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RATIONAL EXTRAPOLATION FOR THE PAGERANK VECTOR

C. BREZINSKI AND M. REDIVO-ZAGLIA

Abstract. An important problem in web search is to determine the impor-
tance of each page. From the mathematical point of view, this problem con-
sists in finding the nonnegative left eigenvector of a matrix corresponding to its
dominant eigenvalue 1. Since this matrix is neither stochastic nor irreducible,
the power method has convergence problems. So, the matrix is replaced by a
convex combination, depending on a parameter c, with a rank one matrix. Its
left principal eigenvector now depends on c, and it is the PageRank vector we
are looking for. However, when c is close to 1, the problem is ill-conditioned,
and the power method converges slowly. So, the idea developed in this paper
consists in computing the PageRank vector for several values of c, and then

to extrapolate them, by a conveniently chosen rational function, at a point
near 1. The choice of this extrapolating function is based on the mathematical
expression of the PageRank vector as a function of c. Numerical experiments
end the paper.

1. The problem

The mathematical problem behind web search is the computation of the nonneg-
ative left eigenvector of a p× p matrix P corresponding to its dominant eigenvalue
1, where p is the number of pages in Google (8.06 billion at the end of March
2005). Since P is not stochastic (some rows of P may contain only zeros due to the
so–called dangling nodes), it is replaced by the matrix

P̃ = P + dwT

with w ∈ R
p a probability vector, that is, such that w ≥ 0 and (w, e) = 1 with

e = (1, . . . , 1)T , and d = (di) ∈ R
p the vector with di = 1 if deg(i) = 0, and 0

otherwise, where deg(i) is the outdegree of the page i, that is, the number of pages
it points to.

Since the matrix P̃ is not irreducible, it is replaced by the matrix

Pc = cP̃ + (1 − c)E,

where c is a parameter between 0 and 1, and E = evT with e = (1, . . . , 1)T ∈ R
p

and v is a probability vector. Such a modification of the matrix corresponds to
adding to all pages a new set of outgoing transitions with small probabilities. The
probability distribution given by the vector v can differ from a uniformly distributed
vector, and the resultant PageRank can be biased to give preference to certain kinds
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of pages. For that reason, vT is called the personalization vector. The matrix Pc

is stochastic and irreducible, and Pce = e.
The unique nonnegative dominant left eigenvector of Pc is denoted rc. Thus,

rc = PT
c rc. This vector can be computed by the power method, which consists of

the iterations
r(n+1)

c = PT
c r(n)

c , n = 0, 1, . . .

with r(0)
c = v. These iterations converge to rc as cn, and originally Google chooses

c = 0.85, which insures a good rate of convergence. Anyway, since the computation
of the PageRank vector can take several days, various methods for their acceleration
have been proposed [12, 5].

The vector r̃ = limc→1 rc is uniquely determined as the limit, when c tends to 1,
of the family of vectors rc. However, it is just one of the infinitely many solutions
of PT r = r, r ≥ 0, (r, e) = 1, which form a nontrivial convex set. Notice that
the conditioning of the matrix Pc grows as (1 − c)−1, but that the function rc is
analytic in a small neighbourhood of 1 in the complex plane [10]. For a detailed
analysis of the sensitivity of the vector rc, see [21]. We recommend [15] for detailed
explanations about the origin, the mathematical properties, and the treatment of
the PageRank problem.

An idea for obtaining approximations of limc→1 rc is to compute the vector rc

for different values of c away from 1, to interpolate them by some vector function,
and finally to extrapolate this function at the point c = 1, or at any other point
close to 1. Of course, in order to obtain good results, the interpolating function
has to mimic as closely as possible the exact behavior of rc with respect to c. This
behavior was analyzed in [10], where the following results are proved (see also [20]).

Theorem 1.1. Let e,x2, . . . ,xp be the right eigenvectors of the matrix P̃ , and
y,y2, . . . ,yp its left eigenvectors corresponding to the eigenvalues 1, λ̃2, . . . , λ̃p with
1 ≥ |λ̃2| ≥ · · · ≥ |λ̃p|.

If P̃ is diagonalizable, then

(1.1) rc = y + (1 − c)
p∑

i=2

αi

1 − cλ̃i

yi,

with αi = vTxi, where y is one of the PageRank vectors (i.e. corresponding to
c = 1).

