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NUMERICAL ANALYSIS OF
AN EXPLICIT APPROXIMATION SCHEME

FOR THE LANDAU-LIFSHITZ-GILBERT EQUATION

SÖREN BARTELS, JOY KO, AND ANDREAS PROHL

Abstract. The Landau-Lifshitz-Gilbert equation describes magnetic behav-
ior in ferromagnetic materials. Construction of numerical strategies to ap-
proximate weak solutions for this equation is made difficult by its top order
nonlinearity and nonconvex constraint. In this paper, we discuss necessary
scaling of numerical parameters and provide a refined convergence result for
the scheme first proposed by Alouges and Jaisson (2006). As an application,
we numerically study discrete finite time blowup in two dimensions.

1. Introduction

The Landau-Lifshitz-Gilbert equation (LLG) records the exchange interaction
between magnetic moments in a magnetic spin system on a square lattice. In this
setting, the energy is given by the Hamiltonian

H = −K
∑
i,j

Si,j · {Si+1,j + Si,j+1},

where Si,j is the spin vector of unit length at site (i, j) and K is a positive exchange
constant. The dynamics of this system is given by the nearest neighbor interaction:

Ṡi,j = −KSi,j × (Si+1,j + Si−1,j + Si,j+1 + Si,j−1).

Assigning Si,j = u(ih, jh, t) for u : R
2 × R → S2, we have

∂tu = Kh2u × ∆u + O(h3).

We adopt a standard usage of K to be inversely proportional to the square of h
and arrive at the continuum limit (Heisenberg equation)

(1.1) ∂tu = u × ∆u

with an associated energy given by the Dirichlet energy functional. To incorporate
the Gilbert damping law, whose origin lies in the observation that such systems
reach equilibrium and must have decreasing energy over time, a dissipative term
can be added on, resulting in the LLG equation:

(1.2) ∂tu = u × ∆u − λu × (u × ∆u) , λ > 0 .
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In this version of the LLG equation, ∆u is a simple approximation of an effictive
field which is in more general models replaced by Heff(u) = −∇L2ELL(u), where
ELL is the Landau-Lifshitz energy of micromagnetics; cf., e.g., [11].

The Cauchy problem for LLG with natural boundary conditions, then, is the
problem of finding u, given initial data u0 : Ω ⊆ R

n → S2 satisfying

(1.3)

⎧⎨
⎩

∂tu = u × ∆u − λu × (u × ∆u) on Ω,
∂u
∂ν = 0 on ∂Ω,
u(x, 0) = u0(x).

We will refer to the first term as the gyroscopic term and the second as the damping
term. When only the damping term is present, this equation is the harmonic map
heat flow problem. There are several standard forms of (1.2) which are equivalent
for smooth solutions and which we will make use of in this paper. The first results
from the vector identity −ξ× (v×ξ) = −v+(v, ξ)ξ, which holds for ξ a unit vector.
From this, (1.2) can be rewritten as

(1.4) ∂tu = u × ∆u + λ(∆u + |∇u|2u).

From (1.2) and (1.4), we can derive the following two additional formulations:

∂tu + λu × ∂tu = (1 + λ2)u × ∆u,(1.5)

λ∂tu − u × ∂tu = (1 + λ2)(∆u + |∇u|2u).(1.6)

Global weak solutions, even partially regular ones, have been shown to exist for
LLG in two and three dimensions given initial data with finite Dirichlet energy.
Amongst these is the work of Alouges and Soyeur [2] who have made use of the
definition of a weak solution naturally arising from (1.5) to show that energy bounds
are sufficient for the existence of such a weak solution in three dimensions. Guo and
Hong [8] successfully carried through the argument that Struwe in [15] employed for
the harmonic map heat flow to exhibit a Struwe solution in two dimensions, i.e., a
partially regular solution that satisfies an energy inequality and is smooth away from
a finite set of point singularities. Recently, Ko [10] in two dimensions and Melcher
[12] in three dimensions independently constructed partially regular solutions to
LLG smooth away from a locally finite n-dimensional parabolic Hausdorff measure
set. While it is known that weak solutions are nonunique in general [2], uniqueness
or nonuniqueness in the class of partially regular solutions is, however, still an
open question. For the harmonic map heat flow, there exist nonunique solutions
due to the appearance of singularities [5]. While this related question of singularity
formation, i.e., whether singularities develop from smooth initial data in finite time,
has been demonstrated for the harmonic map heat flow, no such initial data has
been produced for LLG. An inquiry into this problem is a natural start to the
problem of nonuniqueness as well as the broader issues regarding the validity of the
model and selection criteria for “correct” solutions.

Very little is known about singularities and blow-up dynamics for LLG; cf. [9] for
partial results. As long as ‖∇u‖L∞ is bounded, the solution remains regular for all
time, so singularities in this case are indicated by loss of control on ‖∇u‖L∞ . The
presence of the gyroscopic term precludes the successful application of standard
analytical arguments to show blowup of solutions such as convexity arguments,
scaling arguments, and constructions of explicit solutions. The breakdown of these
methods and the subsequent need to understand the contribution of the gyroscopic
term have inspired recent efforts for singularity formation in the limiting case λ = 0.
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Shatah and Zeng [14] have produced weak-L2 initial data which are locally smooth
that develop a singularity in finite time. However, these initial data fail to be of
finite energy. The work [9] demonstrates orbital stability about the known explicit
harmonic maps in the equivariant setting which are equilibrium solutions to LLG.
However, there is no guarantee that blowup occurs, much less that it occurs in finite
time.

