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JACOBI RATIONAL APPROXIMATION AND SPECTRAL
METHOD FOR DIFFERENTIAL EQUATIONS

OF DEGENERATE TYPE

ZHONG-QING WANG AND BEN-YU GUO

Abstract. We introduce an orthogonal system on the half line, induced by
Jacobi polynomials. Some results on the Jacobi rational approximation are
established, which play important roles in designing and analyzing the Jacobi
rational spectral method for various differential equations, with the coefficients
degenerating at certain points and growing up at infinity. The Jacobi rational
spectral method is proposed for a model problem appearing frequently in fi-
nance. Its convergence is proved. Numerical results demonstrate the efficiency
of this new approach.

1. Introduction

Many problems arising in fluid dynamics, quantum mechanics, astrophysics, fi-
nancial mathematics and other fields are set in unbounded domains. Several spec-
tral methods have been developed for solving such problems. The first method is
to use the Hermite and Laguerre approximations. In the second method, we refor-
mulate original problems on unbounded domains to certain singular problems on
bounded domains and then use the Jacobi spectral method for the resulting equa-
tions. Another effective method is based on rational approximations, induced by
Legendre or Chebyshev polynomials; see [6, 7, 11, 13, 14, 17, 18, 22, 23]. By using
this approach, we can approximate differential equations on unbounded domains
directly, without any artificial boundary and variable transformation. However,
it does not work well sometimes. Indeed, the rational functions used in the past
work are induced only by Legendre or Chebyshev polynomials. Accordingly, the
weight functions of the corresponding orthogonal systems are fixed, which are not
appropriate in many cases. This drawback limits the applications of the rational
spectral method seriously. For instance, we consider the equation

∂m
t U(x, t) − ∂x(a(x, t)∂xU(x, t)) − b(x, t)∂xU(x, t) +c(x, t)U(x, t) = F (x, t),

0 < x < ∞, t > 0
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where m = 1 or 2, and the coefficients a(x, t), b(x, t) and c(x, t) degenerate at x = 0
and grow up at infinity. These equations come from some important problems, such
as the spherically symmetrical waves in fluid dynamics and quantum mechanics, the
degenerate parabolic equations in financial mathematics and exterior problems; see,
e.g., [2, 4, 20, 21]. Since in these cases, the coefficients of leading terms of differential
equations degenerate or grow up at certain points, the existing rational spectral
methods are no longer available. On the other hand, the analysis in the existing
literatures concerning the Legendre and Chebyshev rational approximations was
carried out in a twisted way. Consequently, the results are not optimal even for
regular differential equations.

In this paper, we investigate the Jacobi rational approximation and its appli-
cations. The key points are as follows. Firstly, the base functions used in actual
computation are induced by the general Jacobi polynomials with two parameters.
By adjusting these parameters properly, the related systems of rational functions
are mutually orthogonal associated with the weight functions which are exactly
the same as in the underlying problems. This enlarges the applications of spectral
methods essentially. Next, we deal with the rational approximation in a direct
way. This leads to a series of optimal approximation results as the mathematical
foundation of various spectral methods for the half line and other related problems.
It also provides a powerful framework for the analysis of rational approximation.
Finally, as an example, we propose the Jacobi rational spectral method for an im-
portant model problem. The numerical results demonstrate its high accuracy. We
also discuss the applications of the proposed method to many other problems.

This paper is organized as follows. In the next section, we establish the basic
results on the Jacobi rational approximations in nonuniformly weighted Sobolev
spaces. In section 3, we propose the Jacobi rational spectral scheme for a model
problem and prove its convergence. We also explore other applications. In section
4, we present some numerical results. The final section is for concluding remarks.

2. Jacobi rational approximation

In this section, we develop the Jacobi rational approximation.

2.1. Jacobi polynomials. We first recall some properties of Jacobi polynomials.
Let I = { y | |y| < 1}. The Jacobi polynomials J

(α,β)
l (y), l = 0, 1, 2, · · · , are the

eigenfunctions of the Sturm-Liouville problem

(2.1) ∂y((1 − y)α+1(1 + y)β+1∂yv(y)) + λ(1 − y)α(1 + y)βv(y) = 0, y ∈ I.

The corresponding eigenvalues are λ
(α,β)
l = l(l + α + β + 1), l = 0, 1, 2, · · · .

Let Γ(x) be the Gamma function. It is noted that

(2.2) J
(α,β)
l (−y) = (−1)lJ

(β,α)
l (y), J

(α,β)
l (1) =

Γ(l + α + 1)
l!Γ(α + 1)

.

The Jacobi polynomials fulfill the recurrence relations (see [1])

(2.3)
2(l + α + 1)J (α,β)

l (y) − 2(l + 1)J (α,β)
l+1 (y)

= (2l + α + β + 2)(1 − y)−1J
(α+1,β)
l (y),
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J
(α,β−1)
l (y) − J

(α−1,β)
l (y) = J

(α,β)
l−1 (y),(2.4)

(l + α + β)J (α,β)
l (y) = (l + β)J (α,β−1)

l (y) + (l + α)J (α−1,β)
l (y),(2.5)

and

(2.6) ∂yJ
(α,β)
l (y) =

1
2
(l + α + β + 1)J (α+1,β+1)

l−1 (y).

Let χ(α,β)(y) = (1− y)α(1+ y)β. For α, β > −1, the set of Jacobi polynomials is
a complete L2

χ(α,β)(I)−orthogonal system, i.e.,

(2.7)
∫

Λ

J
(α,β)
l (y)J (α,β)

l′ (y)χ(α,β)(y)dy = η
(α,β)
l δl,l′

where δl,l′ is the Kronecker function and

(2.8) η
(α,β)
l =

2α+β+1Γ(l + α + 1)Γ(l + β + 1)
(2l + α + β + 1)Γ(l + 1)Γ(l + α + β + 1)

.

In the forthcoming discussions, we denote the norm and semi-norm of the weight-
ed Sobolev space Hr

χ(α,β)(I) by ||v||r,χ(α,β),I and |v|r,χ(α,β),I , respectively. In partic-
ular, L2

χ(α,β)(I) = H0
χ(α,β)(I) and ||v||χ(α,β),I = ||v||0,χ(α,β),I .

2.2. Jacobi rational functions. We now introduce the new orthogonal system of
rational functions induced by Jacobi polynomials.

Let Λ = (0,∞) and let χ(x) be a certain weight function. Denote by N the set
of all nonnegative integers. For any r ∈ N, we define the weighted Sobolev space
Hr

χ(Λ) in the usual way and denote its inner product, semi-norm and norm by
(u, v)r,χ, |v|r,χ and ‖v‖r,χ, respectively. In particular, L2

χ(Λ) = H0
χ(Λ), (u, v)χ =

(u, v)0,χ and ‖v‖χ = ‖v‖0,χ. For any r > 0, we define Hr
χ(Λ) and its norms by space

interpolation. The space Hr
0,χ(Λ) stands for the closure in Hr

χ(Λ) of the set D(Λ)
consisting of all infinitely differentiable functions with compact support in Λ. When
χ(x) ≡ 1, we omit the subscript χ in the notation.

The Jacobi rational functions are given by

R
(α,β)
l (x) = J

(α,β)
l (

x − 1
x + 1

), l = 0, 1, 2, · · · .

According to (2.1), R
(α,β)
l (x) are the eigenfunctions of the Sturm-Liouville problem

(2.9) ∂x(xβ+1(x + 1)−α−β∂xv(x)) + λxβ(x + 1)−α−β−2v(x) = 0, x ∈ Λ.

The corresponding eigenvalues are λ
(α,β)
l = l(l+α+β+1), l = 0, 1, 2, · · · . Moreover,

the recurrence relations (2.2)–(2.6) imply that

(2.10)

R
(α,β)
l (x) = (−1)lR

(β,α)
l ( 1

x ), R
(α,β)
l (∞) =

Γ(l + α + 1)
l!Γ(α + 1)

,

(l + α + 1)R(α,β)
l (x) − (l + 1)R(α,β)

l+1 (x)
= (2l + α + β + 2)(x + 1)−1R

(α+1,β)
l (x),

R
(α,β−1)
l (x) − R

(α−1,β)
l (x) = R

(α,β)
l−1 (x),

(l + α + β)R(α,β)
l (x) = (l + β)R(α,β−1)

l (x) + (l + α)R(α−1,β)
l (x),

and

(2.11) ∂xR
(α,β)
l (x) = (l + α + β + 1)(x + 1)−2R

(α+1,β+1)
l−1 (x), l ≥ 1.
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Let χ
(α,β)
R (x) = xβ(x + 1)−α−β−2, α, β > −1. Thanks to (2.7) and (2.8), the

Jacobi rational functions form a complete L2

χ
(α,β)
R

(Λ)−orthogonal system, i.e.,

(2.12)
∫

Λ

R
(α,β)
l (x)R(α,β)

l′ (x)χ(α,β)
R (x)dx = γ

(α,β)
l δl,l′

where

(2.13) γ
(α,β)
l =

Γ(l + α + 1)Γ(l + β + 1)
(2l + α + β + 1)Γ(l + 1)Γ(l + α + β + 1)

.

For any v ∈ L2

χ
(α,β)
R

(Λ),

(2.14)

v(x) =
∞∑

l=0

v̂
(α,β)
l R

(α,β)
l (x), v̂

(α,β)
l = (γ(α,β)

l )−1

∫
Λ

v(x)R(α,β)
l (x)χ(α,β)

R (x)dx.

