA∇× w − k2(BA)−1w = 0 in ΩPML,(5.4)
x̂× w = x̂ × Φ on ΓR, x̂× w = 0 on Γρ.(5.5)

The solution of (5.4)-(5.5) can be represented as

w =
∞∑

n=1

n∑
m=−n

αnmMm
n (r̃, x̂) + βnmNm

n (r̃, x̂) + α′
nmM̂m

n (r̃, x̂) + β′
nmN̂m

n (r̃, x̂),

where, corresponding to Mm
n ,Nm

n for h
(1)
n (kr̃) in (2.7)-(2.8),

M̂m
n (r̃, x̂) = h(2)

n (kr̃)∇∂B1Y
m
n (x̂) × x̂,

N̂m
n (r̃, x̂) =

1
ık
∇̃ × M̂m

n (r̃, x̂)

=

√
n(n + 1)

ıkr̃
z(2)
n (kr̃)Um

n (x̂) +
n(n + 1)

ıkr̃
h(2)

n (kr̃)Y m
n (x̂)x̂.

Here z
(2)
n (kr̃) = h

(2)
n (kr̃)+kr̃h

(2)′
n (kr̃) and h

(2)
n (z) is the spherical Hankel function of

the second kind of order n. The constants αnm, βnm, α′
nm, β′

nm are determined by
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the boundary conditions (5.3). By (3.5)-(3.6) and similar identities for M̂m
n , N̂m

n ,
we know that

x̂ × w =
∞∑

n=1

n∑
m=−n

√
n(n + 1)

(
αnmh(1)

n (kr̃) + α′
nmh(2)

n (kr̃)
)
Um

n (x̂)

+
√

n(n + 1)
1
r̃

(
βnmz(1)

n (kr̃) + β′
nmz(2)

n (kr̃)
)
Vm

n (x̂).

If x̂ × Φ|ΓR
=

∑∞
n=1

∑n
m=−n anmUm

n + bnmVm
n , then (5.3) implies

αnmh(1)
n (kR) + α′

nmh(2)
n (kR) =

anm√
n(n + 1)

, αnmh(1)
n (kρ̃) + α′

nmh(2)
n (kρ̃) = 0,

βnmz(1)
n (kR) + β′

nmz(2)
n (kR) =

Rbnm√
n(n + 1)

, βnmz(1)
n (kρ̃) + β′

nmz(2)
n (kρ̃) = 0.

By (H2), the problem (5.2)-(5.3) has a unique solution, and consequently the above
linear system of equations for αmn, α′

mn, βmn, β′
mn has a unique solution. Denote

by

Hn = h(1)
n (kR)h(2)

n (kρ̃) − h(2)
n (kR)h(1)

n (kρ̃),

In = z(1)
n (kR)z(2)

n (kρ̃) − z(2)
n (kR)z(1)

n (kρ̃);

then Hn �= 0, In �= 0, and

αnm =
h

(2)
n (kρ̃)

Hn

√
n(n + 1)

anm, α′
nm = − h

(1)
n (kρ̃)

Hn

√
n(n + 1)

anm,

βnm =
z
(2)
n (kρ̃)R

In

√
n(n + 1)

bnm, β′
nm = − z

(1)
n (kρ̃)R

In

√
n(n + 1)

bnm.

Since Ñm
n = 1

ık ∇̃×Mm
n , N̂m

n = 1
ık ∇̃×M̂m

n , M̃m
n = − 1

ık∇×Ñm
n , M̂m

n = − 1
ık∇×N̂m

n ,
we have

Ĝe(x̂× Φ|ΓR
)

=
1
ık

x̂× (∇× w)|ΓR

= x̂ ×
∞∑

n=1

n∑
m=−n

(
αnmÑm

n − βnmM̃m
n + α′

nmN̂m
n − β′

nmM̂m
n

)∣∣∣
ΓR

.

