ON THE EQUATION $s^{2}+y^{2 p}=\alpha^{3}$

IMIN CHEN

Abstract

We describe a criterion for showing that the equation $s^{2}+y^{2 p}=\alpha^{3}$ has no non-trivial proper integer solutions for specific primes $p>7$. This equation is a special case of the generalized Fermat equation $x^{p}+y^{q}+z^{r}=0$. The criterion is based on the method of Galois representations and modular forms together with an idea of Kraus for eliminating modular forms for specific p in the final stage of the method (1998). The criterion can be computationally verified for primes $7<p<10^{7}$ and $p \neq 31$.

1. Introduction

A solution $(\alpha, s, y) \in \mathbb{Z}^{3}$ to the equation $s^{2}+y^{2 p}=\alpha^{3}$ is said to be non-trivial if $s y \neq 0$, and proper if $(\alpha, s, y)=1$. In this paper, we describe a criterion for showing that equation $s^{2}+y^{2 p}=\alpha^{3}$ has no non-trivial proper integer solutions for specific primes $p>7$. This equation is a special case of the generalized Fermat equation $x^{p}+y^{q}+z^{r}=0$ (cf. [8] and its references for a recent survey of this equation).

The proper solutions to the diophantine equation $s^{2}+y^{2 p}=\alpha^{3}$ naturally arise as certain suitably-defined integral points on a twist of the modular curve associated to the subgroup Γ_{3} of index 2 of $\mathrm{SL}_{2}(\mathbb{Z})$ (for a description of this viewpoint as applied to familiar cases, see [5]). This was in fact the initial motivation for considering the above diophantine equation. A uniformizer for this genus 0 modular curve is usually denoted γ_{3} in the classical literature.

For $p>3$ a prime and q a prime of the form $n p+1$, let $\Omega_{p, q}$ be the subset of elements $\bar{\zeta} \in \mathbb{F}_{q}^{\times}$such that $\bar{\zeta}=\bar{A}^{p}$ and $\bar{\zeta}+\frac{1}{27}=\bar{U}^{2}$ for some $\bar{A} \in \mathbb{F}_{q}^{\times}, \bar{U} \in \mathbb{F}_{q}$. For $\bar{\zeta} \in \Omega_{p, q}$, let $E_{\bar{\zeta}}$ denote the isomorphism class of the elliptic curve over \mathbb{F}_{q} given by $Y^{2}=X^{3}+2 \bar{U} X^{2}+\frac{1}{27} X$ where $\bar{\zeta}+\frac{1}{27}=\bar{U}^{2}$ (note the choices of U give rise to elliptic curves which are twists of each other). Let E_{0} denote an elliptic curve over \mathbb{Q} of conductor 96 .

Theorem 1. Let $p>7$ be a prime. Suppose there exists a prime q of the form $n p+1$ such that $a_{q}\left(E_{0}\right)^{2} \not \equiv 4(\bmod p)$ and for all $\bar{\zeta} \in \Omega_{p, q}$ we have $a_{q}\left(E_{\bar{\zeta}}\right)^{2} \not \equiv a_{q}\left(E_{0}\right)^{2}$ $(\bmod p)$. Then there are no triples $(\alpha, s, y) \in \mathbb{Z}^{3}$ satisfying $s^{2}+y^{2 p}=\alpha^{3}$ with $(\alpha, s, y)=1$ and $s y \neq 0$.

Corollary 2. Let $7<p<10^{7}$ and $p \neq 31$ be a prime. Then there are no triples $(\alpha, s, y) \in \mathbb{Z}^{3}$ satisfying $s^{2}+y^{2 p}=\alpha^{3}$ with $(\alpha, s, y)=1$ and $s y \neq 0$.

[^0]Corollary 3. Let $p>7$ be a prime such that $q=2 p+1$ is prime. If $\left(\frac{q}{7}\right)=1$ and $\left(\frac{q}{13}\right)=(-1)^{\frac{p+1}{2}}$, then there are no triples $(\alpha, s, y) \in \mathbb{Z}^{3}$ satisfying $s^{2}+y^{2 p}=\alpha^{3}$ with $(\alpha, s, y)=1$ and $s y \neq 0$.

