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COUPLING OF GENERAL LAGRANGIAN SYSTEMS

A. AMBROSO, C. CHALONS, F. COQUEL, E. GODLEWSKI, F. LAGOUTIÈRE,
P.-A. RAVIART, AND N. SEGUIN

Abstract. This work is devoted to the coupling of two fluid models, such as
two Euler systems in Lagrangian coordinates, at a fixed interface. We define
coupling conditions which can be expressed in terms of continuity of some well
chosen variables and then solve the coupled Riemann problem. In the present
setting where the interface is characteristic, a particular choice of dependent
variables which are transmitted ensures the overall conservativity.

1. Introduction

The problem of coupling two different fluid models at a fixed interface stems from
the need of coupling thermal-hydraulic models within the frame of a new generation
of two-phase flow codes for nuclear reactors. These codes are generally built upon
distinct models, each being devoted to the particular flow conditions taking place
in a given reactor component. The simulation of the whole device thus requires
transient exchange of information at the interface of two adjacent components. Let
us emphasize that the coupling problem actually arises in various other physical
settings (see [13] for instance).

In ideal cases, physical arguments, such as the continuity of some primitive quan-
tity, might help in defining the transmission or coupling conditions. Even in this
case, both theoretical considerations and numerical results obtained on some signif-
icant tests when coupling Euler systems (see [3]) will prove that not any coupling
based on continuity arguments is feasible. This also gives rise to interesting ques-
tions (nonuniqueness of self-similar solutions) and has led us to analyze the problem
in an abstract frame.

The theoretical study of these coupling conditions was initiated in the scalar
case [12], and then for linear systems and the usual Lagrangian system in [13].
In the first paper new coupling conditions have been formalized which result by
expressing that two boundary value problems should be well-posed, and resume to
impose (whenever possible) the continuity of the solution at the interface without
imposing the overall conservativity of the coupled model. For hyperbolic systems of
conservation laws, the well-posedness of initial boundary value problems is difficult
and the boundary conditions have been expressed in terms of Riemann problems in
[13]. This approach is well suited for the numerical methods that we are interested
in implementing and is linked to the theoretical results concerning the convergence
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of the ‘two-flux method’ in the scalar case (see [12] and also [10]). In fact this
formalism can be well understood in the particular case of the Euler system in
Lagrangian coordinates since the geometry of characteristics at the interface is
fixed and no resonance phenomenon can occur. This enables us to express the
coupling conditions in terms of continuity of some variables and then to solve the
coupled Riemann problem in a unique way. In this work we justify the choice of
dependent variables which are transmitted.

This may seem at first glance a rather theoretical exemple. On the one hand, it
is indeed a very particular and very interesting case of coupling to analyze because
of the special property that 0 is an eigenvalue. On the other hand, the analysis
will justify the use of ‘Lagrange+projection’ schemes when coupling systems in
Eulerian coordinates at a fixed interface (cf. [6]), which means that it provides a
useful tool to couple two Euler systems at a fixed interface (which in that case is
not characteristic). One may then ask why couple two fluid models with different
equations of state at a fixed interface since it may seem an unphysical example.
The answer is that it is a simplified model of what we get when coupling more
complex models associated to different systems of pde’s whose closure laws are not
strictly compatible, as will happen for instance in the context of thermal-hydraulic
models. The main lines of the present work were announced in [5].

The outline of the paper is as follows. In Section 2, we introduce the framework of
interface coupling and define the coupling conditions in terms of traces of solutions
of Riemann problems. Then in Section 3 these conditions are explicit and the
coupled Riemann problem is solved for two p−systems in the case of two Euler
systems in Lagrangian coordinates. Section 4 treats the coupling of two systems of
different dimensions: the p−system and the Euler system. Section 5 introduces a
more general theoretical setting following Després’ formalism (cf. [7]) in order to
extend the coupling to more general Lagrangian systems. Some changes of variables
are introduced in order to express the coupling conditions and the coupled Riemann
problem is solved. Several numerical results will illustrate the theory.

2. The interface coupling approach

2.1. The coupling procedure. We first describe the theoretical settings and
make precise our notation.

Let Ω ⊂ R
q be the set of states and let fα, α = L, R be two smooth functions

from Ω into R
q. Given a function u0 : x ∈ R → u0(x), we want to find a function

u : (x, t) ∈ R × R+ → u(x, t) ∈ Ω solution of

∂tu + ∂xfL(u) = 0, x < 0, t > 0,(1)

∂tu + ∂xfR(u) = 0, x > 0, t > 0,(2)

satisfying the initial condition

u(x, 0) = u0(x), x ∈ R,

and at the interface x = 0, a coupling condition which we now describe.
This coupling condition has been chosen in order to obtain two well-posed initial

boundary value problems in x > 0, t ≥ 0 and in x < 0, t ≥ 0. This means that
the trace u(0−, t) (resp. u(0+, t)) should be an admissible boundary condition at
x = 0 for the system in x > 0, t ≥ 0 (resp. u(0+, t) is an admissible boundary
condition at x = 0 for the system in x < 0, t ≥ 0). We will assume that the
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systems are hyperbolic, i.e. for α = L, R, the Jacobian matrix Aα(u) ≡ f ′α(u) of
fα(u) is diagonalizable with real eigenvalues λα,k(u) and corresponding eigenvectors
rα,k(u), 1 ≤ k ≤ q. Then rigorous ways of writing the boundary conditions can be
found in [9], [14] but the most practical way to express them involves the traces of
the solution of a Riemann problem. Thus, we introduce the self-similar solution

u(x, t) = Wα(x/t;uL,uR)

of the Riemann problem for the system associated to the flux fα, i.e. the Cauchy
problem with initial condition

(3) u(x, 0) =
{

uL, x < 0,
uR, x > 0.

We set for all b ∈ Ω,

OL(b) = {w = WL(0−;u�,b); u� ∈ Ω},
OR(b) = {w = WR(0+;b,ur); ur ∈ Ω}(4)

and following [8] we define admissible boundary conditions of the form

u(0−, t) ∈ OL(b(t)), t > 0,

and
u(0+, t) ∈ OR(b(t)), t > 0,

for (1) and (2), respectively. Hence natural coupling conditions for problems (1)–(2)
consist in requiring

(5)

{
u(0−, t) ∈ OL(u(0+, t)),
u(0+, t) ∈ OR(u(0−, t)).

This means that at each time t > 0, there exist some states u−(t),u+(t) ∈ Ω such
that u(0−, t) = WL(0−;u−(t),u(0+, t)) and u(0+, t) = WR(0+;u(0−, t),u+(t)).
Using the formulation with Riemann problems to express admissible boundary con-
ditions is more practical and suitable for the numerical approximation of the cou-
pled problem. It is thoroughly justified in the scalar case and for linear systems.
In [12], devoted to the scalar case, we have shown that this was indeed a reason-
able way of coupling two scalar conservation laws in the sense that, in meaningful
situations, the coupled problem has a unique solution and a ‘natural’ numerical
upwind scheme (the so-called two-flux scheme) converges to this solution. The case
of linear systems is treated in [13].

Condition (5) resumes in a number of cases to the continuity of the solution at
the interface

(6) u(0−, t) = u(0+, t);

at least (6) holds true whenever the interface is noncharacteristic. Thus we may
interpret the coupling condition as a way of ensuring in a weak sense the continuity
or the transmission of the conservative variables u.

However, when dealing with physical systems, we may prefer to transmit not
the conservative variables but other physical variables. Indeed, define two distinct
changes of variables

v → u = ϕα(v), α = L, R,
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from some set Ωv ⊂ R
q onto Ω such that ϕ′

α(v) is an isomorphism of R
q. Then if

c is a given boundary physical data, setting bα = ϕα(c), we define

OL(bL) = {w = WL(0−;u�,bL); u� ∈ Ω},
OR(bR) = {w = WR(0+;bR,ur); ur ∈ Ω}

which are admissible boundary conditions for the systems (1) and (2), respectively.
Thus we now require

(7)

{
u(0−, t) ∈ OL(ϕL(v(0+, t))),
u(0+, t) ∈ OR(ϕR(v(0−, t))).

Since ϕL(v(0+, t)) �= ϕR(v(0+, t)) = u(0+, t), the boundary sets in (7) and (5)
are distinct. Conditions (7) will ensure the transmission of physical variables and
whenever possible their continuity instead of (6)

(8) v(0−, t) = v(0+, t),

again when the interface is noncharacteristic.
Next we will be interested in solving the coupled Riemann problem (1), (2), (3)

with coupling conditions given either by (5) or by (7) for some change of variables
ϕα to be specified.

2.2. Numerical coupling. Let us briefly recall the numerical procedure for the
sake of completeness since numerical illustrations are provided in the following
sections. We use a finite volume method for the discretization of each system
(1), (2). Let ∆x, ∆t, denote the uniform space and time steps, set µ = ∆t/∆x,
tn = n ∆t, n ∈ N, and consider the cells Cj+1/2 = (xj , xj+1), with center xj+1/2 =
(j + 1/2)∆x, j ∈ Z. The initial condition is discretized as usual by

u0
j+1/2 =

1
∆x

∫
Cj+1/2

u0(x)dx, j ∈ Z.

For the numerical coupling, we are given two numerical fluxes gL, gR (gα is con-
sistent with fα) corresponding to 3-point schemes (we assume these schemes are
monotone in the scalar case under some CFL condition). We define the scheme by

un+1
j−1/2 = un

j−1/2 − µ
(
gn

L,j − gn
L,j−1

)
, j ≤ 0, n ≥ 0,(9)

un+1
j+1/2 = un

j+1/2 − µ
(
gn

R,j+1 − gn
R,j

)
, j ≥ 0, n ≥ 0(10)

(see also [1] in another context). So we have one fixed interface at x = 0 and
two fluxes gn

α,0. We have gn
α,j = gα(un

j−1/2,u
n
j+1/2), α = L, j < 0, α = R, j > 0,

and for the fluxes at the interface x = 0, we choose gn
α,0 according to the coupling

procedure. The choice

gn
α,0 = gα(un

−1/2,u
n
1/2), α = L, R,

corresponds to transmit the conservative variables u. Namely, if j ≥ 0, the scheme
(10) with flux gR consistent with fR approximates the IBVP (2) with initial con-
dition u(x, 0) = u0(x), x > 0, and for boundary condition at x = 0, the scheme
takes un

−1/2. Since gn
L,0 �= gn

R,0, it is a nonconservative numerical approach, as for
the continuous problem. For example, the flux at the boundary with Godunov’s
scheme is gn

R,0 = fR(WR(0+;un
−1/2,u

n
1/2)). It has been proved in the scalar case

(cf. [12]) that in a number of practical situations, scheme (9)-(10) converges towards
a solution of (1)-(2) satisfying (5).
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Figure 1. The coupling conditions (5) for the p−system

We can also transmit the physical variables v by choosing

gn
L,0 = gL(un

−1/2, ϕL(vn
1/2)), gn

R,0 = gR(ϕR(vn
−1/2),u

n
1/2)

where vn
1/2 = ϕ−1

R (un
1/2),v

n
−1/2 = ϕ−1

L (un
−1/2).