By (3.5)-(3.6) and similar identities for M̂m
n , N̂m

n , we then get

Ĝe(x̂× Φ|ΓR
)

=
∞∑

n=1

n∑
m=−n

1
ıkR

√
n(n + 1)

(
αnmz(1)

n (kR) + α′
nmz(2)

n (kR)
)
Vm

n

+
√

n(n + 1)
(
− βnmh(1)

n (kR) − β′
nmh(2)

n (kR)
)
Um

n

=
∞∑

n=1

n∑
m=−n

1
ıkR

γnanmVm
n − RηnbnmUm

n ,

where γn = (h(2)
n (kρ̃)z(1)

n (kR)−h
(1)
n (kρ̃)z(2)

n (kR))/Hn and ηn = (z(2)
n (kρ̃)h(1)

n (kR)−
z
(1)
n (kρ̃)h(2)

n (kR))/In.
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Now suppose that x̂ × Ψ|ΓR
=

∑∞
n=1

∑n
m=−n a′

nmUm
n + b′nmVm

n ; then

(x̂× Ψ) × x̂|ΓR
=

∞∑
n=1

n∑
m=−n

a′
nmUm

n × x̂ + b′nmVm
n × x̂

=
∞∑

n=1

n∑
m=−n

−a′
nmVm

n − b′nmUm
n .

Therefore

〈Ĝe(x̂ × Φ), (x̂× Ψ) × x̂〉ΓR
= 〈Ĝe(x̂× Φ), x̂× Ψ× x̂〉ΓR

=
∞∑

n=1

n∑
m=−n

− 1
ıkR

γnanmā′
nm + Rηnbnmb̄′nm.

This completes the proof. �

Lemma 5.2 (Error representational formula). For any Φ ∈ H(curl; ΩR), which is

extended to be a function Φ̂ in H(curl; Ωρ) according to (5.2)-(5.3), and Φh ∈
◦
Uh,

we have

a(E− Eh,Φ) = −b(Eh, Φ̂ − Φh) + ık〈(Ĝe − Ge)(x̂× Eh), (x̂× Φ) × x̂〉ΓR
.

Proof. By (2.13) and the definition of the sesquilinear forms a(·, ·) and b(·, ·), we
have

a(E− Eh,Φ) = −
∫

ΩR

(∇× Eh · ∇ × Φ̄ − k2Eh · Φ̄)dx

−ık〈Ge(x̂× Eh), (x̂× Φ) × x̂〉ΓR

= −b(Eh, Φ̂) +
∫

ΩPML
(BA∇× Eh · ∇ × ¯̂Φ − k2(BA)−1Eh · ¯̂Φ)

−ık〈Ge(x̂× Eh), (x̂× Φ) × x̂〉ΓR
.

Integrate by parts and use (5.2) to obtain ∇ × BA∇ × ¯̂Φ − k2(BA)−1 ¯̂Φ = 0 in
ΩPML, we have

a(E− Eh,Φ) = −b(Eh, Φ̂) + 〈n× Eh,n × (BA∇× Φ̂) × n〉ΓR

⋃
Γρ

−ık〈Ge(x̂ × Eh), (x̂× Φ) × x̂〉ΓR
.

Since n × Eh = 0 on Γρ and n = −x̂ on ΓR for the domain ΩPML, we get

a(E− Eh,Φ)

= −b(Eh, Φ̂) − 〈x̂× Eh, x̂× (∇× Φ̂) × x̂〉ΓR
− ık〈Ge(x̂ × Eh), (x̂× Φ) × x̂〉ΓR

.

By (2.15) and (5.2)-(5.3), we know that Ĝe(x̂× Φ̄) = 1
ık x̂× (∇× ¯̂Φ). Thus

a(E− Eh,Φ)

= −b(Eh, Φ̂) + ık〈x̂ × Eh, Ĝe(x̂× Φ) × x̂〉ΓR
− ık〈Ge(x̂× Eh), (x̂× Φ) × x̂〉ΓR

= −b(Eh, Φ̂) + ık〈Ĝe(x̂ × ¯̂Φ), (x̂× Ēh) × x̂〉ΓR
− ık〈Ge(x̂× Eh), (x̂× Φ) × x̂〉ΓR

= −b(Eh, Φ̂) + ık〈(Ĝe − Ge)(x̂× Eh), (x̂× Φ) × x̂〉ΓR
,

where in the last equality we have used Lemma 5.1. This completes the proof by
using (4.3). �
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5.2. Stability estimates for the extension. We start by proving two estimates
for the PML extension in (2.9).

