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ON THE EQUATION s2 + y2p = α3

IMIN CHEN

Abstract. We describe a criterion for showing that the equation s2+y2p = α3

has no non-trivial proper integer solutions for specific primes p > 7. This
equation is a special case of the generalized Fermat equation xp + yq + zr = 0.
The criterion is based on the method of Galois representations and modular
forms together with an idea of Kraus for eliminating modular forms for specific
p in the final stage of the method (1998). The criterion can be computationally
verified for primes 7 < p < 107 and p �= 31.

1. Introduction

A solution (α, s, y) ∈ Z3 to the equation s2 + y2p = α3 is said to be non-trivial if
sy �= 0, and proper if (α, s, y) = 1. In this paper, we describe a criterion for showing
that equation s2 + y2p = α3 has no non-trivial proper integer solutions for specific
primes p > 7. This equation is a special case of the generalized Fermat equation
xp + yq + zr = 0 (cf. [8] and its references for a recent survey of this equation).

The proper solutions to the diophantine equation s2+y2p = α3 naturally arise as
certain suitably-defined integral points on a twist of the modular curve associated to
the subgroup Γ3 of index 2 of SL2(Z) (for a description of this viewpoint as applied
to familiar cases, see [5]). This was in fact the initial motivation for considering
the above diophantine equation. A uniformizer for this genus 0 modular curve is
usually denoted γ3 in the classical literature.

For p > 3 a prime and q a prime of the form np + 1, let Ωp,q be the subset of
elements ζ̄ ∈ F×

q such that ζ̄ = Āp and ζ̄ + 1
27 = Ū2 for some Ā ∈ F×

q , Ū ∈ Fq. For
ζ̄ ∈ Ωp,q, let Eζ̄ denote the isomorphism class of the elliptic curve over Fq given
by Y 2 = X3 + 2ŪX2 + 1

27X where ζ̄ + 1
27 = Ū2 (note the choices of U give rise to

elliptic curves which are twists of each other). Let E0 denote an elliptic curve over
Q of conductor 96.

Theorem 1. Let p > 7 be a prime. Suppose there exists a prime q of the form np+1
such that aq(E0)2 �≡ 4 (mod p) and for all ζ̄ ∈ Ωp,q we have aq(Eζ̄)2 �≡ aq(E0)2

(mod p). Then there are no triples (α, s, y) ∈ Z3 satisfying s2 + y2p = α3 with
(α, s, y) = 1 and sy �= 0.

Corollary 2. Let 7 < p < 107 and p �= 31 be a prime. Then there are no triples
(α, s, y) ∈ Z3 satisfying s2 + y2p = α3 with (α, s, y) = 1 and sy �= 0.
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Corollary 3. Let p > 7 be a prime such that q = 2p + 1 is prime. If
(
q
7

)
= 1 and

(
q
13

)
= (−1)

p+1
2 , then there are no triples (α, s, y) ∈ Z3 satisfying s2 + y2p = α3

with (α, s, y) = 1 and sy �= 0.

For instance, the hypotheses of Corollary 3 are satisfied for

p = 100000000000000014611, q = 200000000000000029223.

Based on the conjectures described in [6], the conclusion of the above theorem
should hold if p > 3.

2. Proof of Theorem 1

We first recall the parametrization of solutions to the equation s2 + t2 = α3.

Lemma 4. A triple (α, s, t) ∈ Z3 with (α, s, t) = 1 satisfies s2 + t2 = α3 only if
(α, s, t) = (u2 + v2, u(u2 − 3v2), v(3u2 − v2)) for some (u, v) ∈ Z2.

Proof. Cf. Lemma 3.2.2 in [3]. �

Lemma 5. Let p be an odd prime. Suppose (u, v) ∈ Z2 gives rise to a triple
(α, s, t) = (u2 + v2, u(u2 − 3v2), v(3u2 − v2)) satisfying (α, s, t) = 1 and st �= 0.
Then the constraint that t = yp for some y ∈ Z implies either

(1) v = rp and 3u2 − v2 = ap for some a, r ∈ Z, where 3 � a, r and a, r, u are
non-zero pairwise coprime,
or

(2) v = 3pj−1rp and 3u2−v2 = 3ap for some a, r ∈ Z and positive j ∈ Z, where
3 � a, r, u and a, r, u are non-zero pairwise coprime.