For instance, the hypotheses of Corollary 3 are satisfied for

$$
p=100000000000000014611, q=200000000000000029223
$$

Based on the conjectures described in [6], the conclusion of the above theorem should hold if $p>3$.

2. Proof of Theorem 1

We first recall the parametrization of solutions to the equation $s^{2}+t^{2}=\alpha^{3}$.
Lemma 4. A triple $(\alpha, s, t) \in \mathbb{Z}^{3}$ with $(\alpha, s, t)=1$ satisfies $s^{2}+t^{2}=\alpha^{3}$ only if $(\alpha, s, t)=\left(u^{2}+v^{2}, u\left(u^{2}-3 v^{2}\right), v\left(3 u^{2}-v^{2}\right)\right)$ for some $(u, v) \in \mathbb{Z}^{2}$.

Proof. Cf. Lemma 3.2.2 in [3].
Lemma 5. Let p be an odd prime. Suppose $(u, v) \in \mathbb{Z}^{2}$ gives rise to a triple $(\alpha, s, t)=\left(u^{2}+v^{2}, u\left(u^{2}-3 v^{2}\right), v\left(3 u^{2}-v^{2}\right)\right)$ satisfying $(\alpha, s, t)=1$ and st $\neq 0$. Then the constraint that $t=y^{p}$ for some $y \in \mathbb{Z}$ implies either
(1) $v=r^{p}$ and $3 u^{2}-v^{2}=a^{p}$ for some $a, r \in \mathbb{Z}$, where $3 \nmid a, r$ and a, r, u are non-zero pairwise coprime,
or
(2) $v=3^{p j-1} r^{p}$ and $3 u^{2}-v^{2}=3 a^{p}$ for some $a, r \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$, where $3 \nmid a, r, u$ and a, r, u are non-zero pairwise coprime.
Proof. Since $(\alpha, s, y)=1$, it is necessary that $(u, v)=1$. If $d \mid v$ and $d \mid 3 u^{2}-v^{2}$, then $d \mid 3 u^{2}$. Since $(u, v)=1$, we have that $d \mid 3$. Hence, $\left(v, 3 u^{2}-v^{2}\right) \mid 3$.

If $3 \nmid v$, then $\left(v, 3 u^{2}-v^{2}\right)=1$. The condition that $t=v\left(3 u^{2}-v^{2}\right)=y^{p}$ for some $y \in \mathbb{Z}$ implies by unique factorization that $v=r^{p}$ and $3 u^{2}-v^{2}=a^{p}$ for coprime $a, r \in \mathbb{Z}$. It now follows that $3 \nmid a, r$ and a, r, u are pairwise coprime.

If $3 \mid v$, then $\left(v, 3 u^{2}-v^{2}\right)=3$. The condition that $t=v\left(3 u^{2}-v^{2}\right)=y^{p}$ for some $y \in \mathbb{Z}$ implies by unique factorization that $v=3^{n} r^{p}$ and $3 u^{2}-v^{2}=3^{m} a^{p}$ for coprime $a, r \in \mathbb{Z}, 3 \nmid a, r$, and positive $n, m \in \mathbb{Z}$. It is now easily checked that $3 \nmid u$, $m=1, n=p j-1$ for some positive $j \in \mathbb{Z}$, and a, r, u are pairwise coprime.

Corollary 6. Let p be an odd prime. Suppose $(u, v) \in \mathbb{Z}^{2}$ gives rise to a triple $(\alpha, s, t)=\left(u^{2}+v^{2}, u\left(u^{2}-3 v^{2}\right), v\left(3 u^{2}-v^{2}\right)\right)$ satisfying $(\alpha, s, t)=1$ and st $\neq 0$. Then the constraint that $t=y^{p}$ for some $y \in \mathbb{Z}$ implies there are non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying either
(1) $a^{p}+\left(r^{2}\right)^{p}=3 u^{2}$ with $3 \nmid a, r$,
or
(2) $a^{p}+3^{2 p j-3}\left(r^{2}\right)^{p}=u^{2}$ with $3 \nmid a, u$.