Lemma 5.3. There exists a constant C > 0 independent of k, R, ρ and σ0 such
that for any λ ∈ H−1/2(Div; ΓR),

‖∇ × BE(λ) ‖L2(ΩPML) ≤ CR1/2|α0|2(1 + kR)3‖λ ‖H−1/2(Div;ΓR).

Proof. Let λ =
∑∞

n=1

∑n
m=−n amnUm

n +bmnVm
n and denote Φ̃ = E(λ). By Lemma

3.4 and (2.7)-(2.8), we obtain

1
ık
∇̃ × Φ̃ =

∞∑
n=1

n∑
m=−n

(
anm

ıkr̃

z
(1)
n (kr̃)

h
(1)
n (kR)

Um
n + ıkRbmn

h
(1)
n (kr̃)

z
(1)
n (kR)

Vm
n

+
anm

ıkr̃

h
(1)
n (kr̃)

h
(1)
n (kR)

√
n(n + 1)Y m

n x̂

)
,

which yields ∫
ΩPML

1
k2r2

|∇̃ × Φ̃|2dx(5.6)

=
∞∑

n=1

n∑
m=−n

∫ ρ

R

|anm|2
k2|r̃|2

(∣∣∣ z
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2 + n(n + 1)
∣∣∣ h

(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2
)

dr

+
∞∑

n=1

n∑
m=−n

∫ ρ

R

k2R2
∣∣∣ h

(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣2|bnm|2dr.

By the identity h
(1)′
n (z) = −n+1

z h
(1)
n (z) + h

(1)
n−1(z), we get

∫ ρ

R

1
k2|r̃|2

∣∣∣ z
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr =
∫ ρ

R

1
k2|r̃|2

∣∣∣−nh
(1)
n (kr̃) + kr̃h

(1)
n−1(kr̃)

h
(1)
n (kR)

∣∣∣2dr

≤ n2

k2R2

∫ ∞

R

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr +
∫ ρ

R

∣∣∣h(1)
n−1(kr̃)

h
(1)
n (kR)

∣∣∣2dr.

To proceed, we recall the following estimate due to Nédeléc [20, (2.6.59)]:

∫ ∞

1

∣∣∣h(1)
n (kr)

h
(1)
n (k)

∣∣∣2dr ≤ 6k2 + n + 1
6k2 + (2n + 1)(n + 1)

, ∀n ≥ 1.

Thus ∫ ∞

R

∣∣∣ h
(1)
n (kr)

h
(1)
n (kR)

∣∣∣2dr = R

∫ ∞

1

∣∣∣h(1)
n (kRr)

h
(1)
n (kR)

∣∣∣2dr(5.7)

≤ R · 6k2R2 + n + 1
6k2R2 + (2n + 1)(n + 1)

≤ R

2n + 1

(
1 +

6k2R2

n + 1

)
.
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Therefore∫ ρ

R

1
k2|r̃|2

∣∣∣ z
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr ≤ n2

k2R2
· R

2n + 1

(
1 +

6k2R2

n + 1

)
+ (ρ − R)

≤ CR
√

n(n + 1)
(
1 +

1
k2R2

)
,

where we have used (5.7), (3.7) and the inequality |h(1)
n−1(Θ)| ≤ |h(1)

n (Θ)| for any
Θ > 0 to conclude that |h(1)

n−1(kr̃)| ≤ |h(1)
n (kR)|. Similarly

(5.8) n(n + 1)
∫ ρ

R

1
k2|r̃|2

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr ≤ CR
√

n(n + 1)
(
1 +

1
k2R2

)
.

By (3.9) we have |δn(kR)|−1 ≤ C, thus∫ ρ

R

k2R2
∣∣∣ h

(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣2dr = k2R2|δn(kR)|−2

∫ ρ

R

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr(5.9)

≤ Ck2R2

∫ ρ

R

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr

≤ Ck2R2 · R

2n + 1

(
1 +

6k2R2

n + 1

)
≤ Ck2R2(1 + k2R2)

R√
n(n + 1)

.