Proper numerical treatment of LLG is made difficult by the fact that the non-
linearity occurs in the highest order derivative and the nonconvexity requirement
|u| = 1. Explicit time integrators of high order coupled with occasional updates
to ensure |u| = 1 are the most common strategies in the engineering literature but
suffer from nonreliable dynamics. On the other hand, implicit strategies to dis-
cretize LLG in time often introduce artificial damping which prevents computed
iterates from remaining on the sphere, and which also precludes a (discrete) energy
law. Recent remedies have been made, partially addressing the dual requirements
of efficiency and reliability: (i) projection methods have been constructed [6, 7, 16],
independently dealing with the nonconvex algebraic constraint; however, no (dis-
crete) energy principle is available, and convergence to LLG is only known in the
case of existing strong solutions to LLG; (ii) explicit/implicit discretizations of
Ginzburg-Landau penalizations that involve an additional parameter ε > 0 are
used, which allow for a discrete energy principle, possibly for restricted choices
of spatio-temporal discretization parameters. We refer to [11] for a more detailed
discussion in this direction. Alouges and Jaisson [1] propose a finite element plus
projection scheme, which is shown to converge if successively the time-step size
and the mesh size tend to zero. The scheme is well suited for our study of weak
solutions, and we are able to extend their results by supplying sufficient conditions
for involved parameters yielding convergence. Moreover, we propose a modification
to increase its efficiency. This yields a practical, stable and convergent numerical
scheme which holds for arbitrarily small λ.

Such a reliable scheme is prerequisite to any study of qualitative properties of
weak solutions. One problem (open for any choice of λ) is the question of whether
blowup occurs for smooth initial data. Very little is known for this question. As long
as ‖∇u‖L∞ is bounded, the solution remains regular for all time, so singularities in
this case are indicated by loss of control on ‖∇u‖L∞ . The presence of the gyroscopic
term precludes a traditional application of analytical arguments to show blowup
of solutions such as convexity arguments, scaling arguments, and constructions of
explicit solutions. To our knowledge only the work of Pistella and Valente [13]
has made an attempt to seek blowup solutions numerically, using a stable scheme
with a fourth order regularizing term, whose convergence behavior is not known
so far. Their study is heavily motivated by the work of Chang, Ding and Ye [4]
on the blowup of the harmonic map heat flow. They specify equivariant data of
degree greater than one, which is known to blow up for the harmonic map heat flow
with fixed boundary data. Introducing a parameter β in front of the gyroscopic
term in (1.2), they fix λ = 1 and steadily increase the value of β and notice that
for β ∼ 10−4, blowup still occurs. However, they observe that the singularity
disappears for large β, which suggests “the regularizing effect of the parameter β”.
We believe that their conclusion that the gyroscopic term has a damping effect
is a statement that is valid only for the specific initial data they choose. Their
study is designed to treat the LLG as a perturbation of the harmonic map heat
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flow and hence gives little insight into the more interesting question concerning
the manner in which the gyroscopic term contributes to blowup. In this paper, we
report on our numerical findings of singularity formation for LLG in two dimensions,
with particular emphasis on the regime of small λ. We introduce a class of initial
data, which is seen in our experiments to generate discrete blowup under Dirichlet
boundary conditions.

2. Approximation scheme and main result

In this section we describe the approximation scheme and state the main result
of this paper.

2.1. Preliminaries. Given a regular triangulation T of the polygonal or polyhe-
dral domain Ω ⊆ R

n into triangles or tetrahedra for n = 2 or n = 3, respectively,
we let h := max{diam(K) : K ∈ T } be the maximal mesh size of T . The set of
nodes in T is denoted by N , and the function space S1(T ) ⊆ W 1,2(Ω) consists
of all continuous, T -elementwise affine functions. For each z ∈ N the function
ϕz ∈ S1(T ) satisfies ϕz(z) = 1 and ϕz(y) = 0 for all y ∈ N \ {z}. Throughout this
paper we set (v; w) :=

∫
Ω

v · w dx for v, w ∈ L2(Ω). We write H1(A) instead of
H1(A; R�) for � = 1, 3.

2.2. Approximation scheme. We follow ideas of Alouges and Jaisson in [1] to
derive an approximation scheme for the Landau-Lifshitz-Gilbert equation. Test-
ing (1.5) with a function φ and using (u×∂tu) · (u×φ) = ∂tu ·φ (owing to |u| = 1),
(u × ∂tu) · φ = −∂tu · (u × φ), and (u × ∆u) · φ = −∆u · (u × φ) we infer

(u × ∂tu; u × φ) − λ(∂tu; u × φ) = −(1 + λ2)(∆u; u × φ).

We replace w = u × φ and integrate by parts to verify

λ(∂tu; w) −
(
u × ∂tu; w) = −(1 + λ2)(∇u;∇w).

The fact that w · u = 0 and ut · u = 0 almost everywhere in Ω motivates an explicit
numerical scheme in which an approximation vh of ut is computed in each time
step. The updated approximation uh +kvh of u is then projected in order to satisfy
the constraint |u| = 1 in an appropriate way.

Algorithm (A). Input: a time-step size k > 0, a positive integer J , a regular
triangulation T of Ω, and u

(0)
h ∈ S1(T )3 such that |u(0)

h (z)| = 1 for all z ∈ N .

(a) Set j := 0.
(b) Compute v

(j+1)
h ∈ L(j) := {wh ∈ S1(T )3 : wh(z) ·u(j)

h (z) = 0 for all z ∈ N}
such that

λ
(
v
(j+1)
h ; wh

)
−

(
u

(j)
h × v

(j+1)
h ; wh

)
= −(1 + λ2)

(
∇u

(j)
h ;∇wh

)
for all wh ∈ L(j).

