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NOETHER’S PROBLEM AND Q-GENERIC POLYNOMIALS
FOR THE NORMALIZER OF THE 8-CYCLE

IN S8 AND ITS SUBGROUPS

KI-ICHIRO HASHIMOTO, AKINARI HOSHI, AND YŪICHI RIKUNA

Abstract. We study Noether’s problem for various subgroups H of the nor-
malizer of a group C8 generated by an 8-cycle in S8, the symmetric group of
degree 8, in three aspects according to the way they act on rational function
fields, i.e., Q(X0, . . . , X7), Q(x1, . . . , x4), and Q(x, y). We prove that it has
affirmative answers for those H containing C8 properly and derive a Q-generic
polynomial with four parameters for each H. On the other hand, it is known
in connection to the negative answer to the same problem for C8/Q that there
does not exist a Q-generic polynomial for C8. This leads us to the question
whether and how one can describe, for a given field K of characteristic zero,
the set of C8-extensions L/K. One of the main results of this paper gives an
answer to this question.

1. Introduction

Let G be a transitive permutation group on the set t of n variables t1, . . . , tn
regarded as a group of k-automorphisms of k(t) = k(t1, . . . , tn), the field of rational
functions over a given field k. Noether’s problem, which will be abbreviated as
NP in this paper, asks whether the subfield consisting of G-invariant elements of
k(t) is again a rational function field or not. As is well known, the motivation for
this problem was that it is a main step toward the solution of the inverse Galois
problem for G and k. Indeed if NP has an affirmative answer, then one can prove
the existence of infinitely many Galois extensions L/k such that Gal(L/k) ∼= G
by applying Hilbert’s irreducibility theorem, for a large class of fields k called
Hilbertian. Unfortunately, it has been shown that NP does not always have an
affirmative answer even for abelian groups, a well-known counterexample over Q

being the case G = C8, the cyclic group of order 8. Nevertheless the importance of
NP with its generalization to groups G acting linearly on k(t) has recently increased
because of its connection to generic polynomials (cf. [JLY]). Let F (t; X) ∈ k(t)[X]
be a polynomial in X whose coefficients are rational functions of t1, . . . , tn. F (t; X)
is called a G-polynomial over k with n parameters, if its Galois group over k(t) is
isomorphic to G.

Definition 1.1 (DeMeyer [DeM]). A G-polynomial F (t; X) over a field k is called
k-generic if it has the following property: for every G-Galois extension L/K of
infinite fields with K ⊃ k, there exists a ∈ Kn such that L is the splitting field of
F (a; X) ∈ K[X] over K.
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Let ρ : G → GLn(k) be a faithful linear representation of a finite group acting on
k(t) by k-linear transformations on t1, . . . , tn via ρ. Then k(t) is a regular G-Galois
extension over the fixed field k(t)G. The same question as NP in this situation is
called the Linear Noether’s Problem, LNP for short. The following result of G.
Kemper and E. Mattig is basic to the study of generic polynomials.

Fact 1.2 (Kemper-Mattig [KM]). If the fixed field k(x)G is k-rational, i.e., purely
transcendental over k, then there exists a k-generic G-polynomial with n parame-
ters.

Assuming the existence of k-generic G-polynomials for given k and G, a problem
that arises naturally is to minimize the number of parameters.

Definition 1.3 (Jensen–Ledet–Yui [JLY]). For a finite group G and a field k, the
generic dimension of G/k, denoted by gdk(G), is defined to be the minimum number
of parameters of k-generic G-polynomials. If no such polynomial exists, we set
gdk(G) = ∞.

It is known in connection with the negative answer to NP for the cyclic group
C8 of order 8 over Q that gdQ(C8) = ∞. This leads us to the question whether
and how one can describe, for any given field K of characteristic zero, the set of
C8-extensions L/K. One of the main results of this paper gives a fairly satisfactory
answer to this question. We shall construct the following family of polynomials:

F (a, b, c, d; X) := X8 − dX6

+
(

(a2 + b2 − c2)
4(a2 + b2)

+
(a2 + b2 − 1)2((a − c)2 + b2)

24(a2 + b2)(a2 + b2 + 1)(a2 + (b − 1)2)

)
d2X4

− (a2 + b2 − 1)2(a2 + b2 − ac)(a2 + b2 − c2)d3

25(a2 + b2)2(a2 + b2 + 1)(a2 + (b − 1)2)
X2

+
b2(a2 + b2 − 1)4(a2 + b2 − c2)2d4

210(a2 + b2)3(a2 + b2 + 1)2(a2 + (b − 1)2)2

of degree 8, and show that it is a generic polynomial over Q for the modular type
2-group M16 of order 16, when a, b, c, d are regarded as independent parameters
(see below for the definition of M16). On the other hand, we define a polynomial
equation in a, b, c and a new indeterminate e by

V (a, b, c, e) := (a2 + b2 − c2) − 2e2(a2 + b2 + 1) = 0.

Then we shall prove that F (a, b, c, d; X) with the condition V (a, b, c, e) = 0 is a
versal polynomial for C8 over Q, in the sense of Buhler–Reichstein [BR]:

Theorem 1.4. Let K be a field of characteristic zero and suppose that a, b, c, d, e ∈
K satisfy V (a, b, c, e) = 0 while a2 + b2 is a nonsquare element in K×. Then
the splitting field of F (a, b, c, d; X) over K is a C8-extension of K which contains
K(

√
a2 + b2) as its unique quadratic subextension. Furthermore, any C8-extension

of K is obtained in this way.

Now we put

R(a, b, c) :=
2(a2 + b2 − c2)

a2 + b2 + 1
( = 4 e2 ).

As a corollary of the above theorem, we obtain
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Corollary 1.5. Let K = k(
√

a2 + b2) be a quadratic extension of a field k of
characteristic zero. For the existence of a C8-extension of k containing K, it is
necessary and sufficient that there exists c ∈ k× for which R(a, b, c) is a nonzero
square in k.

As for the groups with gdQ(G) = ∞, the next result is known (cf. [JLY]).

Fact 1.6. Let G be an abelian group. Then gdQ(G) = ∞ if and only if G has an
element of order eight.

Therefore, C8 is the smallest abelian group whose generic dimension over Q is
infinite. This leads us also to the study of NP or LNP for the smallest nonabelian
groups which contain C8 as a subgroup. There exist four such groups, all of which
have order sixteen:

• D8
∼= 〈α, β | α8 = β2 = 1, βαβ−1 = α−1〉, the dihedral group,

• QD8
∼= 〈α, β | α8 = β2 = 1, βαβ−1 = α3〉, the quasi-dihedral group,

• M16
∼= 〈α, β | α8 = β2 = 1, βαβ−1 = α5〉, the modular type 2-group,

• Q16
∼= 〈α, β | α8 = 1, α4 = β2, βαβ−1 = α−1〉, the (generalized)

quaternion group.
For these groups, it is known (cf. [JLY]) that

2 ≤ gdQ(D8), gdQ(QD8) ≤ 5, 3 ≤ gdQ(M16) ≤ 5, 2 ≤ gdQ(Q16).

The upper bounds are determined by constructing generic Galois extensions.1 One
of the motivations of this paper is to improve these upper bounds by giving generic
polynomials with four parameters except for Q16.2

Our construction is based on the positive answers to four-dimensional LNP over
Q for these three groups with an explicitly given set of generators. Actually, we
study NP for these groups at the same time by observing that they are maximal
subgroups of index two of the single group G0, which is the normalizer of a group
generated by an 8-cycle in the symmetric group S8 of degree 8. The group G0 is
a meta-abelian group of order 32 and is isomorphic to the affine transformation
group over Z/8Z, which is expressed as (Z/8Z) � (Z/8Z)×. We denote by A the
element of G0 corresponding to 1 ∈ Z/8Z and by B

D
, B

Q
, B

M
∈ G0 the elements

of order 2 corresponding to those in (Z/8Z)× so that

〈A, BD〉 ∼= D8, 〈A, BQ〉 ∼= QD8, 〈A, BM 〉 ∼= M16

respectively. As is well known, G0 has a faithful representation ρ : G0 → GL4(Q),
which is unique up to the conjugation in GL4(Q). Our results in the first two
sections are computational answers to NP and LNP for subgroups of G0.

Theorem 1.7. Noether’s Problems and Linear Noether’s Problems for G0/Q with
respect to the representation ρ, as well as its subgroups D8, QD8, and M16, have
affirmative answers.

We then apply the result of Kemper-Mattig [KM] to obtain the following.

Corollary 1.8. We have

gdQ(G0), gdQ(D8), gdQ(QD8), gdQ(M16) ≤ 4.

1The left sides of the above equalities are trivial except for M16. In general, edk(G) ≤ gdk(G),
where edk(G) is the essential dimension of G/k. Also, edQ(G) = 1 if and only if G is isomorphic

to C2,C3, or D3 (see [BR], [Led2]).
2It has been settled that NP has a negative solution for Q16 (cf. [GMS], Theorem 34.7).
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We should remark that the results of Theorem 1.7 have recently been obtained
for D8, QD8, and M16 by [CHK] in a considerably different way. What we do
here is not only to prove the rationality of the fixed fields, but also to find a set of
explicit generators which enables us to construct a Q-generic polynomial for each
of these groups with four parameters, which is as simple as possible so that one
can apply it to various problems in number theory. The construction of the latter
is the main part of this paper, and is discussed in section 4. Instead of printing the
results here, we remark that our generic polynomials are given in a consistent way
with respect to the lattice of subgroups of G0, in such a way that the polynomial
for a subgroup is obtained by a specialization of the parameters of the one for
another group containing it. The Q-versal polynomial for C8 mentioned above in
Theorem 1.4 will be discussed in section 5 as an application. We shall also describe
a nontrivial example which illustrates the validity of Theorem 1.4.

In section 6, we study the similar problems for another realization of G0 as a
subgroup of the Cremona group AutQQ(x, y) of dimension two, which cannot be
lifted to a linear action of a higher-dimensional function field. We shall prove that a
generalized version of Noether’s problem for the nonlinear action of the subgroups
of G0 mentioned above has again affirmative answers. It is worth remarking that,
in contrast to the original NP and LNP, we have in this case an affirmative answer
for a subgroup isomorphic to C8.

Finally, we remark that almost all results of this paper are valid for base fields
of arbitrary characteristic different from 2.

2. Reduction of NP to LNP for G0

In this section we study the original version of NP for G0 and its subgroups
containing C8. Let G0 be the normalizer of the 8-cycle in the symmetric group S8

of degree 8. The group G0 has order 32 and is isomorphic to the group of the affine
transformations x 
→ bx + a over Z/8Z:

G0
∼=

{(
1 0
a b

)
∈ GL2(Z/8Z)

∣∣∣∣ a ∈ Z/8Z, b ∈ (Z/8Z)×
}

.