In the general case,

(1.2) rc = y +
p∑

i=2

wi(c)yi

with

w2(c) = (1 − c)α2/(1 − cλ̃2),

wi(c) = [(1 − c)αi + cβiwi−1(c)]/(1 − cλ̃i), i = 3, . . . , p,

and βi equal to 0 or 1.

Furthermore, if the eigenvalue 1 has multiplicity m (1 has to be semisimple),
then βi = 0, i.e. wi(c) = αi for i = 2, . . . , m, and therefore

(1.3) rc = r̃ +
p∑

i=m+1

wi(c)yi



RATIONAL EXTRAPOLATION FOR THE PAGERANK VECTOR 1587

where

r̃ = y +
m∑

i=2

αiyi = Nv,

with

N = [y,y2, . . . ,ym] [e,x2, . . . ,xm]T

a nonnegative projector, i.e. N = N2 with nonnegative entries.
Notice that formula (1.3) is well defined when c tends to 1, and indeed rc can

be extended in an analytic way at this point as explained above. However the
vector r̃ at c = 1 coincides with y only if the web is made by a unique irreducible
component (which is not the case). In the general case, the null space of I − P̃ has
dimension m � 1, and r̃ ≥ 0 is a linear combination of a basis of this null space;
its characterization can also be given in terms of a Cesaro operator [21].

According to (1.1) or (1.2), rc is a vector rational function with a vector numer-
ator and a scalar denominator of degree p − 1 in c. We also see that rc tends to r̃
when c tends to 1.

Extrapolation methods following this analysis were given in [7]. As explained
above, the idea is to compute several vectors rc for various values of c, and to
interpolate them by a vector rational function of the same form as (1.1) or (1.2)
but with a much smaller degree k ≤ p−1, and then to compute this rational function
at a point outside the interval containing the values of c used before (c = 0.85, or
c = 1, or any other value of c close to 1).

Although, in our extrapolation procedures, the vector rc has to be computed for
different values of the parameter c, it is very important to notice that the power
method does not need to be restarted for each value of c. The total number of
iterations needed by our procedures is the one required for the highest value of c,
and no additional iteration is needed. Indeed, as observed in [2] (see also Properties
8 and 9 of [5]), it holds

(Ã − I)Ãnv =
1

cn+1
(r(n+1)

c − r(n)
c ), n = 0, 1, . . .

where Ã = P̃T . This relation shows that it is possible to apply the power method
simultaneously (that is, in the same loop of the program) for several values of c

with only a small additional cost. Indeed, since (Ã − I)Ãnv is independent of c,
the vectors r(n)

c̃ corresponding to c̃ can be directly obtained by

r(0)
c̃ = v,

r(n+1)
c̃ = r(n)

c̃ +
c̃n+1

cn+1
(r(n+1)

c − r(n)
c ), n = 0, 1, . . . .

We will now discuss such extrapolation procedures in more detail, give new ones,
and report some numerical experiments.

2. Vector rational extrapolation

Let us describe in more detail an algorithm for vector rational extrapolation
which was first given in [7] and discuss some of its properties.
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We begin by interpolating the vectors rc ∈ R
p corresponding to several values

of the parameter c by the vector rational function

(2.1) p(c) =
Pk(c)
Qk(c)

,

where Pk and Qk are polynomials of degree k ≤ p − 1. The coefficients of Pk

are vectors, while those of Qk are scalars. Then, an approximate value of rc, for
an arbitrary value of c (in general outside the interval containing the interpolation
points, thus the name of the procedure) will be given by p(c).

Following an idea introduced in [6], the coefficients of Pk and Qk are obtained
by solving the interpolation problem

(2.2) Qk(ci)pi = Pk(ci), i = 0, . . . , k,

with pi = rci
, and the ci’s distinct points in ]0, 1[.

The polynomials Pk and Qk are given by the Lagrange interpolation formula

Pk(c) =
k∑

i=0

Li(c)Pk(ci),

Qk(c) =
k∑

i=0

Li(c)Qk(ci)(2.3)

with

Li(c) =
k∏

j=0
j �=i

c − cj

ci − cj
, i = 0, . . . , k.

Thus, from (2.2),

(2.4) Pk(c) =
k∑

i=0

Li(c)Qk(ci)pi.

