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RATIONALITY PROBLEM OF THREE-DIMENSIONAL PURELY
MONOMIAL GROUP ACTIONS: THE LAST CASE

AKINARI HOSHI AND YŪICHI RIKUNA

Abstract. A k-automorphism σ of the rational function field k(x1, . . . , xn) is
called purely monomial if σ sends every variable xi to a monic Laurent mono-
mial in the variables x1, . . . , xn. Let G be a finite subgroup of purely monomial
k-automorphisms of k(x1, . . . , xn). The rationality problem of the G-action is

the problem of whether the G-fixed field k(x1, . . . , xn)G is k-rational, i.e.,
purely transcendental over k, or not. In 1994, M. Hajja and M. Kang gave
a positive answer for the rationality problem of the three-dimensional purely
monomial group actions except one case. We show that the remaining case is
also affirmative.

1. Introduction

Let K be a field and L a finite Galois extension of k. Let Π be the Galois
group of L/K and L a Π-module with a Z-free basis {l1, . . . , ln}. Then an integral
representation ρ : Π −→ GLn(Z) is defined by σ �−→ (aij) with

(1.1) lj
σ =

n∑
i=1

aij li (1 ≤ j ≤ n).

We now assume that Π acts on L(x1, . . . , xn), the rational function field over L
with n variables x1, . . . , xn, from the right by the following manner:

(1) Π acts on L as the Galois group,
(2) xj

σ =
∏n

i=1 xi
aij with ρ(σ) = (aij) for 1 ≤ j ≤ n.

We know that there is a duality between the category of all Π-modules and the cat-
egory of all algebraic L/K-tori, algebraic tori over K which split over L. Then the
fixed subfield L(x1, . . . , xn)Π of L(x1, . . . , xn) can be identified with the function
field of the algebraic L/K-torus T corresponding to the Π-module L by the duality
above. We say that the algebraic L/K-torus T is rational when the Π-fixed field
L(x1, . . . , xn)Π is K-rational. One-dimensional algebraic tori are trivially rational.
Voskresenskĭı [17, 18] showed that all two-dimensional algebraic tori are rational.
The birational classification of three-dimensional algebraic tori was given by Kun-
yavskĭı [8]. We note that there are many irrational algebraic tori of dimension ≥ 3
(cf. [19]).

The rationality problem of a purely monomial group action is defined as a re-
stricted version of “rationality questions” mentioned above. Let k be a field and
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k(x1, . . . , xn) the function field over k with n variables x1, . . . , xn. Let G be a finite
subgroup of GLn(Z) which acts from the right on k(x1, . . . , xn) as follows:

(1) G acts trivially on k,
(2) xj

A =
∏n

i=1 xi
aij with A = (aij) ∈ G for 1 ≤ j ≤ n.

We call the G-action purely monomial. The rationality problem of the purely
monomial G-action is the problem of whether the fixed subfield k(x1, . . . , xn)G

of k(x1, . . . , xn) is k-rational or not.
The fixed field of a purely monomial group action generally cannot be identi-

fied with a function field of any algebraic torus. But the rationality problem of
purely monomial group actions has a special meaning in constructive aspects of
inverse Galois theory. Let Γ be a finite group acting on the rational function field
k(xg | g ∈ Γ) via the regular representation. The k-rationality problem of this
Γ-action is called Noether’s problem of Γ over k. If this problem has a positive
answer, we can construct a regular Galois Γ-extension over k(xg | g ∈ Γ)Γ. This is
known as Noether’s strategy for constructing a generic Galois Γ-extension over k.
When Γ is abelian, Lenstra [9] gave a necessary and sufficient condition that the
Noether’s problem of Γ over k has a positive answer. We, however, know very little
for non-abelian cases. The rationality problem of purely monomial group actions
is crucial in studying Noether’s problem of non-abelian groups. The reader may
consult [5, 6, 12, 13, 14, 15] about Noether’s problem.

The rationality problem of one-dimensional purely monomial group actions is
trivially affirmative. For two-dimensional cases, Hajja [2] gave the following result:

Theorem 1.1 (Hajja). Let k be a field and G be a finite subgroup of GL2(Z).
Then k(x1, x2)

G is k-rational.