Now, for any N ∈ N, RN stands for the set of all Jacobi rational functions of
degree at most N. Moreover, 0RN = { v | v ∈ RN , v(0) = 0} and R0

N = { v | v ∈
RN , v(0) = v(∞) = 0}.

We next derive an inverse inequality and an embedding inequality which will
be used in the analysis of the Jacobi rational approximation and its applications.
Denote by c a generic positive constant independent of any function and N.

Theorem 2.1. For any φ ∈ RN and 1 ≤ p ≤ q ≤ ∞,

‖φ‖Lq

χ
(α,β)
R

(Λ) ≤ cNσ(α,β)( 1
p− 1

q )‖φ‖Lp

χ
(α,β)
R

(Λ)

where σ(α, β) = 2 max(α, β) + 2, if max(α, β) ≥ −1
2 , and σ(α, β) = 1, otherwise.

Proof. Let y ∈ I and x = 1+y
1−y . Denote by PN the set of all algebraic polynomials

of degree at most N. For any φ ∈ RN , we set ψ(y) = φ( 1+y
1−y ). Clearly ψ(y) ∈ PN .

By an inverse inequality in PN (see Theorem 2.1 of [10]), for any ψ ∈ PN and
1 ≤ p ≤ q ≤ ∞,

(
∫

I

|ψ(y)|qχ(α,β)(y)dy)
1
q ≤ cNσ(α,β)( 1

p− 1
q )(

∫
I

|ψ(y)|pχ(α,β)(y)dy)
1
p .

It can be checked that

χ
(α,β)
R (x) = 2−α−β−2(1 − y)α+2(1 + y)β,

dx

dy
=

2
(1 − y)2

.

Therefore

||φ||q
Lq

χ
(α,β)
R

(Λ)
= 2−α−β−1

∫
I

|ψ(y)|qχ(α,β)(y)dy

≤ cNσ(α,β)( q
p−1)(

∫
I

|ψ(y)|pχ(α,β)(y)dy)
q
p ≤ cNσ(α,β)( q

p−1)||φ||q
Lp

χ
(α,β)
R

(Λ)
. �

Theorem 2.2. For any φ ∈ RN and r ≥ 0,

‖φ‖
r,χ

(α,β)
R

≤ cN2r‖φ‖
χ

(α,β)
R

.

If, in addition, α, β > r − 1, then

‖φ‖
r,χ

(α,β)
R

≤ cNr‖φ‖
χ

(α−r,β−r)
R

.
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Proof. Let y ∈ I,PN and ψ(y) be the same as in the proof of the last theorem.
According to an inverse inequality (see Theorem 2.2 of [10]), for any ψ(y) ∈ PN

and r ∈ N,

(2.15) ‖ψ‖r,χ(α,β),I ≤ cN2r‖ψ‖χ(α,β),I .

In particular, if α, β > r − 1, then

(2.16) ‖ψ‖r,χ(α,β),I ≤ cNr‖ψ‖χ(α−r,β−r),I .

By induction,

(2.17) ∂k
xφ(x) =

k∑
j=1

Ck,j(1 − y)k+j∂j
yψ(y)

where Ck,j are some constants. Hence we use (2.15) and (2.17) to obtain that

|φ|2
k,χ

(α,β)
R

≤ c
k∑

j=1

∫
I

(1 − y)2k+2j+α(1 + y)β(∂j
yψ(y))2dy

≤ c‖ψ‖2
k,χ(α,β),I

≤ cN4k‖ψ‖2
χ(α,β),I

≤ cN4k‖φ‖2

χ
(α,β)
R

.

Furthermore, if α, β > k − 1, then by (2.16) and (2.17),

|φ|2
k,χ

(α,β)
R

≤ c‖ψ‖2
k,χ(α,β),I

≤ cN2k‖ψ‖2
χ(α−k,β−k),I

≤ cN2k‖φ‖2

χ
(α−k,β−k)
R

.

The previous statements with space interpolation lead to the desired results. �

2.3. Basic results on Jacobi rational approximation. We now turn to several
orthogonal projections which are frequently used in the Jacobi rational spectral
method.

We first consider the orthogonal projection PN,α,β : L2

χ
(α,β)
R

(Λ) → RN . It is

defined by

(2.18) (PN,α,βv − v, φ)
χ

(α,β)
R

= 0, ∀φ ∈ RN .

In order to present the approximation results precisely, we introduce the space
Hr

χ
(α,β)
R ,A

(Λ), r ∈ N, with the following semi-norm and norm:

(2.19)

|v|
r,χ

(α,β)
R ,A

= (
∞∑

l=r

(λ(α,β)
l )r|v̂(α,β)

l |2γ(α,β)
l )

1
2 ,

‖v‖
r,χ

(α,β)
R ,A

= (
r∑

k=0

|v|2
k,χ

(α,β)
R ,A

)
1
2 .

For any r > 0, we define the space Hr

χ
(α,β)
R ,A

(Λ) and its norm by space interpolation

as in [3].

Lemma 2.1. For any v ∈ Hr

χ
(α,β)
R ,A

(Λ), r ∈ N and 0 ≤ µ ≤ r,

(2.20) ‖PN,α,βv − v‖
µ,χ

(α,β)
R ,A

≤ c0(λ
(α,β)
N+1 )

µ−r
2 |v|

r,χ
(α,β)
R ,A

where c0 = (1 + (1 − (λ(α,β)
N+1 )−µ)(λ(α,β)

N+1 − 1)−1)
1
2 ≈ 1.
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Proof. We have that for nonnegative integers k ≤ µ,

|PN,α,βv − v|2
k,χ

(α,β)
R ,A

= |
∞∑

l=N+1

v̂
(α,β)
l R

(α,β)
l (x)|2

k,χ
(α,β)
R ,A

≤
∞∑

l=N+1

(λ(α,β)
l )k|v̂(α,β)

l |2γ(α,β)
l ≤ (λ(α,β)

N+1 )k−r|v|2
r,χ

(α,β)
R ,A

.

Consequently,

‖PN,α,βv − v‖2

µ,χ
(α,β)
R ,A

=
µ∑

k=0

|PN,α,βv − v|2
k,χ

(α,β)
R ,A

≤ (λ(α,β)
N+1 )−r|v|2

r,χ
(α,β)
R ,A

µ∑
k=0

(λ(α,β)
N+1 )k = c2

0(λ
(α,β)
N+1 )µ−r|v|2

r,χ
(α,β)
R ,A

.

For any µ = [µ] + θ, 0 < θ < 1, we use the Gagliardo-Nirenberg inequality (cf. [3])
to reach that

‖PN,α,βv − v‖
µ,χ

(α,β)
R ,A

≤ ‖PN,α,βv − v‖1−θ

[µ],χ
(α,β)
R ,A

‖PN,α,βv − v‖θ

[µ]+1,χ
(α,β)
R ,A

≤ c0(λ
(α,β)
N+1 )

µ−r
2 |v|

r,χ
(α,β)
R ,A

.

�

Remark 2.1. Letting any φ ∈ RN and replacing v by φ − v in (2.20), we deduce
that

(2.21) ‖PN,α,βv − v‖
µ,χ

(α,β)
R ,A

≤ c0(λ
(α,β)
N+1 )

µ−r
2 inf

φ∈RN

|φ − v|
r,χ

(α,β)
R ,A

.

On the right side of (2.20), the semi-norm |v|
r,χ

(α,β)
R ,A

is given by (2.19). Accord-
ingly, we used it to derive the basic result (2.20) easily. But it is not convenient
for its applications. Fortunately, there exists an equivalent representation for such
semi-norm for any r ∈ N. To show this, let

(2.22) R
(α,β)
l,0 (x) = R

(α,β)
l (x), R

(α,β)
l,k (x) = (x + 1)2∂xR

(α,β)
l,k−1(x), k ≥ 1.

With the aid of (2.11) and (2.22), we can use induction to show that

(2.23) R
(α,β)
l,k (x) =

Γ(l + α + β + k + 1)
Γ(l + α + β + 1)

R
(α+k,β+k)
l−k (x), l ≥ k.

Thus R
(α,β)
l,k (x) is the same as R

(α+k,β+k)
l−k (x), apart from a constant. Thus, by (2.9),

∂x(xβ+k+1(x+1)−α−β−2k∂xR
(α,β)
l,k (x))+λ

(α+k,β+k)
l−k xβ+k(x+1)−α−β−2k−2R

(α,β)
l,k (x)

= 0.

Multiplying the above by R
(α,β)
l,k (x) and integrating the result by parts, we assert

that

(2.24) ‖∂xR
(α,β)
l,k ‖2

χ
(α+k−3,β+k+1)
R

= λ
(α+k,β+k)
l−k ‖R(α,β)

l,k ‖2

χ
(α+k,β+k)
R

.

Furthermore, a combination of (2.22) and (2.24) gives that

(2.25)
‖R(α,β)

l,k ‖2

χ
(α+k,β+k)
R

= ‖∂xR
(α,β)
l,k−1‖2

χ
(α+k−4,β+k)
R

= λ
(α+k−1,β+k−1)
l−k+1 ‖R(α,β)

l,k−1‖2

χ
(α+k−1,β+k−1)
R

= · · · = c
(α,β)
l,k γ

(α,β)
l
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where

c
(α,β)
l,k =

k−1∏
j=0

λ
(α+j,β+j)
l−j =

k−1∏
j=0

(l − j)(l + j + α + β + 1).

For simplicity of statements, we introduce the notation

d
(α,β)
l,k = c

(α,β)
l,k (λ(α,β)

l )−k =
k−1∏
j=0

(1 − j

l
)(1 +

j

l + α + β + 1
).