Let us now show how to compute Qk(c0), . . . , Qk(ck). We assume that, for
c∗ �= ci, i = 0, . . . , k, the vector rc∗ is known. Following (2.1) and (2.4), we will
approximate it by

(2.5) p(c∗) =
k∑

i=0

Li(c∗)ai(c∗)pi,

with ai(c∗) = Qk(ci)/Qk(c∗).
Let s0, . . . , sk be k + 1 linearly independent vectors. After taking their scalar

products with the vector p(c∗), given by (2.5), and with the vector rc∗ , we will look
for a0(c∗), . . . , ak(c∗) solutions of the system of k + 1 linear equations

(2.6)
k∑

i=0

(pi, sj)Li(c∗)ai(c∗) = (rc∗ , sj), j = 0, . . . , k.

Instead of considering (2.6) as a linear system in the unknowns a0(c∗), . . . , ak(c∗),
we can consider it as a system in the unknowns ui(c∗) = Li(c∗)ai(c∗), i = 0, . . . , k.
Since the Li(c∗)’s are known quantities, the ai(c∗) will be immediately deduced.
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Let M = [p0, . . . ,pk], S = [s0, . . . , sk], a(c∗) = (a0(c∗), . . . , ak(c∗))T , and

L(c) =

⎛
⎜⎝

L0(c)
. . .

Lk(c)

⎞
⎟⎠ .

By setting u(c∗) = (L0(c∗)a0(c∗), . . . , Lk(c∗)ak(c∗))T = L(c∗)a(c∗), (2.6) can be
written as

(2.7) ST Mu(c∗) = ST rc∗ ,

and it follows that

(2.8) p(c∗) = Mu(c∗) = M(ST M)−1ST rc∗ ,

which shows that p(c∗) is the oblique projection of rc∗ on span(p0, . . . ,pk) along
[span(s0, . . . , sk)]⊥ that is orthogonal to span(s0, . . . , sk). This vector can be rep-
resented as a ratio of determinants; see [8, 4].

For the particular choice sj = pj , j = 0, . . . , k, the system (2.7) has a sym-
metric positive definite Gram matrix, and p(c∗) =

∑k
i=0 Li(c∗)ai(c∗)pi is the best

approximation of rc∗ in span(p0, . . . ,pk). In that case,

(2.9) p(c∗) = M(MT M)−1MT rc∗

is the orthogonal projection of rc∗ on span(p0, . . . ,pk). The matrix (MT M)−1MT

is the pseudo–inverse M† of M , and it satisfies M†M = I.

Remark 2.1. Let us remark that k′+1 linearly independent vectors sj could be used
with k′ > k, in which case the system (2.6) has to be solved in the least squares
sense.

Once the ai(c∗)’s have been obtained, the Qk(ci)’s could be computed. For that,
it is necessary to know the value of Qk(c∗). Since a rational function is determined
apart from a multiplying factor, it does not restrict the generality to assume that
the polynomial Qk is monic. So, from (2.3), we see that its dominant coefficient
satisfies the relation

1 =
k∑

i=0

Qk(ci)∏k
j=0
j �=i

(ci − cj)
= Qk(c∗)

k∑
i=0

ai(c∗)∏k
j=0
j �=i

(ci − cj)
,

which gives Qk(c∗). Then, Qk(ci) = ai(c∗)Qk(c∗) for i = 0, . . . , k. But, as we will
see now, it is even unnecessary to know the Qk(ci)’s and Qk(c∗).

Indeed, for an arbitrary value of c, we obtain an approximation of rc as

p(c) =
Pk(c)
Qk(c)

=
∑k

i=0 Li(c)Qk(ci)pi∑k
i=0 Li(c)Qk(ci)

.

Dividing the numerator and the denominator by Qk(c∗) finally leads to the extrap-
olation formula

(2.10) p(c) =
∑k

i=0 Li(c)ai(c∗)pi∑k
i=0 Li(c)ai(c∗)

.
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When c = c∗, it follows from (2.3) that the denominator in this formula is equal
to 1. Indeed, for c = c∗, (2.3) gives

1 =
1

Qk(c∗)

k∑
i=0

Li(c∗)Qk(ci) =
k∑

i=0

Li(c∗)ai(c∗).

From Formula (2.10), it is easy to see that p(cj) = pj for j = 0, . . . , k, and that,
in general, p(c∗) �= rc∗ . Moreover, since for all i, (pi, e) = 1, it follows that, for all
c, (p(c), e) = 1.