Hence the group G0 is expressed as a semi-direct product (Z/8Z)� (Z/8Z)× where
the action of (Z/8Z)× on Z/8Z is by multiplication. We denote by A the element
of G0 corresponding to 1 ∈ Z/8Z and by BD , BQ , BM ∈ G0 the elements of order
2 corresponding to those in (Z/8Z)× so that they transform j ∈ Z/8Z to

A : j 
−→ j + 1, BD : j 
−→ −j, BQ : j 
−→ 3j, BM : j 
−→ 5j.

Then we have

BDAB−1
D

= A−1, BQAB−1
Q

= A3, BM AB−1
M

= A5

so that

〈A〉 ∼= C8, 〈A, B
D
〉 ∼= D8, 〈A, B

Q
〉 ∼= QD8, 〈A, B

M
〉 ∼= M16,

where D8,QD8,M16 are the dihedral group, the quasi-dihedral group, and the
modular type 2-group, respectively, of order 16.

One can regard G0 as a permutation group of degree 8 through its natural
action on Z/8Z. We denote the elements A, B

D
, B

Q
, B

M
∈ G0 by α, β

D
, β

Q
, β

M
,

respectively, when they are regarded as permutations of degree 8. Thus we have

α = (01234567), β
D

= (17)(26)(35), β
Q

= (13)(26)(57), β
M

= (15)(37).
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We assign to each j ∈ Z/8Z a variable Xj , and denote by V the Q-vector space
spanned by X0, . . . , X7. Then G0 acts linearly on V via the above identification
G0 = 〈α, βD , βQ〉 where the latter acts on the set {X0, . . . , X7} through the per-
mutation of their subscripts.

In order to obtain Q-generic polynomials for subgroups of G0 which have minimal
possible parameters, we study the reduction of NP to LNP in dimension 4. Thus
our first task is to decompose the natural representation of G0 on V into irreducible
subspaces. For this one makes an observation that Z(G0) = 〈A4〉 is the center of
G0 and G0/Z(G0) ∼= D4×C2, where D4 (resp. C2) is the dihedral group of order
8 (cyclic group of order 2). It follows that G0 has exactly eight (resp. two, one)
irreducible representations of degree 1 (resp. 2, 4), corresponding to the equality
25 = 8·12 + 2·22 + 42. With this fact in mind, we put⎧⎪⎪⎪⎨

⎪⎪⎪⎩

x1 := X0 − X4,

x2 := X1 − X5,

x3 := X2 − X6,

x4 := X3 − X7,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 := X0 + X4,

y2 := X1 + X5,

y3 := X2 + X6,

y4 := X3 + X7,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z1 := y1 + y2 + y3 + y4,

z2 := y1 − y2 + y3 − y4,

z3 := y1 − y3,

z4 := y2 − y4.

Then we have the following decomposition of V into irreducible Q[G0]-modules:

V = V1⊕Vε⊕V2⊕V4,

where V1 = Qz1, Vε = Qz2, V2 = Qz3 + Qz4, V4 = Qx1 + Qx2 + Qx3 + Qx4. Using
V4 with its basis given above, we have the following realization of G0 as a subgroup
of GLQ(V4) ∼= GL4(Q):

ρ(A) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

⎞
⎟⎟⎠ , ρ(BD) =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

⎞
⎟⎟⎠ ,

ρ(B
Q
) =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

⎞
⎟⎟⎠ , ρ(B

M
) =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ .

Let Q(V ) (resp. Q(V4)) be the rational function field of X0, . . . , X7 (resp.
x1, . . . , x4) over Q. Since the representations of G0 on V , V4 are faithful, one can ap-
ply the so-called No-Name Lemma, which shows that the extension Q(V )H/Q(V4)H

is rational for any subgroup H of G0 (see [JLY], p.22). For this, we denote by
W ⊆ Q(V ) the vector space over Q(V4) spanned by V , which is of dimension
5 = dimQ(V ) − dimQ(V4) + 1. The group G0 acts semi-linearly on W . We shall
construct a basis {1, g1, g2, g3, g4} of W consisting of G0-invariant elements explic-
itly, whose existence is known in general from the No-Name Lemma. To find such a
basis explicitly we note first that the set {1, z1, z2, z3, z4} forms a basis of W . Note
also that we have

α :

⎧⎪⎨
⎪⎩

z2 
→ −z2,

z3 
→ z4,

z4 
→ −z3,

βD , βQ :

⎧⎪⎨
⎪⎩

z2 
→ z2,

z3 
→ z3,

z4 
→ −z4,

βM :

⎧⎪⎨
⎪⎩

z2 
→ z2,

z3 
→ z3,

z4 
→ z4.

Consider the Q-vector space Sym2(V4) consisting of quadratic forms in x1, . . . , x4,
which is of dimension 10. From ρ(A)4 = −I4 we see that the action of G0 on
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Sym2(V4) factors through its quotient by Z(G0) = 〈α4〉, so that the images of
α2, βD , βQ , βM in GLQ(Sym2(V4)) generate an abelian elementary 2-group. Hence
Sym2(V4) decomposes according to the characters of this group.

Lemma 2.1. Let Sym2(V4) be the vector space of quadratic forms in x1, . . . , x4

over Q. Then Sym2(V4) is decomposed as a sum of simultaneous eigenspaces for
α2, β

D
, β

Q
, β

M
as follows :

Table 1.

α2 β
D

β
Q

β
M

dimension basis

1 1 1 1 2 x2
1 + x2

3, x2
2 + x2

4

1 −1 1 −1 1 x1x2 − x2x3 + x1x4 + x3x4

1 1 −1 −1 1 x1x2 + x2x3 − x1x4 + x3x4

1 −1 −1 1 0
−1 1 1 1 2 x2x4, x2

1 − x2
3

−1 −1 1 −1 1 x1x2 + x2x3 + x1x4 − x3x4

−1 1 −1 −1 1 x1x2 − x2x3 − x1x4 − x3x4

−1 −1 −1 1 2 x1x3, x2
2 − x2

4

From this it follows that, up to a constant factor, hε := x2
1 − x2

2 + x2
3 − x2

4 is the
unique quadratic form in x1, . . . , x4 such that hεz2 is G0-invariant. Using these
results one can obtain the following G0-invariant elements {g1, g2, g3, g4} which,
together with 1, form a basis of W :⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1 := z1,

g2 := (x2
1 − x2

2 + x2
3 − x2

4)z2,

g3 := (x2x4)z3 − (x1x3)z4,

g4 := (x2
1 − x2

3)z3 + (x2
2 − x2

4)z4.

We now obtain the explicit version of the ‘No-Name Lemma’ for Q(V )H/Q(V4)H .

Proposition 2.2. For any subgroup H of G0, the extension Q(V )H/Q(V4)H is
rational and is generated by {g1, g2, g3, g4}.

Thus NP is reduced, simultaneously for all subgroups H of G0, to LNP in degree
4, which asks the rationality of the extension Q(V4)H/Q.

3. LNP for subgroups H of G0

Throughout this section, we put x = {x1, x2, x3, x4} and denote the field Q(V4)
by Q(x) = Q(x1, x2, x3, x4). Our aim here is to find for each subgroup H of G0

containing C8 properly a simple system of generators of the fixed field Q(x)H ,
which, as a consequence, gives the affirmative answer to LNP in these cases.
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3.1. New forms of low degree. We see that G0 = 〈α, β
D

, β
Q
〉 acts on x through

the linear representation ρ as permutations up to the factors ±1:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ(A) = α : (x1, x2, x3, x4) 
−→ (x2, x3, x4,−x1),

ρ(A)4 : (x1, x2, x3, x4) 
−→ (−x1,−x2,−x3,−x4),

ρ(BD) = βD : (x1, x2, x3, x4) 
−→ (x1,−x4,−x3,−x2),

ρ(BQ) = βQ : (x1, x2, x3, x4) 
−→ (x1, x4,−x3, x2),

ρ(BM ) = βM : (x1, x2, x3, x4) 
−→ (x1,−x2, x3,−x4).

Here we extend subgroups H ⊂ G0 to G128 (resp. G64) of order 128 (resp. 64) by
introducing {

δ : (x1, x2, x3, x4) 
−→ (x2,−x1, x4, x3),

γ := δ2 : (x1, x2, x3, x4) 
−→ (−x1,−x2, x3, x4).

We define G128 := 〈α, βD , βQ , βM , δ〉 and G64 := 〈α, βD , βQ , βM , γ〉. Then G128

and G64 contain G0. We give some basic homogeneous polynomials in x1, . . . , x4

of low degrees which are semi-invariants of a subgroup H ⊆ G128:

Table 2.

α β
D

β
Q

β
M

γ δ new forms to H H

1 1 1 1 1 1 f2, f4,a, f4,b, f6, f8 G128

1 1 1 1 1 −1 g8 G64

1 1 1 1 −1 ∗ h4 G0

1 1 −1 −1 ∗ ∗ p2 D8

1 −1 1 −1 ∗ ∗ q6 QD8

1 −1 −1 1 ∗ ∗ r6 M16

where f is called a new form if it is not invariant by a larger subgroup, and

f2(x) := x2
1 + x2

2 + x2
3 + x2

4,

f4,a(x) := x2
1x

2
3 + x2

2x
2
4,

f4,b(x) := (x2
1 + x2

3)(x
2
2 + x2

4),

f6(x) := x2
1x

2
2x

2
3 + x2

1x
2
2x

2
4 + x2

1x
2
3x

2
4 + x2

2x
2
3x

2
4,

f8(x) := x2
1x

2
2x

2
3x

2
4,

g8(x) := x1x2x3x4(x2
1 − x2

3)(x
2
2 − x2

4),
h4(x) := (x1x4 − x2x3)(x1x2 + x3x4),
p2(x) := x1x2 + x2x3 − x1x4 + x3x4,

q6(x) := (x2
1x

2
3 − x2

2x
2
4)(x1x2 − x2x3 + x1x4 + x3x4),

r6(x) := x1x2x3x4(x2
1 − x2

2 + x2
3 − x2

4).

3.2. Fixed fields Q(x)H . Now we can determine the fixed fields for those sub-
groups H of G128 appearing in Table 2. Our first result is
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Lemma 3.1. The field consisting of G128-invariant functions in Q(x) is generated
over Q by five elements as

Q(x)G128 = Q(f2, f4,a, f4,b, f6, f8).