Then we have

(1 − k−1
l )k−1 ≤

∏k−1
j=0 (1 − j

l ) ≤ d
(α,β)
l,k

≤
∏k−1

j=0 (1 + j
l+α+β+1 ) ≤ (1 + k−1

l+α+β+1 )k−1.

Thereby, for l 
 k,

(2.26) d0 ≤ d
(α,β)
l,k ≤ d1, d0, d1 � 1.

Next, we define

(2.27) ‖v‖
0,χ

(α,β)
R ,B

= ‖v‖
χ

(α,β)
R

, |v|
1,χ

(α,β)
R ,B

= ‖(x + 1)2∂xv‖
χ

(α+1,β+1)
R

and

(2.28) |v|
k,χ

(α,β)
R ,B

= |(x + 1)2∂xv|
k−1,χ

(α+1,β+1)
R ,B

, k ≥ 2.

We shall show that |v|
k,χ

(α,β)
R ,B

and |v|
k,χ

(α,β)
R ,A

are equivalent noms. To do this,
we set

g1(v) = (x + 1)2∂xv(x), gk(v) = (x + 1)2∂x(gk−1(v)), k ≥ 1.

By (2.23), ∂xR
(α,β)
k,k (x) = 0. Thus, we use (2.14), (2.22) and induction to verify that

(2.29) gk(v) =
∞∑

l=k

v̂
(α,β)
l R

(α,β)
l,k (x).

Therefore, with the aid of (2.25), (2.27)–(2.29) and the definition of d
(α,β)
l,k , we verify

that

|v|2
k,χ

(α,β)
R ,B

= |(x + 1)2∂xv|2
k−1,χ

(α+1,β+1)
R ,B

= · · · = ‖gk(v)‖2

χ
(α+k,β+k)
R

=
∞∑

l=k

|v̂(α,β)
l |2‖R(α,β)

l,k ‖2

χ
(α+k,β+k)
R

=
∞∑

l=k

d
(α,β)
l,k (λ(α,β)

l )k|v̂(α,β)
l |2γ(α,β)

l .

In view of this fact, we use (2.19) and (2.26) to obtain that for all k ∈ N,

(2.30) cd0|v|2k,χ
(α,β)
R ,A

≤ |v|2
k,χ

(α,β)
R ,B

≤ cd1|v|2k,χ
(α,β)
R ,A

.

A combination of (2.19) and (2.30) implies that

(2.31) c
√

d0‖v‖r,χ
(α,β)
R ,A

≤ (
r∑

k=0

|v|2
k,χ

(α,β)
R ,B

)
1
2 ≤ c

√
d1‖v‖r,χ

(α,β)
R ,A

.
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According to the previous statements, we now redefine the space Hr

χ
(α,β)
R ,A

(Λ) as

Hr

χ
(α,β)
R ,A

(Λ) = { v | v is measurable and ‖v‖
r,χ

(α,β)
R ,A

< ∞}, r ∈ N,

equipped with the following semi-norm and norm:

‖v‖
0,χ

(α,β)
R ,A

= ‖v‖
χ

(α,β)
R

, |v|
1,χ

(α,β)
R ,A

= ‖(x + 1)2∂xv‖
χ

(α+1,β+1)
R

,

|v|
k,χ

(α,β)
R ,A

= |(x + 1)2∂xv|
k−1,χ

(α+1,β+1)
R ,A

, k ≥ 2,

‖v‖
r,χ

(α,β)
R ,A

= (
r∑

k=0

|v|2
k,χ

(α,β)
R ,A

)
1
2 .

For any r > 0, we define the space Hr

χ
(α,β)
R ,A

(Λ) and its norm by space interpolation

as in [3].
As a direct result of Lemma 2.1 and the above statements, we have the following

result.

Theorem 2.3. For any v ∈ Hr

χ
(α,β)
R ,A

(Λ), r ∈ N and 0 ≤ µ ≤ r,

(2.32) ‖PN,α,βv − v‖
µ,χ

(α,β)
R ,A

≤ cNµ−r|v|
r,χ

(α,β)
R ,A

.

2.4. Orthogonal projection in nonuniformly weighted space. In many prac-
tical problems, the coefficients of terms involving derivatives of different orders
might degenerate or grow up in different ways. In these cases, it is impossible
to compare numerical solutions with exact solutions in the usual Sobolev spaces,
whereas it might be carried out in certain nonuniformly weighted Sobolev spaces
which the exact solutions belong to; see, e.g., [10, 16]. It is also true for the Jacobi
rational approximation. To do this, we introduce the space Hµ

α,β,γ,δ(Λ), 0 ≤ µ ≤ 1,
with the norm ‖v‖µ,α,β,γ,δ . For µ = 0, H0

α,β,γ,δ(Λ) = L2

χ
(γ,δ)
R

(Λ). For µ = 1,

H1
α,β,γ,δ(Λ) = {v | v is measurable and ‖v‖1,α,β,γ,δ < ∞}

with the norm
‖v‖1,α,β,γ,δ = (|v|2

1,χ
(α,β)
R

+ ‖v‖2

χ
(γ,δ)
R

)
1
2 .

For 0 < µ < 1, the space Hµ
α,β,γ,δ(Λ) and its norm are defined by space interpola-

tion.
Now, let

aα,β,γ,δ(u, v) = (∂xu, ∂xv)
χ

(α,β)
R

+ (u, v)
χ

(γ,δ)
R

, ∀u, v ∈ H1
α,β,γ,δ(Λ).

The orthogonal projection P 1
N,α,β,γ,δ : H1

α,β,γ,δ(Λ) → RN is defined by

aα,β,γ,δ(P 1
N,α,β,γ,δv − v, φ) = 0, ∀φ ∈ RN .

The following imbedding inequality will be used for the derivation of approxi-
mation results.

Lemma 2.2. If

(2.33) α ≤ γ − 2, β ≤ δ + 2, γ, δ > −1,

then for any v ∈ H1

χ
(α,β)
R

(Λ) with v(1) = 0,

‖v‖
χ

(γ,δ)
R

≤ c|v|
1,χ

(α,β)
R

.
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Proof. Let u(y) = v( 1+y
1−y ). Obviously u(0) = 0. By Lemma 2.3 of [10], ‖u‖χ(γ,δ),I ≤

c|u|1,χ(γ+2,δ+2),I . So, a simple calculation yields that

‖v‖
χ

(γ,δ)
R

≤ c‖u‖χ(γ,δ),I ≤ c|u|1,χ(γ+2,δ+2),I ≤ c|v|
1,χ

(γ−2,δ+2)
R

≤ c|v|
1,χ

(α,β)
R

. �

Theorem 2.4. Let σ ≤ 4 and θ ≤ 0. If

(2.34) −1 < α + σ ≤ γ + 2, −1 < β + θ ≤ δ + 2, γ, δ > −1,

then for any v ∈ Hr

χ
(α+σ−1,β+θ−1)
R ,A

(Λ), r ∈ N and r ≥ 1,

(2.35) ‖P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ ≤ cN1−r|v|

r,χ
(α+σ−1,β+θ−1)
R ,A

.

If, in addition,

(2.36) α ≤ γ + σ − 7, β ≤ δ + θ + 1,

then for 0 ≤ µ ≤ 1,

(2.37) ‖P 1
N,α,β,γ,δv − v‖µ,α,β,γ,δ ≤ cNµ−r|v|

r,χ
(α+σ−1,β+θ−1)
R ,A

.

Proof. We first prove (2.35). Let

φ(x) =
∫ x

0

(z + 1)−2PN−1,α+σ,β+θ((z + 1)2∂zv(z))dz + ξ

where ξ is chosen in such a way that v(1) = φ(1). By (2.11), there exists ψ ∈ RN

such that
φ(x) =

∫ x

0

∂zψ(z)dz + ξ = ψ(x) − ψ(0) + ξ ∈ RN .

Clearly, |φ − v|
χ

(α,β)
R

≤ c|φ − v|
χ

(α+σ−4,β+θ)
R

. Consequently, we use the projection
theorem, Lemma 2.2 and Theorem 2.3 to deduce that

(2.38)

‖P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ ≤ ‖φ − v‖1,α,β,γ,δ ≤ c|φ − v|

1,χ
(α+σ−4,β+θ)
R

= c‖PN−1,α+σ,β+θ((x + 1)2∂xv) − (x + 1)2∂xv‖
χ

(α+σ,β+θ)
R

≤ cN1−r|v|
r,χ

(α+σ−1,β+θ−1)
R ,A

.

We now prove (2.37) with condition (2.36). Let g ∈ L2

χ
(γ,δ)
R

(Λ) and consider the

problem

(2.39) aα,β,γ,δ(w, z) = (g, z)
χ

(γ,δ)
R

, ∀z ∈ H1
α,β,γ,δ(Λ).

Taking z = w in (2.39), we get that ‖w‖1,α,β,γ,δ ≤ ‖g‖
χ

(γ,δ)
R

.

We also need to estimate the upper-bounds of some weighted norms of ∂2
xw(x)

and ∂xw(x).
First, let z(x) vary in D(Λ), and so in the sense of distributions,

(2.40) −∂x(∂xw(x)χ(α,β)
R (x)) = (g(x) − w(x))χ(γ,δ)

R (x).

Next, integrating (2.40) yields that

|∂xw(x2)χ
(α,β)
R (x2) − ∂xw(x1)χ

(α,β)
R (x1)| ≤ ‖g − w‖

χ
(γ,δ)
R

(
∫ x2

x1

χ
(γ,δ)
R (x)dx)

1
2 .