When k = p − 1, the matrices S and M are square and nonsingular and (2.8)
shows that, in this case, p(c∗) = rc∗ . This vector condition corresponds to p scalar
ones, as well as to those of the system (2.6). Moreover, the p vector interpolation
conditions (2.2) correspond to p2 scalar ones. Thus, in total, we obtain p2 + p
conditions. On the other side, when k = p − 1, we have p unknowns vectors of
dimension p in the polynomial Pk, and p unknown scalar coefficients in Qk. Thus,
by a uniqueness argument, it follows that, for all c, p(c) = rc.

A more compact formula can be obtained as follows. Since u(c∗) = L(c∗)a(c∗),
(2.7) becomes

ST ML(c∗)a(c∗) = ST rc∗ ,

and (2.10) can be written as

(2.11) p(c) =
ML(c)a(c∗)

(L(c)a(c∗), e′)
,

with a(c∗) = [L(c∗)]−1u(c∗) and e′ = (1, . . . , 1)T ∈ R
k+1.

We see that the computation of p(c) by our extrapolation method needs the
knowledge of rc for k + 2 distinct values of c, namely c0, . . . , ck and c∗.

The complete vector rational extrapolation procedure is as follows.

(1) Choose k + 2 distinct values of c: c0, . . . , ck and c∗.
(2) Compute pi = rci

for i = 0, . . . , k, and rc∗ .
(3) Choose k + 1 linearly independent vectors s0, . . . , sk, or take si = pi for

i = 0, . . . , k.
(4) Solve the system (2.6), or the system (2.7), and compute the unknowns

a0(c∗), . . . , ak(c∗).
(5) Compute an approximation of rc by (2.10) or (2.11).

It must be noticed that, since (pi, e) = 1, then, ∀c, (p(c), e) = 1. If Li(c)ai(c∗) ≥
0 for i = 0, . . . , k, then the vector p(c) will have a unit l1-norm since the components
of the vectors pi will be nonnegative. It is an open question to check if this condition
is satisfied or not.

3. A simpler vector rational extrapolation

Let us consider a vector rational extrapolation method where the extrapolating
function has the same form as (1.1) or (1.2), but with only the first two terms
(which corresponds to taking p = 2 in these formulae). Therefore, in both cases,
we will consider an extrapolation function of the form

(3.1) p(c) = ỹ + (1 − c)
1

1 − cλ
z,
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where ỹ is an approximation of r̃, z is an approximation of α2y2, and λ is an
approximation of λ̃2. These two unknown vectors and the unknown scalar will be
computed by an interpolation procedure needing only 3 values of c.

As above, let pi = rci
, and let the ci’s be distinct values in ]0, 1[. We consider

the interpolation condition

pi = ỹ +
1 − ci

1 − ciλ
z.

The difference pi − pj eliminates ỹ, and we have

pi − pj =
(cj − ci)(1 − λ)

(1 − ciλ)(1 − cjλ)
z.

We now need to compute the scalar λ and the vector z. Let q be a vector so that
the scalar products (pi − pj ,q) and (pk − pj ,q) are different from zero. We set

rijk =
(pi − pj ,q)
(pk − pj ,q)

=
cj − ci

cj − ck

1 − ckλ

1 − ciλ
,

which gives

(3.2) λ =
rijk(cj − ck) − (cj − ci)

cirijk(cj − ck) − ck(cj − ci)
.

Then z takes the form

(3.3) z =
(1 − ciλ)(1 − cjλ)
(cj − ci)(1 − λ)

(pi − pj).

Finally, y is given by

(3.4) y = p(1) = pi −
1 − ci

1 − ciλ
z.

Thus, from the expressions (3.2), (3.3), and (3.4), Formula (3.1) leads to the
rational vector extrapolation procedure (3.1), that is, p(c) � rc.

Since (pi, e) = 1, then (p(c), e) = 1.

4. A minimization procedure

Any scalar combination of different vectors pi = rci
can be considered as an

extrapolation procedure (indeed, compare with (2.10)). So, we will now build an
approximation p(c) of rc of the form

p(c) = (1 − α)p0 + αp1 = p0 + α(p1 − p0),

where the parameter α is chosen such that the Euclidean norm of the vector
PT

c p(c) − p(c) is minimum. Remark that, since PT
c rc = rc, this vector could

be interpreted as a kind of residual.
It holds

PT
c p(c) − p(c) = (PT

c p0 − p0) + α[PT
c (p1 − p0) − (p1 − p0)].