The three-dimensional cases are much more difficult than the two-dimensional
ones. Tahara [16] proved that GL3(Z) has 73 conjugacy classes of finite subgroups.
Hajja-Kang [3, 4] obtained affirmative answers for 72 classes of them. Let G0 be
the finite subgroup of GL3(Z) generated by

(1.2)

⎛
⎝ 1 1 0
−2 −1 −1
0 0 1

⎞
⎠ and

⎛
⎝−1 −1 −1

0 0 1
0 1 0

⎞
⎠ .

Theorem 1.2 (Hajja-Kang). Let k be a field and G be a finite subgroup of GL3(Z).
Then k(x1, x2, x3)

G is k-rational if G is not conjugate to G0 in GL3(Z).

A three-dimensional algebraic torus corresponding to G0 (or its congugate in
GL3(Z)) is not rational. For this reason, it might have been considerd that the
remaining case is negative. But it is also a fact that there are irrational three-
dimensional algebraic tori corresponding to purely monomial group actions whose
fixed fields are k-rational. In this paper, we show that the remaining case is also
affirmative.

Theorem 1.3 (Main result). For an arbitrary field k, the fixed field k(x1, x2, x3)
G0

is k-rational. Consequently, the rationality problem of the three-dimensional purely
monomial group actions has a positive answer.

Finally, we note that this result can also be expressed from a viewpoint of multi-
plicative invariant theory. The lattice which is treated in the main result is isomor-
phic to the signed root lattice Z

− ⊗Z A3. The rationality problem for this lattice
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is introduced as an interesting open problem in [10, Problem 14]. Let Sn be the
symmetric group on n letters {1, . . . , n}. The group Sn acts multiplicatively on Z

via the sign homomorphism. We denote the non-trivial Sn-lattice with this action
by Z

−, and we regard Z as the trivial lattice. For n ≥ 2, Sn permutes a Z-basis
of the lattice Z[Sn/Sn−1]. The kernel An−1 of the augmentation map of the per-
mutation Sn-lattice Z[Sn/Sn−1] also has a Sn-lattice structure. Thus we obtain
a signed root lattice Z

− ⊗Z An−1. The k-rationality problem of k(Z− ⊗Z A3)S4 is
equivalent to Hajja-Kang’s “the exceptional case” treated as W10(198) in [4].

Corollary 1.4. For an arbitrary field k, the S4-invariant field k(Z− ⊗Z A3)S4 is
k-rational.

2. Strategy

Our purpose is to show k(x1, x2, x3)
G0 , where G0 = 〈A0, B0〉 with

A0 :=

⎛
⎝ 1 1 0
−2 −1 −1
0 0 1

⎞
⎠ , B0 :=

⎛
⎝−1 −1 −1

0 0 1
0 1 0

⎞
⎠ ,(2.1)

is rational over an arbitrary field k. From a relation A0
4 = B0

2 = (A0B0)
3 = I3,

where I3 is the identity matrix, G0 is isomorphic to the symmetric group S4. Here
we put

A1 := B0A0
2 =

⎛
⎝1 1 0

0 0 1
0 −1 0

⎞
⎠ , B1 := A0B0A0

2 =

⎛
⎝ 1 1 1
−2 −1 −1
0 −1 0

⎞
⎠ ;(2.2)

then G0 is also generated by A1 and B1. To simplify our calculations, we take
G :=

〈
P−1A1P, P−1B1P

〉
where

(2.3) P :=

⎛
⎝−1 −1 −1

0 1 0
1 0 0

⎞
⎠ ∈ GL3(Z).

Because G0 and G are conjugate in GL3(Z), it is enough to show the k-rationality
of the G-action to prove Theorem 1.3.