Thus ∂xw(x)χ(α,β)
R (x) is meaningful at x = 0,∞. Moreover, multiplying (2.40) by

any z ∈ H1
α,β,γ,δ(Λ), integrating the resulting equality by parts and using (2.39),
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we obtain that

∂xw(∞)z(∞)χ(α,β)
R (∞) − ∂xw(0)z(0)χ(α,β)

R (0)

=
∫

Λ

(∂xw(x)∂xz(x)χ(α,β)
R (x) − (g(x) − w(x))z(x) χ

(γ,δ)
R (x))dx = 0,

∀z ∈ H1
α,β,γ,δ(Λ).

Thereby, ∂xw(x)χ(α,β)
R (x) → 0 as x → 0,∞.

Furthermore, we have from (2.40) that

(2.41)
−∂2

xw(x) = (βx−1 − (α + β + 2)(x + 1)−1)∂xw(x)

+ (g(x) − w(x))xδ−β(x + 1)α+β−γ−δ.

Let Λ1 = (0, 1] and Λ2 = (1,∞). A direct calculation with (2.41) gives that

(2.42) ‖∂2
xwx

1+θ
2 (x+1)3−

σ+θ
2 ‖2

χ
(α,β)
R

+4‖∂xwx
1+θ
2 (x+1)2−

σ+θ
2 ‖2

χ
(α,β)
R

≤ c(D1+D2)

where D1 = D1(Λ1) + D1(Λ2) and

D1(Λj) =
∫

Λj

xβ+θ−1(x + 1)−α−β−σ−θ+4(∂xw(x))2dx, j = 1, 2,

D2 =
∫

Λ

(g(x) − w(x))2x2δ−β+θ+1(x + 1)α+β−2γ−2δ−σ−θ+4dx.

Obviously, (2.36) implies that

D2 =
∫

Λ

(g(x) − w(x))2χ(γ,δ)
R (

x

x + 1
)δ−β+θ+1(x + 1)α−γ−σ+7dx ≤ ‖g − w‖2

χ
(γ,δ)
R

.

So it remains to estimate D1(Λj), j = 1, 2. Due to (2.40),

(2.43)
∂xw(x) = −x−β(x + 1)α+β+2

∫ x

0

(g(z) − w(z))χ(γ,δ)
R (z)dz

= x−β(x + 1)α+β+2

∫ ∞

x

(g(z) − w(z))χ(γ,δ)
R (z)dz.

This fact, along with (2.36) and the Hardy inequality (see [19]) leads to
(2.44)

D1(Λ1) =
∫ 1

0

x−β+θ−1(x + 1)α+β−σ−θ+8(
∫ x

0

(g(z) − w(z))χ(γ,δ)
R (z)dz)2dx

≤ c

∫ 1

0

x−δ−2(
∫ x

0

(g(z) − w(z))χ(γ,δ)
R (z)dz)2dx

≤ c

∫ 1

0

x−δ(g(x) − w(x))2(χ(γ,δ)
R (x))2dx ≤ c‖g − w‖2

χ
(γ,δ)
R

.

We can estimate D1(Λ2) similarly. To do this, let y = x−1
x+1 , ξ = z−1

z+1 , g̃(ξ) = g( 1+ξ
1−ξ )

and w̃(ξ) = w( 1+ξ
1−ξ ). Then by virtue of (2.36), (2.43) and the Hardy inequality, we
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deduce that

D1(Λ2) =
∫ ∞

1

x−β+θ−1(x + 1)α+β−σ−θ+8(
∫ ∞

x

(g(z) − w(z))χ(γ,δ)
R (z)dz)2dx

≤ c

∫ 1

0

(1 − y)−α+σ−9(1 + y)−β+θ−1(
∫ 1

y

(g̃(ξ) − w̃(ξ))χ(γ,δ)(ξ)dξ)2dy

≤ c

∫ 1

0

(1 − y)−γ−2(
∫ 1

y

(g̃(ξ) − w̃(ξ))χ(γ,δ)(ξ)dξ)2dy

≤ c

∫ 1

0

(1 − y)−γ(g̃(y) − w̃(y))2(χ(γ,δ)(y))2dy ≤ c

∫ 1

0

(g̃(y) − w̃(y))2χ(γ,δ)(y)dy

≤ c

∫ ∞

1

(g(x) − w(x))2χ(γ,δ)
R (x)dx ≤ c‖g − w‖2

χ
(γ,δ)
R

.

A combination of (2.42) and the previous estimates gives that

(2.45)
‖∂2

xwx
1+θ
2 (x + 1)3−

σ+θ
2 ‖2

χ
(α,β)
R

+ 4‖∂xwx
1+θ
2 (x + 1)2−

σ+θ
2 ‖2

χ
(α,β)
R

≤ c‖g − w‖2

χ
(γ,δ)
R

≤ c‖g‖2

χ
(γ,δ)
R

.

Moreover, we use (2.38), (2.45) and the definitions of |v|
k,χ

(α,β)
R ,A

, k = 1, 2, to derive
that
(2.46)

‖P 1
N,α,β,γ,δw − w‖1,α,β,γ,δ ≤ cN−1|w|

2,χ
(α+σ−1,β+θ−1)
R ,A

= cN−1|(x + 1)2∂xw|
1,χ

(α+σ,β+θ)
R ,A

≤ cN−1(‖∂2
xwx

1+θ
2 (x + 1)3−

σ+θ
2 ‖

χ
(α,β)
R

+ 2‖∂xwx
1+θ
2 (x + 1)2−

σ+θ
2 ‖

χ
(α,β)
R

)
≤ cN−1‖g‖

χ
(γ,δ)
R

.

Finally, by taking z = P 1
N,α,β,γ,δv−v in (2.39), we use (2.38) and (2.46) to verify

that

|(P 1
N,α,β,γ,δv − v, g)

χ
(γ,δ)
R

| = |aα,β,γ,δ(P 1
N,α,β,γ,δv − v, P 1

N,α,β,γ,δw − w)|

≤ ‖P 1
N,α,β,γ,δv − v‖1,α,β,γ,δ‖P 1

N,α,β,γ,δw − w‖1,α,β,γ,δ

≤ cN−r‖g‖
χ

(γ,δ)
R

|v|
r,χ

(α+σ−1,β+θ−1)
R ,A

.

Consequently,

(2.47)
‖P 1

N,α,β,γ,δv − v‖
χ

(γ,δ)
R

= supg∈L2

χ
(γ,δ)
R

(Λ)

g �=0

|(P 1
N,α,β,γ,δv − v, g)

χ
(γ,δ)
R

|
‖g‖

χ
(γ,δ)
R

≤ cN−r|v|
r,χ

(α+σ−1,β+θ−1)
R ,A

.

The result (2.37) for 0 < µ < 1 follows from (2.38), (2.47) and space interpolation.
�

Remark 2.2. In the Jacobi approximation, we only considered the case with α, β, γ,
δ > −1. But for the Jacobi rational approximation, we introduce the parameters σ
and θ in Theorem 2.4. This enhances the flexibility and enlarges its applications.
Indeed, without suitable σ and θ, we cannot derive the estimates of numerical errors
of rational spectral methods for many important differential equations; see the next
section.
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2.5. Orthogonal projection of functions vanishing at one extreme point.
In some problems as in astrophysics and so on, the values of unknown functions
are imposed at one of the extreme points, say x = 0. In this case, we need to study
another orthogonal projection. For this purpose, we let

0H
1
α,β,γ,δ(Λ) = {v | v ∈ H1

α,β,γ,δ(Λ) and v(0) = 0}.

The orthogonal projection 0P
1
N,α,β,γ,δ : 0H

1
α,β,γ,δ(Λ) → 0RN is defined by

aα,β,γ,δ( 0P
1
N,α,β,γ,δv − v, φ) = 0, ∀φ ∈ 0RN .

Lemma 2.3. If

(2.48) α ≤ γ + 2, β ≤ 0, γ > −1, δ ≥ 0,

or

(2.49) α ≤ γ + 1, β ≤ δ + 2, 0 < α < 1, β < 1,

then for any v ∈ 0H
1

χ
(α−4,β)
R

(Λ),

‖v‖
χ

(γ,δ)
R

≤ c|v|
1,χ

(α−4,β)
R

.

Proof. Let u(y) = v( 1+y
1−y ). Clearly u(−1) = 0. If (2.48) holds, then by Lemma 2.4

of [10], ‖u‖χ(γ,δ),I ≤ c|u|1,χ(α,β),I . Finally a calculation leads to the desired result.
If (2.49) holds, then the same conclusion follows from Lemma 3.6 of [15] and an
argument as before. �

Theorem 2.5. Let σ ≤ 4 and θ ≤ 0. If

(2.50) −1 < α + σ ≤ γ + 2, −1 < β + θ ≤ 0, γ > −1, δ ≥ 0,

or

(2.51) α + σ ≤ γ + 1, 0 < α + σ < 1, −1 < β + θ < 1, γ, δ > −1,

then for any v ∈ 0H
1
α,β,γ,δ(Λ) ∩ Hr

χ
(α+σ−1,β+θ−1)
R ,A

(Λ), r ∈ N and r ≥ 1,

(2.52) ‖ 0P
1
N,α,β,γ,δv − v‖1,α,β,γ,δ ≤ cN1−r|v|

r,χ
(α+σ−1,β+θ−1)
R ,A

.

If, in addition, (2.36) holds and β > 0 or β < θ, then for 0 ≤ µ ≤ 1,

(2.53) ‖ 0P
1
N,α,β,γ,δv − v‖µ,α,β,γ,δ ≤ cNµ−r|v|

r,χ
(α+σ−1,β+θ−1)
R ,A

.