Proof. Note first that f2, f4,a, f4,b, f6, f8 are invariant under the action of G128.
The elementary symmetric polynomials in x2

1, . . . , x
2
4 are f2, f4,a + f4,b, f6, and

f8, respectively. It follows that the fixed field Q(x2
1, . . . , x

2
4)S4 of the symmetric

group S4 is contained in Q(f2, f4,a, f4,b, f6, f8). On the other hand, the S4-orbit
of f4,a consists of three functions f4,a = x2

1x
2
3 + x2

2x
2
4, f ′

4,a = x2
1x

2
2 + x2

3x
2
4, f ′′

4,a =
x2

1x
2
4 + x2

2x
2
3, so that we have

[Q(f2, f4,a, f4,b, f6, f8) : Q(x2
1, . . . , x

2
4)

S4 ] = 3.

We next observe that the group of Q-automorphisms of Q(x) that preserve the set
{x2

1, . . . , x
2
4} is the wreath product

C2 �S4 =
{

ϕ ∈ AutQ(Q(x))
∣∣∣∣ ϕ

(
{x2

1, . . . , x
2
4}

)
= {x2

1, . . . , x
2
4}

}
,

and it contains G128 as a Sylow 2-subgroup. Since the fixed field of this group in
Q(x) is Q(x2

1, . . . , x
2
4)S4 , we conclude Q(x)G128 = Q(f2, f4,a, f4,b, f6, f8). �

It can be checked by direct computation that the five functions in Lemma 3.1
are subject to a single equation

f2
6 − f2f4,af6 + f2

4,af4,b + f2
2 f8 − 4f4,bf8 = 0.(1)

It follows that f4,b is expressed by f2, f4,a, f6, f8. Then we obtain from Lemma 3.1
the following:

Theorem 3.2 (LNP for G128). The fixed field of G128 in Q(x) is

Q(x)G128 = Q(f2, f4,a, f6, f8).

�

Theorem 3.3 (LNP for G64). We have

Q(x)G64 = Q(ak, bk, ck, dk),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak :=
(x2

1 + x2
3)

2(x2
2 + x2

4)
2

x2
1x

2
2x

2
3x

2
4

,

bk :=
(x2

1 − x2
3)(x2

2 − x2
4)

x1x2x3x4
,

ck :=
x2

1x
2
2x

2
3 + x2

1x
2
2x

2
4 + x2

1x
2
3x

2
4 + x2

2x
2
3x

2
4

(x2
1 + x2

3)(x2
2 + x2

4)
,

dk := x2
1 + x2

2 + x2
3 + x2

4.

Proof. We see from Table 2 that g8 is a new form to G64 such that δ(g8) = −g8,
which implies that

Q(x)G64 = Q(x)G128(g8) = Q(f2, f4,a, f4,b, f6, f8, g8).

One can show by a direct computation that these six functions satisfy the equality

g2
8 − 4f4,af4,bf8 − f2

4,bf8 + 4f2f6f8 − 16f2
8 = 0.(2)
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Thus Q(x)G64 is the function field of an algebraic variety defined over Q by two
equations (1), (2). We shall show that it is birational to the affine space A4 over
Q. For this we first solve (2) in f4,a as

f4,a =
1

4f8f4,b

(
4f2f6f8 − 16f2

8 + g2
8 − f8f

2
4,b

)
and substitute it in (1) to obtain

f4
4,bf

2
8 − 4f2f

2
4,bf6f

2
8 + 16f4,bf

2
6 f2

8 + 16f2
2 f4,bf

3
8 − 32f2

4,bf
3
8(3)

− 64f2f6f
3
8 + 256f4

8 − 2f2
4,bf8g

2
8 + 4f2f6f8g

2
8 − 32f2

8 g2
8 + g4

8 = 0.

Now transform the coordinate (f2, f4,b, f6, f8, g8) to (ak, bk, ck, dk, ek) birationally
by⎧⎨
⎩ f2 = dk, f4,b =

akckek

4
, f6 =

akc2
kek

4
, f8 =

akc2
ke2

k

16
, g8 =

akbkc2
ke2

k

16
,

ak = f2
4,b/f8, bk = g8/f8, ck = f6/f4,b, dk = f2, ek = 4f8/f6.

Then we have Q(x)G64 = Q(f2, f4,b, f6, f8, g8) = Q(ak, bk, ck, dk, ek). On the other
hand, we see that (3) is transformed to

(ak − 8bk − b2
k − 16)(ak + 8bk − b2

k − 16)ckek

+ 16(4akc2
k − 16ckdk − akckdk + b2

kckdk + 4d2
k) = 0,

which is linear in ek. It follows that Q(x)G64 = Q(ak, bk, ck, dk), which proves the
theorem. �

By similar arguments we obtain the following set of generators of the fixed field
Q(x)H for each subgroup H containing C8 properly, which seems to be the sim-
plest among such generators. Here we confine ourselves to stating only the result,
since another, though less simple, set of generators will be produced during our
construction of a Q-generic polynomial for H in the next section. We note that, in
particular, these results imply the affirmative answer to LNP, hence to NP as well,
for H.

Theorem 3.4 (LNP for G0). We have

Q(x)G0 = Q(af , bf , cf , df ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

af :=
(x1x4 − x2x3)(x1x2 + x3x4)

(x2
1 + x2

3)(x
2
2 + x2

4)
,

bf :=
(x2

1 − x2
3)(x

2
2 − x2

4)
x1x2x3x4

,

cf :=
x2

1x
2
2x

2
3 + x2

1x
2
2x

2
4 + x2

1x
2
3x

2
4 + x2

2x
2
3x

2
4

(x2
1 + x2

3)(x
2
2 + x2

4)
,

df := x2
1 + x2

2 + x2
3 + x2

4.

Theorem 3.5 (LNP for D8). We have

Q(x)D8 = Q(ad, bd, cd, dd),
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

ad :=
x2

1x
2
3 − x2

2x
2
4

(x2
1x

2
3 + x2

2x
2
4)(x

2
1 − x2

2 + x2
3 − x2

4)
,

bd :=
(x2

1x
2
3 + x2

2x
2
4)(x1x2 − x2x3 + x1x4 + x3x4)

x1x2x3x4
,

cd := x1x2 + x2x3 − x1x4 + x3x4,

dd := x2
1 + x2

2 + x2
3 + x2

4.

Theorem 3.6 (LNP for QD8). We have

Q(x)QD8 = Q(aq, bq, cq, dq),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aq :=
(x2

1x
2
3 − x2

2x
2
4)(x1x2 + x2x3 − x1x4 + x3x4)

x1x2x3x4
,

bq :=
(x2

1x
2
3 + x2

2x
2
4)(x1x2 + x2x3 − x1x4 + x3x4)

x1x2x3x4(x1x2 − x2x3 + x1x4 + x3x4)
,

cq :=
x2

1 − x2
2 + x2

3 − x2
4

x1x2 − x2x3 + x1x4 + x3x4
,

dq := x2
1 + x2

2 + x2
3 + x2

4.

Theorem 3.7 (LNP for M16). We have

Q(x)M16 = Q(am, bm, cm, dm),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

am :=
(x2

1 − x2
2 + x2

3 − x2
4)(x1x2 + x2x3 − x1x4 + x3x4)

x1x2 − x2x3 + x1x4 + x3x4
,

bm :=
(x2

1x
2
3 + x2

2x
2
4)(x

2
1 − x2

2 + x2
3 − x2

4)
x1x2x3x4

,

cm :=
x2

1x
2
3 − x2

2x
2
4

x1x2x3x4
,

dm := x2
1 + x2

2 + x2
3 + x2

4.

4. Q-generic polynomial with four parameters for H

Once we have an explicitly given set a, b, c, d of generators of the fixed field
Q(x)H of H ⊆ G128 in Q(x), it is not difficult to find a Q-generic polynomial for
H. Indeed an irreducible polynomial of arbitrary primitive element θ of Q(x) (i.e.,
Q(x) = Q(a, b, c, d)(θ)) is a Q-generic polynomial with parameters a, b, c, d by the
result of Kemper-Mattig [KM]. However, it is quite often the case that the resulting
polynomial is too big and complicated to be printed, even if we start from fairly
simple generators of the fixed field. Our aim, on the other hand, is to find Q-generic
polynomials which are simple enough to the extent that one can make use of them
in various aspects of number theory (cf. [Has], [HT]). In this section, therefore, we
reset the set of generators of Q(x)H obtained in §3 and try to find another set of
generators which satisfies our request. Thus the same symbols such as ak, bk, ck, dk

are used for distinct sets of generators in §3 and §4.
We remark also that a Q-generic D8 (resp. QD8, M16) polynomial with five

parameters is given explicitly in [Led1].
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One of our devices to fulfill this requirement is to look at the natural biquartic
polynomial

F (X) = (X2 − x2
1)(X

2 − x2
2)(X

2 − x2
3)(X

2 − x2
4).

As in the proof of Lemma 3.1, the splitting field of the polynomial F (X) over Q(x)H

is Q(x) for H ⊆ C2 �S4. Hence if we can express the coefficients of F (X) by our
generators of the fixed field Q(x)H = Q(a, b, c, d) of H ⊆ C2 �S4 in Q(x), then the
resulting polynomial FH(a, b, c, d; X) is Q-generic for H (e.g., FH(a, b, c, d; X) =
X8 −aX6 + bX4 − cX2 +d is Q-generic for H = C2 �S4). The starting point of our
construction is the following:

Theorem 4.1. The polynomial

FG128(a, b, c, d; X) := X8 − aX6 + (b + j)X4 − cX2 + d,(4)

j =
abc − c2 − a2d

b2 − 4d
,

is a generic G128-polynomial over Q.

Proof. The observation in the proof of Lemma 3.1 leads us to an equality

F (X) =
4∏

i=1

(
X2 − x2

i

)
= X8 − f2X

6 + (f4,a + f4,b)X4 − f6X
2 + f8.

Putting

a = f2, b = f4,a, c = f6, d = f8, j = f4,b,(5)

then we have Q(x)G128 = Q(a, b, c, d, j), and (1) is rewritten as j = (abc − c2 −
a2d)/(b2 − 4d). �

Our strategy now is to find the best expression for f2, f4,a, f4,b, f6 and f8 by
a suitably chosen set of generators of LH . We first study the fixed field of α2 :
(x1, x2, x3, x4) 
−→ (x3, x4, −x1, −x2). Put

u1 :=
x2x4(x2

1 + x2
3)

x1x3(x2
2 + x2

4)
, u2 := x2

1 + x2
3,(6)

u3 := x1x2 + x2x3 − x1x4 + x3x4, u4 := x1x2 − x2x3 + x1x4 + x3x4.

Proposition 4.2. We have Q(x)〈α
2〉 = Q(u1, . . . , u4).

Proof. One sees that u1, u2, u3, u4 are invariant by α2, and that x2, x4 are solved
from the last two equations as

x2 =
(x1 + x3)u3 + (x1 − x3)u4

2(x2
1 + x2

3)
, x4 =

(x1 + x3)u4 − (x1 − x3)u3

2(x2
1 + x2

3)
.