Denote P−1A1P and P−1B1P by A and B respectively:

A :=

⎛
⎝0 −1 0

1 0 0
0 1 1

⎞
⎠ , B :=

⎛
⎝ 0 −1 0

1 1 2
−1 0 −1

⎞
⎠ .(2.4)

They satisfy A4 = B3 = (B−1A2B)2 = (AB)2 = I3. Hence G has the following
normal series:

1 �
〈
A2

〉
�

〈
A2, B−1A2B

〉
� 〈A, B〉 = G.(2.5)

We first choose appropriate
〈
A2

〉
-invariant functions s1, s2, s3 which generate the〈

A2
〉
-fixed field k(x1, x2, x3)〈A

2〉 over k. To do this, we use the following lemma
concerning two-dimensional weighted diagonal involutions which was obtained by
Hajja-Kang [4]:
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Lemma 2.1 (Hajja-Kang). Let k be a field and σ ∈ Autkk(x1, x2) be an involution
defined by (x1, x2) �−→ (m1/x1, m2/x2) with m1, m2 ∈ k×. Then the fixed field
k(x1, x2)

〈σ〉 is

(2.6) k

(
x1

2x2
2 − m1m2

x1(x2
2 − m2)

,
x2(x1

2 − m1)
x1(x2

2 − m2)

)
.

Since
〈
A2

〉
has index two in

〈
A2, B−1A2B

〉
, we can find

〈
A2, B−1A2B

〉
-invariant

functions t1, t2, t3 which generate the
〈
A2, B−1A2B

〉
-fixed field. Finally, we show

that the purely monomial 〈A, B〉-action on k(t1, t2, t3) is k-rational. We can find
new generators u1, u2, u3 of k(t1, t2, t3) to apply the following lemma given by
Ahmad-Hajja-Kang [1, Theorem. 3.1].

Lemma 2.2 (Ahmad-Hajja-Kang). Let L be an arbitrary field and L(x) be the
rational function field with one variable over L. Let H be a group of automorphisms
acting on L(x). Suppose that, for any σ ∈ H, σ(L) ⊂ L, xσ = aσx + bσ for some
aσ ∈ L \ {0} and bσ ∈ L. Then L(x) = LH or LH(f(x)) for some polynomial
f(x) ∈ L[x] with positive degree. In particular, if LH is rational over some subfield
M , so is L(x)H over M .

The final step is easier when the characteristic of k is two.

3. Proof of Theorem 1.3

The action of G = 〈A, B〉 on k(x1, x2, x3) is described by

(3.1)

{
A : (x1, x2, x3) �−→ (x2, x3/x1, x3) ,

B : (x1, x2, x3) �−→
(
x2/x3, x2/x1, x2

2/x3

)
.

3.1. The case when the characteristic of k is not two. The action of A2 on
k(x1, x2, x3) is

(x1, x2, x3) �−→ (x3/x1, x3/x2, x3) .(3.2)

From Lemma 2.1, the fixed field k(x1, x2, x3)
〈A2〉 is k(s1

′, s2
′, s3

′), where

s1
′ :=

x1
2x2

2 − x3
2

x1(x2
2 − x3)

, s2
′ :=

x2(x1
2 − x3)

x1(x2
2 − x3)

, s3
′ := x3.(3.3)

Then B−1A2B acts on k(s1
′, s2

′, s3
′) by

(s1
′, s2

′, s3
′) �−→

(
(1 − s2

′)(1 + s2
′)

s1
′ ,−s2

′,
1

s3
′

)
.(3.4)

To linearize this action, we take the following birational transformation over k:

s1 :=
s1

′ + (1 + s2
′)

s1
′ − (1 + s2

′)
, s2 :=

s1
′ + s3

′(1 + s2
′)

s1
′ − s3

′(1 + s2
′)

, s3 := s2
′.(3.5)

Then we have k(s1
′, s2

′, s3
′) = k(s1, s2, s3) and

B−1A2B : (s1, s2, s3) �−→ (−s1,−s2,−s3) .(3.6)

We have k(s1, s2, s3)〈B
−1A2B〉 = k(t1′, t2′, t3′) where

t1
′ := s1s3, t2

′ := s2s3, t3
′ := s3

2.(3.7)
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The action of B on k(t1′, t2′, t3′) is described as

(3.8)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t1
′ �−→ − t1

′(t1′ − t2
′)

(t1′ + t2
′)(t1′ + t3

′)
, t2

′ �−→ t2
′(t1′ − t2

′)
(t1′ + t2

′)(t2′ + t3
′)

,

t3
′ �−→ (t1′ − t2

′)2

(t1′ + t2
′)((t1′ + t2

′)(1 + t3
′) + 2t1

′t2
′ + 2t3

′)
.