Substituting (5.8)-(5.9) into (5.6) we get∫
ΩPML

1
r2

|∇̃ × Φ̃|2dx

≤ CR
(
1 +

1
k2R2

+ k4R4
) ∞∑

n=1

n∑
m=−n

√
n(n + 1)|anm|2 +

1√
n(n + 1)

|bnm|2

= CR
(
1 +

1
k2R2

+ k4R4
)
‖λ ‖2

H−1/2(Div;ΓR).

Hence

‖ ∇̃ × Φ̃ ‖L2(ΩPML) ≤ CR1/2(1 + kR)3‖λ ‖H−1/2(Div;ΓR).

This completes the proof since ∇̃×Φ̃ = A∇×BΦ̃, A = diag(β−2, α−1β−1, α−1β−1),
and |β−2| ≥ |α0|−2, |α−1β−1| ≥ |α0|−2. �
Lemma 5.4. There exists a constant C > 0 independent of k, R, ρ, and σ0 such
that for any λ ∈ H−1/2(Div; ΓR),

‖BE(λ) ‖L2(ΩPML) ≤ CR3/2|α0|(1 + kR)2‖λ ‖H−1/2(Div;ΓR).

Proof. Let λ =
∑∞

n=1

∑n
m=−n amnUm

n + bmnVm
n and denote Φ̃ = E(λ). From (2.9)

and (2.7)-(2.8), we have

Φ̃ =
∞∑

n=1

n∑
m=−n

(
R

r̃

z
(1)
n (kr̃)

z
(1)
n (kR)

bnmUm
n − h

(1)
n (kr̃)

h
(1)
n (kR)

anmVm
n

+
R

r̃

√
n(n + 1)

h
(1)
n (kr̃)

z
(1)
n (kR)

bmnY m
n x̂

)
.
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Thus∫
ΩPML

1
r2

|Φ̃|2dx =
∞∑

n=1

n∑
m=−n

∫ ρ

R

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2|anm|2dr

+
∫ ρ

R

∣∣∣R
r̃

∣∣∣2
(∣∣∣ z

(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣2 + n(n + 1)
∣∣∣ h

(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣2
)
|bnm|2dr.

Since |h(1)
n (kr̃)| ≤ |h(1)

n (kR)| by Lemma 3.2, we have∫ ρ

R

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr ≤ ρ − R ≤ CR.(5.10)

By (3.9) we have |δn(kR)|−1 ≤ Cn−1(1 + kR). Thus by (5.8), we have∫ ρ

R

∣∣∣R
r̃

∣∣∣2∣∣∣ z
(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣2dr(5.11)

= k2R2

∫ ρ

R

1
k2|r̃|2

∣∣∣z(1)
n (kr̃)

h
(1)
n kR

∣∣∣2dr · |δn(kR)|−2

≤ k2R2 · CR
√

n(n + 1)
(
1 +

1
k2R2

)
· C (1 + kR)2

n2

≤ CR
1√

n(n + 1)
(1 + kR)4.

Finally, by (5.8) we get

n(n + 1)
∫ ρ

R

R2

|r̃|2
∣∣∣ h

(1)
n (kr̃)

z
(1)
n (kR)

∣∣∣2dr(5.12)

= k2R2 · n(n + 1) ·
∫ ρ

R

1
k2|r̃|2

∣∣∣ h
(1)
n (kr̃)

h
(1)
n (kR)

∣∣∣2dr · |δn(kR)|−2

≤ k2R2 · CR
√

n(n + 1)
(
1 +

1
k2R2

)
· C (1 + kR)2

n2

≤ CR
1√

n(n + 1)
(1 + kR)4.

Substituting (5.10)-(5.12) into (5.10), we obtain∫
ΩPML

1
r2

|Φ̃|2dx ≤ CR(1 + kR)4
∞∑

n=1

n∑
m=−n

|anm|2 +
1√

n(n + 1)
|bnm|2

≤ CR(1 + kR)4‖λ ‖2
H−1/2(Div;ΓR),

which implies

‖ Φ̃ ‖L2(ΩPML) ≤ CR3/2(1 + kR)2‖λ ‖H−1/2(Div;ΓR).