Also we have an equality

x3 =
(u2

3 − u2
4)(u2 − 2x2

1)
2
(
u1(u2

3 + u2
4) − 2u3u4

)
x1

.

Hence one has Q(x) = Q(u3, u4, x1, x3) = Q(u1, u2, u3, u4, x1). Furthermore we ob-
tain by eliminating x2, x3, x4 that x1 satisfies a quartic equation over Q(u1, . . . , u4):

4(x4
1 − u2x

2
1)(u

2
3 + u2

4)(u
2
3 + u2

1u
2
3 − 4u1u3u4 + u2

4 + u2
1u

2
4) + u2

2(u
2
3 − u2

4)
2 = 0.
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It follows that

[Q(x) : Q(u1, . . . , u4)] = 4 = [Q(x) : Q(x)〈α
2〉],

which proves the assertion. �

Since 〈α2〉 is a normal subgroup of the groups C8, D8, QD8, M16, and G64, the
field Q(u1, . . . , u4) is stable under the action of these groups. Indeed we find the
action of their generators as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α : (u1, u2, u3, u4) 
→
(
−1
u1

,
u2

3 + u2
4

2u2
, u3,−u4

)
,

β
D

: (u1, u2, u3, u4) 
→ (−u1, u2, u3,−u4),

β
Q

: (u1, u2, u3, u4) 
→ (−u1, u2,−u3, u4),

β
M

: (u1, u2, u3, u4) 
→ (u1, u2,−u3,−u4),

γ : (u1, u2, u3, u4) 
→ (u1, u2, u4, u3).

Remark 4.3. Let K3 := Q(X, Y, Z) be the rational function field over Q with three
variables X, Y, Z and ι the involution defined by

ι : (X, Y, Z) 
→
(
−1
X

,
Z2 + 1

2Y
,−Z

)
.

Then K
〈ι〉
3 is not rational over Q, because if we put (w2, w4) :=

(
u2

u3
,
u4

u3

)
, then we

have Q(u1, u2, u3, u4) = Q(u1, w2, u3, w4), and α acts on it as an involution

α : (u1, w2, u3, w4) 
→
(
−1
u1

,
w2

4 + 1
2w2

, u3,−w4

)
.

Hence the assertion follows from the fact that L〈α〉 = Q(u1, w2, u3, w4)〈α〉 is not
rational over Q.

Proposition 4.4. We have Q(x)〈α〉 = Q(c1, . . . , c5), where c1, . . . , c5 are given by

(c1, . . . , c5) =
(

u2
1 − 1
2u1

,
2u2

2 + u2
3 + u2

4

2u2u3
,
2u2

2 − u2
3 − u2

4

2u2u4
,
(u2

1 + 1)u4

2u1u3
, u3

)

and satisfy a single equation

(c2
1 + 1)(c2

2 − 2) − (c2
3 + 2)c2

4 = 0.(7)

Proof. We have [Q(u1, . . . , u4) : Q(u1, . . . , u4)〈α〉] = 2, since α acts on Q(u1, . . . , u4)
as an involution. Note also that c1, . . . , c5 are all invariant by α. From (7) we find
the following expression of u2, u3, u4:

u2 =
1
2

(
c2c5 +

2c3c4c5u1

u2
1 + 1

)
, u3 = c5, u4 =

2c4c5u1

u2
1 + 1

.

Hence we have Q(u1, . . . , u4) = Q(c1, . . . , c5, u1). Since u1 is a root of the quadratic
equation u2

1−2c1u1−1 = 0, we have [Q(c1, . . . , c5, u1) : Q(c1, . . . , c5)] = 2. It follows
that Q(u1, . . . , u4)〈α〉 = Q(c1, . . . , c5), which proves the first assertion. The relation
(7) now is checked by a direct computation. �
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Let (ag, bg, jg, cg, dg) := (f2, f4,a, f4,b, f6, f8) be as in (5). We see from (6) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ag =
2u2

2 + u2
3 + u2

4

2u2
,

bg =
(u2

3 − u2
4)

2(4u4
2 + u2

1u
4
3 + 2u2

1u
2
3u

2
4 + u2

1u
4
4)

16u2
2(u

2
3 + u2

4)(u
2
3 + u2

1u
2
3 − 4u1u3u4 + u2

4 + u2
1u

2
4)

,

cg =
(u2

3 − u2
4)

2(2u2
2 + u2

1u
2
3 + u2

1u
2
4)

16u2(u2
3 + u2

1u
2
3 − 4u1u3u4 + u2

4 + u2
1u

2
4)

,

dg =
u2

1(u
2
3 − u2

4)
4

64(u2
3 + u2

1u
2
3 − 4u1u3u4 + u2

4 + u2
1u

2
4)2

.

Combining this with (7) we obtain, after some computations which are omitted
here, the following expressions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ag = c2c5,

bg =
(c2

1 − c2
4 + 1)2(c2

2 + c2
1c

2
2 − 2c1c2c3c4 + c2

3c
2
4)c

2
5

16(c2
1 + 1)(c2

1 + c2
4 + 1)(c2

1 − 2c4 + c2
4 + 1)

,

jg =
(c2

2 + c2
3)c2

5

2(c2
3 + 2)

,

cg =
(c2 + c2

1c2 − c1c3c4)(c2
1 − c2

4 + 1)2c3
5

16(c2
1 + 1)2(c2

1 − 2c4 + c2
4 + 1)

,

dg =
(c2

1 − c2
4 + 1)4c4

5

256(c2
1 + 1)3(c2

1 − 2c4 + c2
4 + 1)2

.

(8)

Now we observe that the action of β
M

on c1, . . . , c5 is described simply as

βM : (c1, c2, c3, c4, c5) 
→ (c1,−c2,−c3, c4,−c5).

One can obtain a system of generators of the fixed field of Q(c1, . . . , c5) by β
M

. Put

(am, bm, cm, dm) =
(

c1

c4
,

1
c4

,
c3

c2
, c2c5

)
(9)

=
(

(u2
1 − 1)u3

(u2
1 + 1)u4

,
2u1u3

(u2
1 + 1)u4

,
(2u2

2 − u2
3 − u2

4)u3

(2u2
2 + u2

3 + u2
4)u4

,
2u2

2 + u2
3 + u2

4

2u2

)
.

From (6) one can express am, bm, cm, dm as elements of Q(x). Namely we have
the following result, which is slightly more complicated than (4):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

am =
(x2

1x
2
4 − x2

2x
2
3)

(x1x2 − x2x3 + x1x4 + x3x4)

· (x2
1x

2
2 − x2

3x
2
4)(x1x2 + x2x3 − x1x4 + x3x4)

(x2
1x

4
2x

2
3 + x4

1x
2
2x

2
4 + 4x2

1x
2
2x

2
3x

2
4 + x2

2x
4
3x

2
4 + x2

1x
2
3x

4
4)

,

bm =
2x1x2x3x4(x2

1 + x2
3)(x

2
2 + x2

4)
(x1x2 − x2x3 + x1x4 + x3x4)

· (x1x2 + x2x3 − x1x4 + x3x4)
(x2

1x
4
2x

2
3 + x4

1x
2
2x

2
4 + 4x2

1x
2
2x

2
3x

2
4 + x2

2x
4
3x

2
4 + x2

1x
2
3x

4
4)

,

cm =
(x1x2 + x2x3 − x1x4 + x3x4)(x2

1 − x2
2 + x2

3 − x2
4)

(x1x2 − x2x3 + x1x4 + x3x4)(x2
1 + x2

2 + x2
3 + x2

4)
,

dm = x2
1 + x2

2 + x2
3 + x2

4.

(10)
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Now we clearly have Q(am, bm, cm, dm) ⊆ Q(x)M16 .

Proposition 4.5. We have Q(x)M16 = Q(c1, . . . , c5)〈βM
〉 = Q(am, bm, cm, dm).

Proof. It follows that Q(am, bm, cm, dm, c2) = Q(c1, . . . , c5) = Q(u1, . . . , u4)〈α〉 from
(9). Also we see from β

M
(c2) = −c2 that this field is a quadratic extension of

Q(am, bm, cm, dm); hence Q(am, bm, cm, dm) = Q(c1, . . . , c5)〈βM
〉 is the fixed field of

M16. �

We next seek the expressions for ag, bg, jg, cg, dg by am, bm, cm, dm. These are
obtained from (8) and (9) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ag = dm,

bg =
(a2

m + b2
m − 1)2(a2

m + b2
m − 2amcm + c2

m)d2
m

24(a2
m + b2

m)(a2
m + b2

m + 1)(a2
m − 2bm + b2

m + 1)
,

jg =
(a2

m + b2
m − c2

m)d2
m

4(a2
m + b2

m)
,

cg =
(a2

m + b2
m − 1)2(a2

m + b2
m − amcm)(a2

m + b2
m − c2

m)d3
m

25(a2
m + b2

m)2(a2
m + b2

m + 1)(a2
m − 2bm + b2

m + 1)
,

dg =
b2
m(a2

m + b2
m)4(a2

m + b2
m − c2

m)2d4
m

210(a2
m + b2

m)3(a2
m + b2

m + 1)2(a2
m − 2bm + b2

m + 1)2
.

Substituting these into (5) and then replacing am, bm, cm, dm by a, b, c, d, we
obtain the following polynomial:

FM16(a, b, c, d; X) = X8 − dX6(11)

+
(

(a2 + b2 − c2)
4(a2 + b2)

+
(a2 + b2 − 1)2

(
(a − c)2 + b2

)
24(a2 + b2)(a2 + b2 + 1)

(
a2 + (b − 1)2

))
d2X4

− (a2 + b2 − 1)2(a2 + b2 − ac)(a2 + b2 − c2)d3

25(a2 + b2)2(a2 + b2 + 1)
(
a2 + (b − 1)2

) X2

+
b2(a2 + b2 − 1)4(a2 + b2 − c2)2d4

210(a2 + b2)3(a2 + b2 + 1)2
(
a2 + (b − 1)2

)2 .

Theorem 4.6. FM16(a, b, c, d; X) ∈ Q(a, b, c, d)[X] is a generic polynomial over Q

for M16, when we regard a, b, c, d as independent parameters.

We shall next study the case for G0. From (9) we observe that

βD : (am, bm, cm, dm) 
→ (−am, bm,−cm, dm).