2.3. A canonical example: coupling two p−systems. We are going to illus-
trate the two choices in the coupling procedure on the p−system:

(11)
{

∂tτ − ∂xv = 0,
∂tv + ∂xp = 0,

and then, in the following sections, for the Euler system in Lagrangian coordinates.
Note however that in this latter case, the interface is characteristic and will cor-
respond to a contact discontinuity. Hence in general, the coupling does not yield
the continuity (6) or (8); we will see that it yields the continuity of a subset of
variables.

In (11), x stands for a mass variable, τ denotes the specific volume, v the velocity,
and we assume that the pressure p is a given decreasing function p = p(τ ). Let us
consider the coupling of two p−systems

(12) ∂tu + ∂xfα(u) = 0, α = L in x < 0, α = R in x > 0,

where

(13)

⎧⎨
⎩

u = (τ, v)T , τ > 0,
fL(u) = (−v, p)T , p = pL(τ ),
fR(u) = (−v, p)T , p = pR(τ ).

We assume that p′α < 0, p′′α > 0, α = L, R. The two systems differ by the pressure
law p. An important feature is that the signs of the two eigenvalues do not depend
on u: λ1(u) = −c < 0 < λ2(u) = c, c =

√
−p′(τ ). Hence in the left (resp. right)

half plane, there can be only 1−waves (resp. 2−waves).
We first transmit the conservative variables (τ, v). We denote by C k

α (u−) the
kα−wave curve, i.e. the set of states that can be connected to a given state u−
by a kα−wave, k = 1, 2 (either rarefaction or admissible shock), relative to the
p−system with flux fα, α = L, R. Expressing the coupling conditions (5) gives (for
the left condition u(0−, t) ∈ OL(u(0+, t))) that u(0−, t) is connected to u(0+, t)
by a 2L−wave which means u(0+, t) ∈ C 2

L(u(0−)) (we use shortened notation for
C 2

L(u(0−, t)), and similarly (for the right condition) by a 1R−wave (see Figure
1). Thus u(0+, t) ∈ C 2

L(u(0−)) ∩ C 1
R(u(0−)) and, since it is well known that the
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two wave curves intersect at only one point in the plane (τ, v), at least away from
vacuum (see for instance [11]), it yields

(14) u(0+, t) = u(0−, t).

Now the IBVP’s in both quarter planes (x < 0, t > 0) and (x > 0, t > 0) are
also well posed if one wishes to prescribe a given (v, p) on x = 0 in a weak sense,
according to (7). Indeed, by assumption p′α < 0, hence, we can define its inverse
mapping τα(p) for α = L, R. Setting v = (v, p)T , we have an admissible change of
variables: u = ϕα(v) where

(15) (v, p) → ϕα(v, p) ≡ (τ, v)

is simply defined by τ = τα(p) (for instance if pα(τ ) = τ−γα , then τα(p) = p−1/γα).
We now transmit this set of variables (v, p).

Proposition 1. For the systems (13), the coupling conditions (7) are equivalent
to

(16)
{

v(0−, t) = v(0+, t),
p(0−, t) = p(0+, t).

Moreover, the solution of the coupled Riemann problem (12), (13), (3), (7) exists
and is unique.

Proof. Let us express the coupling condition (7): u(0+, t) ∈ OR(ϕR(v(0−, t))) and
u(0−, t) ∈ OL(ϕL(v(0+, t))), with more precisely v(0±, t) = (v(0±), p(0±, t))T

and u(0−, t) = ϕL(v(0−, t)), u(0+, t) = ϕR(v(0+, t)).
First u(0+, t)∈OR(ϕR(v(0−, t)) yields that ϕR(v(0−, t)) is connected to u(0+, t)

= ϕR(v(0+, t)) by a 1R−wave. The idea is that we can parametrize the wave
curves by p and represent them in the (v, p)−plane (for details concerning the
equations of the wave-curves, see [11], Chapter I, section 7). If the 1R−wave curve
is C 1

R(u(0−)) = {(τ, v); v = Ψ1,R(τ )}, let

C̃1
R(v(0−)) = {(v, p); v = Ψ1,R(τR(p))} = {(v, p); ϕR(v, p) ∈ C 1

R(u(0−))}
= ϕ−1

R (C 1
R(u(0−)))

be its representation in the (v, p)−coordinates. We then have v(0+, t) ∈ C̃1
R(v(0−))

(see Figure 2).
Similarly, u(0−, t) ∈ OL(ϕL(v(0+, t))) yields that u(0−, t) = ϕL(v(0−, t)) is

connected to ϕL(v(0+, t)) by a 2L−wave. We parametrize the wave curves by p
and represent them onto the (v, p)−plane. If the 2L−wave curve is C 2

L(u(0−)) =
{(τ, v); v = Ψ2,L(τ )}, let

C̃2
L(v(0−)) = {(v, p); v = Ψ2,L(τL(p))} = {(v, p); ϕL(v, p) ∈ C 2

L(u(0−))}
= ϕ−1

L (C 2
L(u(0−)))

be its representation in the (v, p)−coordinates. We then have v(0+, t) ∈ C̃2
L(v(0−)).

We have v(0+, t) ∈ C̃1
R(v(0−)) ∩ C̃2

L(v(0−)). Thus v(0+, t) = v(0−, t) because
it is easy to prove that the two curves intersect at only one point in the plane (v, p).
Hence we do have continuity of v, p, not of τ since τ (0+, t) = p(0+, t)−1/γR �=
p(0−, t)−1/γL = τ (0−, t).
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Figure 2. The coupling conditions (7) for the p−system

Under the assumptions made on the pα’s, existence and uniqueness of the solu-
tion of the coupled Riemann problem, away from vacuum, follow as in the usual
noncoupled case. �

The solution of a coupled Riemann problem is illustrated in Figure 3 for two
γ−laws, pα(τ ) = τ−γα , γL = 1.4, γR = 1.6.

Remark 1. The choice of the transmitted variables is clearly nonunique. The above
argument may be used for any other admissible change of variables of the form
u = (τ, v) → v = (v, hα(τ )) provided the corresponding functions hα, α = L, R, are
both strictly increasing or both strictly decreasing mappings. It happens that the
flux (−v, p) in the preceding example may be taken as a set of dependent variables.
It will not be possible in the next example, where the flux is (−v, p, pv), since it
would not define an admissible change of variables. However, we may want to
transmit part of the flux variables (v, p) which will then also yield the transmission
of vp. Hence, in these particular examples, we are able to couple the two models
by imposing the continuity of the flux, which we call flux coupling and which might
appear as a conservative approach.

3. Coupling two Euler systems in Lagrangian coordinates

3.1. The Euler system. We consider the full Euler system of gas dynamics in
Lagrangian coordinates

(17) ∂tu + ∂xf(u) = 0

where

(18) u = (τ, v, e)T , f(u) = (−v, p, pv)T .

In (17), x stands for a mass variable, while in (18), τ denotes the specific volume,
v the velocity, e = ε + 1

2v2 the specific total energy, and ε the specific internal
energy. We assume that the pressure p is a given function p = p(τ, ε). We study
the coupling of two such systems at the interface x = 0 which now happens to
be characteristic. It thus has the physical interpretation of a contact discontinuity
separating two fluids with different equations of state

p = pα(τ, ε), α = L, R.

We denote by

(19) fα(u) = (−v, p, pv)T , p = pα(τ, ε), α = L, R,

the corresponding flux functions.



916 A. AMBROSO, ET AL.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5
 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

Figure 3. τ, v, p in the transmission of u = (τ, v) left / vs. v =
(v, p) right for the coupled p−system: continuity of (τ, v) left / vs.
continuity of (v, p) right (numerical and exact solution)

Let A(u), be the Jacobian matrix of f(u)

A(u) =

⎛
⎝ 0 −1 0

pτ −vpε pε

vpτ p − v2pε vpε

⎞
⎠ ,

with the notations

(20) pε =
∂p

∂ε
(τ, ε), pτ =

∂p

∂τ
(τ, ε),

and we note when necessary by Aα(u) that of fα(u), α = L, R. The eigenvalues of
A(u) are

λ1(u) = −C(u) < λ2 = 0 < λ3(u) = C(u),
where

C(u) =
√
−pτ + ppε
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denotes the Lagrangian sound speed. Recall that the right eigenvectors of A(u)
can be chosen as

(21) r1(u) =

⎛
⎝ −1

−C
p − Cv

⎞
⎠ , r2(u) =

⎛
⎝ pε

0
−pτ

⎞
⎠ , r3(u) =

⎛
⎝ −1

C
p + Cv

⎞
⎠ ,

while the left eigenvectors are given by

(22) l1(u) =
1

2C2

⎛
⎝ pτ

−C − vpε

pε

⎞
⎠ , l2(u) =

1
C2

⎛
⎝ p
−v
1

⎞
⎠ , l3(u) =

1
2C2

⎛
⎝ pτ

C − vpε

pε

⎞
⎠ .

In this case, the interface x = 0 is characteristic (λ = 0 is an eigenvalue of A(u)),
and we have for each system one strictly positive and one strictly negative eigen-
value. We are going to study the coupling in two cases, transmitting either the
conservative variables (condition (5)) or the primitive variables (τ, v, p) (condition
(7)). To justify the last choice, let u be a solution of system (17)-(18) contain-
ing two states separated by a contact discontinuity at x = 0, u− ≡ u(0−, t) and
u+ ≡ u(0+, t). Then we have continuity of the 2-Riemann invariants v, p

(23)
{

v− = v+,
p(τ−, ε−) = p(τ+, ε+).

When coupling the two systems (1) and (2) with fα given by (19), we may also
want to transmit the velocity and the pressure. We will show that it corresponds
to the coupling conditions (7) expressed in the primitive variables

(24) v = (τ, v, p)T .

Let us describe more precisely the change of variables

(25) u = (τ, v, e)T = ϕα(v).

Since e = ε + 1
2v2, we assume all along this paper that the functions p = pα(τ, ε)

may be inverted in ε = εα(τ, p), which is the case for instance for a polytropic ideal
gas satisfying a γ-law p = (γ − 1)τε, more generally, we assume ∂p

∂ε > 0.