This completes the proof by using the fact that B = diag(α, β, β) and |α| ≤
|α0|, |β| ≤ |α0|. �

The following result on the extension Φ̂ is the main objective of this subsection.
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Lemma 5.5. Let Φ̂ be the extension of Φ ∈ H(curl; ΩR) according to (5.2)-(5.3).
Then we have

‖Φ̂‖curl;ΩPML ≤ CĈ−1|α0|3R1/2(1 + kR)3‖ x̂× Φ ‖H−1/2(Div;ΓR).

Proof. Let Φ̃ = E(x̂× Φ̄|ΓR
) be the PML extension of x̂ × Φ̄|ΓR

. Then Φ̃ satisfies

∇× BA∇× Φ̃ − k2(BA)−1Φ̃ = 0 in R
3\B̄R,

x̂ × Φ̃ = x̂ × Φ̄ on ΓR.

Let w = Φ̂− B ¯̃Φ; then w satisfies

∇× BA∇× w − k2(BA)−1w = 0 in ΩPML,

x̂ × w = 0 on ΓR, x̂ × w = −BP(x̂ × Φ̄|ΓR
) on Γρ.

By Lemma 3.6 and (3.15)

‖w‖curl;ΩPML ≤ CĈ−1|α0|2‖BP(x̂ × Φ̄|ΓR
) ‖H−1/2(Div;Γρ)

≤ CĈ−1(1 + kR)|α0|3‖ x̂× Φ ‖H−1/2(Div;ΓR).

By Lemmas 5.3-5.5, we have

‖BΦ̃‖curl;ΩPML ≤ CR1/2(1 + kR)3|α0|3‖ x̂ × Φ ‖H−1/2(Div;ΓR).

This completes the proof by using the triangle inequality. �

5.3. Proof of Theorem 4.1. Our starting point is (5.1). To estimate the second
term in (5.1), for any Φ ∈ H(curl; ΩR) such that n × Φ = 0 on ΓD, we denote
by Φ̂ its extension to ΩPML according to (5.2)-(5.3). Thus Φ̂ ∈ H0(curl; Ωρ). By
Lemma 4.2, there exists Ψ ∈ H0(curl; Ωρ)

⋂
H1(Ωρ)3 and ϕ ∈ H1

0 (Ωρ) such that
Φ̂ = Ψ + ∇ϕ, and

‖ϕ‖H1(Ωρ) + ‖Ψ‖H1(Ωρ) ≤ C‖Φ̂‖H(curl;Ωρ).

By Lemma 5.5 and the trace inequality for H(curl; ΩR), we then have

(5.13) ‖ϕ‖H1(Ωρ) + ‖Ψ‖H1(Ωρ) ≤ CĈ−1R1/2|α0|3(1 + kR)3‖Φ‖H(curl;ΩR).

Let Φh = ∇rhϕ+πhΨ, where rh : H1
0 (Ωρ) →

◦
V h and πh : H1(Ωρ)3

⋂
H0(curl; Ωρ)

→
◦
Uh are the interpolation operators defined at the end of §4. By the error

representation formula in Lemma 5.2, we have

a(E− Eh,Φ)

= −b(Eh,Ψ + ∇ϕ − (πhΨ + ∇rhϕ)) + ık〈(Ĝe − Ge)(x̂× Eh), (x̂× Φ) × x̂〉ΓR

= −
∫

Ωρ

(
BA∇× Eh · ∇ × (Ψ̄− πhΨ̄) − k2(BA)−1Eh · (Ψ̄− πhΨ̄)

)
dx

+
∫

Ωρ

k2(BA)−1Eh · ∇(ϕ̄ − rhϕ̄)dx

+ık〈(Ĝe − Ge)(x̂× Eh), (x̂× Φ) × x̂〉ΓR

:= I + II + III.
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By using integration by parts, the estimates (4.4)-(4.5), and the standard argument
in the a posteriori error analysis, we obtain

|I + II| ≤ C
( ∑

K∈Mh

η2
K

)1/2

(‖ϕ‖H1(Ωρ) + ‖Ψ‖H1(Ωρ))

≤ CĈ−1R1/2|α0|3(1 + kR)3
( ∑

K∈Mh

η2
K

)1/2

‖Φ‖H(curl;ΩR),

where we have used (5.13) in the last inequality. By Lemma 3.7 and trace inequality
for H(curl; ΩR), we have

|III| ≤ CĈ−1(1 + kR)3|α0|3e
−Im(kρ̃)(1− R2

|ρ̃|2 )1/2

‖ x̂× Eh ‖H−1/2(Div;ΓR)‖Φ‖H(curl;ΩR).