It follows that the fixed field of Q(am, bm, cm, dm) by this action of β
D

is generated
by

af := a2
m, bf :=

bm

2
, cf :=

cm − am

2am
, df := dm,(12)
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and we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ag = df ,

bg =
(af + 4b2

f − 1)2(b2
f + afc2

f )d2
f

4
(
af + (2bf − 1)2

)
(af + 4b2

f )(af + 4b2
f + 1)

,

jg =

(
b2
f − afcf (cf + 1)

)
d2

f

af + 4b2
f

,

cg =
(af + 4b2

f − 1)2(afcf − 2b2
f )

(
afcf (cf + 1) − b2

f

)
d3

f

4
(
af + (2bf − 1)2

)
(af + 4b2

f )2(af + 4b2
f + 1)

,

dg =
b2
f (af + 4b2

f − 1)4
(
b2
f − afcf (cf + 1)

)2
d4

f

16
(
af + (2bf − 1)2

)2(af + 4b2
f )3(af + 4b2

f + 1)2
.

(13)

Substitute the above expressions into (5) and replace af , bf , cf , df by a, b, c, d. We
thus obtain the following polynomial:

FG0(a,b, c, d; X) = X8 − dX6(14)

+
(

b2 − ac(c + 1)
(a + 4b2)

+
(a + 4b2 − 1)2(b2 + ac2)

4
(
a + (2b − 1)2

)
(a + 4b2)(a + 4b2 + 1)

)
d2X4

−
(a + 4b2 − 1)2(ac − 2b2)

(
ac(c + 1) − b2

)
d3

4
(
a + (2b − 1)2

)
(a + 4b2)2(a + 4b2 + 1)

X2

+
b2(a + 4b2 − 1)4

(
b2 − ac(c + 1)

)2
d4

16
(
a + (2b − 1)2

)2(a + 4b2)3(a + 4b2 + 1)2
.

Theorem 4.7. FG0(a, b, c, d; X) ∈ Q(a, b, c, d)[X] is a generic polynomial over Q

for G0, when we regard a, b, c, d as independent parameters.

We next study the descent from G0 to G64. Put ak := af/(4b2
f ). Then we

have Q(af , bf , cf , df ) = Q(ak, bf , cf , df ), and observe from (12) that ak, cf , df are
invariant under γ. It is easy to see that bf is transformed as

γ : bf 
→ 1
4(ak + 1)bf

,

so that putting bk := 1/(bf + γ(bf )), we obtain a system of generators of the fixed
field of G64:

Q(x1, . . . , x4)G64 = Q(ak, bk, ck, dk),

where

ak =
af

4b2
f

, bk =
af + 4b2

f

(af + 4b2
f + 1)bf

, ck = cf , dk = df .
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Combining this and (13) we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ag = dk,

bg =
(ak − b2

k + 1)(4akc2
k + 1)d2

k

24(ak + 1)(ak − bk + 1)
,

cg =
(ak − b2

k + 1)(2akck − 1)
(
4akck(ck + 1) − 1

)
d3

k

25(ak + 1)2(ak − bk + 1)
,

dg =
(ak − b2

k + 1)2
(
4akck(ck + 1) − 1

)2
d4

k

210(ak + 1)3(ak − bk + 1)2
.

Substituting these into (5) and then replacing ak, bk, ck, dk by a, b, c, d, we obtain
the following:

Theorem 4.8. The polynomial

FG64(a, b, c, d; X) = X8 − dX6 +
(

(a − b2 + 1)(4ac2 + 1)
24(a + 1)(a − b + 1)

− 4ac(c + 1) − 1
4(a + 1)

)
d2X4

−
(a − b2 + 1)(2ac − 1)

(
4ac(c + 1) − 1

)
d3

25(a + 1)2(a − b + 1)
X2 +

(a − b2 + 1)2
(
4ac(c + 1) − 1

)2
d4

210(a + 1)3(a − b + 1)2

is a generic polynomial over Q for G64, when a, b, c, d are regarded as independent
parameters.

Next we study the descent from C8 to D8, which is slightly more difficult since
D8 is not a normal subgroup of G64. We observe that the action of βD on Q(x)〈α〉 =
Q(c1, . . . , c5) is described simply as

β
D

: (c1, c2, c3, c4, c5) 
→ (−c1, c2,−c3, c4, c5).

Put

ad :=
2c1

c3
, bd :=

c1c2

c3
, cd := c4, dd := c2c5.

One then sees that these are all invariant under βD . Also one sees that

c4 = cd, c5 =
ad

2bd
, c1 =

adc3

2
, c2 =

2bd

ad
,

so that Q(c1, . . . , c5) = Q(ad, bd, cd, dd, c3). Furthermore we see that β
D

(c3) =
−c3 implies [Q(ad, bd, cd, dd, c3) : Q(ad, bd, cd, dd)] = 2; hence we conclude that
Q(x)D8 = Q(ad, . . . , dd). Now from (13) we have

af = − a2
d − 2b2

d + a2
dc

2
d

c2
d(a

2
d − 2b2

d + 2c2
d)

, bf =
1

2cd
, cf =

cd − bd

2bd
, df = dd.

Substituting these into (14) and then replacing ad, bd, cd, dd by a, b, c, d, we obtain
the following:
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Theorem 4.9. The polynomial

FD8(a,b, c, d; X) = X8 − dX6 +

(
a2(b2 − c2 − 1)

4(a2 − 2)b2

+
(a2 − b2 + c2 − 1)2

(
4b2(b − c) + a2

(
c + b2c + c3 − 2b(c2 + 1)

))
24(a2 − 2)b2

(
a2 + b2(c − 2) − (c − 1)2c

)
(b2 − c2 − 1)

)
d2X4

−
a2(a2 − b2 + c2 − 1)2

(
2b(b − c) + a2

(
(b − c)c − 1

))
d3

25(a2 − 2)2b3
(
a2 + b2(c − 2) − (c − 1)2c

) X2

− a4(a2 − b2 + c2 − 1)4(a2 − 2b2 + 2c2)d4

210(a2 − 2)3b4
(
a2 + b2(c − 2) − (c − 1)2c

)2

is a generic polynomial over Q for D8, when a, b, c, d are regarded as independent
parameters.

Finally we study the descent from C8 to QD8. Observe that the action of βQ

on Q(x)〈α〉 = Q(c1, . . . , c5) is described simply as

β
Q

: (c1, c2, c3, c4, c5) 
→ (−c1,−c2, c3, c4,−c5).

Put

aq :=
c2

c1
, bq :=

c4

c2
1 + 1

, cq :=
c3c4

c2
1 + 1

, dq := c2c5.

One then sees that these are all invariant under β
Q
. Also one sees that

c3 =
cq

bq
, c2 =

dq

c5
, c4 = bq +

bqd
2
q

a2
qc

2
5

, c1 =
dq

aqc5
,

from which it follows that Q(c1, . . . , c5) = Q(aq, bq, cq, dq, c5). Furthermore we see
that βQ(c5) = −c5 implies [Q(aq, bq, cq, dq, c5) : Q(aq, bq, cq, dq)] = 2; hence we
conclude that Q(x)QD8 = Q(aq, bq, cq, dq). Now from (13) we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

af =
(a2

q − 2b2
q − c2

q)(2b2
q + c2

q + 2)
(a2

q + 2)2b2
q

,

bf =
a2

q − 2b2
q − c2

q

2(a2
q + 2)bq

,

cf =
−2aq − 2aqb

2
q + 2cq + a2

qcq − aqc
2
q

2aq(2b2
q + c2

q + 2)
,

df = dq.

We substitute these expressions into (14) and replace aq, bq, cq, dq by a, b, c, d.
Then we obtain the following:
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Theorem 4.10. The polynomial

FQD8
(a, b, c, d; X) = X8 − dX6 +

(
a2(b2 + 1) − c2

2a2(2b2 + c2 + 2)

+

(
4b2 + a2(b2 − 1) + c2

)2(
c2 + a2(b2 + c2 + 1) − ac(2b2 + c2 + 2)

)
8a2

(
a2(b2 + 1) − c2

)
(2b2 + c2 + 2)

(
a2(b − 1)2 + 4b3 + (2b − 1)c2

))
d2X4

−
(a − c)

(
4b2 + a2(b2 − 1) + c2

)2
d3

24a3(2b2 + c2 + 2)
(
a2(b − 1)2 + 4b3 + (2b − 1)c2

)X2

+
(a2 − 2b2 − c2)

(
4b2 + a2(b2 − 1) + c2

)4
d4

28a4(a2 + 2)(2b2 + c2 + 2)2
(
a2(b − 1)2 + 4b3 + (2b − 1)c2

)2

is a generic polynomial over Q for QD8, when a, b, c, d are regarded as independent
parameters.

5. A Q-versal polynomial for C8

It has been known since the 1970s that NP for C8/Q has a negative answer
(cf. [EM], [Vos1], [Len]). Saltman [Sal1] gave an explanation of this fact using
Grunwald-Wang’s theorem, which asserts that there is no C8-extension K/Q such
that K⊗QQ2 is the unramified field extension of degree 8 over Q2.

It seems that after these results there has been no substantial development to
the problem of describing the set of all C8-extensions of an arbitrary field of char-
acteristic zero.

Applying the results of the previous section we shall give a fairly complete answer
to this problem.

5.1. Main result. We have seen that the fixed field under C8 = 〈α〉 is generated
by c1, . . . , c5, which satisfy a single equation (7). On the other hand, we saw in the
proof of Proposition 4.4 that Q(c1, . . . , c5) = Q(c2, am, bm, cm, dm). From (9) one
can rewrite equation (7) as

V (am, bm, cm, em) := (a2
m + b2

m − c2
m) − 2 e2

m(a2
m + b2

m + 1) = 0,(15)

em :=
1
c2

=
x1x2 + x2x3 − x1x4 + x3x4

x2
1 + x2

2 + x2
3 + x2

4

.

Now we view our Q-generic M16-polynomial FM16(a, b, c, d; X), obtained in (11),
as defined over the fixed field Q(am, bm, cm, dm, em) under C8. The crucial point
is that am, bm, cm, dm are not free parameters here, but are subject to the relation
V (am, bm, cm, em) = 0. This amounts to saying that in order to regard it as a
C8-polynomial over Q(am, bm, cm, dm, em), the value R(am, bm, cm) should be a
nonzero square, where we put

R(am, bm, cm) :=
2(a2

m + b2
m − c2

m)
a2

m + b2
m + 1

( = 4 e2
m ).

Thus we have the following result, which is one of the main results of this paper:

Theorem 5.1. Let K be a field of characteristic zero, and suppose for a, b, c, d ∈ K
that R(a, b, c) is a nonzero square while a2 + b2 is a nonsquare element in K×.
Then FM16(a, b, c, d; X) is an irreducible C8-polynomial over K, and the splitting
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field contains K(
√

a2 + b2) as its unique quadratic subextension. Furthermore,
FM16(a, b, c, d; X) with the condition R(a, b, c) to be a nonzero square is a versal
polynomial for C8 over Q in the sense of [BR], so that any C8-extension of K is
obtained in this way.