Proof. Let

φ(x) =
∫ x

0

(z + 1)−2PN−1,α+σ,β+θ((z + 1)2∂zv(z))dz ∈ 0RN .

By virtue of the projection theorem, Lemma 2.3 and Theorem 2.3, we deduce that

(2.54)

‖ 0P
1
N,α,β,γ,δv − v‖1,α,β,γ,δ ≤ ‖φ − v‖1,α,β,γ,δ ≤ c|φ − v|

1,χ
(α+σ−4,β+θ)
R

= c‖PN−1,α+σ,β+θ((x + 1)2∂xv) − (x + 1)2∂xv‖
χ

(α+σ,β+θ)
R

≤ cN1−r|v|
r,χ

(α+σ−1,β+θ−1)
R ,A

.

We next prove (2.53) with condition (2.36). Let g ∈ L2

χ
(γ,δ)
R

(Λ) and consider the

problem

(2.55) aα,β,γ,δ(w, z) = (g, z)
χ

(γ,δ)
R

, ∀z ∈ 0H
1
α,β,γ,δ(Λ).
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Taking z = w in (2.55), we get that ‖w‖1,α,β,γ,δ ≤ ‖g‖
χ

(γ,δ)
R

. It can be shown

that (2.40) is still valid and ∂xw(x)χ(α,β)
R (x) → 0, as x → ∞. Moreover, (2.41)

and (2.42) are also true. We can estimate D1(Λ2) and D2 in (2.42), in the same
manner as in the proof of Theorem 2.4. We now estimate D1(Λ1). For simplicity, let
η(x) = ∂xw(x)χ(α,β)

R (x). If β > 0, then η(0) = 0. In this case, a similar argument as
in (2.44) leads to D1(Λ1) ≤ c‖g − w‖2

χ
(γ,δ)
R

. If β < θ, then we use (2.40) and (2.44)

to obtain that

D1(Λ1) =
∫ 1

0

x−β+θ−1(x + 1)α+β−σ−θ+8(η(0) −
∫ x

0

(g(z) − w(z))χ(γ,δ)
R (z)dz)2dx

≤ c‖g − w‖2

χ
(γ,δ)
R

+ cη2(0).

Due to η(∞) = 0, we have from (2.40) and the Cauchy-Schwartz inequality that

η2(0) ≤ (
∫

Λ

|∂xη(x)|dx)2 = (
∫

Λ

|g(x) − w(x)|χ(γ,δ)
R (x)dx)2 ≤ c‖g − w‖2

χ
(γ,δ)
R

.

A combination of the above two estimates leads to D1(Λ1) ≤ c‖g−w‖2

χ
(γ,δ)
R

. Finally,

the desired result (2.53) follows from a duality argument and space interpolation.
�

2.6. Orthogonal projection of functions vanishing at both extreme points.
When we study some problems in unbounded domains with homogenous boundary
conditions, we have to consider another projection. For this purpose, let

H1
0,α,β,γ,δ(Λ) = {v | v ∈ H1

α,β,γ,δ(Λ) and v(0) = v(∞) = 0}.

The orthogonal projection P 1,0
N,α,β,γ,δ : H1

0,α,β,γ,δ(Λ) → R0
N is defined by

aα,β,γ,δ(P
1,0
N,α,β,γ,δv − v, φ) = 0, ∀φ ∈ R0

N .

Theorem 2.6. Let σ ≤ 4 and θ ≤ 0. If

(2.56) −1 < α + σ, β + θ < 1, γ, δ > −1,

then for v ∈ Hr

χ
(α+σ−1,β+θ−1)
R ,A

(Λ) ∩ H1
0,α,β,γ,δ(Λ), r ∈ N and r ≥ 1,

(2.57) ‖P 1,0
N,α,β,γ,δv − v‖1,α,β,γ,δ ≤ cN1−r|v|

r,χ
(α+σ−1,β+θ−1)
R ,A

.

If, in addition, condition (2.36) holds and α > −2, β > 0, then for 0 ≤ µ ≤ 1,

(2.58) ‖P 1,0
N,α,β,γ,δv − v‖µ,α,β,γ,δ ≤ cNµ−r|v|

r,χ
(α+σ−1,β+θ−1)
R ,A

.

Proof. We first assume that (2.56) holds. Let

φ∗(x) =
∫ x

0

(z+1)−2PN−1,α+σ,β+θ((z+1)2∂zv(z))dz, φ(x) = φ∗(x)−φ∗(∞)
x

x + 1
.
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Clearly, φ ∈ R0
N and ∂xφ(x) = ∂xφ∗(x) − φ∗(∞)(x + 1)−2. Thus by the projection

theorem,

(2.59)

‖P 1,0
N,α,β,γ,δv − v‖1,α,β,γ,δ ≤ ‖φ − v‖1,α,β,γ,δ

≤ c‖(x + 1)−2PN−1,α+σ,β+θ((x + 1)2∂xv) − (x + 1)2∂xv‖
χ

(α,β)
R

+c(γ(α+4,β)
0 )

1
2 |φ∗(∞)| + ‖φ − v‖

χ
(γ,δ)
R

≤ c‖PN−1,α+σ,β+θ((x + 1)2∂xv) − (x + 1)2∂xv‖
χ

(α+σ,β+θ)
R

+c(γ(α+4,β)
0 )

1
2 |φ∗(∞)| + ‖φ − v‖

χ
(γ,δ)
R

.

Since −1 < α + σ, β + θ < 1, we use the Cauchy-Schwartz inequality to deduce
that
(2.60)

|φ∗(∞)| = |
∫

Λ

(x + 1)−2(PN−1,α+σ,β+θ((x + 1)2∂xv(x)) − (x + 1)2∂xv(x))dx|

≤ (γ(−α−σ,−β−θ)
0 )

1
2 ‖PN−1,α+σ,β+θ((x + 1)2∂xv) − (x + 1)2∂xv‖

χ
(α+σ,β+θ)
R

.

On the other hand,

φ(x) − v(x)

=
∫ x

0

(z + 1)−2(PN−1,α+σ,β+θ((z + 1)2∂zv(z)) − (z + 1)2∂zv(z))dz − φ∗(∞)
x

x + 1
.

Therefore, using the Cauchy-Schwartz inequality again yields that

(2.61)
‖φ − v‖

χ
(γ,δ)
R

≤ c(γ(−α−σ,−β−θ)
0 γ

(γ,δ)
0 )

1
2 ‖PN−1,α+σ,β+θ((x + 1)2∂xv)

− (x + 1)2∂xv‖
χ

(α+σ,β+θ)
R

+ c(γ(γ,δ+2)
0 )

1
2 |φ∗(∞)|.

Substituting (2.60) and (2.61) into (2.59) and using Theorem 2.3, we reach result
(2.57).

Next, let α > −2, β > 0 and let (2.36) hold. Let g ∈ L2

χ
(γ,δ)
R

(Λ) and consider the

auxiliary problem

(2.62) aα,β,γ,δ(w, z) = (g, z)
χ

(γ,δ)
R

, ∀z ∈ H1
0,α,β,γ,δ(Λ).

Taking z = w in (2.62), we get that ‖w‖1,α,β,γ,δ ≤ ‖g‖
χ

(γ,δ)
R

. It can be checked that

(2.40) still holds. Thanks to α > −2 and β > 0, we know that ∂xw(x)χ(α,β)
R (x) → 0,

as x → 0,∞. Moreover, (2.41) is also true. Thus, following the same line as in the
derivations of (2.46) and (2.47), we reach the desired result (2.58). �

3. Applications to differential equations of degenerate type

This section is for applications of the Jacobi rational spectral approximation
to numerical solutions of differential equations of degenerate type on unbounded
domains.

3.1. A model problem. As an example, we consider the following model problem:
(3.1)⎧⎪⎪⎨

⎪⎪⎩
∂tV (x, t) + ∂x(a(x, t)∂xV (x, t)) + b(x, t)∂xV (x, t)−c(x, t)V (x, t) = F (x, t),

x ∈ Λ, t ∈ [0, T ),

V (x, T ) = V0(x), x ∈ Λ̄,
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where

(3.2)
a(x, t) = a1(x, t)xµ1(x + 1)µ2 , b(x, t) = b1(x, t)xη1(x + 1)η2 ,
c(x, t) = c1(x, t)xλ1(x + 1)λ2 , 0 < amin ≤ a1(x, t) ≤ amax,
|b1(x, t)| ≤ bmax, 0 < cmin ≤ c1(x, t) ≤ cmax.

In addition, V (x, t) satisfies certain asymptotic boundary condition as x → ∞. The
boundary condition at x = 0 depends on the coefficients of (3.1). For instance,
if µ1 > 0 and b(0, t) < 0, then we require V (0, t) = V0(t), while if µ1 > 0 and
b(0, t) ≥ 0, we cannot impose any boundary condition at x = 0.

The above problem includes many important equations in financial mathematics,
such as
♦ the Black-Scholes model (see [4])

∂tV (x, t) + (p − q)x∂xV (x, t) +
1
2
d2x2∂2

xV (x, t) − pV (x, t) = 0,

♦ the Dothan model (see [9])

∂tV (x, t) + px∂xV (x, t) +
1
2
d2x2∂2

xV (x, t) − xV (x, t) = 0,

♦ the Black-Derman-Toy model (see [5])

∂tV (x, t) + p(t)x∂xV (x, t) +
1
2
d2(t)x2∂2

xV (x, t) − xV (x, t) = 0.