3.2. Coupled Riemann problem with transmission of primitive variables.
This case is easier to deal with. Indeed, the Riemann problem for (17)-(18) is usually
solved using primitive variables because the ‘projection’ of the wave curves on the
(v, p)-plane are easily expressed. Moreover, this choice is consistent with what we
have done in the isentropic case for the p−system. Finally this choice appears
fairly natural from a physical point of view since Proposition 2 below shows that
it corresponds to transmit p and v, which are naturally transmitted when the two
laws coincide.

Let uL and uR be two given states. We denote by C 1
R(uL) the 1−wave curve con-

sisting of states u which can be connected to uL on the right by either a 1−shock or
a 1−rarefaction wave corresponding to the equation of state p = pR(τ, ε). Similarly,
given a right state uR, we denote by Č 3

L(uR) the (backward) 3−wave curve consist-
ing of left states u which can be connected to uR by a 3−shock or a 3−rarefaction
wave corresponding to the equation of state p = pL(τ, ε). We denote by C1

R(vL)
and Č3

L(vR) the ‘projections’ (in a sense to be made precise below) onto the (v, p)-
plane of the wave curves C 1

R(uL) and Č 3
L(uR) respectively. In fact Ci

α(vL) is the
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projection of the i−wave curve curve ϕ−1
α (C i(uL)) expressed in primitive variables

v = (τ, v, p)T on the (v, p)-plane:

ϕ−1
α (C i

α(uL)) =
{
v = (τ, v, p)T ; ϕα(v) ∈ C i

α(uL)
}

and
Ci

α(vL) =
{
(v, p); (τ, v, p)T ∈ ϕ−1

α (C i
α(uL))

}
.

Similar definitions for the backward wave curve Či
α(vR) are in order.

We then make the following hypothesis:

(26)
{

for any pair of states (u�,ur), the curves
C1

R(v�) and Č3
L(vr) may intersect at one point at most.

This assumption simply guarantees that the Riemann problem has a unique solu-
tion. It can also be expressed in terms of monotonicity of the corresponding curves,
as illustrated in Figure 6, C1

α is decreasing and Č3
α increasing, and we refer to [15]

for precise assumptions on the equation of state which ensure this property (see
however Remark 2 below).

Proposition 2. Assume the hypothesis (26). Then, in the case (24), the coupling
conditions (7) lead to

(27)
{

v(0−, t) = v(0+, t),
p(0−, t) = p(0+, t).

In addition, the coupled Riemann problem has a unique solution (away from vac-
uum).

Proof. By using the structure of the solution of the whole Riemann problem for
the gas dynamics equations with pressure law pL, let us show that the condition
u(0−, t) ∈ OL(ϕL(v(0+, t))) means that

(28) (v, p)(0−, t) ∈ Č3
L(v(0+, t)).

Let us first make precise the states that are involved in the above expressions:

v(0+, t) = (τ (0+, t), v(0+, t), p(0+, t))T

ϕL(v(0+, t)) = (τ (0+, t), v(0+, t), e(0+, t))T

where e(0+, t) = εL(τ (0+, t), p(0+, t)) + v(0+, t)2/2,

u(0−, t) = (τ (0−, t), v(0−, t), e(0−, t))T

and p(0−, t) = pL(τ (0−, t), e(0−, t)− v(0−, t)2/2).
Then, by definition of the admissible set OL, there exists a state u− ∈ Ω such

that
u(0−, t) = WL(0−;u−, ϕL(v(0+, t))).

The L−Riemann problem between u− and ϕL(v(0+, t)) is thus built with a 1L
-wave between u− and u(0−, t), a 2−contact discontinuity at x = 0 between
u(0−, t) and a state uL

+, and a 3L-wave between uL
+ and ϕL(v(0+, t)). This yields

that (vL
+, pL

+) = (v(0−, t), p(0−, t)) and thus, after projection on the (v, p)−plane,
(v, p)(0−, t)) belongs to Č3

L(v(0+)). Similarly, the condition u(0+, t) ∈ OR(ϕR

(v(0−, t))) means that

(29) (v, p)(0+, t) ∈ C1
R(v(0−)).
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Figure 4. τ, v, p for the coupled Riemann problem for the Eu-
ler system with transmission of v = (τ, v, p): discontinuity of τ ,
continuity of v, p at x = 0

If (26) holds, and away from vacuum, the curves C1
R(v(0−)) and Č3

L(v(0+)) in-
tersect at only one point in the (v, p)−plane (see Figure 6 left); then (28)-(29)
imply that (v, p)(0+, t) and (v, p)(0−, t) must necessarily coincide since, in the
(v, p)−plane, both (v, p)(0+, t) and (v, p)(0−, t) lie on both curves, which proves
the lemma.

Finally, we can solve the coupled Riemann problem following the usual pro-
cedure, by first solving the systems of equations obtained by intersection of the
projected curves on the (v, p)−plane (see [11]). The solution exists (if no vacuum
appears) and is unique. �

The result is illustrated in Figure 4 on a coupled Riemann problem for two
γ−laws, γL = 1.4, γR = 1.6.

Remark 2. The curve C 1
R(u�) is tangent at u� to the first eigenvector (see formula

(21)) rR,1(u�) = (−1,−CR, pR − CRv)T (u�). In primitive variables, the curve
ϕ−1

R (C 1
R(u�)) is tangent to ϕ′

R(v�)−1(rR,1(u�)) = (−1,−CR, C2
R)T (u�) which is the

1-eigenvector in primitive variables and, by projection on the (v, p)-plane, C1
R(v�)

is tangent to the vector (−CR, C2
R)T (u�) or equivalently to (−1, CR,�)T at state

(v�, p�). Similarly, Č 3
L(vr) is tangent to (1, CL,r)T at state (vr, pr). The vectors

(−1, CR,�)T and (1, CL,r)T are not colinear. Thus hypothesis (26) is satisfied at
least for nearby states (u�,ur). It may be globally satisfied for ‘standard’ equations
of state.

3.3. Transmission of conservative variables. The polytropic ideal gas
case. As already observed, the above derivation of the coupling condition in prim-
itive variables was made easy by the usual way of solving the classical Riemann
problem in the (v, p)−plane. If we now want to transmit the conservative vari-
ables, we must interpret the coupling conditions u(0−, t) ∈ OL(u(0+, t)) and
u(0+, t) ∈ OR(u(0−, t)) in terms of conservative variables (τ, u, e). Again, the
solution of the L−Riemann problem between a state u− and u(0+, t) is made of a
1L−wave between u− and u(0−, t), a 2L−contact discontinuity at x = 0 between
u(0−, t) and a state u(L)

+ and a 3L−wave between u(L)
+ and u(0+, t) (see Figure 5,

left).
We first make the simplifying assumption that the two pressure laws are γ−laws:

(30) pα = (γα − 1)ε/τ, γα > 1.
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Figure 5. Coupling conditions (5) for the Euler system:
u(0−, t) ∈ OL(u(0+, t)) (left), u(0+, t) ∈ OR(u(0−, t)) (right)

We get that (v(L)
+ , p

(L)
+ ) = (v(0−, t), p(0−, t)), more precisely,

(31) v
(L)
+ = v(0−, t)

and

(32) pL(u(L)
+ ) = pL(u(0−, t))

and thus (γL − 1)ε(L)
+ /τ

(L)
+ = (γL − 1)ε(0−, t)/τ (0−, t), which implies

(33)
ε
(L)
+

τ
(L)
+

=
ε(0−, t)
τ (0−, t)

.

Following the usual way of solving the Riemann problem, we ‘project’ the condition

(34) u(L)
+ ∈ Č 3

L(u(0+))

on the (v, p)−plane.
Similarly, the solution of the R−Riemann problem between u(0−, t) and a state

u+ is made of a 1R−wave between u(0−, t) and a state u(R)
− , a 2R−contact discon-

tinuity at x = 0 between u(R)
− and u(0+, t), and a 3R−wave between u(0+, t) and

u+ (see Figure 5, right). This yields that (v(R)
− , p

(R)
− ) = (v(0+, t), p(0+, t)), more

precisely,

(35) v
(R)
− = v(0+, t)

and

(36) pR(u(R)
− ) = pR(u(0+, t)),

and thus

(37)
ε
(R)
−

τ
(R)
−

=
ε(0+, t)
τ (0+, t)

.

Again we ‘project’ the condition

(38) u(R)
− ∈ C 1

R(u(0−))

on the (v, p)−plane. Thus we have to meet the conditions

ML(0−) = (v(0−, t), pL(u(0−, t))) ∈ Č3
L(v(0+))
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Figure 6. Projection of the wave curves: transmission of v (left)–
transmission of u (right), with C1

R− = C1
R(v(0−)), Č3

L+ =
Č3

L(v(0+))

and
MR(0+) = (v(0+, t), pR(u(0+, t))) ∈ C1

R(v(0−)),

and we can no longer intersect the two curves in order to solve the problem. Figure
6 left (resp. right) illustrates the position of the projected wave curves when the
coupling conditions (7) (resp. (5)) are satisfied. Indeed, since in the (v, p)−plane
the curve

C1
R(v(0−)) =

{
(v, p); (τ, v, p)T ∈ ϕ−1

R (C 1
R(u(0−)))

}
,

starts from point MR(0−) = (v(0−, t), pR(u(0−, t))), and not, as it did in the
previous case, from ML(0−) = (v(0−, t), pL(u(0−, t))) (see Figure 6 right), then
Č3

L(v(0+)) starts from ML(0+) = (v(0+, t), pL(u(0+, t))). The intersection of the
two curves no longer solves the problem.

In fact, the (v, p)−plane is not well suited, since p is no longer a transmitted
variable. For two γ−laws, because of (33)-(37), we can think of the plane (v, π =
ε/τ ), since π is a variable independent of the pressure law. Following the above
arguments and projecting on the (v, π)−plane will lead to the intersection of two
curves. More precisely,

Proposition 3. Assuming (30), the coupling conditions (5) lead to

(39)

{
v(0−, t) = v(0+, t),
ε

τ
(0−, t) =

ε

τ
(0+, t).

Proof. Define
w = (τ, v, π)T

where

(40) π =
ε

τ
.

Then define the mapping ϕ̃ by u = ϕ̃(w), and let

C̃1
R(w(0−)) =

{
(v, π); (τ, v, π)T ∈ ϕ̃−1

R (C 1
R(u(0−)))

}
,
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Figure 7. τ, v, p in the transmission of u = (τ, v, e) vs. v =
(τ, v, p) the for Euler system: Discontinuity of τ – Continuity of v
– Continuity of p for v / Discontinuity of p for u

with a similar definition for the backward curve ˇ̃C3
L(w(0+)). The projection on

the (v, π)−plane of (34), (38) together with (31), (37) (33), (37) then yields

(v(0−, t), π(0−, t)) ∈ ˇ̃C3
L(w(0+)),

(v(0+, t), π(0+, t)) ∈ C̃1
R(w(0−)).