Thus

‖PT
c p(c) − p(c)‖2 = ‖PT

c p0 − p0‖ + 2α(PT
c (p1 − p0) − (p1 − p0), PT

c p0 − p0)

+α2‖PT
c (p1 − p0) − (p1 − p0)‖2,

and the α which minimizes ‖PT
c p(c) − p(c)‖ is

α = − (PT
c (p1 − p0) − (p1 − p0), PT

c p0 − p0)
‖PT

c (p1 − p0) − (p1 − p0)‖2
.
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Let us mention that the products PT
c pi are cheap and easy to compute [5, 12, 15],

and only two of them are required in this procedure.
Obviously this strategy could be extended to a more general form of minimization

where
p(c) = α0p0 + · · · + αkpk with α0 + · · · + αk = 1.

5. Numerical experiments

For conducting our numerical experiments, we construct several matrices P =
(pij) in a random way as follows. First we select a random integer pm (with a
uniform distribution) between 1 and p/10, where p is the dimension of P . Then,
we generate a random integer vector m of dimension p with components between 1
and pm. Each row i of the matrix P will contain, at most, m(i) nonzero elements.
Then, we randomly choose, for each row i, an integer vector of dimension m(i),
and we eliminate its identical components. The length of this vector will be the
outdegree of the page i, that is, deg(i), and its components will give the indices
j of the columns such that pij = 1/deg(i), all other elements being set to zero.
Let us mention that it is possible to set pii = 0 for avoiding self-hyperlinks, an
option we did not choose. Finally, among all rows, we randomly set to zero p/5 of
them, corresponding to the dangling nodes. Thus, by construction, such matrices P

(and the corresponding matrices P̃ and Pc) have the same mathematical properties
as those coming out from the web. Moreover, they present the advantages that
their dimension, their sparsity, and their number of dangling pages can be adjusted
according to the user choice.

A very important point to mention is that, in fact, we are not interested in the
exact values of the components of the real and extrapolated PageRank vectors,
but in their relative values, that is, in the rank of each of them compared with the
other components. But, as noticed in [16], the values assigned to pages can be quite
sensitive due to the stability of the PageRank algorithm. Then, the ranks could
also be quite volatile with respect to changes in the matrix; this is the notion of
rank-stability, first defined and studied in [3]. Moreover, stability of the PageRank
algorithm does not imply rank-stability, and a change in the outlink of a page of
small rank can completely change the whole ranking.

The computations were performed with a 1.73 GHz Pentium M processor, using
Matlab 7.x.

In the following tables, rows are numbered. Our methods will be denoted as
vrem for the vector rational extrapolation method of Section 2, svrem for the
simpler vector rational extrapolation method given in Section 3, and vmp for the
vector minimisation procedure of Section 4.

The first column of data gives the name of the extrapolation method, and the
number of vectors it needs. For vrem, this number is k + 2, and each row contains
the results obtained with the first k + 1 values in the list of the ci’s, and with the
same c∗. For svrem and vmp the number of vectors is always 3 and 2, respectively.

The second column corresponds to the ∞-norm of the difference between the
PageRank vector rc computed by the power method with a precision of 10−8, and
the vector p obtained by one of our procedures.

In the third column, we give the 1-norm of the same difference divided by
the dimension p of the problem. This quantity represents the mean value of
the absolute values of the error. We can also compute its standard deviation as
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σ =
[(
‖rc − p‖2

2 − pE2
)
/(p − 1)

]1/2, with E = ‖rc − p‖1/p. All our numerical
experiments show that the standard deviation is quite small, thus showing that
the errors are concentrated around their mean value E. Let us mention that the
improvement brought by our extrapolation procedures was also checked by using
the Kendall τ rank correlation coefficient [13].

The fourth column (nch) is the total number of changes in the ranking of the
components between the PageRank vector and the vector obtained by extrapola-
tion.

The fifth column (ich), after sorting rc and p by descending values, is the rank
where the first change occurs.

In column 6, dmax is the maximum displacement of a page (in absolute value),
and the rank where it occurs (before sorting) is given in column 7 (pos). A positive
value of dmax means that the pos-th component of rc went up in the list, and that
it went down if it is negative.

The last two columns show the ranks of the page corresponding to this maximum
change in the sorted PageRank vector (ixmax), and in the sorted extrapolated one
(iymax), respectively.