Theorem 7. Let $p>3$ be a prime. Suppose $(a, r, u) \in \mathbb{Z}^{3}$ satisfies $a^{p}+\left(r^{2}\right)^{p}=3 u^{2}$ with a, r, u pairwise coprime and $3 \nmid a, r$. Then aru $=0$.

Proof. This is a special case of Theorem 1.1 in [1].
For non-zero $a, d \in \mathbb{Z}$, let $\operatorname{Rad}_{d}(a)$ be the product of primes dividing a but not d.

Proposition 8. Let $p>3$ be a prime. Suppose $(a, r, u) \in \mathbb{Z}^{3}$ satisfies $a^{p}+$ $3^{2 p j-3}\left(r^{2}\right)^{p}=u^{2}$ with a, r, u non-zero pairwise coprime, $3 \nmid a$, u, and positive $j \in \mathbb{Z}$. Associate to (a, r, u) the elliptic curve E over \mathbb{Q} given by
(1) $Y^{2}=X^{3}+2 u X^{2}+3^{2 p j-3} r^{2 p} X$ if ar is odd,
(2) $Y^{2}+X Y=X^{3}+\frac{ \pm u-1}{4} X^{2}+\frac{3^{2 p j-3}\left(r^{2}\right)^{p}}{64} X$ if ar is even,
where the sign in $\pm u$ is chosen so that $\pm u \equiv 1(\bmod 4)$. Then the conductor N of E and the Artin conductor M of $\rho_{E, p}$ are given in each case by
(1) $N=96 \cdot \operatorname{Rad}_{6}(a b)$ and $M=96$,
(2) $N=6 \cdot \operatorname{Rad}_{6}(a b)$ and $M=6$.

Furthermore, the representation $\rho_{E, p}$ is flat at p.
Proof. This follows from Lemma 2.1 of [1].
The above proposition allows us to invoke the machinery of galois representations and modular forms to establish Theorem 1

Proof of Theorem 1. Suppose $(\alpha, s, y) \in \mathbb{Z}^{3}$ satisfies $s^{2}+y^{2 p}=\alpha^{2}$ with $(s, t, \alpha)=1$ and $s y \neq 0$. By Corollary 6, we obtain non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ satisfying $a^{p}+\left(r^{2}\right)^{p}=3 u^{2}$ with $3 \nmid a, r$, or non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying $a^{p}+3^{2 p j-3}\left(r^{2}\right)^{p}=u^{2}$ with $3 \nmid a, u$. In the former case, Theorem [7 allows us to deduce that $a r u=0$, a contradiction. In the latter case, let E be the elliptic curve over \mathbb{Q} associated to (a, r, u) by Proposition 8 . Since E is modular [2], it follows that $\rho_{E, p}$ is modular.

The elliptic curve E has one odd prime of multiplicative reduction, namely $q=3$. By Corollary 4.4 in [9], E having at least one prime odd prime q of multiplicative reduction and $\rho_{E, p}$ reducible implies that $p=2,3,5,7,13$. If $p=13$ however, then E would give rise to a non-cuspidal rational point on $X_{0}(26)$ as E also has a rational point of order 2 , contradicting [10]. Since $p>7$ we may assume now that $\rho_{E, p}$ is irreducible. Since $\rho_{E, p}$ has Artin conductor $M=6$ or $M=96$ and is flat at p, it follows by level lowering [11] that $\rho_{E, p} \cong \rho_{g, p}$ where g is a weight 2 newform on $\Gamma_{0}(M)$. There are no weight 2 newforms on $\Gamma_{0}(6)$, so we are left with the case that $M=96$.

There are two possibilities for g corresponding to the isogeny classes labelled as $96 A, 96 B$ respectively in Cremona's tables [4]. Let E_{0} be the elliptic over \mathbb{Q} corresponding to g.