Now, assuming (26) implies that C̃1
R(w(0−)) and ˇ̃C3

L(w(0+)) intersect at only one
point, since the change of variables π preserves the respective monotonicity of the
curves. We get

(41)
{

v(0−, t) = v(0+, t),
π(0−, t) = π(0+, t),

which is the desired result.
The coupled Riemann problem is then solved in the same way as before since we

can parametrize each wave curve by π instead of p. �
A coupled Riemann problem is illustrated in Figure 7 where the transmissions

of conservative and of physical variables are compared.
We can easily extend the result to the case of pressure laws which can be written

as a function of one dependent variable π = π(τ, ε), i.e. such that

pα(τ, ε) = pα(π(τ, ε)).

The above argument will show that (v, π) is continuous at the interface x = 0.
Now consider two thermally perfect gases, such that pτ = RT (ε) (T is the

temperature). The pressure law is of the following form:

(42) p = p(τ, ε) = p̃(τ, π)

again with π = ε/τ and satisfying the identity

p = −τ p̃τ + πp̃π.

We thus have
−pτ

pε
=

p

p̃π

or we can also write

−pτ

pε
=

T (ε)
τT ′(ε)

.

If this quantity is independent of the closure law, we can take it as a dependent
variable and conclude that it will be continuous at the interface together with the
velocity.
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Remark 3. Assuming a γ−law yields that the eigenvector r2(u) in (21) can be
chosen as (1, 0, ε/τ )T = (1, 0, π)T . Thus the function r2(u) does not depend on the
pressure law and (39) means that rL,2(u(0−, t)) = rR,2(u(0+, t)). In the linearized
approach, linearizing the left problem at u(0−, t) and the right problem at u(0+, t),
and coupling these two problems, the necessary condition (3.19) of [13] requiring
dim E = 1 is indeed satisfied since E = [rR,1rR,2] ∩ [rL,2rL,3] = RrL,2 = RrR,2,
where the notation [rα,irα,j ] denotes the vector space spanned by the vectors
rα,i, rα,j .

The above section brings some precisions to the corresponding section (Section
4) of [13], where it was not specified that the coupling was achieved in primitive
variables. �

3.4. Transmission of conservative variables. The general case. Let us first
see that the velocity need not be continuous for general pressure laws. Assume first
that v is continuous at the interface

v(0+, t) = v(0−, t).

If, for instance, the 3L−wave in the L−Riemann problem and the 1R−wave in the
R−Riemann problem are both shocks (see Figure 5), we get from the Rankine-
Hugoniot relations concerning the 3L−shock

pL(u(0−, t)) = pL(u(0+, t))

and similarly

pR(u(0−, t)) = pR(u(0+, t)).

For instance to get the first formula, we write the Rankine-Hugoniot relation con-
cerning the 3L−shock

−σ3,L(v(0+, t) − v
(L)
+ ) + pL(u(0+, t)) − pL(uL

+) = 0,

with the invariance of v, p at the contact discontinuity

v
(L)
+ = v(0−, t), pL(uL

+) = pL(u(0−, t))

(similarly the 1R−shock relation for the second formula).
Consider for instance two pressure laws of Grüneisen type

(43) pα(τ, ε) = (γα − 1)
ε

τ
+ d2

α(
1
τ
− 1

τref,α
), α = L, R.

For (43), the continuity of pR and pL yields

(γα − 1)
( ε

τ
(0+, t) − ε

τ
(0−, t)

)
+ d2

α

( 1
τ (0+, t)

− 1
τ (0−, t)

)
= 0, α = L, R,

which implies, as soon as

(44)
d2

L

γL − 1
�= d2

R

γR − 1
,

that ε
τ (0−, t) = ε

τ (0+, t) and τ (0−, t) = τ (0+, t) so that

ε(0−, t) = ε(0+, t), τ (0−, t) = τ (0+, t).
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curves: general case (left), special case (right), with C1

R− =
C1

R(v(0−)), Č3
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L(v(0+))

Remark 4. Thus, in the case (44), the velocity need not be continuous, and if
the velocity is continuous, the whole state is continuous at the interface u(0−, t) =
u(0+, t) (but pL(u(0−, t)) �= pR(u(0+, t))). That may happen with particular given
states uL,uR. Indeed if the coupled Riemann problem is solved with u(0−, t) =
u(0+, t) noted u(0) = (τ0, v0, e0), then since u(0) = u(0−) ∈ C 1

L(uL) and u(0) =
u(0+) ∈ Č 3

R(uR), the two curves in R
3 necessarily intersect, not only their projec-

tion on a plane. For instance, the projection of these curves on the plane (v, ε/τ )
determines (v0, ε0/τ0), and their projection on the plane (τ, v) determines (τ0, v0).
Assume u(0) is completely determined. Then the Hugoniot curves Hα(τ, p) = 0 are
hyperbolas (cf. [11], Chapter II, Section 2, Example 2.2) and may be parametrized
by p: τ = hα(p; τa, pa) for a Hugoniot curve with center a. This provides two
relations τ0 = hL(pL(u0); τL, pL) = hR(pR(u0); τR, pR) where pL = pL(uL), pR =
pR(uR). Hence uL,uR should be such that (τL, pL) and (τR, pR) satisfy the identity
hL(pL(u0); τL, pL) = hR(pR(u0); τR, pR). �

We consider in Figure 8 states and wave curves corresponding to a coupled
Riemann problem for which the 3L− and the 1R−waves are both shocks (cf. Figure
5). Let ML(0−) denote the point (v(0−, t), pL(u(0−, t))) and MR(0+) the point
(v(0+, t), pR(u(0+, t))). The point ML(0−) (resp. MR(0+)) is the projection of
u(0−, t) (resp. u(0+, t)) on the (v, p)−plane. In the above mentioned particular
case, the curves C1

L(uL) and Č3
R(uR) intersect at a point for which the states

u(0−, t),u(0+, t) do coincide. The two cases are illustrated in Figure 8.
Now if

(45)
d2

L

γL − 1
=

d2
R

γR − 1
≡ d2

γ − 1
,

we notice that the above computations only give one relation linking (τ, ε/τ )(0+, t)
and (τ, ε/τ )(0−, t). However, we can prove

Proposition 4. Assuming (43) with (45), the coupling conditions (5) lead to

(46)

⎧⎨
⎩

v(0−, t) = v(0+, t),( ε

τ
+ (

d2

γ − 1
)
1
τ

)
(0−, t) =

( ε

τ
+ (

d2

γ − 1
)
1
τ

)
(0+, t).
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Proof. Note that for two γ−laws (d2
α = 0), we have indeed seen that the coupling

yields the continuity of v and π = ε
τ by projecting on the (v, π)−plane. Assuming

(43) and (45), we note that the quantity

ωα ≡ 1
γα − 1

(p +
d2

α

τref,α
)

now plays a particular role since it satisfes

ωα =
ε

τ
+ (

d2
α

γα − 1
)
1
τ

and thus does not depend on α if (45) holds; let us note it ω. We can project on
the (v, ω)-plane, parametrize the projected wave curves by ω since p → ω is an
isomorphism, and following the same arguments as in the proof of Proposition 3,
obtain the continuity of v and ω at the interface. �

Again, assuming (43) yields that the eigenvector r2(u) in (21) is parallel to
(1, 0,−ω)T and does not depend on the pressure law. Then (46) implies that
rL,2(u(0−, t)) = rR,2(u(0+, t)) (cf. Remark 3).

Remark 5. We can try to make explicit the quantities which are transmitted at the
interface for more general pressure laws, since, in a heuristic way, we can say that
‘two quantities are transmitted’. In fact these quantities are not explicit physical
quantities in general, in particular the velocity is not necessarily continuous. For
more general pressure laws, assuming for instance that (τ, v, ε)(0−, t) is known,
and for some given t, the usual ‘projection’ on the (v, p)−plane, assuming that the
‘projected’ curves can be parametrized by p, provides a system of two equations
in three unknowns (τ, v, ε)(0+, t), which can be interpreted as the intersection of
two surfaces in R

3; heuristically, this gives a curve. In the case we have already
considered of two γ−laws (30), in variables w = (τ, v, π), easy computations show
that this curve is a straight line (39) intersection of two planes, parallel to the
τ−axis. In the case (43)-(44), we can say that the intersection of the curve with
plane v(0+, t) = v(0−, t) is a point, so that the curve is not contained in this plane.
To make explicit the transmitted quantity means to find a change of variables, say
w̃ ∈ R

3, such that in these variables, the curve is a line parallel to one axis, say
w̃3, so that the quantities (w̃1, w̃2) are continuous. We have been able to find it for
(43)-(45). The coupled Riemann problem can then be solved, however the physical
meaning of the transmission is not clear. �

4. Coupling Lagrangian systems of different dimensions

4.1. The p−system and the Euler system. We consider the p−system (11) in
the left half-plane and the Euler system in Lagrangian coordinates (18) in the right
half-plane (using in this section capital letters to distinguish the variables of the
larger system)

∂u
∂t

+
∂

∂x
fL(u) = 0, x < 0, u = (τ, v)T , fL(u) = (−v, p)T , p = pL(τ ),

∂U
∂t

+
∂

∂x
FR(U) = 0, x > 0, U = (τ, v, e)T , FR(U) = (−v, p, pv)T , p = pR(τ, ε).

The dimensions of the two systems are now different, but the physical context helps
to give a meaning to the coupling since some state variables such as the specific
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Figure 9. τ, v, p for the transmission of v = (v, p), p-system in
x < 0 and Euler then system in x > 0

volume τ , velocity v or pressure p are defined for each model. Hence, we write
coupling conditions using the variables (v, p) that are common to the two systems
and which we have seen are good candidates for both. The idea is to reconstruct
the missing variable for the smaller system in such a way that we may transmit
(i.e. have continuity of) the velocity and the pressure.

Indeed, we can lift v = (v, p)T by reconstructing τ when we transmit from the
left to the right

(47) v = (v, p)T → L(v) = (τ, v, p)T , τ = τL(p),

where p → τL(p) is the inverse of pL(τ ). We easily project V when we transmit
from the right to the left

(48) V = (τ, v, p)T → P(V) = (v, p)T .

The coupling conditions naturally write

(49)

{
u(0−, t) ∈ OL(ϕL(P(V(0+, t))))
U(0+, t) ∈ OR(ϕR(L(v(0−, t)))),

Here ϕL(v) = u and ϕR(V) = U are the previously defined admissible changes of
variables (15) and (25).