This completes the proof by (5.1). �

6. Numerical examples

The implementation of the adaptive algorithm in this section is based on the
adaptive finite element package ALBERT [22] and its adaptation to the edge el-
ement by Dr. Long Wang. The computation is carried out on an Origin 3800.
We use the a posteriori error estimate in Theorem 4.1 to determine the PML pa-
rameters. According to the discussion in section 3, we choose the PML medium
property as the power function and thus we need only to specify the thickness ρ−R
of the layer and the medium parameter σ0. Recall from Theorem 4.1 that the a
posteriori error estimate consists of two parts: the PML error and the finite element
discretization error. In our implementation we first choose ρ and σ0 such that the
exponentially decaying factor

e
−kIm(ρ̃)(1− R2

|ρ̃|2 )1/2

≤ 10−8,(6.1)

which makes the PML error negligible compared with the finite element discretiza-
tion errors. Once the PML region and the medium property are fixed, we use the
standard finite element adaptive strategy to modify the mesh according to the a
posteriori error estimate (cf. e.g. [8]).

In the following we report two numerical examples to demonstrate the competi-
tive behavior of the proposed algorithm.

Example 1. Let the scatterer D be the unit ball and k = 1. We consider the
scattering problem whose exact solution is known:

E = M0
1(|x|, x̂) = ∇× {xh

(1)
1 (|x|)Y 0

1 (x̂)}.
Figure 6.1 shows the log Nk-log ‖∇ × (E − Ek) ‖L2(ΩR) curves, where Nk is the
number of edges of the mesh Mk and Ek is the finite element solution of (4.3) over
the mesh Mk. It indicates that the meshes and the associated numerical complexity
are quasi-optimal: ‖∇ × (E− Ek) ‖L2(ΩR) ≈ CN

−1/3
k is valid asymptotically.

One of the important quantities in the scattering problem is the far field

E∞(x̂) =
ık
4π

x̂×
∫

ΓD

((n× E)(y) + (n × 1
ık
∇× E)(y) × x̂)e−ıkx̂·ydSy.

Figures 6.2 shows the far fields for different choices of PML parameters ρ and σ0.
We observe that our adaptive algorithm is robust with respect to the choice of the
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Figure 6.1. The quasi-optimality of the adaptive mesh refine-
ments of the error ‖∇× (E− Ek) ‖L2(ΩR) for Example 1.
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Figure 6.2. The module of the real part of the far fields in the
direction (1, 0, 0) for Example 1.

thickness of the PML layer: the far fields of the scattering solutions are insensitive
to the choices of the PML parameters.

Example 2. This example concerns the scattering of the plane wave Ei = eıx3e1

from a perfectly conducting metal. The scatterer D is shown in Figure 6.3.

In Figure 6.4 we show the mesh after 18 adaptive iterations when ρ = 2R =
6 with 817078 edges. Figure 6.5 shows the log Nk-log Ek curves, where Ek =
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1 

Figure 6.3. The U-shape scatterer for Example 2.

Figure 6.4. The mesh of 817078 edges after 18 adaptive refine-
ments, ρ = 2R = 6 for Example 2.

(
∑

K∈Mk
η2

K)1/2 is the associated a posteriori error estimate. It indicates that the

meshes and the associated numerical complexity are quasi-optimal: Ek ≈ CN
−1/3
k

is valid asymptotically.
Figure 6.6 shows the far fields in the direction (1, 0, 0) for different choices of the

PML parameters. Again we observe that the far fields are insensitive to the choices
of the PML parameters.
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Figure 6.5. The quasi-optimality of the adaptive mesh refine-
ments of the a posteriori error estimator for Example 2.
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Figure 6.6. The module of the real part of the far fields in the
direction (1, 0, 0) for Example 2.
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