We observe that (3.8) has a symmetry with respect to t1
′ and t2

′. By using this
property, we put

t1 :=
t1

′ − t2
′

t1
′ + t2

′ , t2 :=
2t1

′t2
′ + (t1′ + t2

′)t3′

(t1′ − t2
′)t3′

, t3 :=
t1

′ + t2
′ + 2t1

′t2
′

t1
′ − t2

′(3.9)

to linearize the 〈A, B〉-action on k(t1′, t2′, t3′). This is a birational transformation,
because we have

t1
′ =

1 − t1t3
1 − t1t2

, t2
′ =

1 − t1t3
−1 + t1

, t3
′ =

−1 + t1t3
1 + t1

.(3.10)

Hence k(t1, t2, t3) = k(t′1, t′2, t′3), and the 〈A, B〉-action is described as follows:

(3.11)

{
A : (t1, t2, t3) �−→ (−t1,−t3,−t2) ,

B : (t1, t2, t3) �−→ (t2, t3, t1) .

We finally put

u1 := t2/t1, u2 := t3/t1, u3 := t1,(3.12)

and hence k(t1, t2, t3) = k(u1, u2, u3),

(3.13)

{
A : (u1, u2, u3) �−→ (u2, u1,−u3) ,

B : (u1, u2, u3) �−→ (u2/u1, 1/u1, u1u3) .

For L := k(u1, u2), we can easily check the following properties:
(1) σ(L) ⊂ L for every σ ∈ 〈A, B〉.
(2) For any σ ∈ 〈A, B〉, u3

σ has degree one in L[u3].
(3) L(u3)

〈A,B〉 
= L〈A,B〉.

Therefore we can apply Lemma 2.2 to L(u3)
〈A,B〉. This follows that the G-fixed

field k(x1, x2, x3)
G is rational over k.

3.2. The case when the characteristic of k is two. We recall (3.3); then
k(x1, x2, x3)〈A

2〉 is generated by s1
′, s2

′, s3
′ over k. Put

s1 :=
1 + s2

′

s1
′ , s2 :=

(1 + s2
′)s3

′

s1
′ , s3 := s2

′(3.14)

so that k(s1
′, s2

′, s3
′) = k(s1, s2, s3) and

B−1A2B : (s1, s2, s3) �−→ (1/s1, 1/s2, s3) .(3.15)

Applying Lemma 2.1 to k(s1, s2, s3), we have k(s1, s2, s3)〈B
−1A2B〉 = k(t1′, t2′, t3′)

where

t1
′ :=

s1
2s2

2 − 1
s1(s2

2 − 1)
, t2

′ :=
s2(s1

2 − 1)
s1(s2

2 − 1)
, t3

′ := s3.(3.16)
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Then we obtain

(3.17)

⎧⎪⎨
⎪⎩

A : (t1′, t2′, t3′) �−→ (t1′/t2
′, 1/t2

′, 1/t3
′) ,

B : (t1′, t2′, t3′) �−→
(

(1 + t2
′2)t3′

(1 + t2
′) + t1

′(1 + t3
′)

, t2
′,

1 + t2
′

t1
′(1 + t3

′)

)
.

We here take

t1 :=
1 + t2

′

t1
′(1 + t3

′)
, t2 :=

t1
′(1 + t3

′)
t3

′(1 + t2
′)

, t3 := t2
′(3.18)

so that the 〈A, B〉-action is purely monomial. Then we can check k(t1′, t2′, t3′) =
k(t1, t2, t3) and that 〈A, B〉 acts on k(t1, t2, t3) by

(3.19)

{
A : (t1, t2, t3) �−→ (1/t2, 1/t1, 1/t3) ,

B : (t1, t2, t3) �−→ (t2, 1/t1t2, t3) .

This is a purely monomial S3-action. Theorem 1.2 shows that k(t1, t2, t3)
〈A,B〉 is

k-rational. This completes the proof of Theorem 1.3. �

Remark 3.1. It is possible to compute explicit generators of k(x1, x2, x3)
G over k

with any characteristic by continuing the method above. To do this, one can use
the explicit positive result about the Noether’s problem of the cyclic group of order
three in Kuniyoshi [7] and Masuda [11]. We omit displaying them because of their
complicated expressions.
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