If all coefficients p, q and d are independent of x, then we can derive an explicit
solution of the Black-Scholes model, whereas, it is not so, even if only one of the
coefficients depends on x. Moreover, we have no explicit solution of the correspond-
ing multiple-dimensional model, no matter if the coefficients are independent of x
or not. Furthermore, we can only solve the Dothan and Black-Derman-Toy models
numerically.

Next, let

s = T − t, U(x, s) = V (x, T − s), U0(x) = V0(x), f(x, s) = −F (x, T − s),
ã(x, s) = a(x, T − s), ã1(x, s) = a1(x, T − s), b̃(x, s) = b(x, T − s),
b̃1(x, s) = b1(x, T − s), c̃(x, s) = c(x, T − s), c̃1(x, s) = c1(x, T − s).

Then (3.1) is reformulated to the following convection-diffusion problem:
(3.3)⎧⎪⎪⎨
⎪⎪⎩

∂sU(x, s) − ∂x(ã(x, s)∂xU(x, s)) − b̃(x, s)∂xU(x, s) +c̃(x, s)U(x, s) = f(x, s),

x ∈ Λ, s ∈ (0, T ],

U(x, 0) = U0(x), x ∈ Λ̄.

We shall derive the weak formulation of (3.3) for two different cases and construct
the spectral schemes for them.

3.2. The case µ1 > 0 and b̃(0, s) ≥ 0. In this case, we cannot impose any bound-
ary condition at x = 0. As we know, the existence and regularity of the solution of
(3.3) depend not only on µ1, µ2, η1, η2, λ1 and λ2, but also on f(x, s) and U0(x).

We introduce the spaces

L̃2
α,β(Λ) = {v |

∫
Λ

v2(x)xα(x + 1)βdx < ∞},

H̃1
α,β,γ,δ(Λ) = {v | v ∈ L̃2

γ,δ(Λ), ∂xv ∈ L̃2
α,β(Λ)}.
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Besides,

(u, v)α,β =
∫

Λ

u(x)v(x)xα(x + 1)βdx, ‖v‖α,β = (u, v)
1
2
α,β.

If U0(x) ∈ L̃2
σ1,σ2

(Λ), then the possible solution of (3.3) may belong to L∞(0, T ;
L̃2

σ1,σ2
(Λ)) ∩ L2(0, T ; H̃1

µ1+σ1,µ2+σ2,σ1,σ2
(Λ)). Consequently, for deriving a reason-

ably weak form of (3.3), we have to multiply the first equation of (3.3) by
xσ1(x + 1)σ2v and then integrate the result over Λ. It is noted that

−
∫

Λ

∂x(ã(x, s)∂xU(x, s))v(x)xσ1(x + 1)σ2dx

=
∫

Λ

ã1(x, s)∂xU(x, s)∂xv(x)xµ1+σ1(x + 1)µ2+σ2dx

+
∫

Λ

ã1(x, s)∂xU(x, s)v(x)xµ1+σ1−1(x + 1)µ2+σ2−1(σ1(x + 1) + σ2x)dx + B(U, v)

where
B(U, v) = −ã1(x, s)∂xU(x, s)v(x)xµ1+σ1(x + 1)µ2+σ2 |∞0 .

It is easy to check that for any v ∈ H̃1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ),

lim
x→0

x
σ1+1

2 v(x) = 0, a.e., lim
x→0

x
µ1+σ1+1

2 ∂xv(x, s) = 0, a.e.,

lim
x→∞

x
σ1+σ2+1

2 v(x) = 0, a.e., lim
x→∞

x
µ1+µ2+σ1+σ2+1

2 ∂xv(x, s) = 0, a.e.

Thus B(U, v) = 0, a.e., for any U, v ∈ H̃1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ) and µ1 ≥ 2, µ1+µ2 ≤
2. Accordingly, a weak formulation of (3.3) is to seek U ∈ L∞(0, T ; L̃2

σ1,σ2
(Λ)) ∩

L2(0, T ; H̃1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ)) such that

(3.4)

(∂sU(s), v)σ1,σ2 +(ã1(s)∂xU(s), ∂xv)µ1+σ1,µ2+σ2 + (∂xU(s), v)g

+(c̃1(s)U(s), v)λ1+σ1,λ2+σ2 = (f, v)σ1,σ2 ,

∀v ∈ H̃1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ), s ∈ (0, T ], a.e.,

where (·, ·)g stands for the inner product with the s-dependent weight function
g(x, s),

g(x, s) = ã1(x, s)xµ1+σ1−1(x + 1)µ2+σ2−1(σ1(x + 1) + σ2x)

− b̃1(x, s)xη1+σ1(x + 1)η2+σ2 .

It is easy to see that if

(3.5) 2 ≤ µ1 ≤ 2η1, 2(η1 + η2) ≤ µ1 + µ2 ≤ 2,

then
|(∂xU(s), v)g| ≤ c||∂xU ||µ1+σ1,µ2+σ2 ||v||σ1,σ2 .

If, in addition, f ∈ L2(0, T ; (H̃1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ))′) and U0 ∈ L̃2
σ1,σ2

(Λ), then
(3.4) has a unique solution. In particular, if b̃1(x, s) ≡ 0, then the corresponding
conditions can be weakened as µ1 ≥ 2 and µ1 + µ2 ≤ 2.

Let PN,−σ1−σ2−2,σ1 be the orthogonal projection given by (2.18), and let uN (s)
be the approximation to U(s). The Jacobi rational spectral scheme for (3.4) is to
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find uN (s) ∈ RN such that

(3.6)

⎧⎨
⎩

(∂suN (s), φ)σ1,σ2 + (ã1(s)∂xuN (s), ∂xφ)µ1+σ1,µ2+σ2 + (∂xuN (s), φ)g

+(c̃1(s)uN (s), φ)λ1+σ1,λ2+σ2 = (f, φ)σ1,σ2 , ∀φ ∈ RN , s ∈ (0, T ],
uN (0) = PN,−σ1−σ2−2,σ1U0.

We now deal with the convergence of (3.6). To do this, we need a specific
orthogonal projection Π1

N : H̃1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ)∩L̃2
λ1+σ1,λ2+σ2

(Λ) → RN , defined
by

(∂x(Π1
Nv − v), ∂xφ)µ1+σ1,µ2+σ2 + (Π1

Nv − v, φ)λ1+σ1,λ2+σ2

+ (Π1
Nv − v, φ)σ1,σ2 = 0, ∀φ ∈ RN .

For a description of approximation errors, we use the following notation:

Br
µ1,µ2,σ1,σ2,σ,θ(Λ) = Hr

χ
(−µ1−µ2−σ1−σ2+σ−3,µ1+σ1+θ−1)
R ,A

(Λ),

|v|Br
µ1,µ2,σ1,σ2,σ,θ

= |v|
r,χ

(−µ1−µ2−σ1−σ2+σ−3,µ1+σ1+θ−1)
R ,A

.

Following the same line of reasoning as in the proof of Theorem 2.4, we can prove
the following result; see the Appendix.

Lemma 3.1. Let

(3.7)
σ = min(µ1 + µ2 + 2, µ1 + µ2 − λ1 − λ2 + 2, 4),

θ = min(−µ1 + 2,−µ1 + λ1 + 2, 0).

If

(3.8) σ1 + σ2 < min(−λ1 − λ2 − 1,−1), σ1 > max(−λ1 − 1,−1),

then for any v ∈ Br
µ1,µ2,σ1,σ2,σ,θ(Λ), r ∈ N and r ≥ 1,

(3.9)
‖∂x(Π1

Nv − v)‖µ1+σ1,µ2+σ2 +‖Π1
Nv − v‖λ1+σ1,λ2+σ2 + ‖Π1

Nv − v‖σ1,σ2

≤ cN1−r|v|Br
µ1,µ2,σ1,σ2,σ,θ

.

We are now in a position to estimate the numerical error. Let UN = Π1
NU. Then

by (3.4),
(3.10)
(∂sUN (s), φ)σ1,σ2 + (ã1(s)∂xUN (s), ∂xφ)µ1+σ1,µ2+σ2 + (∂xUN (s), φ)g

+(c̃1(s)UN (s), φ)λ1+σ1,λ2+σ2 +
4∑

j=1

Gj(φ, s) = (f, φ)σ1,σ2 , ∀φ ∈ RN , s ∈ (0, T ]

where
G1(φ, s) = (∂sU(s) − ∂sUN (s), φ)σ1,σ2 ,

G2(φ, s) = (ã1(s)(∂xU(s) − ∂xUN (s)), ∂xφ)µ1+σ1,µ2+σ2 ,

G3(φ, s) = (∂xU(s) − ∂xUN (s), φ)g,

G4(φ, s) = (c̃1(s)(U(s) − UN (s)), φ)λ1+σ1,λ2+σ2 .
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Further, let ŨN = uN − UN . Subtracting (3.10) from (3.6) gives that

(3.11)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∂sŨN (s), φ)σ1,σ2 + (ã1(s)∂xŨN (s), ∂xφ)µ1+σ1,µ2+σ2 + (∂xŨN (s), φ)g

+(c̃1(s)ŨN (s), φ)λ1+σ1,λ2+σ2 =
4∑

j=1

Gj(φ, s), ∀φ ∈ RN , s ∈ (0, T ],

ŨN (0) = PN,−σ1−σ2−2,σ1U0 − Π1
NU0.

By taking φ = 2ŨN (s) in (3.11), we obtain that
(3.12)

∂s‖ŨN (s)‖2
σ1,σ2

+ 2amin‖∂xŨN (s)‖2
µ1+σ1,µ2+σ2

+ 2cmin‖ŨN (s)‖2
λ1+σ1,λ2+σ2

≤ 2
5∑

j=1

|Gj(ŨN , s)|

where G5(ŨN , s) = −(∂xŨN (s), ŨN (s))g. Therefore it remains to estimate the terms
|Gj(ŨN , s)|.