For instance, in the first row of Table 1, we test the vrem procedure with the
first 3 values of ci (0.1, 0.15 and 0.2), and c∗ = 0.5; we have a total of 4417 pages
for which the rank changes, but the first 17 (ich − 1) pages having the higher
rank are correctly detected; the maximum displacement dmax = −47 occurs for the
component pos = 4365 of the vector rc, and the corresponding page has the rank
ixmax = 1553 in the sorted vector rc, while it has the rank iymax = 1600 in the
sorted vector p(c). So, it went down by 47 positions.

The first 6 rows in all tables (except for Table 4) correspond to the vrem applied
by using an increasing number of vectors, starting from 4. In the second part of
the table, the first row (# 7) shows again the results obtained by the vrem with 4
vectors (as row #1) but using the last 3 values of ci (that is, c5, c6, c7, instead of
the first 3 values), and the same value of c∗. The row # 8 provides the results for
the svrem by using the same 3 ci’s, and q = p7 − p5. The vpm (row # 9) uses
only p5 and p7.

All results were conducted with w = v.
We begin by a matrix of dimension p = 5000 containing 942806 nonzero elements.

The parameter c was fixed to 0.85, and 8 iterations were needed by the power
method to achieve a precision of 10−8. This vector (denoted by rc below) is taken
as the PageRank vector. The highest and the smallest components of the PageRank
vector were 3.84636884 ·10−4 and 1.4882646 ·10−4, respectively, thus meaning that,
when p is very large, many components can differ only in the last digits. The
values of the ci used in the vector rational extrapolation method (denoted below
as vrem) of Section 2 were 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and c∗ = 0.5.
Only 5 iterations of the power method were needed to obtain the results with the
highest value of the parameter, that is, c∗.

Let us discuss how to judge the quality of these results. It seems that the two
most important parameters to consider are dmax and ich. The parameter dmax

indicates the size of the largest change in the ranking. The smaller dmax, the better
the ranking. Thus, a criterion of good quality is to have a small value of dmax. But
dmax can be large if ich is also large. The parameter ich indicates the location of the
first change in the ranking. So, a correct ranking has been obtained for the ich − 1
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Table 1. p = 5000, ci = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, c∗ =
0.5, c = 0.85

# Method ‖rc−p‖∞ ‖rc−p‖1/p nch ich dmax pos ixmax iymax

1 vrem 4 2.43e-6 2.57e-8 4417 18 −47 4365 1553 1600
2 vrem 5 5.13e-8 3.32e-9 1667 29 6 3223 2651 2645
3 vrem 6 6.03e-8 2.34e-9 1254 190 −4 2725 2358 2362
4 vrem 7 2.77e-8 1.24e-9 689 190 2 2216 890 888
5 vrem 8 3.04e-8 1.89e-9 1029 190 −4 2725 2358 2362
6 vrem 9 2.87e-8 1.74e-9 939 190 4 1378 2765 2761
7 vrem 4 6.86e-7 1.04e-8 3479 18 12 3384 2691 2679
8 svrem 3 1.17e-5 9.68e-8 4863 1 −234 4436 3529 3763
9 vmp 2 1.20e-5 7.88e-8 4865 1 −236 4436 3529 3765

first components of the vector obtained by extrapolation. It is not important to
have many changes (nch large) in the ranking if they are small, that is, if dmax is
small.

For example, in Table 1, it seems that the best results, according to the previous
criteria, have been obtained with vrem 7 (see the values marked by a grey back-
ground), which leads to nch = 689 changes, with a largest change in the ranking
of the pages of only dmax = 2. Thus, our extrapolation procedures only produce
small changes (1 or 2) in the ranking given by the power method.

Table 2. p = 5000, ci = 0.1, 0.15, 0.2, 0.5, 0.3, 0.35, 0.4, 0.45, c∗ =
0.25, c = 0.85

# Method ‖rc−p‖∞ ‖rc−p‖1/p nch ich dmax pos ixmax iymax

1 vrem 4 2.43e-6 2.57e-8 4420 18 −47 4365 1553 1600
2 vrem 5 4.31e-8 2.01e-9 1102 190 −4 2725 2358 2362
3 vrem 6 3.07e-8 1.86e-9 1010 190 −4 2725 2358 2362
4 vrem 7 2.50e-8 1.54e-9 827 190 4 1378 2765 2761
5 vrem 8 3.10e-8 1.90e-9 1033 190 −4 2725 2358 2362
6 vrem 9 9.59e-7 2.71e-8 4520 10 −57 158 2710 2767
7 vrem 4 3.53e-5 2.25e-6 4808 10 127 1460 2362 2235
8 svrem 3 1.17e-5 9.68e-8 4863 1 −234 4436 3529 3763
9 vmp 2 1.20e-5 7.88e-8 4865 1 −236 4436 3529 3765