Proposition 5. Defining L,P by (47) and (48), the coupling conditions (49) lead
to

(50)
{

v(0−, t) = v(0+, t),
p(0−, t) = p(0+, t),

and the solution of the coupled Riemann problem is unique.

Proof. We express the Riemann problems associated to (49) using the variables v
and p. First v(0−, t) is connected to P(V(0+, t)) by a 2L−wave for the p−system.
Then L(v(0−, t)) is connected to V(0+, t) by a 1R−wave for the Euler system, we
project the corresponding 1R−wave curve on the (v, p)−plane, and its intersection
with the 2L−wave curve for the p−system has only one intersection point, so that
v(0−, t) = P(V(0+, t)) and the result follows. We have implicitly assumed in the
proof that the analogue of (26) holds. �

The result is illustrated in Figure 9 with a γ−law pL(τ ) = τγ , pR(τ, ε) = (γ −
1)ε/τ , with γ = 1.4. We note that τ is discontinuous whereas the continuity of v, p
at x = 0 is indeed ensured.

We may also interpret the above coupling procedure by increasing the dimension
of the smaller system in order to couple systems of the same dimension.
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4.2. Interpretation. In fact the previous approach of lifting and projection can
be interpreted by adding an equation to the small system with two conservation
laws

(51)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂τ

∂t
− ∂v

∂x
= 0,

∂v

∂t
+

∂p

∂x
= 0,

∂p

∂t
− p′(τ )

∂v

∂x
= 0,

which we write
∂V
∂t

+ B(V)
∂V
∂x

= 0,

where V = (τ, v, p)T . Only the third equation is in nonconservative form, but it is
clearly redundant since p = p(τ ), so the matrix B(V) of the system

B(V) =

⎛
⎝0 −1 0

0 0 1
0 −p′(τ ) 0

⎞
⎠

is noninvertible. We have added to the existing eigenvalues λ1 = −c, λ3 = c,
c =

√
−p′(τ ), a new eigenvalue which is precisely λ2 = 0. The eigenvectors (in

variables V) are s2 = (1, 0, 0)T , s1 = (1, c,−c2)T , and s3 = (1,−c,−c2)T . These
eigenvectors are presently the eigenvectors of the matrix of the full Euler system
written in primitive variables V = (τ, v, p)T , but with C2 = ppε − pτ . In fact, the
corresponding third equation for the full Euler system in primitive variables is

∂p

∂t
+ (ppε − pτ )

∂v

∂x
= 0.

The Riemann invariants associated to 0 are v, p.
The only nonconservative product in the third equation of (51) can be defined

through the first conservative equations. Indeed, v and p are continuous across
a 2−discontinuity, and if v and p are discontinuous across a 1− or 3−wave, the
product p′(τ ) ∂v

∂x is naturally defined by

−p′(τ )
∂v

∂x
= σ2 ∂v

∂x
,

if σ is the speed of propagation of the discontinuity, since we have σ[p] = σ2[v],
where [.] denotes as usual the jump. So the augmented p−system (51) is a barotropic
Euler system in which pε = 0.

We can uniquely define a solution of the Riemann problem for (51) and initial
data VL = (τL, vL, pL)T , VR = (τR, vR, pR)T . The initial data are supposed to
satisfy p = p(τ ), i.e. pL = p(τL), pR = p(τR), but it is not necessary in what follows.
A priori, the solution consists of a 1−wave between VL and some state V∗

L, a 2−
discontinuity between V∗

L and some state V∗
R, and a 3−wave between V∗

R and VR.
Since v, p are continuous across the 2−discontinuity, i.e. x = 0, the common value
(v∗, p∗) is determined as usual by the intersection of the projection of the 1− and
3−wave curves on the (v, p)−plane, and it is the intermediate state in the solution of
the Riemann problem for the p−system (solved in variable (v, p) by parametrizing
the wave curves by p as we have seen in section 2.3, for the data (vL, pL), (vR, pR)).
Now we have p∗ = p(τ∗) so that V is continuous, W(0±;VL,VR) = (τ∗, v∗, p∗)T .
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The coupling of (51) in x < 0 with the Euler system (17) in x > 0 is done
through the condition

(52)

{
V(0−, t) ∈ OL(V(0+, t)),
U(0+, t) ∈ OR(ϕR(V(0−, t))).

Proposition 6. The coupling conditions (52) are equivalent to (50).

Proof. Expressing the condition V(0−, t) ∈ OL(V(0+, t)) gives that (v, p)(0−, t)
belongs to the projection on the (v, p)−plane of the (backward) 3−wave curve, and
the projection passes through (v, p)(0+, t). Note that the given value τ (0+, t) does
not satisfy p = p(τ ), but as we have noticed above, it does not prevent us from
solving the Riemann problem for system (51).

Similarly expressing the condition U(0+, t) ∈ OR(ϕR(V(0−, t))) gives the fact
that the point (v, p)(0+, t) belongs to the projection of the 1−wave curve through
(v, p)(0−, t). Again, the two curves intersect at only one point in the (v, p)−plane.

�

If the initial states satisfy pL = pL(τL), pR = pR(τR) the two solutions of the
coupled Riemann problem satisfying (52) or (50) coincide.

4.3. Another interpretation: coupling of the isentropic and full systems.
We now consider the p−system in the left half-plane as the isentropic model of gas
dynamics, thus augmented by ∂s

∂t = 0, and we write

(53)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂τ

∂t
− ∂v

∂x
= 0,

∂v

∂t
+

∂p

∂x
= 0,

∂s

∂t
= 0,

assuming
p = p(τ, s0)

for some fixed value s0 of the specific entropy where p = p(τ, s) is the equation of
state of the fluid expressed in terms of τ and s. For instance for a perfect gas we
have p(τ, s) = (γ − 1) exp((s − s0)/Cv)τ−γ .

We then consider the coupled problem

(54)

⎧⎪⎪⎨
⎪⎪⎩

∂W
∂t

+
∂

∂x
FL(W) = 0, x < 0,

∂U
∂t

+
∂

∂x
FR(U) = 0, x > 0,

where
W = (τ, v, s)T , U = (τ, v, e)T ,

and
FL(W) = (−v, p, 0)T , FR(U) = (−v, p, pv)T ,

so that the systems now have the same size.
We set W̃ = (v, p, s)T , and define an admissible change of variables ψ by

ψ(W̃) = W. More precisely ψL(W̃) = W = (v, τL(p), s)T is an admissible change
of variables for (53) with pressure law p = pL(τ ) and τL(p) its inverse. Now, for
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the Euler system, the mapping V = (τ, v, p)T → U = ϕR(V) = (τ, v, e)T is an ad-
missible change of variables, and so is W̃ = (v, p, s)T → ϕ̃R(W̃) ≡ V = (τ, v, p)T ,
when assuming that s = s(τ, p) satisfies ∂τs �= 0. For instance, in the case of a
γ−law, we have seen that pR(τ, s) = (γR−1)τ−γR exp((s−s0)/Cv), thus sR(τ, p) =
s0 + Cv log(pτγR/(γR − 1)). Therefore we can write U = ϕR(ϕ̃R(W̃)) ≡ ψ̃R(W̃))
and it is admissible.

For the coupling problem (54), we take the following coupling conditions:

(55)
{

W(0−, t) ∈ OL(ψL(W̃(0+, t))),
U(0+, t) ∈ OR(ψ̃R(W̃(0−, t))),

where W̃(0+) = (ψ̃R)−1(U(0+)) = (v, p, s)T (0+), with p(0+) = pR(τ (0+), ε(0+)),
and W̃(0−) = (ψL)−1(W(0−)) = (v, p, s)T (0−) with p(0−) = pL(τ (0−)). Again
(55) is equivalent to (50). Note that the precise value of s0 does not matter since
the variable s does not appear in the equation for pL nor in the coupling condition.

5. Extension to general Lagrangian systems

We want to extend the coupling to more general systems in Lagrangian coor-
dinates, by transmission of a set of variables which corresponds to (v, p) when
restricting to Euler system. We first recall the common algebraic structure of all
these systems which allows us to treat their coupling from a general point of view.
This is followed by some technical computations which are required in order to
define the transmitted variables.

5.1. The form of general Lagrangian systems. We consider systems of q con-
servation laws in Lagrangian coordinates (x still stands for a mass variable)

(56) ∂tu + ∂xf(u) = 0,

which meet some common properties (we refer to [7] for a detailed description):
• They are endowed with a strictly convex entropy s(u), with null associated

entropy flux, so that for smooth solutions

∂ts = 0.

• u is made of q − 1 − d state variables and d velocity variables U. The last
component of u is the total energy which we will denote e:

uq ≡ e = ε +
1
2
|U|2,

where the internal energy ε is a state variable. Then s is also a state
variable. We will assume that s(u) satisfies ∂s

∂e (u) ≡ se(u) < 0. The model
is then called a fluid model.

• Galilean invariance.
• Reversibility in time for smooth solutions.

Then, such a system can be written in a canonical form: ∃Ψ : u → Ψ(u) ∈
R

q−1, ∃B ∈ M(Rq−1) such that

(57) f(u) = (BΨ(u),−1
2
Ψ(u)T BΨ(u))T ,

moreover B is a symmetric (q − 1)× (q− 1) constant matrix. Finally the spectrum
of f ′(u) is symmetric: if λ(u) is an eigenvalue, so is −λ(u). In the sequel we will
write λ in order to shorten the notation. Again we refer to [7] for a detailed proof.



930 A. AMBROSO, ET AL.

From now on, we assume these results and we derive some of the properties needed
in the following computations.

The first consequence of the last result is that there is an even number, say 2m,
of eigenvalues λi �= 0 and we can number the spectrum as follows: λ0 = 0 with
multiplicity q − 2m and λ1, · · · , λm < 0, λm+1, · · · , λ2m > 0.

5.1.1. Number of transmitted variables. Since the interface is characteristic, we can-
not expect the continuity of u at the coupling interface. As illustrated by the case
of the Euler system, a reduced number of (nonlinear) functions of u are expected
to be continuous. The aim of this section is to provide the material in order to
derive the required set of these functions with linear independent gradients which
are Riemann invariants associated to the eigenvalue 0.

First note that (57) implies that a solution which is assumed to be discontinuous
across x = 0 satisfies B[Ψ] = 0, and one could say that BΨ are transmitted vari-
ables. However, B is not inversible as we will see, and we want to ‘extract’ more
explicit information and define independent transmitted variables from these q − 1
relations, by some change of variables (the analogue of v, p for Euler system). In
particular, the number of these transmitted variables depends on the dimension of
kerB and thus on the multiplicity of the eigenvalue 0 of f ′(u).