Proof. We first observe that a2
m + b2

m is written as an element of Q(x) by

a2
m + b2

m =
c2
1 + 1
c2
4

= q2
m, qm :=

x1x2 + x2x3 − x1x4 + x3x4

x1x2 − x2x3 + x1x4 + x3x4

with α(qm) = −qm. It follows that Q(x)〈α
2〉 = Q(am, bm, cm, dm, em, qm), over

which Q(x) is a C4-extension and that FM16(am, bm, cm, dm; X) splits into the
product of two factors of degree 4. Since this polynomial is already known to be
an irreducible C8-polynomial over Q(am, bm, cm, dm, em) = Q(x)〈α〉, we see that
this is the only way through which it becomes reducible. Now let L/K be any C8-
extension whose Galois group is generated by σ. Then by the normal basis theorem
one finds x̄1 ∈ L, which together with x̄2 = σ(x̄1), x̄3 = σ2(x̄1), x̄3 = σ3(x̄1)
generates an irreducible Q[σ]-module on which σ4 = −id. One can define from
x̄1, . . . , x̄4 those elements c̄1, . . . , c̄5 and ām, b̄m, c̄m, d̄m in the same way as above
without making denominators vanish, since there are infinitely many choices of x̄1.
Thus we obtain a specialized polynomial FM16(ām, b̄m, c̄m, d̄m; X) ∈ K[X] whose
splitting field over K is obviously K(x̄1) = L. This completes the proof. �

It should be noted that FM16(a, b, c, d; X) can further degenerate. Indeed one
can show from the results of the previous section that FM16(a, b, c, d; X) is reducible
and is a product of two factors of degree 4 if and only if a2 + b2 is a square in K.
Putting a = m2 − n2, b = 2mn, we indeed have the following decomposition:

FM16(m
2 − n2, 2mn, c, d; X) = F4(m, n, c, d; X)F4(n, m,−c, d; X),

where

F4(m, n, c, d; X) = X4 − d(m2 + n2 + c)
2(m2 + n2)

X2

+
d2n2

(
(m2 + n2)2 − 1

)2(m2 + n2 + c)2

16(m2 + n2)3
(
(m2 + n2)2 − 4mn + 1

)(
(m2 + n2)2 + 1

) .

Recall that, for a quadratic extension K = k(
√

m) of k to be the subfield of a C4-
extension of k, it is necessary and sufficient that m is a sum of two nonzero squares
of k: m = a2 + b2 for some a, b ∈ k× (cf. [Ser], Theorem 1.2.4). From the above
discussion we obtain a similar criterion for K to be extended to a C8-extension of
k.

Corollary 5.2. Let K = k(
√

a2 + b2) be a quadratic extension of a field k of
characteristic zero. For the existence of a C8-extension of k containing K, it is
necessary and sufficient that there exists c ∈ k× for which R(a, b, c) is a nonzero
square in k.

Remark 5.3. From Corollary 5.2 we obtain, without using the Kronecker-Weber
theorem, that for k = Q the discriminant of the quadratic field K which can be
embedded in a C8-extension consists of only primes 2, and p ≡ 1 (mod 8). This
fact corresponds to the Grunwald-Wang theorem, which asserts that the unramified
C8-extension L2 over Q2 cannot be the splitting field of a C8-polynomial in Q[X].
On the other hand, we find a solution am = 2, bm = 1, cm =

√
−7, em = 1 in Q2
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to (15) for which Q2(
√

a2
m + b2

m)/Q2 is unramified. Hence L2 is the splitting field
of FM16(2, 1,

√
−7, dm; X) over Q2.

5.2. Example 1: Kummer extensions. As a typical example of Theorem 5.1,
we describe how the Kummer extensions can be recovered from a specialization of
FM16(a, b, c, d; X). Thus we assume that the base field K contains the primitive root
ζ of unity of order 8, and L = K(θ) is a C8-extension of K with Gal(L/K) = 〈σ〉
such that σ(θ) = ζθ and m := θ8 is a nonsquare element of K×. Our aim is to find
aθ, bθ, cθ, dθ and eθ in K satisfying V (aθ, bθ, cθ, eθ) = 0 such that L is the splitting
field of FM16(aθ, bθ, cθ, dθ; X) over K. For this purpose we put

y1 := θ + θ3 + θ5,

and
yi := σi−1(y1), i = 2, 3, 4.

Then it follows that

σ : (y1, y2, y3, y4) 
−→ (y2, y3, y4,−y1).

Also we see that L = K(θ) = K(y1, y2, y3, y4). Let aθ, bθ, cθ, dθ, eθ be the elements
of K obtained by substituting xi = yi (i = 1, . . . , 4) in the expression (10), (15) of
am, bm, cm, dm, em. By direct computations we obtain

(aθ, bθ, cθ, dθ, eθ)

=
(

ζ2(m + 1)(m2 − m + 1)
2m

,
(m − 1)(m2 + m + 1)

2m
, ζ2, 8m,

ζ(ζ2 − 1)
2

)
.

In particular we have V (aθ, bθ, cθ, eθ) = 0. The polynomial FM16(aθ, bθ, cθ, dθ; X)
now becomes

F (m; X) = X8 − 8mX6 + 4m(3m − 5)X4

+ 8m(m2 − m − 1)X2 − m(m2 + m + 1)2,

which splits completely in L[X] as

F (m; X) =
7∏

i=0

(
X − (ζiθ + ζ3iθ3 + ζ5iθ5)

)
.

Also we have

R(aθ, bθ, cθ) = 2 =
(√

2
)2 ∈ (K×)2

and

a2
θ + b2

θ = −m ∈ K× \ (K×)2.

It follows that F (m, X) = FM16(aθ, bθ, cθ, dθ; X) is a C8-polynomial over K, and
the splitting field of it is K(y1, y2, y3, y4) = K(θ) = L.

5.3. Example 2. Here we shall give a simple family of C8-polynomials with two
parameters and illustrate how one can recover its splitting field by a specialization
of FM16(a, b, c, d; X).

We start by putting (a, b, c)→(4a, a2, 2a3) in the polynomial FG128(a, b, c, d; X)
given by (4). This gives a simple polynomial with two parameters

F (a, d; X) := X8 − 4aX6 + 5a2X4 − 2a3X2 + d.
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Proposition 5.4. F (a, d; X) is a family of G0-polynomials. More precisely, the
splitting field of F (a, d; X) over Q(a, d) is a G0-extension that is not regular over
Q.

Proof. Suppose s is a zero of F (a, d; X) so that F (a, d; s) = 0. Then solving this
equation in d we have d = s2(a−s2)2(2a−s2). Substitution of this expression gives
a decomposition

F (a, d; X) := (X2 − s2)(X2 + s2 − 2a)
(
X4 − 2aX2 + (s2 − a)2

)
,

from which we see that the splitting field has degree 8 × 4 = 32 over Q(a, d). Also
if we put t =

√
2a − s2, then we see that

a =
1
2
(s2 + t2), d =

1
4

(
s2t2

(
s2 − t2

)2
)
,

and the zeros of F (a, d; X) are{
±s, ±t, ±s − t√

2
, ±s + t√

2

}
.

It follows that the splitting field is Q(
√

2, s, t), which is not a regular extension over
Q. Finally one can check that the following maps α, βD , βQ , βM are automorphisms
of Q(

√
2, s, t)/Q(a, d),⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α : (s, t,
√

2) 
→
(

s − t√
2

,
s + t√

2
,−

√
2
)

,

β
D

: (s, t,
√

2) 
→ (−t,−s,−
√

2),

β
Q

: (s, t,
√

2) 
→ (−t,−s,
√

2),

βM : (s, t,
√

2) 
→ (s, t,−
√

2),

which satisfy

α8 = 1, β
D

αβ−1
D

= α−1, β
Q
αβ−1

Q
= α3, β

M
αβ−1

M
= α5.

It follows that the Galois group of Q(
√

2, s, t)/Q(a, d) is isomorphic to G0. �

Observe that, if we put d = 2e2 with e =
1

2
√

2

(
st(s2 − t2)

)
, then we have

α(e) = βD(e) = e, βQ(e) = βM (e) = −e.

This implies the following:

Corollary 5.5. The polynomial

F (a, 2e2; X) = X8 − 4aX6 + 5a2X4 − 2a3X2 + 2e2

is a D8-polynomial over Q(a, e).

Now we further make a specialization by the replacement

a 
→ 2q, e 
→
q2

(
(p − 1)2 − 2

)
p2 + 1

,

which gives the polynomial

H(p, q; X) = X8 − 8qX6 + 20q2X4 − 16q3X2 +
2q4(p2 − 2p − 1)2

(p2 + 1)2
.
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Proposition 5.6. H(p, q; X) is a family of C8-polynomials. More precisely, the
splitting field of H(p, q; X) over Q(p, q) is a C8-extension containing Q(

√
2).

Proof. One can regard p, q as elements of Q(
√

2, s, t). Namely it is easy to find the
expressions

q =
1
4
(s2 + t2), p =

s2 + 2st − t2 +
√

2(s2 − t2)
s2 − t2 − 2st(

√
2 + 1)

.

It follows that Q(
√

2, s, t)〈α〉 = Q(p, q), which proves the assertion. �

Our next aim is to recover H(p, q; X) or its splitting field from the Q-versal poly-
nomial FM16(a, b, c, d; X). Actually, it turns out that one cannot obtain H(p, q; X)
directly from FM16(a, b, c, d; X) by specialization of the parameters. Instead, we
put x1 := s3 and look at the 〈α〉-orbit of x1. This orbit is given by

{x1, . . . , x4, −x1, . . . , −x4}

=
{

s3,
(s − t)3

2
√

2
, t3,

(s + t)3

2
√

2
, −s3, − (s − t)3

2
√

2
, −t3, − (s + t)3

2
√

2

}
,

and from (10) we have expressions for am, bm, cm, dm by s, t, and then by p, q using
elimination. The result is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

am = −3
8

(p4 − 6p2 + 1)
(p2 + 1)2

· (23p4 + 36p3 + 46p2 − 36p + 23)(31p4 + 4p3 + 62p2 − 4p + 31)(
505(p8 + 1) + 1848(p7 + p5 − p3 − p) + 2932(p6 + p2) + 1206p4

) ,

bm = −3
8

(p2 − 2p − 1)4

(p2 + 1)2

· (41p4 − 36p3 + 82p2 + 36p + 41)(
505(p8 + 1) + 1848(p7 + p5 − p3 − p) + 2932(p6 + p2) + 1206p4

) ,

cm = − 9
40

(p4 − 6p2 + 1)
(p2 + 1)2

,

dm = 80q3.