If q is a prime and $q \neq 2,3, p$, then the fact that $\rho_{E, p} \cong \rho_{E_{0}, p}$ implies $p \mid$ $a_{q}(E)^{2}-a_{q}\left(E_{0}\right)^{2}$ if E has good reduction at q and $p \mid a_{q}\left(E_{0}\right)^{2}-(q+1)^{2}$ if E has multiplicative bad reduction at q. If E_{0} does not have a rational point of order 2 , then it is possible to find a prime q (independently of the exponent p and the solution $(a, r, u))$ so that $a_{q}\left(E_{0}\right)$ is odd. On the other hand, $a_{q}(E)$ is even so that $a_{q}(E)-a_{q}\left(E_{0}\right)$ is non-zero. The quantity $a_{q}\left(E_{0}\right)^{2}-(q+1)^{2}$ is non-zero by Hasse's bounds. Hence, we obtain a bound on p. This method to bound p is used in the proof of Theorem 7 [1].

Unfortunately, all elliptic curves over \mathbb{Q} of conductor 96 have a rational point of order 2. Thus, it is not possible to use the above method to bound p. However, in this situation, the method in [7] can be used to obtain a contradiction for specific p.

The method works as follows. Recall we are in the situation where we have obtained non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying $a^{p}+$ $3^{2 p j-3}\left(r^{2}\right)^{p}=u^{2}$ with $3 \nmid a, u$, and this solution gave rise to the elliptic curve E over
\mathbb{Q} given by $Y^{2}=X^{3}+2 u X^{2}+3^{2 p j-3} r^{2 p} X$. For a fixed exponent p, we search for $q=n p+1$ prime such that $a_{q}\left(E_{0}\right)^{2} \not \equiv 4(\bmod p)$ and $a_{q}\left(E_{\bar{\zeta}}\right)^{2} \not \equiv a_{q}\left(E_{0}\right)^{2}(\bmod p)$ for all $\bar{\zeta} \in \Omega_{p, q}$.

The existence of such a prime q for the given p now yields a contradiction as follows. If E were to have multiplicative reduction modulo q, then we would have that $a_{q}\left(E_{0}\right)^{2} \equiv(q+1)^{2} \equiv 4(\bmod p)$, a contradiction. Hence, E has good reduction modulo q. By Lemma 2.1 in [1], the discriminant of E is equal to $a^{p} r^{4 p}$ up to factors of 2 and 3 . Hence, both a, r are non-zero modulo q. If we let $A=\frac{a}{r^{2} 3^{2 j}}$ and $U=\frac{u}{r^{p} 3^{p j}}$, then $\zeta+\frac{1}{27}=U^{2}$ where $\zeta=A^{p}$. The elliptic curve E is isomorphic to $Y^{2}=X^{3}+2 U X^{2}+\frac{1}{27} X$ over $\mathbb{Q}\left(\sqrt{3^{p j} r^{p}}\right)$ which also has good reduction modulo q. Hence, the reduction modulo q of E is isomorphic to a twist of $E_{\bar{\zeta}}$ where $\bar{\zeta} \in \Omega_{p, q}$ is the reduction modulo q of ζ. Now, $a_{q}(E)^{2}=a_{q}\left(E_{\bar{\zeta}}\right)^{2}$. But then we would have that $p \mid a_{q}(E)^{2}-a_{q}\left(E_{0}\right)^{2}=a_{q}\left(E_{\bar{\zeta}}\right)^{2}-a_{q}\left(E_{0}\right)^{2}$, a contradiction.

Notice that the elliptic curves $96 A$ and $96 B$ are twists of each other and that the criterion above only depends on E_{0} up to twist.

Although it is possible to treat the diophantine equation $s^{2}+y^{2 p}=\alpha^{3}$ using the elliptic curves classified by the modular curve associated to Γ_{3} directly, many of the arguments are essentially equivalent to the work incorporated into the proof of Theorem 1.1 of [1].

Proof of Corollary 2, We were able to computationally verify the criterion of Theorem 1 for $7<p<10^{7}$ and $p \neq 31$ using MAGMA.

Curiously, it is sometimes the case that $\Omega_{p, q}$ is empty for specific p, q (e.g. $p=$ $11, q=23$). When this is the case, this last portion of the argument becomes completely elementary (but note the overall argument still requires [1]).