(c) Set

u
(j+1)
h :=

∑
z∈N

u
(j)
h (z) + k v

(j+1)
h (z)

|u(j)
h (z) + k v

(j+1)
h (z)|

ϕz

and j := j + 1.
(d) Stop if j = J ; go to (b) otherwise.
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Remarks 2.1. (i) The variational formulation in (b) can be recast as a(v(j+1)
h ; wh)+

b(v(j+1)
h ; wh) = �(wh) with a continuous, elliptic, symmetric bilinear form a on

L(j) × L(j), a continuous, skew-symmetric bilinear form b on L(j) × L(j), and a
continuous linear form � on L(j). By the Lax-Milgram theorem there exists a
unique solution v

(j+1)
h ∈ L(j) in (b).

(ii) Suppose that |u(j)
h (z)| = 1 for some j ≥ 0 and all z ∈ N . Since u

(j)
h (z) ·

v
(j+1)
h (z) = 0 for all z ∈ N , it follows that |u(j)

h (z) + kv
(j+1)
h (z)| ≥ 1 for all z ∈ N

so that (c) in Algorithm (A) is well defined and |u(j+1)
h (z)| = 1 for all z ∈ N .

2.3. Approximation result. Convergence for the above scheme to a solution of
the Landau-Lifshitz-Gilbert equation has been proved in [1] if k → 0 and sub-
sequently h → 0. Here, we present a refined convergence result. The following
definition is due to [2].

Definition 2.1. Given u0 ∈ H1(Ω) such that |u0| = 1 almost everywhere in Ω,
a function u is called a weak solution of (1.3) if for all T > 0 we have that (i)
u ∈ H1((0, T )×Ω), u(0, ·) = u0 in the sense of traces, (ii) |u| = 1 almost everywhere
in (0, T ) × Ω, (iii) for almost all T ′ ∈ (0, T ) we have

λ

1 + λ2

∫
(0,T ′)×Ω

|∂tu|2 dx dt +
1
2

∫
Ω

|∇u(T ′)|2 dx ≤ 1
2

∫
Ω

|∇u0|2 dx,

and (iv) for all φ ∈ C∞(ΩT ) with ΩT = (0, T ) × Ω, we have∫
ΩT

∂tu · φ dx dt + λ

∫
ΩT

(
u × ∂tu) · φ dx dt = −(1 + λ2)

∫
ΩT

∇u · ∇(u × φ) dx dt .

Theorem A. Given 0 ≤ t ≤ T ≤ Jk such that t ∈ [jk, (j + 1)k] for some 0 ≤ j ≤
J − 1 and x ∈ Ω let

ûh,k(t, x) :=
t − jk

k
u

(j+1)
h (x) +

(j + 1)k − t

k
u

(j)
h (x).

Let u0 ∈ H1(Ω) and suppose u
(0)
h → u0 in H1(Ω) for h → 0. If T is quasi-uniform

and (k, h) → 0 such that kh−1−n/2 → 0, then there exists a subsequence of
(
ûh,k

)
that weakly converges in H1((0, T ) × Ω) to a weak solution of (1.3).

We refer to Section 3 for a proof of Theorem A and to Lemma 3.2 and The-
orem 3.1 for more precise statements, in particular, a priori bounds with explicit
dependence on the possibly small parameter λ; tracing this parameter is motivated
from [2, Prop. 5.1], where solutions to the Cauchy problem (1.1) are constructed as
certain limits of weak solutions uλ (λ → 0) to (1.5). Throughout Section 3 we use
several ideas from [1]. Section 4 discusses a modification of Algorithm (A) which
leads to simpler linear systems in (b) but still allows for weak subconvergence to a
solution.

3. Proof of Theorem A

Throughout this section we assume that T is quasi-uniform and make repeated
use of the following inverse estimates: There exists an h-independent constant
c0 > 0 such that for all 1 ≤ p ≤ ∞ and φh ∈ S1(T ),

(3.1) ||∇φh||Lp(Ω) ≤ c0h
−1||φh||Lp(Ω) and ||φh||L4(Ω) ≤ c0h

−n/4||φh||L2(Ω).
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We let Ih denote the nodal interpolation operator on T . Given a sequence (a(j) :
j = 0, 1, . . . , J) we set dta

(j+1) := k−1(a(j+1) − a(j)) for j = 0, 1, . . . , J − 1. We
abbreviate µ := 1 + λ2.

Lemma 3.1. For each j = 0, 1, 2, . . . , J , let r
(j+1)
h := k

(
dtu

(j+1)
h − v

(j+1)
h

)
.

There exists an (h, k, λ, µ, j)-independent constant c1 > 0 such that for all j =
0, 1, 2, . . . , J − 1,

||v(j+1)
h ||L2(Ω) ≤ c0(µ/λ)h−1||∇u

(j)
h ||L2(Ω),

||r(j+1)
h ||L1(Ω) ≤ c1k

2||v(j+1)
h ||2L2(Ω),

||r(j+1)
h ||L2(Ω) ≤ c1k

2h−n/2||v(j+1)
h ||2L2(Ω),

||dtu
(j+1)
h ||L2(Ω) ≤

(
1 + c1kh−n/2||v(j+1)

h ||L2(Ω)

)
||v(j+1)

h ||L2(Ω).