(16)

Now substituting these expressions we find that FM16(am, bm, cm, dm; X3) is de-
composed into a product of H(p, q; X) and a factor of degree 16. Thus we have
shown that the splitting field of H(p, q; X) is obtained as that of a specialization
(16) of FM16(a, b, c, d; X). Also we can show the following equalities:

R(am, bm, cm) =
2(a2

m + b2
m − c2

m)
1 + a2

m + b2
m

=
(

3
5
· p2 − 2p − 1

p2 + 1

)2

,

a2
m + b2

m = 2
(

3
8
· p2 − 2p − 1

p2 + 1

)2

.

6. The group G0 in the Cremona group of dimension 2

6.1. GNP for G0 in AutQQ(x, y). Here we describe how the group G0, as well as
G32, G64, can be realized as a subgroup of the Cremona group AutQQ(x, y), and
discuss briefly the Generalized Noether’s problem (GNP) for its subgroups. We
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should remark that this is not to rephrase the results of section 3. For example, we
see that the following Q-automorphism

AutQQ(x, y) � α : (x, y) 
−→
(

y,
x + 1
−x + 1

)
(17)

has order 8. Nevertheless, as we shall show in Theorem 6.2 below, the fixed field
Q(x, y)〈α〉 is rational over Q. This means that there exists a positive answer of
the General Noether’s Problem for C8/Q in dimension two. The linear fractional
transformations

δx : x 
−→ x + 1
−x + 1

, ιx : x 
−→ −x

satisfy δ4
x = ι2x = 1, ιxδxι−1

x = δ−1
x ; hence we have 〈δx, ιx〉 ∼= D4. Indeed it is not

difficult to show that any subgroup of AutQQ(x) ∼= PGL2(Q) isomorphic to D4

is conjugate to 〈δx, ιx〉. Let 〈δy, ιy〉 be a copy of this group in AutQQ(y), and let
τ : (x, y) 
−→ (y, x) be the transposition. We then see that these five automorphisms
together generate a subgroup G128 of a 2-group of order 27 = 128 in AutQQ(x, y):

G128 := 〈δx, ιx, δy, ιy, τ〉 ∼= (D4 × D4) � C2.

In G128 we find the following elements of order 2:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βD := ιyιxδ−1
x : (x, y) 
−→

(
x + 1
x − 1

,−y

)
,

βQ := δ2
yιyδxιx : (x, y) 
−→

(
x + 1
x − 1

,
1
y

)
,

βM := δ2
y : (x, y) 
−→

(
x,

−1
y

)
,

which commute with each other and generate a group isomorphic to Klein’s four
group. Furthermore we have

β
D

αβ−1
D

= α−1, β
Q
αβ−1

Q
= α3, β

M
αβ−1

M
= α5,

where α = αxτ is an element of order 8 as in (17). Thus we have

〈α〉 ∼= C8, 〈α, β
D
〉 ∼= D8, 〈α, β

Q
〉 ∼= QD8, 〈α, β

M
〉 ∼= M16,

so that 〈α, βD , βQ , βM 〉 is a realization of G0 in the Cremona group AutQQ(x, y) of
dimension two.

We shall now study the fixed field under 〈α〉. First note that α4 is an involution
(x, y) 
→ (−1/x,−1/y).

The fixed field under this type of involution has been known to be rational, with
an explicit set of generators given by several authors (e.g., [Haj2]). Namely we have
the following.

Lemma 6.1. Let k be a field of characteristic zero and k(X, Y ) be the rational
function field over k with two variables X, Y and let α be a k-involution of k(X, Y )
given by

α :

{
X 
−→ m1/X,

Y 
−→ m2/Y,
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with m1, m2 ∈ k×. Then the fixed field of k(X, Y ) under this involution is

k〈α〉 = k

(
X2Y 2 − m1m2

Y (X2 − m1)
,
X(Y 2 − m2)
Y (X2 − m1)

)
.

Proof. Put u := X2Y 2−m1m2
Y (X2−m1)

, v := X(Y 2−m2)
Y (X2−m1)

. We see immediately that u, v are
fixed by α, so that k(u, v) ⊆ k〈α〉. On the other hand, it follows from u − Xv =
m2/Y , Y = m2/(u − Xv) that k(X, Y ) = k(X, u, v), and also that X satisfies
the quadratic equation uvX2 − (u2 + m1 − m2)X + uvm1 = 0. We now have
[k(X, Y ) : k(u, v)] = [k(X, u, v) : k(u, v)] = 2; hence k〈α〉 = k(u, v). �

Applying Lemma 6.1, we have Q(x, y)〈α
4〉 = Q(s0, t0) where

s0 =
x2y2 − 1
y(x2 + 1)

, t0 =
x(y2 + 1)
y(x2 + 1)

.

We then see that α2 transforms (x, y) to
(

1 + x

1 − x
,
1 + y

1 − y

)
; hence it induces an

involution on Q(s0, t0) such that

α2 :

⎧⎪⎪⎨
⎪⎪⎩

s0 
−→ −2s0(t0 + 1)
s2
0 + t20 − 1

,

t0 
−→ s2
0 − t20 + 1

s2
0 + t20 − 1

.

Putting

s :=
t0 − 1

s0
, t :=

t0 + 1
s0

(
s =

y − x

xy + 1
, t =

x + y

xy − 1

)
,

one sees that Q(s0, t0) = Q(s, t) and that the action of α2 on s2, t2 is expressed
simply as α2 : (s, t) 
→ (s, −1/t). It follows that Q(s, t)〈α

2〉 = Q(p, q) where

p = s + 1, q =
1
2

(
t − 1

t

) (
p =

xy − x + y + 1
xy + 1

, q =
(x + y)2 − (xy − 1)2

2(x + y)(xy − 1)

)
.

(18)

Now α induces an involution on Q(p, q) such that

α : (p, q) 
−→
(

2
p
,
−1
q

)

so that one can again apply Lemma 6.1. Thus we have proved the following assertion
on GNP for C8/Q in contrast to the negative answers to NP and LNP (cf. Fact
1.6 in §1).

Theorem 6.2. The fixed field of Q(x, y) under 〈α〉 ∼= C8 is rational over Q and is
equal to Q(x, y)〈α〉 = Q(a0, b0), where a0, b0 are given by

a0 =
p2q2 + 2
q(p2 − 2)

, b0 =
p(q2 + 1)
q(p2 − 2)

.(19)
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We next study the action of β
D

, β
Q
, β

M
on various subfields of Q(x, y). From

(18) we first see that they act on Q(s0, t0) = Q(s, t) as

β
D

:

⎧⎪⎪⎨
⎪⎪⎩

s 
−→ − s + 1
s + 1

,

t 
−→ − t + 1
t + 1

,

β
Q

:

⎧⎪⎪⎨
⎪⎪⎩

s 
−→ s + 1
s − 1

,

t 
−→ t + 1
t − 1

,

β
M

:

⎧⎪⎪⎨
⎪⎪⎩

s 
−→ − 1
s

,

t 
−→ − 1
t

.

Then from (18) we see that they transform p, q as

β
D

:

⎧⎪⎪⎨
⎪⎪⎩

p 
−→ 2
p
,

q 
−→ 1
q
,

β
Q

:

⎧⎪⎪⎨
⎪⎪⎩

p 
−→ 2(p − 1)
p − 2

,

q 
−→ 1
q
,

β
M

:

⎧⎨
⎩ p 
−→ p − 2

p − 1
,

q 
−→ q.

It is not difficult to see from (19) that βD , βQ transform a0, b0 as

β
D

:
{

a0 
−→ −a0,

b0 
−→ −b0,
β

Q
:

⎧⎪⎪⎨
⎪⎪⎩

a0 
−→ (a0 − 2b0)2 + 2
a0

,

b0 
−→ a2
0 − 3a0b0 + 2b2

0 + 1
a0

;

hence for βM = βDβQ we obtain

β
M

: a0 
−→ − (a0 − 2b0)2 + 2
a0

, b0 
−→ −a2
0 − 3a0b0 + 2b2

0 + 1
a0

.

Now we choose new generators a, b of Q(x, y)〈α〉 = Q(a0, b0) as

a :=
1
b0

, b :=
a0 − b0

b0

(
a =

q(p2 − 2)
p(q2 + 1)

, b =
p2q2 − pq2 − p + 2

p(q2 + 1)

)
.

Then we see that Q(x, y)〈α〉 = Q(a, b) and β
D

, β
Q
, β

M
transform a, b as

β
D

:
{

a 
−→ −a,

b 
−→ b,
β

Q
:

⎧⎪⎪⎨
⎪⎪⎩

a 
−→ a(b + 1)
a2 + b2 − b

,

b 
−→ a2 − b + 1
a2 + b2 − b

,

β
M

:

⎧⎪⎪⎨
⎪⎪⎩

a 
−→ −a(b + 1)
a2 + b2 − b

,

b 
−→ a2 − b + 1
a2 + b2 − b

.

(20)

Proposition 6.3. The fixed fields of Q(x, y) under 〈α, β
D
〉, 〈α, β

Q
〉, and 〈α, β

M
〉

are all rational over Q. More precisely we have

Q(x, y)〈α,β
D
〉 = Q(a2, b), Q(x, y)〈α,β

Q
〉 = Q(aq, bq), Q(x, y)〈α,β

M
〉 = Q(am, bm),

where aq, bq, am, bm ∈ Q(x, y)〈α〉 = Q(a, b) are given by

(aq, bq) =
(

a(b + 1)
a2 + b2 + 1

,
a2 − 2b

b2 − 1

)
,(21)

(am, bm) =
(

b − 1
a

,
a2 − 2b

a(b + 1)

)
.

Proof. The assertion for 〈α, β
D
〉 is obvious. To prove the assertion for 〈α, β

Q
〉, first

note from (20) that aq, bq are fixed by α, βQ , so that Q(aq, bq) ⊆ Q(a, b)〈α,β
Q
〉. We

then rewrite (21) as

aq(a2 + b2 + 1) − a(b + 1) = 0, bq(b2 − 1) − (a2 − 2b) = 0.
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Eliminating a2 we obtain an expression of a as an element of Q(b, aq, bq):

a = aq(bqb − bq + b + 1).

It follows that Q(a, aq, bq) = Q(a, b). Also by taking the resultant of them w.r.t. a,
we obtain the equality

a2
q(bqb − bq + b + 1)2 − bqb

2 + bq − 2b = 0,

which shows that [Q(a, b) : Q(aq, bq)] = 2 = [Q(a, b) : Q(a, b)〈α,β
Q
〉]. This proves

Q(x, y)〈α,β
Q
〉 = Q(a, b)〈α,β

Q
〉 = Q(aq, bq). The assertion for 〈α, β

M
〉 can be proved

similarly, and we omit the details. �

Now we consider the fixed field under 〈α, β
D

, β
Q
, β

M
〉 ∼= G0, which is the inter-

section of any two of Q(a2, b), Q(aq, bq), Q(am, bm). By inspection one sees from
(20) that the following two elements belong to this field:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
af := a2

m =
−2a2

q + 1
a2

q(b2
q + 1)

=
(b − 1)2

a2
,

bf :=
bm

am
= bq =

a2 − 2b

b2 − 1
.