In Table 2, we give the results obtained by using the same matrix and the same
values as in Table 1, but interchanging c3 and c∗. We remark that rows # 1 are
the same in both tables. They use the same values for c0, c1 and c2, the only
difference being the value of c∗. We notice that the errors of the vrem decrease
when k increases, but that, for k + 2 = 9 (row # 6), rounding errors destroy this
improvement. The best results (with respect to dmax, ich, and nch) are obtained
with k+2 = 7 (row # 4) in both tables. But, in Table 2, if we look only at dmax and
ich (allowing a greater nch), vrem with only 5 vectors (row # 2) gives comparable
results.

Let us now take the ci’s closer to 0.85. With ci = 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
0.6, 0.65, and c∗ = 0.25, we obtain the results of Table 3. Comparing these results
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with those of the preceding tables shows that greater values of the ci lead to better
results for the three extrapolation methods, as expected. Again, the best results
are obtained with k + 2 = 7 (row # 4).

Table 3. p = 5000, ci = 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, c∗ =
0.25, c = 0.85

# Method ‖rc−p‖∞ ‖rc−p‖1/p nch ich dmax pos ixmax iymax

1 vrem 4 9.30e-7 1.31e-8 3788 18 −16 4139 2461 2477
2 vrem 5 2.01e-8 1.17e-9 635 207 3 1378 2765 2762
3 vrem 6 1.14e-8 6.92e-10 385 251 2 2742 936 934
4 vrem 7 2.65e-9 1.29e-10 66 272 −1 1073 272 273
5 vrem 8 3.16e-9 2.02e-10 114 272 −1 1073 272 273
6 vrem 9 2.07e-9 1.25e-10 66 272 −1 1073 272 273
7 vrem 4 3.52e-5 2.25e-6 4810 10 128 1460 2362 2234
8 svrem 3 4.02e-6 4.48e-8 4673 14 −101 4436 3529 3630
9 vmp 2 4.15e-6 4.07e-8 4683 14 −102 4436 3529 3631

Table 4. p = 5000, ci = 0.55, 0.6, 0.65, c∗ = 0.25, c = 0.99

# Method ‖rc−p‖∞ ‖rc−p‖1/p nch ich dmax pos ixmax iymax

7 vrem 4 3.52e-5 2.25e-6 4810 10 128 1460 2362 2234
8 svrem 3 3.08e-5 2.30e-6 4349 29 −40 4436 3529 3569
9 vmp 2 3.03e-5 2.27e-6 4359 29 −40 4436 3529 3569

Computing rc for c = 0.99 and extrapolating at that same point, we obtain,
with ci = 0.55, 0.6, 0.65 and c∗ = 0.25, the results given in Table 4 where only
the second part of the results is given. For c = 0.99, 13 iterations of the power
method are needed, while, for ci = 0.65 (our highest value) only 6 are required.
Of course, these results are less good than the preceding ones, not a surprise since
the conditioning of the problem behaves as (1 − c)−1. Here svrem and vmp give
comparable results with, obviously, the advantage that vmp needs only 2 vectors.
With c∗ = 0.5, the results are the same.

The computation of the dominant eigenvector of a stochastic matrix appears
in various situations (stochastic processes, Markov chains, data mining, informa-
tion retrieval, networks, etc.) where the dimensions of the problem could be much
smaller than in the case of web matrices; see, for example, [1, 18, 17, 19, 22] and [14]
where quite small matrices (around 10 or 20) are involved. In these applications,
the matrix could be reducible, thus leading to the same problem as with Google’s
matrix, and a kind of regularization by a parameter c followed by an extrapolation
procedure could be of interest. This is the reason why we now consider numerical
results obtained by our extrapolation methods for a matrix of dimension 1000 hav-
ing 18729 nonzero elements. With ci = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and
c∗ = 0.5, extrapolation at 0.85 gives the results of Table 5. The best results are
obtained with vrem 9. As in Table 2, if we accept a greater value for nch, then
the same |dmax| and ich are obtained with vrem 8. Moreover, since the maximum
displacement in the positions is 2 for both cases, the value of ixmax in row # 5
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Table 5. p = 1000, ci = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, c∗ =
0.5, c = 0.85