Proof. Choosing wh = v
(j+1)
h in (b) of Algorithm (A) and using (3.1) yields

λ

µ
||v(j+1)

h ||2L2(Ω)≤||∇u
(j)
h ||L2(Ω)||∇v

(j+1)
h ||L2(Ω)≤c0h

−1||∇u
(j)
h ||L2(Ω)||v(j+1)

h ||L2(Ω).

For all z ∈ N , we have

|r(j+1)
h (z)| = |u(j+1)

h (z) − u
(j)
h (z) − kv

(j+1)
h (z)|

=

∣∣∣∣∣
u

(j)
h (z) + kv

(j+1)
h (z)

|u(j)
h (z) + kv

(j+1)
h (z)|

−
(
u

(j)
h (z) + kv

(j+1)
h (z)

)∣∣∣∣∣
=

∣∣1 − |u(j)
h (z) + kv

(j+1)
h (z)|

∣∣.
Since u

(j)
h (z) ·v(j+1)

h (z) = 0 we find 1 ≤ |u(j)
h (z)+kv

(j+1)
h (z)| =

√
1 + k2|v(j+1)

h (z)|2

≤ 1 + 1
2k2|v(j+1)

h (z)|2 and hence

|r(j+1)
h (z)| ≤ 1

2
k2|v(j+1)

h (z)|2

for all z ∈ N . Since there exists c > 0 such that for all 1 ≤ p ≤ ∞ and all
φh ∈ S1(T ),

c−1||φh||pLp(Ω) ≤ hn
∑
z∈N

|φh(z)|p ≤ c||φh||pLp(Ω),

we verify the second assertion of the lemma and

||r(j+1)
h ||L2(Ω) ≤ ck2||v(j+1)

h ||2L4(Ω) ≤ ck2h−n/2||v(j+1)
h ||2L2(Ω),

where we used (3.1). We then verify

||dtu
(j+1)
h ||L2(Ω) ≤ ||v(j+1)

h ||L2(Ω) + k−1||r(j+1)
h ||L2(Ω)

≤
(
1 + ckh−n/2||v(j+1)

h ||L2(Ω)

)
||v(j+1)

h ||L2(Ω),

which finishes the proof of the lemma. �
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Lemma 3.2. For all 0 ≤ J ′ ≤ J we have

λ
(1 − Γ1

1 + Γ2

)
k

J′−1∑
j=0

||dtu
(j+1)
h ||2L2(Ω) +

µ

2
||∇u

(J′)
h ||2L2(Ω)

≤ λ(1 − Γ1)k
J′−1∑
j=0

||v(j+1)
h ||2L2(Ω) +

µ

2
||∇u

(J′)
h ||2L2(Ω) ≤

µ

2
||∇u

(0)
h ||2L2(Ω),

where Γ1 := c2
0

(
c1 + (1 + C0)2

)
(µ/λ)kh−2 and Γ2 := c0c1(µ/λ)kh−1−n/2C0 for

C0 := ||∇u
(0)
h ||L2(Ω), and provided that Γ1 ≤ 1 and c0c1(µ/λ)kh−1−n/2 ≤ 1.

The inductive argument used in the subsequent proof is borrowed from [3].

Proof. We choose wh = v
(j+1)
h in (b) of Algorithm (A) and use v

(j+1)
h = dtu

(j+1)
h −

k−1r
(j+1)
h and u

(j)
h = u

(j+1)
h − kdtu

(j+1)
h to verify

λ||v(j+1)
h ||2L2(Ω) = −µ

(
∇u

(j)
h ;∇dtu

(j+1)
h

)
+ µk−1

(
∇u

(j)
h ;∇r

(j+1)
h

)
= −µ

(
∇u

(j+1)
h ;∇dtu

(j+1)
h

)
+ µk||∇dtu

(j+1)
h ||2L2(Ω)

+ µk−1
(
∇u

(j)
h ;∇r

(j+1)
h

)
.

The identity

−µ
(
∇u

(j+1)
h ;∇dtu

(j+1)
h

)
= −µk

2
||∇dtu

(j+1)
h ||2L2(Ω) −

µ

2
dt||∇u

(j+1)
h ||2L2(Ω)

implies

λ||v(j+1)
h ||2L2(Ω) +

µ

2
dt||∇u

(j+1)
h ||2L2(Ω) =

µ

k

(
∇u

(j)
h ;∇r

(j+1)
h

)
+

µk

2
||∇dtu

(j+1)
h ||2L2(Ω).

Hölder’s inequality, (3.1), ||u(j)
h ||L∞(Ω) ≤ 1, and the second assertion of Lemma 3.1

lead to

(3.2)

λ||v(j+1)
h ||2L2(Ω) +

µ

2
dt||∇u

(j+1)
h ||2L2(Ω)

≤ c2
0h

−2 µ

k
||r(j+1)

h ||L1(Ω) + c2
0h

−2µk||dtu
(j+1)
h ||2L2(Ω)

≤ c2
0c1µkh−2||v(j+1)

h ||2L2(Ω) + c2
0µkh−2||dtu

(j+1)
h ||2L2(Ω).

Suppose that ||∇u
(j)
h ||L2(Ω) ≤ C0 (which holds for j = 0 and C0 = ||∇u

(0)
h ||L2(Ω)).

Since c1k ≤ c−1
0 (λ/µ)h1+n/2, the first assertion of Lemma 3.1 yields

(3.3) c1kh−n/2||v(j+1)
h ||L2(Ω) ≤ c−1

0 (λ/µ)h||v(j+1)
h ||L2(Ω) ≤ C0.