Proof. Since (α, s, y) = 1, it is necessary that (u, v) = 1. If d | v and d | 3u2 − v2,
then d | 3u2. Since (u, v) = 1, we have that d | 3. Hence, (v, 3u2 − v2) | 3.

If 3 � v, then (v, 3u2−v2) = 1. The condition that t = v(3u2−v2) = yp for some
y ∈ Z implies by unique factorization that v = rp and 3u2 − v2 = ap for coprime
a, r ∈ Z. It now follows that 3 � a, r and a, r, u are pairwise coprime.

If 3 | v, then (v, 3u2 − v2) = 3. The condition that t = v(3u2 − v2) = yp for
some y ∈ Z implies by unique factorization that v = 3nrp and 3u2 − v2 = 3map for
coprime a, r ∈ Z, 3 � a, r, and positive n, m ∈ Z. It is now easily checked that 3 � u,
m = 1, n = pj − 1 for some positive j ∈ Z, and a, r, u are pairwise coprime. �

Corollary 6. Let p be an odd prime. Suppose (u, v) ∈ Z2 gives rise to a triple
(α, s, t) = (u2 + v2, u(u2 − 3v2), v(3u2 − v2)) satisfying (α, s, t) = 1 and st �= 0.
Then the constraint that t = yp for some y ∈ Z implies there are non-zero pairwise
coprime a, r, u ∈ Z and positive j ∈ Z satisfying either

(1) ap + (r2)p = 3u2 with 3 � a, r,
or

(2) ap + 32pj−3(r2)p = u2 with 3 � a, u.

Theorem 7. Let p > 3 be a prime. Suppose (a, r, u) ∈ Z3 satisfies ap +(r2)p = 3u2

with a, r, u pairwise coprime and 3 � a, r. Then aru = 0.

Proof. This is a special case of Theorem 1.1 in [1]. �

For non-zero a, d ∈ Z, let Radd(a) be the product of primes dividing a but not d.
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Proposition 8. Let p > 3 be a prime. Suppose (a, r, u) ∈ Z3 satisfies ap +
32pj−3(r2)p = u2 with a, r, u non-zero pairwise coprime, 3 � a, u, and positive j ∈ Z.
Associate to (a, r, u) the elliptic curve E over Q given by

(1) Y 2 = X3 + 2uX2 + 32pj−3r2pX if ar is odd,
(2) Y 2 + XY = X3 + ±u−1

4 X2 + 32pj−3(r2)p

64 X if ar is even,
where the sign in ±u is chosen so that ±u ≡ 1 (mod 4). Then the conductor N of
E and the Artin conductor M of ρE,p are given in each case by

(1) N = 96 · Rad6(ab) and M = 96,
(2) N = 6 · Rad6(ab) and M = 6.

Furthermore, the representation ρE,p is flat at p.

Proof. This follows from Lemma 2.1 of [1]. �

The above proposition allows us to invoke the machinery of galois representations
and modular forms to establish Theorem 1.

Proof of Theorem 1. Suppose (α, s, y) ∈ Z3 satisfies s2 +y2p = α2 with (s, t, α) = 1
and sy �= 0. By Corollary 6, we obtain non-zero pairwise coprime a, r, u ∈ Z
satisfying ap + (r2)p = 3u2 with 3 � a, r, or non-zero pairwise coprime a, r, u ∈ Z
and positive j ∈ Z satisfying ap +32pj−3(r2)p = u2 with 3 � a, u. In the former case,
Theorem 7 allows us to deduce that aru = 0, a contradiction. In the latter case,
let E be the elliptic curve over Q associated to (a, r, u) by Proposition 8. Since E
is modular [2], it follows that ρE,p is modular.

The elliptic curve E has one odd prime of multiplicative reduction, namely q = 3.
By Corollary 4.4 in [9], E having at least one prime odd prime q of multiplicative
reduction and ρE,p reducible implies that p = 2, 3, 5, 7, 13. If p = 13 however, then
E would give rise to a non-cuspidal rational point on X0(26) as E also has a rational
point of order 2, contradicting [10]. Since p > 7 we may assume now that ρE,p is
irreducible. Since ρE,p has Artin conductor M = 6 or M = 96 and is flat at p, it
follows by level lowering [11] that ρE,p

∼= ρg,p where g is a weight 2 newform on
Γ0(M). There are no weight 2 newforms on Γ0(6), so we are left with the case that
M = 96.