The set of variables Ψ is derived from the polar variables which we now make
precise. We will need other sets of variables which we introduce together with some
notation. For the set of conservative variables u and flux f(u), we distinguish the
last component

u = (uq−1, e)T , f(u) = (fq−1(u), fe(u))T ,

where uq−1 = (u1, u2, · · · , uq−1)T . We should write u = (uT
q−1, e)T but we will

skip the interior transpose mark T in order to lighten the notation. Thus Després’
result says that we can write fq−1(u) = BΨ(u), fe(u) = −1

2ΨT BΨ(u) so that the
system (56) writes

(58)

{
∂tuq−1 + B∂xΨ(u) = 0,

∂te + ∂x(−1
2Ψ(u)T BΨ(u)) = 0.

The system is endowed with an entropy s, with se(u) < 0, and we define the entropy
variables that symmetrize the system (see [11])

u∗ ≡ s′(u)T = (su1 , · · · , suq−1 , se)T

and (cf. [7]) Ψ(u) in (58) is in fact derived from the entropy variables

(59) Ψ(u) = (
su1

se
, · · · ,

suq−1

se
)T .

Note that we identify the derivative of scalar functions involved in the definition of
polar variables (such as s′(u)) with a 1 × q matrix (line vector). We also consider
the change of variables

v = (u1, u2, · · · , uq−1, s)T = (uq−1, s)T .

Then, since again se(u) < 0, the mapping v → e(v) = ε + |U|2/2 is a convex
entropy for the system in variables v (see the details in [11] chapter II, Section 1
for the Euler system) and we define the conjugate function or polar variables by

(60) v∗ = e′(v)T = (ev1 , · · · , evq−1 , es)T ≡ (v∗
n−1, s

∗)T .
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Lemma 1. Let v∗
n−1 be defined by (60). Then we have the identity

(61) v∗
n−1 = −Ψ(u(v))

where Ψ is defined by (59).

Proof. Indeed, we can write e(v(u)) = e = uq, so that e′(v)v′(u) = (0, · · · , 0, 1).
Then, the last component gives es = (se)−1 while for the q − 1 first components,
for which vj = uj , we get∑

1≤i≤q−1

∂e(v)
∂vi

∂vi

∂uj
+

∂e

∂s

∂s

∂uj
= evj

+ essuj
= 0,

so that evj
= −essuj

= −(se)−1suj
, which, in view of (59), gives (61). �

Thus, from (58), we can write for smooth solutions

(62) ∂tv −
(

B 0
0 0

)
∂xv∗ = 0

(in fact, only the last equation is not satisfied by discontinuous solutions). Now
multiplying this equation by the matrix v∗′(v) = e′′(v), we get the system satisfied
by v∗:

∂tv∗ − e′′(v)
(

B 0
0 0

)
∂xv∗ = 0.

It is not difficult to prove that u → v∗ is an admissible change of variables, hence

the matrices −f ′(u) and e′′(v)
(

B 0
0 0

)
are similar. This implies the following

result.

Lemma 2. 0 is an eigenvalue of multiplicity q − 2m− 1 of B. Moreover B has m
negative and m positive eigenvalues.

Proof. Since B is symmetric, B is diagonalizable. Assume 0 is an eigenvalue of
multiplicity k of B. Let r1, · · · , rk be k independent eigenvectors (ri ∈ R

q−1) of B
associated to the eigenvalue 0 (i.e. a basis of kerB) and r̃i = (rT

i , 0)T ∈ R
q. Then

the r̃i are independent eigenvectors of the augmented matrix

(63) B̃ ≡
(

B 0
0 0

)

and thus of e′′(v)B̃. Now the vector rq = (0, · · · , 0, 1)T is also an eigenvector of
the matrix B̃ associated to 0 and thus of e′′(v)B̃ (associated to the eigenvalue 0).
The k + 1 vectors r̃i and rq are linearly independent. We have assumed at the
beginning that the matrix f ′(u) (and thus e′′(v)B̃) has q − 2m null eigenvalues,
hence k + 1 ≤ q − 2m. Let r be another eigenvector of e′′(v)B̃ associated to 0.
Since e′′(v) is invertible, it is an eigenvector of B̃; we can choose r̃ ∈ r⊥q , i.e.
r = (r1, · · · , rq−1, 0)T . Then, (r1, · · · , rq−1)T is clearly an eigenvector of B and
thus a combination of the ri, which yields k + 1 = q − 2m.

The diagonalization of the matrix f ′(u) gives a diagonal matrix, say D(u), with
m negative, m positive and (q−2m) zero elements, and thus its signature is (m, m).
The matrices f ′(u(v)) and e′′(v)B̃ are similar. The matrix e′′ is symmetric positive
definite. We may define its square root, say e′′1/2, which is symmetric positive
definite too, with the inverse e′′−1/2. Then e′′1/2B̃e′′1/2 is similar to e′′(v)B̃. The
symmetric matrix e′′1/2B̃e′′1/2 is associated to a quadratic form on R

q which thus
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has the same signature (m, m) as D(u). Then e′′1/2B̃e′′1/2 has the same signature
as B̃. Indeed, the number of eigenvalues that are positive, negative, or 0 does not
change under a congruence transformation (by Sylvester’s inertial law). Finally if
the signature of B̃ is (m, m), so is the signature of B. The argument also proves
that dim kerB = q − 2m − 1. �

5.1.2. Choice of transmitted variables. We are looking for still another set of vari-
ables built from v∗ for which the q − 1 first jump relations in the original system
or equivalently in system (57): B[v∗

n−1] = B[Ψ] = 0 will give the conservation of
precisely 2m independent quantities, say w∗

2m, i.e. 2m = q − (k + 1) Riemann
invariants associated to the eigenvalue 0 of multiplicity k + 1,

[w∗
2m] = 0.

These quantities, corresponding to v, p or rather combinations of v, p for the Euler
system, are meant to be transmitted in the coupling which will follow.

More precisely, the aim of this section is to prove that there exists a change of
variables (wk,w2m, e), which will be defined below, such that the weak solutions
of the original model (56), (57) equivalently solve the system

(64)

⎧⎪⎨
⎪⎩

∂twk = 0,
∂tw2m − M∂xw∗

2m = 0,

∂te + ∂x(−1
2
w∗

2m
T Mw∗

2m) = 0,

where M is a diagonal invertible matrix and w∗ is a linear combination of w. The
interest of this change of variables lies in the fact that w∗

2m is the set of 2m Riemann
invariants we are looking for. Indeed, the matrix M is constant, diagonal and
invertible, hence if a solution is discontinuous across x = 0 (contact discontinuity
corresponding to the eigenvalue λ = 0), the jump condition yields

M [w∗
2m] = 0 ⇔ [w∗

2m] = 0

and provides the set of transmission relations we are looking for.
We partly ‘decouple’ the system by diagonalizing B. The spectrum S of B is

S = {0, µi, 1 ≤ i ≤ 2m} with multiplicity k for the eigenvalue 0 and the other
eigenvalues satisfying µi �= 0. Since B ∈ M(Rq−1) is symmetric, there exists an
orthogonal matrix O, satisfying OOT = Iq−1 and

OBOT = diag (0k, M) ≡ Λ,

with M ∈ M(R2m) a constant diagonal matrix: M = diag (µi), having m entries
µj < 0 and m entries µl > 0. Then we define the orthogonal matrix Ω ∈ M(Rq),
ΩΩT = Iq by

Ω =
(

O 0
0 1

)
,

and set

(65) w = Ωv = (wk,w2m, s)T .

We adopt the notation: given a vector y ∈ R
q, y = (y1,y2, · · · ,yj)T corresponds to

the partition (i1, i2, · · · , ij) of (1, 2, · · · , q), (i1, i2, · · · , ij)∈(N∗)j , i1+i2+· · ·+ij =q.
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Also for the particular partition (k, 2m, 1), (y)2m ≡ y2m. With this convention,
since ΩB̃ΩT = diag (0k, M, 0), we get from (62) that smooth solutions satisfy

(66)

⎧⎨
⎩

∂twk = 0,
∂tw2m − M∂x(Ωv∗)2m = 0,
∂ts = 0.

Again, since Ω has constant entries, only the last equation is not satisfied by dis-
continuous solutions.

We now introduce

(67) w∗ = Ωv∗ = (Ov∗
n−1, s

∗) = (w∗
k,w∗

2m, s∗)

so that (66) writes

(68)

⎧⎨
⎩

∂twk = 0,
∂tw2m − M∂xw∗

2m = 0,
∂ts = 0.

Let us check the following.

Lemma 3. The mapping w → E(w) ≡ e(ΩTw) is strictly convex and E ′(w)T =
w∗.

Proof. We use the formula to express the derivative of a compound function. It
gives (using the differential form for e′′)

E ′′(w)(w1,w2) = e′′(ΩTw) · (ΩTw1, ΩT w2)

or using the matrix form for the Hessian e′′(w), E ′′(w) = Ωe′′(ΩTw)ΩT , which
proves the convexity of E since e′′(v) is positive definite. �

Observe that E(w(v)) = e(ΩT w(v)) = e(v). Then E is an entropy for system
(68) and the polar variable E ′(w) is in fact w∗ = Ωv∗, i.e.

E ′(w)T = Ωv∗

(the similarity transformation Ω commutes with the conjugate). Indeed, for any
h ∈ R

q, the linear form E ′(w) satisfies

E ′(w) · h = e′(ΩTw) · ΩTh

and if we identify both E ′(w) and e′(v) with line vectors in R
q, it gives

E ′(w)T = Ωe′(ΩTw) = Ωe′(v)T = Ωv∗.

Let us now consider the system satisfied by the set of variables we = (wq−1, e)T ,
replacing the equation on the entropy s by the original equation in e. It can be
checked that we is also an admissible change of variables and smooth solutions of
(66) solve the energy equation. In order to express the flux in terms of we, we
notice that since v∗ = ΩT w∗ and ΨT BΨ = v∗

q−1
T OT ΛOv∗

q−1, we get ΨT BΨ =
w∗

q−1
T Λw∗

q−1 = w∗
2m

T Mw∗
2m because of the specific form of Λ = diag (0k, M).

Thus, in variables

(69) we ≡ (wq−1, e)T = (wk,w2m, e)T ,
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we get as expected the system (64)⎧⎪⎨
⎪⎩

∂twk = 0,
∂tw2m − M∂xw∗

2m = 0,

∂te + ∂x(−1
2
w∗

2m
T Mw∗

2m) = 0.