A combination of this bound with the fourth estimate of Lemma 3.1 and (3.2) shows

(3.4)
λ||v(j+1)

h ||2L2(Ω) +
µ

2
dt||∇u

(j+1)
h ||2L2(Ω) ≤ c2

0c1µkh−2||v(j+1)
h ||2L2(Ω)

+ c2
0µkh−2

(
1 + C0

)2||v(j+1)
h ||2L2(Ω) = λΓ1||v(j+1)

h ||2L2(Ω).

Since Γ1 ≤ 1 this implies ||∇u
(j+1)
h ||L2(Ω) ≤ C0. Therefore, (3.4) holds for all

j = 0, 1, 2, . . . , J − 1 and multiplication of (3.4) with k and summation over j =
0, 1, 2, . . . , J ′ − 1 prove

λ(1 − Γ1)k
J′−1∑
j=0

||v(j+1)
h ||2L2(Ω) +

µ

2
||∇u

(J′)
h ||2L2(Ω) ≤

µ

2
||∇u

(0)
h ||2L2(Ω).
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We combine the fourth estimate of Lemma 3.1 and (3.3) to verify

||dtu
(j+1)
h ||L2(Ω)≤

(
1+c0c1(µ/λ)kh−1−n/2C0

)
||v(j+1)

h ||L2(Ω) =(1+Γ2)||v(j+1)
h ||L2(Ω).

A combination of the last two estimates proves the lemma. �

Definition 3.1. For x ∈ Ω and t ∈ [jk, (j + 1)k), 0 ≤ j ≤ J − 1, define

ûh,k(t, x) :=
t − jk

k
u

(j+1)
h (x) +

(j + 1)k − t

k
u

(j)
h (x),

u−
h,k(t, x) := u

(j)
h (x), v+

h,k(t, x) := v
(j+1)
h (x), r+

h,k(t, x) := r
(j+1)
h (x).

Lemma 3.3. Suppose that Γ1 ≤ 1/2, assume that T ∈ [0, Jk], and define ΩT :=
(0, T )×Ω. For all wh ∈ L2(0, T ; H1(Ω; R3)) such that wh(t, ·) ∈ S1(T )3 for almost
all t ∈ (0, T ) and wh(t, z) · u−

h (t, z) = 0 for all z ∈ N and almost all t ∈ (0, T ) it
follows that∣∣∣λ

∫
ΩT

∂tûh,k · wh dx dt −
∫

ΩT

(
u−

h,k × ∂tûh,k

)
· wh dx dt + µ

∫
ΩT

∇u−
h,k · ∇wh dx dt

∣∣∣
≤ C0(µ/λ)1/2Λ

(∫ T

0

||wh||2L2(Ω) dt
)1/2

where Λ:= c0c1C0(1 + λ)(µ/λ)kh−1−n/2.

Proof. Replacing v+
h,k = ∂tûh,k−k−1r+

h,k in (b) of Algorithm (A) we find for almost
all t ∈ (0, T ) that

LHS(t) := λ
(
∂tûh,k; wh

)
−

(
(u−

h,k × ∂tûh,k); wh

)
+ µ

(
∇u−

h,k;∇wh

)
=

1
k

(
λr+

h,k −
(
u−

h,k × r+
h,k

)
; wh

)
=: RHS(t).

Hölder’s inequalities, the estimates of Lemma 3.1, and (3.3) prove for almost all
t ∈ (jk, (j + 1)k) that

k|RHS(t)| ≤ λ||r(j+1)
h ||L2(Ω)||wh||L2(Ω) + ||u(j)

h ||L∞(Ω)||r(j+1)
h ||L2(Ω)||wh||L2(Ω)

≤ (λ + 1)c1k
2h−n/2||v(j+1)

h ||2L2(Ω)||wh||L2(Ω)

≤ (λ + 1)c0c1(µ/λ)C0k
2h−1−n/2||v(j+1)

h ||L2(Ω)||wh||L2(Ω).

An integration over (0, T ) shows
∣∣∣
∫ T

0

LHS(t) dt
∣∣∣ ≤

∫ T

0

|RHS(t)| dt ≤ Λ
(∫ T

0

||v+
h,k||

2
L2(Ω)

)1/2(∫ T

0

||wh||2L2(Ω)

)1/2

and the bound
∫ T

0
||v+

h,k||2L2(Ω) dt ≤ k
∑J−1

j=0 ||v(j+1)
h ||2L2(Ω) ≤ (µ/λ)C2

0 of Lemma 3.2
finishes the proof. �

Theorem 3.1. Suppose that (k, h) → 0 such that kh−1−n/2 → 0 and u
(0)
h →

u0 in H1(Ω). Given any T ∈ [0, Jk] and ΩT := (0, T ) × Ω there exists u ∈
H1(0, T ; L2(Ω)) ∩ L∞(0, T ; H1(Ω)) such that (after extraction of a subsequence)
ûh,k ⇀ u in H1(ΩT ). It follows that |u(t, x)| = 1 for almost all (t, x) ∈ ΩT ,
u(0, ·) = u0 in the sense of traces,

(3.5) λ

∫
(0,T ′)×Ω

|∂tu|2 dx dt +
µ

2

∫
Ω

|∇u(x, T ′)|2 dx ≤ µ

2

∫
Ω

|∇u0(x)|2 dx
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for almost all T ′ ∈ (0, T ), and for all φ ∈ C∞(ΩT ) we have

(3.6)
∫

ΩT

∂tu · φ dx dt + λ

∫
ΩT

(u × ∂tu) · φ dx dt = −µ

∫
ΩT

∇u · ∇(u × φ) dx dt.