Let σ and θ be the same as in (3.7). If condition (3.8) holds, then by virtue of
(3.9),

(3.13)
2|G1(ŨN , s)| ≤ ‖ŨN (s)‖2

σ1,σ2
+ c‖∂sU(s) − ∂sUN (s)‖2

σ1,σ2

≤ ‖ŨN (s)‖2
σ1,σ2

+ cN2−2r|∂sU(s)|2Br
µ1,µ2,σ1,σ2,σ,θ

.

For the same reason, we have that

2|G2(ŨN , s)| ≤ 1
2amin‖∂xŨN (s)‖2

µ1+σ1,µ2+σ2
+ cN2−2r|U(s)|2Br

µ1,µ2,σ1,σ2,σ,θ
,

(3.14)

2|G4(ŨN , s)| ≤ cmin‖ŨN (s)‖2
λ1+σ1,λ2+σ2

+ cN2−2r|U(s)|2Br
µ1,µ2,σ1,σ2,σ,θ

.(3.15)

If, in addition, condition (3.5) holds, then we use (3.9) to deduce that

(3.16)
2|G3(ŨN , s)| ≤ ‖ŨN (s)‖2

σ1,σ2
+ c‖∂x(U(s) − UN (s))‖2

µ1+σ1,µ2+σ2

≤ ‖ŨN (s)‖2
σ1,σ2

+ cN2−2r|U(s)|2Br
µ1,µ2,σ1,σ2,σ,θ

.

Similarly,

(3.17) 2|G5(ŨN , s)| ≤ c‖ŨN (s)‖2
σ1,σ2

+ 1
2amin‖∂xŨN (s)‖2

µ1+σ1,µ2+σ2
.

Besides, by Theorem 2.3 and Lemma 3.1,
(3.18)

‖ŨN (0)‖2
σ1,σ2

≤ ‖U0 − PN,−σ1−σ2−2,σ1U0‖2
σ1,σ2

+ ‖U0 − Π1
NU0‖2

σ1,σ2

≤ cN2−2r|U0|2
r−1,χ

(−σ1−σ2−2,σ1)
R ,A

+ cN2−2r|U0|2Br
µ1,µ2,σ1,σ2,σ,θ

.

Now, let

E(v, s) = ‖v(s)‖2
σ1,σ2

+
∫ s

0

(amin‖∂xv(ξ)‖2
µ1+σ1,µ2+σ2

+ cmin‖v(ξ)‖2
λ1+σ1,λ2+σ2

)dξ.

Substituting (3.13)–(3.18) into (3.12) and integrating the result with respect to s,
we obtain

(3.19) E(ŨN , s) ≤ c

∫ s

0

E(ŨN , ξ)dξ + ρ(U, s)



JACOBI RATIONAL SPECTRAL METHOD 901

where

ρ(U, s) = cN2−2r (
∫ s

0

(|U(ξ)|2Br
µ1,µ2,σ1,σ2,σ,θ

+ |∂ξU(ξ)|2Br
µ1,µ2,σ1,σ2,σ,θ

)dξ

+|U0|2
r−1,χ

(−σ1−σ2−2,σ1)
R ,A

+ |U0|2Br
µ1,µ2,σ1,σ2,σ,θ

).

Finally, applying the Gronwall inequality to (3.19), we arrive at E(ŨN , s) ≤
ecsρ(U, s). This with (3.9) leads to the following conclusion.

Theorem 3.1. Let σ and θ be the same as in (3.7), and assume conditions (3.5)
and (3.8) hold. If for integer r ≥ 1, U ∈ H1(0, T ; Br

µ1,µ2,σ1,σ2,σ,θ(Λ)) and U0 ∈
Hr−1

χ
(−σ1−σ2−2,σ1)
R ,A

(Λ) ∩ Br
µ1,µ2,σ1,σ2,σ,θ(Λ), then for all s ∈ [0, T ],

E(U − uN , s) ≤ b∗N2−2r

where the constant b∗ > 0 depends only on the semi-norms of U and U0 in the
mentioned spaces. Moreover, if b̃1(x, s) ≡ 0, then condition (3.5) can be weakened
as µ1 ≥ 2 and µ1 + µ2 ≤ 2.

3.3. The case µ1 > 0 and b̃(0, s) < 0. In this case, we should impose a boundary
condition at x = 0, say, U(0, s) = 0. Let

0H̃
1
α,β,γ,δ(Λ) = {v | v(0) = 0, v ∈ H̃1

α,β,γ,δ(Λ)}.

We focus on the case U0(x) ∈ L̃2
σ1,σ2

(Λ). Then the possible solution U(x, t) might
belong to L∞(0, T ; L̃2

σ1,σ2
(Λ))∩L2(0, T ;0 H̃1

µ1+σ1,µ2+σ2,σ1,σ2
(Λ)). We can derive the

same weak formulation and Jacobi rational spectral scheme as in (3.4) and (3.6), but
the spaces H̃1

µ1+σ1,µ2+σ2,σ1,σ2
(Λ) and RN are now replaced by 0H̃

1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ)
and 0RN , respectively.

We now turn to convergence. For this purpose, we introduce a specific orthogonal
projection 0Π1

N : 0H̃
1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ) ∩ L̃2
λ1+σ1,λ2+σ2

(Λ) →0 RN , defined by

(∂x(0Π1
Nv − v), ∂xφ)µ1+σ1,µ2+σ2 + (0Π1

Nv − v, φ)λ1+σ1,λ2+σ2 + (0Π1
Nv − v, φ)σ1,σ2

= 0, ∀φ ∈0 RN .

Let

(3.20) σ = min(µ1 + µ2 + 2, µ1 + µ2 − λ1 − λ2 + 2, 4), θ = −µ1 − σ1.

We have the approximation result stated below, which can be proved by Lemma
2.3 with (2.48) and the same argument as for the proof of Lemma 3.1.

Lemma 3.2. If

(3.21) σ1 + σ2 < min(−λ1 − λ2 − 1,−1), σ1 ≥ max(−λ1, 0),

then for any v ∈0 H̃1
µ1+σ1,µ2+σ2,σ1,σ2

(Λ) ∩ Br
µ1,µ2,σ1,σ2,σ,θ(Λ), r ∈ N and r ≥ 1,

(3.22)
‖∂x(0Π1

Nv − v)‖µ1+σ1,µ2+σ2 +‖0Π1
Nv − v‖λ1+σ1,λ2+σ2 + ‖0Π1

Nv − v‖σ1,σ2

≤ cN1−r|v|Br
µ1,µ2,σ1,σ2,σ,θ

.

Let UN =0 Π1
NU. Then we follow the same line of reasoning as in the proof of

Theorem 3.1 to obtain the following result on convergence.
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Theorem 3.2. Let σ and θ be the same as in (3.20), and let conditions (3.5)
and (3.21) hold. If for integer r ≥ 1, U ∈ H1(0, T ;0 H̃1

µ1+σ1,µ2+σ2,σ1,σ2
(Λ) ∩

Br
µ1,µ2,σ1,σ2,σ,θ(Λ)), U0 ∈ Hr−1

χ
(−σ1−σ2−2,σ1)
R ,A

(Λ) ∩ Br
µ1,µ2,σ1,σ2,σ,θ(Λ), then for s ∈

[0, T ],

E(U − uN , s) ≤ b∗∗N2−2r

where the constant b∗∗ > 0 depends only on the semi-norms of U and U0 in the
mentioned spaces.

Using Lemma 2.3 with (2.49), we can obtain results similar to Lemma 3.2 and
Theorem 3.2.

Remark 3.1. By space interpolation, the results of Theorems 3.1 and 3.2 are also
valid for any r ≥ 1. But b∗ and b∗∗ now depend on the norms of U and U0 in the
corresponding spaces.

3.4. Other applications. We can use the Jacobi rational approximation for a lot
of other problems. For example, we consider the Cox-Ingersoll-Ross model (see [8])

∂sV (ρ, s) + (b − aρ)ρ∂ρV (ρ, s) +
1
2
d2ρ∂2

ρV (ρ, s) − ρV (ρ, s) = 0.

We design the Jacobi rational spectral method for this equation in the same manner
as in the last two subsections. For numerical analysis, we need different orthogonal
projections depending on the sign of d2 − 2b.

We can use the mixed Jacobi rational-Legendre spectral method or the combined
Jacobi rational spectral-finite difference method, with domain decomposition, to
solve the two-dimensional model with jump coefficient:

∂tv(x, y, t) + H(x)∂yv(x, y, t) + (
1
2
σ2 + q − r)∂xv(x, y, t) − 1

2
σ2∂2

xv(x, y, t)

+rv(x, y, t) = 0, −∞ < x < ∞, 0 < y, t < T,

where H(x) is the Heaviside function.
An open and interesting problem is how to generalize this method to American

option models, which is related to moving boundary and variational inequalities.
Our method is also applicable to singular problems and differential equations in

spherical geometry, for instance, the three-dimensional Klein-Gordon equation:

∂2
t U(ρ, λ, θ, t) − 1

ρ2 ∂ρ(ρ2∂ρU(ρ, λ, θ, t)) − 1
ρ2 cos θ ∂θ(cos θ∂θU(ρ, λ, θ, t))

− 1
ρ2 cos2 θ ∂2

λU(ρ, λ, θ, t) + γU(t, ρ, λ, θ) + U3(ρ, λ, θ, t) = f(ρ, λ, θ, t), γ = −1, 1.