There are two possibilities for g corresponding to the isogeny classes labelled
as 96A, 96B respectively in Cremona’s tables [4]. Let E0 be the elliptic over Q
corresponding to g.

If q is a prime and q �= 2, 3, p, then the fact that ρE,p
∼= ρE0,p implies p |

aq(E)2 − aq(E0)2 if E has good reduction at q and p | aq(E0)2 − (q + 1)2 if E has
multiplicative bad reduction at q. If E0 does not have a rational point of order
2, then it is possible to find a prime q (independently of the exponent p and the
solution (a, r, u)) so that aq(E0) is odd. On the other hand, aq(E) is even so that
aq(E)− aq(E0) is non-zero. The quantity aq(E0)2 − (q + 1)2 is non-zero by Hasse’s
bounds. Hence, we obtain a bound on p. This method to bound p is used in the
proof of Theorem 7 [1].

Unfortunately, all elliptic curves over Q of conductor 96 have a rational point of
order 2. Thus, it is not possible to use the above method to bound p. However, in
this situation, the method in [7] can be used to obtain a contradiction for specific p.

The method works as follows. Recall we are in the situation where we have
obtained non-zero pairwise coprime a, r, u ∈ Z and positive j ∈ Z satisfying ap +
32pj−3(r2)p = u2 with 3 � a, u, and this solution gave rise to the elliptic curve E over
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Q given by Y 2 = X3 + 2uX2 + 32pj−3r2pX. For a fixed exponent p, we search for
q = np + 1 prime such that aq(E0)2 �≡ 4 (mod p) and aq(Eζ̄)2 �≡ aq(E0)2 (mod p)
for all ζ̄ ∈ Ωp,q.

The existence of such a prime q for the given p now yields a contradiction as
follows. If E were to have multiplicative reduction modulo q, then we would have
that aq(E0)2 ≡ (q+1)2 ≡ 4 (mod p), a contradiction. Hence, E has good reduction
modulo q. By Lemma 2.1 in [1], the discriminant of E is equal to apr4p up to
factors of 2 and 3. Hence, both a, r are non-zero modulo q. If we let A = a

r232j and
U = u

rp3pj , then ζ + 1
27 = U2 where ζ = Ap. The elliptic curve E is isomorphic to

Y 2 = X3 + 2UX2 + 1
27X over Q(

√
3pjrp) which also has good reduction modulo q.

Hence, the reduction modulo q of E is isomorphic to a twist of Eζ̄ where ζ̄ ∈ Ωp,q

is the reduction modulo q of ζ. Now, aq(E)2 = aq(Eζ̄)2. But then we would have
that p | aq(E)2 − aq(E0)2 = aq(Eζ̄)2 − aq(E0)2, a contradiction.

Notice that the elliptic curves 96A and 96B are twists of each other and that
the criterion above only depends on E0 up to twist. �

Although it is possible to treat the diophantine equation s2 + y2p = α3 using
the elliptic curves classified by the modular curve associated to Γ3 directly, many
of the arguments are essentially equivalent to the work incorporated into the proof
of Theorem 1.1 of [1].

Proof of Corollary 2. We were able to computationally verify the criterion of The-
orem 1 for 7 < p < 107 and p �= 31 using MAGMA. �

Curiously, it is sometimes the case that Ωp,q is empty for specific p, q (e.g. p =
11, q = 23). When this is the case, this last portion of the argument becomes
completely elementary (but note the overall argument still requires [1]).

For example, suppose p > 3 and n = 2 so q = 2p + 1 is prime. The set Ωp,q is
not empty if and only if ±27+1 = 3x2 for some x ∈ F×

q , in other words if and only
if

(
28
q

)
=

(
3
q

)
or

(−26
q

)
=

(
3
q

)
. Using quadratic reciprocity, we find that the set Ωp,q

is empty if and only if
(
q
7

)
= 1 and

(
q
13

)
= (−1)

p+1
2 . This proves Corollary 3.

Algorithm 1: Verifying the criterion in Theorem 1 for specific primes p, q

input : primes p, q such that p > 7 and q = np + 1
output: true if criterion of Theorem 1 is satisfied for p, q; false otherwise
if aq(E0)2 ≡ 4 (mod p) then

return false;
end
forall ζ̄ ∈ µn(F×

q ) do
if ζ̄ + 1

27 = U
2

and p | aq(Eζ̄)2 − aq(E)2 then
return false

end
end
return true;
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