Proof. Lemma 3.2 and the estimate ||ûh,k − u−
h,k||L2(Ω) ≤ k||∂tûh,k||L2(Ω) yield the

existence of some u ∈ H1(ΩT ) such that, after extraction of a subsequence,

ûh,k ⇀ u in H1(ΩT ), u−
h,k → u in L2(ΩT ),

ûh,k, u−
h,k ⇀∗ u in L∞(0, T ; H1(Ω)).

Notice that |u−
h,k(z, t)| = 1 for all z ∈ N and almost all t ∈ (0, T ). Hence, for all

K ∈ T , ∥∥|u−
h,k|

2 − 1
∥∥

L2(K)
≤ ch

∥∥∇[|u−
h,k|

2 − 1]
∥∥

L2(K)

= ch||2(∇u−
h,k)u−

h,k||L2(K) ≤ 2ch‖∇u−
h,k||L2(K).

This implies that |u−
h,k| → 1 in L2(ΩT ) and hence |u(x, t)| = 1 for almost all

(x, t) ∈ ΩT . Continuity of the trace operator and ûh,k(0, ·) → u0 in H1(Ω) imply
u(0, ·) = u0 in Ω in the sense of traces. Passing to the limits in the estimate of
Lemma 3.2 we verify (3.5). Given φ ∈ C∞(ΩT ) let w := u×φ and wh := Ih(u−

h,k×φ).
An application of the triangle inequality shows

||wh − w||L2(Ω) ≤ ||Ih(u−
h,k × φ) − u−

h,k × φ||L2(Ω) + ||u−
h,k × φ − u × φ||L2(Ω)

≤ ch||∇(u−
h,k × φ)||L2(Ω) + ||φ||L∞(Ω)||u−

h,k − u||L2(Ω)

and proves that wh → w in L2(ΩT ). Since ∂tûh,k ⇀ ∂tu in L2(ΩT ) we verify that

(3.7)
∫

ΩT

∂tûh,k · wh dx dt →
∫

ΩT

∂tu · w dx dt.

The bound |u−
h,k| ≤ 1 almost everywhere in ΩT yields

(3.8)

∫
ΩT

(
u−

h,k × ∂tûh,k

)
· wh dx dt =

∫
ΩT

(
u−

h,k × ∂tûh,k

)
· (wh − w) dx dt

+
∫

ΩT

(
u−

h,k × ∂tûh,k

)
· w dx dt →

∫
ΩT

(
u × ∂tu

)
· w dx dt.

It follows that∫
ΩT

∇u−
h,k · ∇wh dx dt =

∫
ΩT

∇u−
h,k · ∇Ih(u−

h,k × φ) dx dt

=
∫

ΩT

∇u−
h,k · ∇

(
Ih(u−

h,k × φ) − u−
h,k × φ

)
dx dt

+
∫

ΩT

∇u−
h,k · ∇(u−

h,k × φ) dx dt.

Notice that u−
h,k is T -elementwise affine and φ ∈ C∞

0 (ΩT ) so that for each K ∈ T
we have

||∇
(
Ih(u−

h,k × φ) − u−
h,k × φ

)
||L2(K) ≤ ch||D2(u−

h,k × φ)||L2(K)

≤ c′h||φ||W 2,∞(K)

(
||∇u−

h,k||L2(K) + 1
)(3.9)



782 SÖREN BARTELS, JOY KO, AND ANDREAS PROHL

and hence that ∇
(
Ih(u−

h,k×φ)−u−
h,k×φ

)
→0 in L2(ΩT ). We use ∇u−

h,k ·∇
(
u−

h,k×φ
)

= ∇u−
h,k ·

(
u−

h,k ×∇φ
)

and ∇u · (u ×∇φ) = ∇u · ∇(u × φ) to verify

∫
ΩT

∇u−
h,k · ∇(u−

h,k × φ) dx dt =
∫

ΩT

∇u−
h,k · (u−

h,k ×∇φ) dx dt

→
∫

ΩT

∇u · (u ×∇φ) dx dt =
∫

ΩT

∇u · ∇(u × φ) dx dt.

A combination of the previous assertions shows

(3.10)
∫

ΩT

∇u−
h,k · ∇wh dx dt →

∫
ΩT

∇u · ∇w dx dt.

Since wh → w in L2(ΩT ) we obtain a uniform bound for
∫ T

0
||wh||2L2(Ω) dt. Us-

ing (3.7)-(3.10) to pass to the limits in the estimate of Lemma 3.3 we verify that

λ

∫
ΩT

∂tu · (u×φ) dx dt−
∫

ΩT

(
u×∂tu

)
· (u×φ) dx dt = −µ

∫
ΩT

∇u ·∇(u×φ) dx dt.

Therefore, ∂tu · (u × φ) = −(u × ∂tu) · φ and (u × ∂tu) · (u × φ) = ∂tu · φ (since
|u| = 1), which implies (3.6) and finishes the proof of the theorem. �

4. Increased efficiency through reduced integration

In order to increase the efficiency of our approximation scheme we employ re-
duced integration, i.e., we use a modified Algorithm (A′), which is obtained by
replacing (b) in Algorithm (A) by the following:

(b′) Compute v
(j+1)
h ∈ L(j) := {wh ∈ S1(T )3 : wh(z) ·u(j)

h (z) = 0 for all z ∈ N}
such that

λ
(
v
(j+1)
h ; wh

)
h
−

(
u

(j)
h ×v

(j+1)
h ; wh

)
h

= −(1+λ2)
(
∇u

(j)
h ;∇wh

)
for all wh ∈ L(j).