Since the longitude λ and the latitude θ vary in finite intervals, there exists only
the variable ρ varying from 0 to ∞. Moreover, we can use spherical harmonic
approximation and benefit from its orthogonality. This simplifies the computation.
The remaining problem is how to approximate the above equation in the radial
direction. Surely, we can use the method in this paper.

Another important application is numerical simulation of fluid flow in an infi-
nite strip; see [24]. Similarly, we can solve the exterior problem of fluid flow and
some problems in astrophysics by using the proposed method coupled with other
techniques.
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4. Numerical results

In this section, we present some numerical results. We consider the Dothan-
type model for which we cannot derive an explicit expression of an exact solution.
This problem corresponds to (3.1) with a(x, t) = 1

2d2x2, b(x, t) = (p − d2)x and
c(x, t) = x. Thereby, we have that µ1 = 2, µ2 = η2 = λ2 = 0 and η1 = λ1 = 1 in
(3.2). Moreover, σ = 3 and θ = 0 in (3.7).

We shall use scheme (3.6) to solve the above problem, with suitable σ1 and σ2

depending on the singularity of the initial state U(x, 0). In actual computation, we
take d = 0.03, p = 0.05, T = 1, and the base functions R

(−σ2−2,0)
l (x), 0 ≤ l ≤ N .

We use the Crank-Nicolson difference discretization in time, with the step size
τ = 10−3.

We focus on call-option solutions which grow to infinity as x tends to infinity. It
is difficult to use the finite difference method to simulate them directly. We take
the test function U(x, s) = 1

2 (x + 1)h + (sin sx − 2)e−x + 3, h > 0. Obviously,
U(x, 0) ∈ L̃2

0,σ2
(Λ) for any σ2 < −2h− 1. It can be checked that for any r < −σ2 −

2h − 1, U ∈ L∞(0, T ; Br
2,0,0,σ2,3,0(Λ)). According to Remark 3.1, if σ2 < −2h − 2,

then the scheme (3.6) is convergent.
We first take h = 1 and σ2 = −3.1,−4.1,−5.1,−6.1. In Figure 1, we plot

the global weighted errors log10 ‖U(1) − uN (1)‖0,σ2 vs. log10N , which indicate
the convergence of scheme (3.6) with σ2 < −4 and so coincide well with theoret-
ical analysis. Furthermore, according to Remark 3.1, for sufficiently small τ , the
global weighted errors do not exceed b∗Nσ2+4. But we find from Figure 1 that for
σ2 = −4.1,−5.1,−6.1, the global weighted errors are of the order N−1.7, N−2.4 and
N−3.2, respectively, which are much smaller than the predicted ones. Moreover, it is
shown that scheme (3.6) with σ2 = −3.1 is also convergent. Therefore our method
provides better numerical results than the predicted ones. In Figure 2, we plot the
pointwise absolute errors |U(x, 1) − uN (x, 1)| with N = 64, which are of the order
10−3. They demonstrate that scheme (3.6) provides accurate numerical results even
for call-option solutions growing rapidly as x → ∞. In Figure 3, we plot the point-
wise relative errors |U(x,1)−uN (x,1)

U(x,1) | with N = 64. For σ2 = −3.1,−4.1,−5.1,−6.1,
they are of the order 10−4, 10−5, 10−5 and 10−5, respectively. They show again the
high accuracy of scheme (3.6).

As predicted by Remark 3.1, the convergence rate of scheme (3.6) depends on
the regularity of the exact solution. We now take h = 1

2 . In this case, scheme (3.6)
is convergent for σ2 < −3. We plot the global weighted errors in Figure 4. For
σ2 = −3.1,−4.1,−5.1,−6.1, they are of the order N−1.8, N−2.8, N−3.4 and N−3.7,
respectively. Clearly, they are smaller than the predicted ones which are of the order
Nσ2+3. The global weighted errors with h= 1

2 are also smaller than those with h=1.
This implies that the more regular the solution, the more accurate the numerical
results. The above facts coincide very well with theoretical analysis. In Figure 5, we
plot the pointwise absolute errors with N = 64. For σ2 = −3.1,−4.1,−5.1,−6.1,
they are of the order 10−4, 10−5, 10−5 and 10−5, respectively. In Figure 6, we plot
the pointwise relative errors with N = 64, which are of the order 10−6. These
results show again the high accuracy of scheme (3.6).
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Figure 1. Global weighted errors.
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0 200 400 600 800 1000 1200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−4

x

|U
(1

)−
u 64

(1
)|

h=0.5,σ
1
=0,σ

2
=−3.1

h=0.5,σ
1
=0,σ

2
=−4.1

h=0.5,σ
1
=0,σ

2
=−5.1

h=0.5,σ
1
=0,σ

2
=−6.1
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5. Concluding remarks

In the existing rational spectral methods, the basis functions are induced only
by Legendre or Chebyshev polynomials, which are mutually orthogonal with fixed
weight functions and may not be the most appropriate for underlying problems. In
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this paper, we introduced a new orthogonal system of rational functions induced
by general Jacobi polynomials with the parameters α and β. It is more flexible
in applications. In particular, we could regulate α and β, so that the systems are
mutually orthogonal in certain weighted Sobolev spaces to which the exact solutions
of underlying problems belong. This enlarges its applications essentially.

We usually considered orthogonal projections in the standard weighted Sobolev
spaces. However, in many practical problems, the coefficients of terms involving
derivatives of unknown functions of different orders degenerate or grow up in differ-
ent ways. This fact limits the applications of the rational spectral method seriously.
In this paper, we investigated orthogonal projections in nonuniformly weighted
Sobolev spaces, which form the mathematical foundation of spectral methods for
a large class of differential equations with the coefficients degenerating or growing
up at certain points.

In the previous work, one analyzed the rational spectral approximation in a
twisted way, and so the results are not optimal. We provided a completely new and
powerful framework for the Jacobi rational approximation, which leads to optimal
error estimates.

As an example of applications, we proposed the Jacobi rational spectral method
for the model problem (3.1) which appears frequently in financial mathematics and
other fields. The numerical results indicated the efficiency of this new approach.
The techniques used in this paper are also applicable to many other problems as
discussed in the last part of section 3.

We can use the rational basis functions Rl(x) = J
(α,β)
l (x(x2 + 1)−

1
2 ) to design

rational spectral methods for various problems on the whole line, such as numerical
simulations of heteroclinic solutions of Fisher and Nagumo equations in biology.

Recently, some authors considered the irrational spectral method with the basis
functions I

(α,γ,δ)
l (x) = (x + 1)−γJ

(α,0)
l (1 − 2(x + 1)−δ), δ > 0, x > 0 (cf. [12]). By

a suitable choice of parameters α, γ and δ, they form an orthogonal system with
certain proper weight and fit well the asymptotic behavior of the solution of the
underlying problem. But the corresponding spectral method is available only for
problems with the coefficient degenerating at infinity. Conversely, in this work, we
may adjust two parameters α and β involved in the rational functions R

(α,β)
l (x).

Thus the related spectral method is also useful for problems with singularities at
x = 0,∞. This fact enlarges its applications. On the other hand, we may follow the
same lines of reasoning as in this paper to analyze directly the irrational spectral
method proposed in [12] and derive better results. Furthermore, we could combine
this work with the idea of [12] to design a new irrational Jacobi spectral method by
using the basis functions I

(α,β,γ,λ,δ)
l (x) = xλ(x + 1)−γJ

(α,β)
l (1− 2(x + 1)−δ), which

might provide better numerical results sometimes.

Appendix

We prove Lemma 3.1. Let α = −µ1 − µ2 − σ1 − σ2 − 2, β = µ1 + σ1, and

φ(x) =
∫ x

0

(z + 1)−2PN−1,α+σ,β+θ((z + 1)2∂zv(z))dz + ξ

where ξ is chosen in such a way that v(1) = φ(1). By the projection theorem,

‖∂x(Π1
Nv − v)‖µ1+σ1,µ2+σ2 + ‖Π1

Nv − v‖λ1+σ1,λ2+σ2 + ‖Π1
Nv − v‖σ1,σ2

≤ ‖∂x(φ − v)‖µ1+σ1,µ2+σ2 + ‖φ − v‖λ1+σ1,λ2+σ2 + ‖φ − v‖σ1,σ2 .
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Due to (3.7), a direct calculation with Theorem 2.3 leads to

‖∂x(φ − v)‖µ1+σ1,µ2+σ2 = ‖∂x(φ − v)‖
χ

(α,β)
R

≤ c‖∂x(φ − v)‖
χ

(α+σ−4,β+θ)
R

.

Next, let γ = −σ1 − σ2 − λ1 − λ2 − 2 and δ = σ1 + λ1. By (3.7), (3.8) and Lemma
2.2,

||φ − v||λ1+σ1,λ2+σ2 = ||φ − v||
χ

(γ,δ)
R

≤ c‖∂x(φ − v)‖
χ

(α+σ−4,β+θ)
R

.

Similarly, ||φ−v||σ1,σ2 ≤ c‖∂x(φ−v)‖
χ

(α+σ−4,β+θ)
R

. Finally, using Theorem 2.3 gives
that

‖∂x(φ − v)‖
χ

(α+σ−4,β+θ)
R

= ‖PN−1,α+σ,β+θ((x + 1)2∂xv) − (x + 1)2∂xv‖
χ

(α+σ,β+θ)
R

≤ cN1−r|v|
r,χ

(α+σ−1,β+θ−1)
R ,A

= cN1−r|v|Br
µ1,µ2,σ1,σ2,σ,θ

.

Then, the conclusion comes immediately from the previous statements.
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