For example, suppose $p>3$ and $n=2$ so $q=2 p+1$ is prime. The set $\Omega_{p, q}$ is not empty if and only if $\pm 27+1=3 x^{2}$ for some $x \in \mathbb{F}_{q}^{\times}$, in other words if and only if $\left(\frac{28}{q}\right)=\left(\frac{3}{q}\right)$ or $\left(\frac{-26}{q}\right)=\left(\frac{3}{q}\right)$. Using quadratic reciprocity, we find that the set $\Omega_{p, q}$ is empty if and only if $\left(\frac{q}{7}\right)=1$ and $\left(\frac{q}{13}\right)=(-1)^{\frac{p+1}{2}}$. This proves Corollary 3.

```
Algorithm 1: Verifying the criterion in Theorem 1 for specific primes \(p, q\)
    input : primes \(p, q\) such that \(p>7\) and \(q=n p+1\)
    output: true if criterion of Theorem 1 is satisfied for \(p, q\); false otherwise
    if \(a_{q}\left(E_{0}\right)^{2} \equiv 4(\bmod p)\) then
        return false;
    end
    forall \(\bar{\zeta} \in \mu_{n}\left(\mathbb{F}_{q}^{\times}\right)\)do
        if \(\bar{\zeta}+\frac{1}{27}=\bar{U}^{2}\) and \(p \mid a_{q}\left(E_{\bar{\zeta}}\right)^{2}-a_{q}(E)^{2}\) then
            I return false
        end
    end
    return true;
```


Acknowledgements

I would like to thank M. Bennett and N. Bruin for useful discussions. I would also like to thank the referee for suggestions which simplified the criterion and improved its computational efficiency.

References

[1] M. Bennett and C. Skinner. Ternary diophantine equations via galois representations and modular forms. Canadian Journal of Mathematics, 56(1):23-54, 2004. MR2031121 (2005c:11035)
[2] C. Breuil, B. Conrad, F. Diamond, and R. Taylor. Modularity of elliptic curves over Q : wild 3-adic exercises. Journal of the American Mathematical Society, 14(4):843-939, 2001. MR 1839918 (2002d:11058)
[3] N. Bruin. Chabauty methods and covering techniques applied to generalised Fermat equations. Ph.D. thesis, University of Leiden, 1999.
[4] J.E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press, second edition, 1997. MR1628193 (99e:11068)
[5] H. Darmon. Faltings plus epsilon, Wiles plus epsilon, and the generalized Fermat equation. C.R. Math. Rep. Acad. Sci. Canada, 19(1):3-14, 1997. MR1479291 (98h:11034a)
[6] A. Granville and H. Darmon. On the equations $x^{p}+y^{q}=z^{r}$ and $z^{m}=f(x, y)$. Bulletin of the London Math. Society, 27(129):513-544, 1995. MR1348707(96e:11042)
[7] A. Kraus. Sur l'équation $a^{3}+b^{3}=c^{p}$. Experiment. Math., 7:1-13, 1998. MR1618290 (99f:11040)
[8] A. Kraus. On the equation $x^{p}+y^{q}=z^{r}$: A survey. The Ramanujan Journal, 3:315-333, 1999. MR1714945 (2001f:11046)
[9] B. Mazur. Rational isogenies of prime degree. Inventiones Mathematicae, 44:129-162, 1978. MR482230 (80h:14022)
[10] B. Mazur and J. Vélu. Courbes de Weil de conducteur 26. C. R. Acad. Sci. Paris Sér. A-B, 275:A743-A745, 1972. MR0320010 (47:8551)
[11] K. Ribet. On modular representations of $\operatorname{Gal}(\overline{\mathbb{Q}} \mid \mathbb{Q})$ arising from modular forms. Inventiones Mathematicae, 100:431-476, 1990. MR1047143 (91g:11066)

Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6
E-mail address: ichen@math.sfu.ca

[^0]: Received by the editor October 13, 2004 and, in revised form, January 20, 2005.
 2000 Mathematics Subject Classification. Primary 11G05; Secondary 14G05.
 This research was supported by NSERC.