Here, given any η, ψ ∈ C(Ω; R�) we set
(
η; ψ

)
h
:=

∫
Ω
Ih(η·ψ) dx. Since ||φh||2L2(Ω)

≤ (φh; φh)h for all φh ∈ S1(T ), Lemma 3.1 and Lemma 3.2 remain unchanged for
Algorithm (A′). A modified version of Lemma 3.3 holds. Using that

∣∣(∂tûh,k; wh) − (∂tûh,k; wh)h

∣∣ ≤ c2h||∂tûh,k||L2(Ω)||∇wh||L2(Ω)

and
∣∣(u−

h,k × ∂tûh,k; wh) − (u−
h,k × ∂tûh,k; wh)h

∣∣
=

∣∣(∂tûh,k; u−
h,k × wh) − (∂tûh,k; u−

h,k × wh)h

∣∣
≤

∣∣(∂tûh,k; u−
h,k × wh) − (∂tûh,k; Ih[u−

h,k × wh])
∣∣

+
∣∣(∂tûh,k; Ih[u−

h,k × wh]) − (∂tûh,k; Ih[u−
h,k × wh])h

∣∣
≤ ch||∂tûh,k||L2(Ω)||∇Ih[u−

h,k × wh]||L2(Ω)

≤ c2h||∂tûh,k||L2(Ω)

(
||∇wh||L2(Ω) + ||wh||L∞(Ω)||∇u−

h,k||L2(Ω)

)
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we verify with the bounds of Lemma 3.2 that∣∣∣λ
∫

ΩT

∂tûh,k · wh dx dt −
∫

ΩT

(
u−

h,k × ∂tûh,k

)
· wh dx dt + µ

∫
ΩT

∇u−
h,k · ∇wh dx dt

∣∣∣
≤ C0(µ/λ)1/2Λ

(∫ T

0

||wh||2L2(Ω) dt
)1/2

+ c2C0(1 + λ)(µ/λ)1/2h
(∫ T

0

||∇wh||2L2(Ω) dt
)1/2

+ c2C
2
0 (µ/λ)1/2T 1/2h||wh||L∞(ΩT )

for all wh, as in Lemma 3.3. The proof of Theorem 3.1 then requires bounds for∫ T

0
||∇wh||2L2(Ω) dt and ||wh||L∞(ΩT ) with wh = Ih(u−

h,k×φ). The first bound can be
deduced from (3.9) and the second one follows immediately from ||u−

h,k||L∞(ΩT ) = 1.

Remark 4.1. Reduced integration not only leads to simpler systems of equations
but also has a stabilising effect. Indeed, for Ω ⊂ R and a uniform triangulation T
of Ω into intervals of length h it follows that

(
vh; vh

)
h

= ||vh||2L2(Ω) +
h2

6
||v′h||2L2(Ω)

for all vh ∈ S1(T )3. Then, the choice wh = v
(j+1)
h in (b′) above yields to the

identity
||v(j+1)

h ||2L2(Ω) + ||∇v
(j+1)
h ||2L2(Ω) = −µ

(
∇u

(j)
h ;∇v

(j+1)
h

)
,

which allows for slightly better estimates than the proof of Lemma 3.2. However,
this does not seem to lead to a significantly improved estimate than the one given
in Lemma 3.2.

5. Experiments seeking blowup

We report the results of our experiments on singularity formation of (1.3) for
Ω = (−1/2, 1/2)2. Since we will work in the equivariant setting, a setting that has
been considered in work on singularity formation for the harmonic map heat flow
problem, e.g., [4, 5], we begin with some notation. Let (α, r) denote domain polar
coordinates and (θ, φ) spherical coordinates on S2. A point (θ, φ) corresponds to
the point (cos θ sin φ, sin θ sin φ, cos φ). An equivariant map is given by

(α, r) → (θ, φ(r)),

where θ = lα + θ̃(r), l ∈ Z.
Our choice of initial data is influenced by strong evidence that static solutions

play a crucial role in singularity formation of LLG, as they do in the harmonic
map heat flow. From the formulation of LLG given in (1.6), we see that the static
solutions of LLG are exactly those of the harmonic map heat flow, namely, harmonic
maps that are solutions to

−∆u = |∇u|2u.

There are plenty of nontrivial equivariant harmonic maps. A family of solutions
φ : D → S2 results from the observation that φ(r) = 2 tan−1 r is a solution. By
scaling r → r/ρ, ρ > 0, the maps

φρ(r) = 2 tan−1(r/ρ)
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are also solutions. In the construction of the Struwe solution carried out in [8], as
a singular time is approached, energy concentration occurs and after appropriate
rescaling, a harmonic map separates. Using the energy bound

E(u) ≤ E(u0)

and the observation that, for u harmonic and conformal,

E(u) =
1
2

∫
Ω

|∇u|2 = Area of Image(u),

an immediate consequence of the Struwe solution construction in the equivariant
setting is that if E[u0] < 4π, no singularities can form. Recently [9] reports orbital
stability of LLG about harmonic maps before blowup. Even though the blowup time
has not analytically been shown to be finite, our candidate initial data supports
this picture that near the time of blowup, a harmonic map is approached.

The initial data u0 is prescribed as follows:

θ = α, φ(r) =
{

2 tan−1 ρ(r), r ≤ 1/2
π, r ≥ 1/2 , ρ(r) =

r

A(r)
.

A(r) is chosen with the following properties:

(i) A(1/2) = 0.
(ii) The energy density E(u0) = φ2

r +r−2 sin φ2 has a decreasing profile, peaked
at r = 0 and 0 at r = 1/2.