System (64) is now equivalent to the initial one (they have the same smooth and
discontinuous solutions) since the last equation is now also satisfied by discontinuous
solutions of (56), (57). Also, w∗

2m is indeed the set of 2m Riemann invariants we are
looking for, while the k components of wk and s are common Riemann invariants
for the other characteristic fields λj �= 0.

5.1.3. Choice of coupling variables. The ‘final’ set of variables we are going to use
for coupling is

(70) z = (wk,w∗
2m, e)T .

Let us first check that it is indeed admissible. The results of the previous section
prove that it is sufficient to ask for the transmission of w∗

2m since both wk and e
are free of constraints at the interface.

Lemma 4. The mapping w → z defines an admissible change of variables.

Proof. Recall that w, z are defined by w = (wk,w2m, s)T and z = (wk,w∗
2m, e)T ,

with e = E(w) strictly convex. Hence it is enough to prove that the 2m × 2m
matrix ∇w2m

w∗
2m ≡ ((∂w2m,i

w∗
2m,j)i,j) is invertible. We have w∗ = E ′(w)T , thus

(w∗)′(w) = E ′′(w). Let us write E ′′(w) in blocks corresponding to the the partition
(k, 2m, 1), i.e. to the decomposition of R

q in R
k × R

2m × R:

E ′′(w) =

⎛
⎝ Ek,k Ek,2m Ek,1

E2m,k E2m,2m E2m,1

E1,k E1,2m E1,1

⎞
⎠ .

The matrix corresponding to ∇w2m
w∗

2m is the 2m× 2m diagonal block E2m,2m ex-
tracted from E ′′(w) which is symmetric positive definite. This means that
E2m,2m(w) is the restriction of E ′′(w) to the subspace {r = (0k, r2m, 0), r2m ∈ R

2m}
and thus is invertible. �
Example. Let us make explicit the above computations for the Euler system,
u = (τ, v, e)T , v = (τ, v, s)T , se = 1

T , u∗ = 1
T (p,−v, 1)T , Ψ = (p,−v)T , v∗ =

(−p, v, T )T , k = 0, m = 1. Then

B =
(

0 1
1 0

)
, M =

(
−1 0
0 1

)
, O =

1√
2

(
−1 1
1 1

)
,

so that w = Ωv = ( 1√
2
(−τ +v), 1√

2
(τ+v), s)T and the components of w∗

2 = −OΨ =
1√
2
(v + p, v − p)T are indeed 0-Riemann invariants. The matrix E2m,2m which is

the first 2 × 2 diagonal block OT e′′(v)2,2O, extracted from E ′′(w) = ΩT e′′(v)Ω, is
given by

E2m,2m =
1
2

(
1 + C2 1 − C2

1 − C2 1 + C2

)
.

Indeed, e′(v)T = v∗ = (−p, v, T )T so that

e′′(v)2,2 =
(
−∂τp 0

0 1

)
,

with −∂τp(τ, s) = C2. �
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5.2. The coupling of general Lagrangian systems. We now consider the cou-
pling of two general systems (1), (2) where the fluxes fα are of the form (57) with
the same matrix B but with two distinct entropy functions involved in the definition
(59) of Ψ.

Thus, following the previous study, we start from two systems which we can write
in the equivalent form (64) with the set (69) of variables we = (wq−1, e)T , where
each system is endowed with a strictly convex entropy function: sL = sL(we),
sR = sR(we), and we have e = |U|2

2 + ε with (τ, s) → ε(τ, s) strictly convex. We
want to express the coupling condition in the set (70) of variables z = (wk,w∗

2m, e)T

which means that we want to transmit w∗
2m. Note that, considered as a function

of z, w∗
2m depends on the choice of the closure relation.

5.2.1. The coupling conditions expressed in variables z. Recalling (7), we write

(71)
{

we(0−, t) ∈ OL(ϕL(z(0+, t))),
we(0+, t) ∈ OR(ϕR(z(0−, t))),

where we = ϕL(z) in x < 0, and we = ϕR(z) in x > 0. We aim to prove that (71)
gives the continuity of w∗

2m (for the Euler system; this means the continuity of v
and p) at the interface.

This result is stated in the following proposition. It will be established for entropy
functions close enough so that the following assumption is true: given, for α = L, R,
a basis of eigenvectors (rα

j )1≤j≤q of the Jacobian matrix f ′α and (rα
j,2m)1≤j≤2m the

corresponding basis of R
2m, the vectors (rR

1,2m, rR
2,2m, · · · , rR

m,2m, rL
m+1,2m, rL

m+2,2m,

· · · , rL
2m,2m) still form a basis of R

2m. The vectors will in fact be expressed as
functions of we.

Proposition 7. The coupling conditions (71) lead to the continuity of w∗
2m at the

interface x = 0.

The proof relies on some more technical lemmas.

Lemma 5. Given a state z, let C+
L(z) be defined as the projection (on the w∗

2m-
hyperplane) of the set of states that can be connected to ϕL(z) by (at most) m
L−waves associated to positive eigenvalues λL

j , j ∈ {m+1, · · · , 2m}, and similarly
C−

R(z) as the projection of the set of states to which ϕR(z) can be connected by (at
most) m R−waves associated to negative eigenvalues λR

j , j ∈ {1, · · · , m}. Then
(71) implies

w∗
2m(0−, t) ∈ C+

L(z(0+, t)), w∗
2m(0+, t) ∈ C−

R(z(0−, t)).

Proof. By definition of the admissible set OL, there exists a state we
− ∈ Ω such

that
we(0−, t) = WL(0−;we

−, ϕL(z(0+, t))).
The L−Riemann problem between we

− and ϕL(z(0+, t)) is thus built with a succes-
sion of (at most) m L−waves (with negative speed) between we

− and we(0−, t), a
0−contact discontinuity at x = 0 between we(0−, t) and a state we,L

+ and (at most)
m L−waves (with positive speed) between we,L

+ and ϕL(z(0+, t)). This yields that

w∗
2m(we,L

+ ) = w∗
2m(0−, t),

and thus, after projection on R
2m (the w∗

2m-hyperplane), w∗
2m(0−, t) belongs to

the set C+
L(z(0+, t)), defined as the projection (on the w∗

2m-hyperplane) of the set
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of states that can be connected to ϕL(z(0+, t)) by L−waves associated to positive
eigenvalues λL

j , j ∈ {m + 1, · · · , 2m}.
Similarly by definition of the admissible set OR, there exists a state we

+ ∈ Ω
such that

we(0+, t) = WR(0+; ϕR(z(0−, t)),we
+).

The R−Riemann problem between ϕR(z(0−, t)) and we
+ is thus built with a succes-

sion of (at most) m R−waves between ϕR(z(0−, t)) and a state we,R
− , a 0−contact

discontinuity at x = 0 between we,R
− and we(0+, t) and (at most) m R−waves

between we(0+, t) and we
+. This yields that

w∗
2m(we,R

− ) = w∗
2m(0+, t),

and thus, after projection on R
2m (the w∗

2m−hyperplane), w∗
2m(0+, t) belongs

to the set C−
R(z(0−, t)) defined as the projection of the set of states to which

ϕR(z(0−, t)) can be connected by R−waves associated to negative eigenvalues λR
j ,

j ∈ {1, · · · , m}. �
However, the proof of the continuity of w∗

2m at 0 supposes that we can param-
etrize correctly the projection of the wave curves C−

R(z(0−, t)) or C+
L (z(0+, t)), at

least locally.
For instance, for the Euler system, we are able to parametrize the projection of

the wave curves in the (v, p)−plane in the form v = Φ(p). The parametization is
proved in the following lemma where we use the same notation as that introduced
in Lemma 5.

Lemma 6. For given states z± characterized by z± = (w±
k ,w∗

2m
±, e±)T , the curve

C−
R(z−) can be parametrized for ξ− = (ξ−j ) ∈ R

m, |ξ−j | small enough by

w∗
2m(ξ−) = w∗

2m
− +

m∑
j=1

ξ−j rR
j,2m(z−) + O(|ξ−|2);

similarly C+
L(z+) can be parametrized for ξ+ = (ξ+

j ) ∈ R
m, |ξ+

j | small enough, by

w∗
2m(ξ+) = w∗

2m
+ +

2m∑
j=m+1

ξ+
j rL

j,2m(z+) + O(|ξ+|2).

Proof. Let us first consider a discontinuous solution of (64). It satisfies the following
jump conditions:

(72)

⎧⎨
⎩

−σ[wk] = 0,
−σ[w2m] − M [w∗

2m] = 0,

−σ[e] − 1
2 [w∗

2m
T Mw∗

2m] = 0,

in particular [w∗
2m] = −σM−1[w2m] with M diagonal.

A shock necessarily corresponds to a j−characteristic field associated to a non
null eigenvalue λj , j ∈ {1, · · · , 2m}. Assume first, only in order to simplify the
presentation, that all the corresponding fields are genuinely nonlinear (GNL). We
know that the jump [we] is an eigenvector, say re

j , of the matrix noted in a shortened
way De:

De ≡ D(we
−,we

+) =
∫ 1

0

D(we
− + s(we

+ − we
−))ds

corresponding to the eigenvalue σ.
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Note that the choice of variables z rather decouples the system in three subsys-
tems,

(73)

⎧⎪⎨
⎪⎩

∂twk = 0,
∂tw∗

2m − E2m,2mM∂xw∗
2m = 0,

∂te + ∂x(−1
2
w∗

2m
T Mw∗

2m) = 0.

The matrix D∗(z) of this quasilinear system ∂tz + D∗(z)∂xz = 0 is (in blocks of
sizes corresponding to the decomposition q = k + 2m + 1)

(74) D∗(z) =

⎛
⎝0 0 0

0 −E2m,2mM 0
0 B1,2m 0

⎞
⎠ .

The Jacobian matrix of system (64), noted D, is similar to D∗ and has the same
structure in blocks as D∗(z):

(75) D(we) =

⎛
⎝0 0 0

0 −ME2m,2m 0
0 B1,2mE2m,2m 0

⎞
⎠ .

Hence, given the structure of D(we) (see (75)), this eigenvector re
j of De has the

form re
j = (0k, re

j,2m, rj,e)T . Now, by (74) and (75), the matrices extracted from D
and D∗ are given by D∗

2m,2m = −E2m,2mM and D2m,2m = −ME2m,2m. We write

[w∗
2m] = −σM−1[w2m] = −M−1De

2m,2mre
j,2m = Ee

2m,2mre
j,2m = rz

j,2m

with shorthand notation expressing that rz
j,2m ≡ Ee

2m,2mre
j,2m is an eigenvector of

D∗
2m,2m.
Thus we can parametrize the j−shock curve in a decoupled way. For a given left

state characterized by z− = (w−
k ,w∗

2m
−, e−)T , the curve (the j−shock curve) of

states which can be connected to z− by a j−shock can be parametrized in variable
z, and for |ξ|, small enough ξ < 0 (this results from Lax entropy condition) and we
may write

(76)
{

wk(ξ) = w−
k ,

w∗
2m(ξ) = w∗

2m
− + ξrj,2m(z−) + O(ξ2)

and the last equation of (72) which we write

e(ξ) = e− +
1
2σ

[w∗
2m

T Mw∗
2m].