# Method ‖rc−p‖∞ ‖rc−p‖1/p nch ich dmax pos ixmax iymax

1 vrem 4 5.14e-5 1.91e-6 913 9 −51 868 348 399
2 vrem 5 8.29e-6 5.44e-7 603 12 9 915 398 389
3 vrem 6 1.39e-6 1.15e-7 175 13 4 233 486 482
4 vrem 7 1.23e-6 1.03e-7 152 62 4 233 486 482
5 vrem 8 5.38e-7 4.60e-8 81 127 −2 796 395 397
6 vrem 9 2.66e-7 2.35e-8 46 127 2 315 145 143
7 vrem 4 5.42e-6 4.46e-7 615 15 −7 978 467 474
8 svrem 3 1.17e-4 3.63e-6 969 8 101 117 425 324
9 vmp 2 1.35e-4 3.77e-6 966 8 101 117 425 324

Table 6. Stanford web: p = 281903, c = 0.85, c∗ = 0.5, ci =
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45

# Method ‖rc−p‖∞ ‖rc−p‖1/p nch ich dmax pos ixmax iymax

1 vrem 4 1.22e-3 6.26e-7 261573 4 −162408 275310 26841 189249
2 vrem 5 1.78e-3 1.40e-7 261445 4 −105526 178890 19635 125161
3 vrem 6 7.67e-4 1.02e-7 261208 4 −89744 78761 52409 142153
4 vrem 7 4.52e-4 7.50e-8 260291 4 −44139 50293 32553 76692
5 vrem 8 3.00e-4 5.25e-8 260629 4 −52413 247738 116455 168868
6 vrem 9 2.57e-4 6.93e-8 281652 11 −219944 199118 61958 281902
7 vrem 4 2.00e-3 6.74e-7 261353 4 −80743 129116 51569 132312
8 svrem 3 1.59e-3 8.74e-7 261573 1 −160026 178890 19635 179661
9 vmp 2 1.51e-3 9.27e-7 261574 1 −160620 178890 19635 180255

means that, with vrem 8, all components before the 395th are well ranked (with a
possible displacement of only 1 position), a result which is better than with vrem 9.

Finally, let us give the results obtained with the Stanford web matrix of dimen-
sion p = 281903 which contains 2312497 nonzero elements. On the diagonal of P ,
281903 elements are nonzero. The computations with ci = 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, and c∗ = 0.5 require at most 22 iterations of the power method,
while 91 are needed for c = 0.85. The results are given in Table 6.

Results obtained for the Stanford matrix with greater values of the ci and c∗ =
0.25 are given in Table 7.

The fact that we considered only matrices of a relatively small dimension in
our numerical experiments is also justified by the observation that the number of
dangling nodes may exceed the number of nondangling pages. The dangling nodes
could be excluded from the computation, thus reducing considerably the dimension
of the problem. This can be obtained by lumping all the dangling nodes into a
single node [9]. Moreover, this observation is interesting since the PageRanks of
dangling nodes strongly depend on the ranks of the nondangling ones, but not vice
versa [11, Thm. 4.1].
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Table 7. Stanford web: p = 281903, c = 0.85, c∗ = 0.25, ci =
0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65

# Method ‖rc−p‖∞ ‖rc−p‖1/p nch ich dmax pos ixmax iymax

1 vrem 4 1.05e-3 4.15e-7 261425 4 −104574 275310 26841 131415
2 vrem 5 5.26e-4 9.61e-8 261240 4 −54793 50293 32553 87346
3 vrem 6 4.02e-4 5.95e-8 260085 7 −37547 50293 32553 70100
4 vrem 7 9.55e-5 1.45e-8 258487 14 −23600 50293 32553 56153
5 vrem 8 3.32e-5 7.33e-9 257896 29 −20639 50293 32553 53192
6 vrem 9 1.03e-5 2.98e-9 254360 14 −13364 40458 38289 51653
7 vrem 4 7.72e-4 2.76e-7 260586 4 −37167 50293 32553 69720
8 svrem 3 1.59e-3 2.95e-7 261569 1 −79828 129116 51569 131397
9 vmp 2 1.01e-3 4.61e-7 261576 1 −81710 129116 51569 133279

As a conclusion, the best extrapolation procedure seems to be the vrem. But,
obviously, more numerical experiments have to be performed to fully understand
the role of each parameter, and a theoretical study of the extrapolation error has
to be conducted.
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