A function that satisfies these conditions is A = (1 − 2r)4/s, where increasing s
sharpens the concentration of the energy density about the origin. Elementary
calculations show that

u0(r) = (cos θ sin φ(r), sin θ sin φ(r), cos φ(r))

is then given by

u0(r) = (2xA, 2yA, A2 − r2)/(A2 + r2).

Notice that u0(r) = (0, 0,−1) for r ≥ 1/2 so that for Ω = (−1/2, 1/2)2, this initial
data then wraps around the sphere once.

6. Numerical experiments

In this section we report on the practical performance of Algorithms (A) and
(A′) in some numerical experiments and study finite time blowup of weak solutions.
Moreover, we investigate the dependence of numerical approximations upon the pa-
rameter λ. The implementation of the algorithm was performed in MATLAB with
an assembly of the stiffness matrices in C. The constraints included in the subspace
L(j) were directly incorporated in the linear systems, which were solved using the
backslash operator in MATLAB. We remark that also the scheme defined by re-
duced integration in Section 4 leads to linear systems of equations with nondiagonal
system matrices in each time step.
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Example 6.1. Let Ω:= (−1/2, 1/2)2 and let u0 : Ω → R
3 be defined by

u0(x) :=
{

(0, 0,−1) for |x| ≥ 1/2,(
2xA, A2 − |x|2

)
/
(
A2 + |x|2

)
for |x| ≤ 1/2,

where A := (1 − 2|x|)4/s for some s > 0. The triangulations T� used in the
numerical simulations are defined through a positive integer � and consist of 22�+1

halved squares with edge length h := 2−�. Motivated by Lemma 3.2 we use k =
(µ/λ)h5/2/10 (unless otherwise stated), where the additional power h1/2 guarantees
that kh−2, kh−1−n/2 → 0 (for n = 2). As discrete initial data we employed the
nodal interpolant of u0, i.e., we set u

(0)
h := IT�

u0 in all experiments.

We ran Algorithm (A′) in Example 6.1 with s = 1, � = 4, and λ = 1. Figure 1
shows snapshots of the numerical solution for various times; displayed are the or-
thogonal projection of the vector field ûh,k(t, ·) onto the plane {(x, y, 0) : x, y ∈ R}.
We observe that for t ≈ 0.0586 the vector ûh,k(t, 0) changes its direction from
(1, 0, 0) to −(1, 0, 0). Figure 2 magnifies this change of direction.
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Figure 1. Numerical approximation ûh,k(t, ·) in Example 6.1
with s = 1, � = 4, and λ = 1 for t = 0, 0.0098,
0.0195, 0.0293, 0.0391, 0.0488, 0.0586, 0.0684, 0.0781.
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Figure 2. Nodal values ûh,k(t, z) for nodes z ∈ N close to the
origin in Example 6.1 with s = 1, � = 4, and λ = 1 for t =
0.0098, 0.0488, 0.0684.

6.1. Instability of the numerical scheme for k = O(h2) and stabilizing
effect of reduced integration. Our first numerical experiment reveals that the
relation k ∼ h2 is not sufficient to guarantee stability and convergence of our
approximation scheme. We ran Algorithms (A) and (A′) in Example 6.1 with
λ = 1, s = 1 and using the triangulations T� for � = 4, 5. For both Algorithms we
tried the time step sizes k1 = (µ/λ)h5/2/10 and k2 = (µ/λ)h2/10. Figure 3 displays
the energy

E(ûh,k(t)) =
1
2

∫
Ω

|∇ûh,k(t)|2 dx

as a function of time in the interval (0, 1). The energy is not decreasing for k2

in Algorithm (A) which indicates instability of Algorithm (A) if the time-step size
violates the conditions of Lemma 3.2. The results also show that reduced integration
stabilizes the scheme as no instability is observable when Algorithm (A′) is used
with the large time-step size k2. We remark that reduced integration significantly
increased the efficiency of our scheme, e.g., in the above experiments the CPU time
for Algorithm (A′) was about 10% of that of Algorithm (A).
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Figure 3. Energy for different discretization parameters in Algo-
rithms (A) (exact integration) and (A′) (reduced integration).



APPROXIMATION SCHEME FOR THE LLG EQUATION 787

6.2. Breakdown of blowup for higher resolution and comparison to Dir-
ichlet boundary conditions. For fixed λ = 1 and s = 1 we tried � = 4, 5, 6 in
Example 6.1, and in Figure 4 we displayed the energy E(ûh,k(t)) and the W 1,∞

semi-norm ||∇ûh,k(t)||L∞(Ω) as functions of t for t ∈ (0, 6/100) for � = 4, 5, 6.
For each � = 4, 5, ||∇ûh,k(t)||L∞(Ω) assumes the maximum value 2

√
2h−1 (among

functions vh ∈ S1(T�)3 with |vh(z)| = 1 for all z ∈ N ). Surprisingly, this is not
the case for � = 6, indicating a breakdown of the (discrete) finite-time blowup for
sufficiently high resolutions. For Dirichlet boundary conditions, (discrete) finite-
time blowup still occurs for � = 6. We remark that our algorithm and analysis can
be used for time-independent Dirchlet boundary conditions by choosing the initial
u

(0)
h appropriately and employing

L(j) := {wh ∈ S1(T )3 : wh(z) · u(j)
h (z) = 0 for all z ∈ N , wh|∂Ω = 0}.
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Figure 4. W 1,∞ semi-norm for decreasing mesh sizes in Exam-
ple 6.1 with λ = 1 and s = 1 for Neumann and Dirichlet type
boundary conditions.

Acknowledgments

Part of the work was written when S.B. visited Forschungsinstitut für Mathe-
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