Now, a j−rarefaction curve, where the index j corresponds again to a nonnull
eigenvalue λj , j ∈ {1, · · · , 2m}, is (in variable z) an integral curve of rj(z) and thus
satisfies

(77)
{

dξwk = 0,
dξw∗

2m = rj,2m(z(ξ)),

together with
dξs = 0.

For a given left state z− = (w−
k ,w∗

2m
−, e−)T , the curve of states which can be

connected to z− by a j−rarefaction can be parametrized for ξ > 0 small enough by

(78)

⎧⎨
⎩

wk(ξ) = w−
k ,

w∗
2m(ξ−) = w∗

2m
− + ξrj,2m(z−) + O(ξ2),

e(ξ) = E(w−
k ,w∗

2m(ξ), s−).
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E(w) is a function of w = (wk,w2m, s)T , and we have seen that ∇w2m
w∗

2m is invert-
ible; hence the notation E(wk,w∗

2m, s) is a short way of writing E(wk,w2m(w∗
2m), s).

Now if a characteristic field, say λR
j , is linearly degenerate (LD), the result

still holds since the curve of states which can be connected to z− by a j−contact
discontinuity is also an integral curve of rj(z) that can be parametrized in the same
way.

Thus, for a given left state z− = (w−
k ,w∗

2m
−, e−), the curve C−

R(z−) projection
of the set of states to which ϕL(z−) can be connected by (at most) m R−waves,
j−rarefaction, j−shock (if the j−field is GNL) or j−contact discontinuity (if it
is LD), each associated to a negative eigenvalue λR

j , j ∈ {1, · · · , m}, can be
parametrized for ξ− = (ξ−j ) ∈ R

m, |ξ−j | small enough by

w∗
2m(ξ−) = w∗

2m
− +

m∑
j=1

ξ−j rR
j,2m(z−) + O(|ξ−|2).

Similarly, for C+
L(z+) the projection of the set of states to which ϕL(z+) can be

connected by (at most) m L−waves, j−rarefaction or j−shock or j−contact dis-
continuity, each associated to a positive eigenvalue λL

j , j ∈ {1, · · · , m}, can be
parametrized for ξ+ = (ξ+

j ) ∈ R
m, |ξ+

j | small enough, by

w∗
2m(ξ+) = w∗

2m
+ +

2m∑
j=m+1

ξ+
j rL

j,2m(z+) + O(|ξ+|2),

which ends the proof of the lemma. �

Proof of Proposition 7. We apply the above results to z+ = z(0+, t), z− = z(0−, t),
and assume that rR

j,2m(z(0+, t)), 1 ≤ j ≤ m, rL
j,2m(z(0−, t)), m + 1 ≤ j ≤ 2m, are

linearly independent. We write

(79)

{
w∗

2m(0+, t) = w∗
2m(0−, t) +

∑m
j=1 ξ−j rR

j,2m(z(0−, t)) + O(|ξ−|2),
w∗

2m(0−, t) = w∗
2m(0+, t) +

∑2m
j=m+1 ξ+

j rL
j,2m(z(0+, t)) + O(|ξ+|2).

Assume ξ = (ξ−, ξ+) is nonnull. This would imply

m∑
j=1

ξ−j
|ξ| r

R
j,2m(z(0−, t)) = −

2m∑
j=m+1

ξ+
j

|ξ| r
L
j,2m(z(0+, t)) + O(|ξ|).

This holds for any ξ �= 0 small enough, letting ξ tend to 0. This yields the fact
that some of the vectors rR

j,2m, 1 ≤ j ≤ m, and rL
j,2m, m + 1 ≤ j ≤ 2m, are linearly

dependent, in contradiction with our assumption. Hence ξ = 0 and w∗
2m(0−, t) =

w∗
2m(0+, t), which concludes the proof.
The fact that the vectors rR

j,2m(z(0+, t)), 1 ≤ j ≤ m, rL
j,2m(z(0−, t)), m+1 ≤ j ≤

2m, are linearly independent can be proved, by some technical continuity argument,
using the fact that we have assumed that the entropy laws are close enough to
ensure that the eigenvectors rR

j,2m(z), 1 ≤ j ≤ m, rL
j,2m(z), m + 1 ≤ j ≤ 2m, are

independent. Indeed, due to the coupling condition, we know that z(0−, t) and
z(0+, t) are connected by L− (or equivalently R−) waves, hence, with a possible
change in O(|ξ−|2) we can take all the eigenvectors evaluated at the same state
z(0+, t) (or z(0−, t)). �
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5.2.2. The coupled Riemann problem. We are given two nearby constant states we
±

or equivalently z± = (w±
k ,w∗

2m
±, e±), where we

− = ϕL(z−), we
+ = ϕR(z+), and

we want to solve the coupled Riemann problem, i.e. (64) with sL = sL(we), or in
variable z, εL(τ, s) in x < 0, sR = sR(we) or εR(τ, s) in x > 0, the initial condition

(80) w(x, 0) =
{

we
−, in x < 0,

we
+, in x > 0,

together with the coupling conditions (71).

Theorem 1. Assuming the above hypothesis, the coupled Riemann problem has a
unique solution.

Proof. We try to connect the states by a succession of elementary waves: (at most)
m L−waves, each associated to a negative eigenvalue λL

j < 0, j ∈ {1, · · · , m},
between we

− and we(0−), a ‘discontinuity’ at the interface x = 0 between we(0−)
and we(0+) satisfying the coupling conditions (71) and (at most) m R−waves, each
associated to a positive eigenvalue λR

j > 0, j ∈ {m + 1, · · · , 2m}, between we(0+)
and we

+.
Following the proof of Proposition 7, we intend to ‘project’ on the w∗

2m hyper-
plane since the discontinutity between the states we(0−) and we(0+) is charac-
terized by w∗

2m(0−) = w∗
2m(0+). This gives 2m unknown quantities (ξj)1≤j≤2m

characterizing the components w∗
2m of the intermediate constant states, say we

j,∗,
between the L−waves (in x < 0) or R−waves (in x > 0). These quantities
are obtained by writing the 2m equations expressing that we

j,∗ belongs to the
j−wave curve through we

j−1,∗ or we
j+1,∗ according to whether j is in {1, · · · , m} or

{m + 1, · · · , 2m}. Using the parametrization of Lemma 6, it results in

(81)

{
w∗

2m(0−, t) = (w∗
2m)− +

∑m
j=1 ξjrL

j,2m(z(0−, t)) + 0(|ξ+|2),
w∗

2m(0+, t) = (w∗
2m)+ +

∑2m
j=m+1 ξjrR

j,2m(z(0+, t)) + 0(|ξ−|2).

Now, since the 2m vectors rL
j,2m(z(0−, t)), rR

j,2m(z(0+, t)) are independent, thanks
to the inverse mapping theorem, we conclude that the ξj exist and are unique for
z± sufficiently close.

We already know that the wk are constant across the non-0 characteristic fields;
thus wk(0−) = w−

k , wk(0+) = w+
k . If there were only rarefactions, we could

conclude that s is also constant so that sL(0−) = s−L , sR(0+) = s+
R; in that case

the solution is thoroughly determined. However, if we have a j−discontinuity, we
know from the last equation in (72) that it is in fact completely determined by the
w∗

2m components which are already known, so that, in that case too, the argument
is completed. �

Note that the coupling we have performed is conservative, meaning that

fL(u(0−, t)) = fR(u(0+, t)).

Indeed, at the interface, (64) shows that wk is conserved (the corresponding flux is
null), while w∗

2m being continuous, the remaining components of the left and right
fluxes are equal. This also holds in conservative variables u, since constant linear
combinations of the above variables remain continuous at the interface.
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5.3. Conclusion and perspective. We have been able to make explicit coupling
conditions in physical variables and then to solve the coupled Riemann problem in
a unique way for a rather wide class of fluid systems whose equations are written
in Lagrangian coordinates. Since the interface is characteristic, only the Riemann
invariants of the eigenvalue λ = 0 are constant.

Let us note by WL,R(ξ;u−,u+) this solution of the coupled Riemann problem.
It can be used as a building block for a numerical scheme. Indeed, we can define a
Godunov scheme with numerical flux gGod

LR (u,v) with (see (9) and (10)) the usual
Godunov schemes in each half space

(82)

{
gGod

LR (uj−1/2,uj+1/2) = gGod
L (uj−1/2,uj+1/2), j < 0,

gGod
LR (uj−1/2,uj+1/2) = gGod

R (uj−1/2,uj+1/2), j > 0,

where gGod
α denotes the Godunov flux for fα which involves the usual (i.e. uncou-

pled) Riemann problems and again two fluxes at the interface j = 0:

(83)

{
gGod−

LR (u−1/2,u1/2) = fL(WL,R(0−;u−1/2,u1/2)),
gGod+

LR (u−1/2,u1/2) = fR(WL,R(0+;u−1/2,u1/2)).

The variables w∗
2m involved in these fluxes coincide. For instance, for the usual

Euler system, the flux is (−v, p, pv)T so that the two fluxes do coincide:

fL(WL,R(0−;u−1/2,u1/2)) = fR(WL,R(0+;u−1/2,u1/2)) = (−v0, p0, p0v0)T

if v0 and p0 denote the common velocity and pressure of WL,R(0−;u−1/2,u1/2).
The above analysis can also be used for the coupling of two Euler systems (in

Eulerian coordinates) in primitive variables using a Lagrange+projection scheme.
In the Lagrangian step, we solve the Lagrangian system on one time step with some
two-flux method which ensures the transmission of v, p and then project back on
the Eulerian grid, thus the Lagrangian step ensures the continuity of the Riemann
invariants w∗

2m, i.e. of v, p for the usual Euler system. A special treatment of the
projection step (with mean pressure projection) will preserve this continuity. This
has been performed and the corresponding scheme is used for the coupling of two
Euler systems with different γ−law (we refer to [4]).

This work falls within the scope of a joint research program on multiphase flows
between CEA and University Pierre et Marie Curie–Paris 6 in the framework of the
Neptune project (see [2], [4] for the coupling of multiphase flow models).
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