It follows that [Q(am, bm) : Q(af , bf )] = 2 = [〈α, βD , βQ , βM 〉 : 〈α, βM 〉] from the
first expression. Then one can show as the proof of Proposition 6.3 the following:

Proposition 6.4. We have Q(x, y)〈α,β
D

,β
Q

,β
M

〉 = Q(af , bf ), so that it is rational
over Q.

6.2. Two-parameter H-polynomials for H ⊆ G128. Finally we construct poly-
nomials which correspond to the extensions Q(x, y)/Q(x, y)H for various subgroups
H of G128. Let Rδ(x, y) be the union of the 〈δx, ιy〉-orbit of x and the 〈δy, ιy〉-orbit
of y:

Rδ(x, y) :=
{

x,
−1
x

,
1 + x

1 − x
,

x − 1
1 + x

, y,
−1
y

,
1 + y

1 − y
,

y − 1
1 + y

}
,

and put

AutQRδ(x, y) :=
{

ϕ ∈ AutQQ(x, y)
∣∣∣ ϕ(Rδ(x, y)) = Rδ(x, y)

}
.

The following lemma can be proved easily.

Lemma 6.5. AutQRδ(x, y) is a group of order 25 generated by δx, δy and τ , and
is isomorphic to (C4 × C4)�C2.

We put for simplicity G32 := AutQRδ(x, y), and consider the monic separable
polynomial f(X) of degree 8 whose roots are elements of Rδ(x, y). Since Rδ(x, y)
is stable under the transformation z 
→ −1/z, one sees that f(X) is expanded in
the following form:

f(X) =
∏

ξ∈Rδ(x,y)

(
X − ξ

)

= X8 − s1X
7 + s2X

6 − s3X
5 + s4X

4 + s3X
3 + s2X

2 + s1X + 1.

A direct computation shows that the coefficients satisfy the equalities

s3 + 7s1 = 0, s4 + 2s2 − 14 = 0.
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We obtain from f(X) the following polynomial:

F32(s1, s2; X)(22)

:= X8 − s1X
7 + s2X

6 + 7s1X
5 − 2(s2 − 7)X4 − 7s1X

3 + s2X
2 + s1X + 1

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1 =
(x + y)(xy − 1)

(
(xy − 1)2 − (x + y)2

)
xy(x2 − 1)(y2 − 1)

,

s2 =
(x4 − 6x2 + 1)(y4 − 6y2 + 1)

xy(x2 − 1)(y2 − 1)
− 12.

Now we can show that (22) implies the following.

Proposition 6.6. We have Q(x, y)G32 = Q(s1, s2). F32(s1, s2; X) ∈ Q(s1, s2)[X]
is a G32-polynomial over Q(s1, s2), when s1, s2 are regarded as independent param-
eters.

Note that G32 has 〈α, β
M
〉 ∼= M16 as a subgroup of index 2. In particular, one

can express s1, s2 as a rational function of am, bm as⎧⎪⎪⎨
⎪⎪⎩

s1 = sM
1 (am, bm) :=

−8(a2
m + b2

m + 2)
b3
m − amb2

m + am + 3bm
,

s2 = sM
2 (am, bm) :=

16(a3
m − a2

mbm + 3am + bm)
b3
m − amb2

m + am + 3bm
− 12.

(23)

Hence from (22) we have

Corollary 6.7. The polynomial

F16(am, bm; X) := F32(sM
1 (am, bm), sM

2 (am, bm); X)

is an M16-polynomial over Q(am, bm) = Q〈α,β
M

〉 with independent parameters
am, bm.

Example 6.8. By specializing the parameters am, bm of F16(am, bm; X) as (am, bm)
:= (8/u,−8/u), we obtain the following simple polynomial over Q(u):

f
(1)
16 (u; X) := F16

( 8
u

,
−8
u

; X
) (

= F32(u,−28; X)
)

= X8 − uX7 − 28X6 + 7uX5 + 70X4 − 7uX3 − 28X2 + uX + 1.

Y.-Y. Shen [She] studied the polynomial f
(1)
16 (u; X) from the viewpoint of construct-

ing a system of fundamental units of a real octic number field that contains Q(
√

2)
(see also Shen-Washington [SW]). If we suppose that θ is a zero of f

(1)
16 (u; X) so

that f
(1)
16 (u; θ) = 0, then we have

u =
(θ4 + 4θ3 − 6θ2 − 4θ + 1)(θ4 − 4θ3 − 6θ2 + 4θ + 1)

θ(θ + 1)(θ − 1)(θ2 + 2θ − 1)(θ2 − 2θ − 1)

and the zeros of f
(1)
16 (u; X) are{

θ, θ′,
θ + 1
−θ + 1

,
θ′ + 1
−θ′ + 1

,
−1
θ

,
−1
θ′

,
θ − 1
θ + 1

,
θ′ − 1
θ′ + 1

}
,

where

θ′ :=
−(

√
2 + 1)θ − 1

θ − (
√

2 + 1)
.
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Thus the splitting field of f
(1)
16 (u; X) over Q(u) is Q(

√
2, θ), which is not a regular

extension over Q. The maps

α : (θ,
√

2) 
→ (θ′,
√

2), β
M

: (θ,
√

2) 
→ (θ,−
√

2)

are automorphisms of Q(
√

2, θ)/Q(u) that satisfy

α8 = 1, β
M

α β−1
M

= α5,

because α2(θ) = (θ+1)/(−θ+1), βM (θ′) = −1/θ′. Hence the polynomial f
(1)
16 (u; X)

is an M16-polynomial over Q(u) and is also a C8-polynomial over Q(
√

2, u).
We can also obtain the following M16-polynomials over Q(u) with constant term

one:

f
(2)
16 (u; X) := F16

(
u − 1,

−u + 2
u

; X
)

= X8 + 2u(u2 + 2)(X7 − 7X5 + 7X3 − X) + 4(u4 − 3)(X6 + X2)

− 2(4u4 − 19)X4 + 1,

f
(3)
16 (u; X) := F16(u, 1; X)

= X8 + 2(u2 + 3)(X7 − 7X5 + 7X3 − X)

+ 4(u3 − u2 + 3u − 2)(X6 + X2) − 2(4u3 − 4u2 + 12u − 15)X4 + 1.

Next we consider the case for C8. Since C8 is a subgroup of M16 with index
2, we obtain the following C8-polynomial over Q(a, b) by substituting (21) in the
expression (23).

Corollary 6.9. The polynomial

F8(a, b; X) := F32(s1(a, b), s2(a, b); X)

with⎧⎪⎪⎨
⎪⎪⎩

s1(a, b) =
−8a(b + 1)(a2 + b2 + 1)2

a6 + 2a4b2 + a2b4 + 4a4 − 4b4 − 12a2b − 8b3 − a2 + 4b2
,

s2(a, b) =
16(b + 1)2(a4 + 2a2b2 + b4 − 4a2 − 4b2 + 4b − 1)

a6 + 2a4b2 + a2b4 + 4a4 − 4b4 − 12a2b − 8b3 − a2 + 4b2
− 12

is a C8-polynomial over Q(a, b) = Q(x, y)〈α〉, where we regard a, b as independent
parameters.

We put R±
δ (x, y) := Rδ(x, y) ∪ Rδ(−x,−y) and define the group AutQR±

δ (x, y)
similarly as AutQRδ(x, y):

AutQR±
δ (x, y) :=

{
ϕ ∈ AutQQ(x, y)

∣∣∣ ϕ(R±
δ (x, y)) = R±

δ (x, y)
}
.

The following lemma can be proved easily.

Lemma 6.10. We have

AutQR±
δ (x, y) = G128 = 〈δx, δy, ιx, ιy, τ 〉.

Let g(X) be the monic separable polynomial of degree 16 whose roots are ele-
ments of R±

δ (x, y). Then as for f(X) one can express g(X) as

g(X) =
∏

ξ∈R±
δ (x,y)

(
X − ξ

)

= X16 + t1X
14 + t2X

12 + t3X
10 + t4X

8 + t3X
6 + t2X

4 + t1X
2 + 1,
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and one sees that the coefficients satisfy the equalities

22t2 + 16t3 + 7t4 − 2002 = 0, 11t1 + 3t3 + 2t4 − 396 = 0.

It follows that g(X) is expressed as

F128(h1, h2; X) = X16 + (h1 − h2)(X14 + X2) + 2(h1 + h2 + 14)(X12 + X4)

− (h1 + 15h2)(X10 + X6) − 2(2h1 − 14h2 − 99)X8 + 1

with ⎧⎪⎪⎨
⎪⎪⎩

h1 =
(x8 + 14x4 + 1)(y8 + 14y4 + 1)

4x2y2(x2 − 1)2(y2 − 1)2
,

h2 =
(x2 + 1)4(y2 + 1)4

4x2y2(x2 − 1)2(y2 − 1)2
− 4.

This implies the following.

Proposition 6.11. We have Q(x, y)G128 = Q(h1, h2), and F128(h1, h2; X) ∈
Q(h1, h2)[X] is a G128-polynomial over Q(h1, h2).

We note that G128 has the following subgroup of index 2 which contains G32:

G64 := 〈α, βD, βQ, βM , τ 〉.
We see that the group G64 acts on Q(x, y)G32 = Q(s1, s2) as (s1, s2) 
→ (−s1, s2),
where s1 and s2 are defined in (22). Thus if we put

(r1, r2) := (s2
1, s2),

then we have Q(x, y)G64 = Q(r1, r2). Also we can check the equalities

h1 =
12r1 + r2

2

4
, h2 =

16r1 − 8r2 + r2
2

4
.

Hence we have the following proposition:

Proposition 6.12. We have Q(x, y)G64 = Q(r1, r2), and the polynomial

F64(r1,r2; X) := F128

(
12r1 + r2

2

4
,
16r1 − 8r2 + r2

2

4
; X

)
= X16 − (r1 − 2r2)(X14 + X2) + (14r1 − 4r2 + r2

2 + 28)(X12 + X4)

− (63r1 − 30r2 + 4r2
2)(X

10 + X6) + 2(50r1 − 28r2 + 3r2
2 + 99)X8 + 1

is a G64-polynomial over Q(r1, r2). Also we have the equality

F64(s2
1, s2; X2) = F32(s1, s2; X)F32(s1, s2;−X).

It is worth mentioning that F128(h1, h2; X), F64(r1, r2; X), F32(s1, s2; X) and
f

(i)
16 (u; X) (i = 1, 2, 3) are monic polynomials with constant term one, all other

coefficients being simple integral polynomials in their parameters.
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