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UNCONDITIONAL STABILITY AND CONVERGENCE
OF FULLY DISCRETE SCHEMES FOR 2D VISCOUS

FLUIDS MODELS WITH MASS DIFFUSION

FRANCISCO GUILLÉN-GONZÁLEZ AND JUAN VICENTE GUTIÉRREZ-SANTACREU

Abstract. In this work we develop fully discrete (in time and space) numeri-
cal schemes for two-dimensional incompressible fluids with mass diffusion, also
so-called Kazhikhov-Smagulov models. We propose at most H1-conformed fi-

nite elements (only globally continuous functions) to approximate all unknowns
(velocity, pressure and density), although the limit density (solution of con-
tinuous problem) will have H2 regularity. A backward Euler in time scheme
is considered decoupling the computation of the density from the velocity and
pressure.

Unconditional stability of the schemes and convergence towards the (unique)
global in time weak solution of the models is proved. Since a discrete maximum
principle cannot be ensured, we must use a different interpolation inequality
to obtain the strong estimates for the discrete density, from the used one in
the continuous case. This inequality is a discrete version of the Gagliardo-
Nirenberg interpolation inequality in 2D domains. Moreover, the discrete den-
sity is truncated in some adequate terms of the velocity-pressure problem.

1. Introduction

1.1. The models. Let Ω ⊆ R
2 be a bounded domain with boundary Γ that is

regular enough, and [0, T ] (T > 0) the time interval of observation. We will use the
notation Q = Ω × (0, T ), Σ = Γ × (0, T ).

We are going to study two models, which can be deduced from the following
compressible Navier-Stokes system in Q:

(1)

{
(ρv)t + ∇ · (ρv ⊗ v) − µ∇ · (Ψ(ρ)∇v) − (µ + λ̃)∇(∇ · v) + ∇q = ρf ,

ρt + ∇ · (ρv) = 0,

where v : Q → R
2 is the (compressible) velocity field, q : Q → R is the pressure and

ρ : Q → R is the density of the fluid. Moreover, f : Q → R
2 is the external force,

µ and λ̃ are viscosity coefficients which are assumed to be constant and such that
µ > 0 and 3λ̃ + 2µ > 0 (hypothesis known as the Bulk viscosity) and Ψ : R → R+

is a given positive function.

Received by the editor August 24, 2006 and, in revised form, July 10, 2007.
2000 Mathematics Subject Classification. Primary 35Q35, 65M12, 65M60.
Key words and phrases. Kazhikhov-Smagulov models, finite elements, stability, convergence.
The first author was supported in part by the Spanish projects BFM2003–06446-C02-01 and

PHB2005-0042-PC.
The second author was supported by the Spanish projects BFM2003–06446-C02-01 and

PHB2005-0042-PC.

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

1495
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From now on, a ⊗ b denotes the tensorial product matrix of two vectors a =
(ai)2i=1, b = (bi)2i=1, with coefficients (a⊗ b)i,j = aibj . We use bold-face letters for
vectorial elements.

The first model which we will study was derived and analyzed by Kazhikhov and
Smagulov [12]. Assume that Ψ(ρ) = 1 and that the compressible velocity of the
fluid can be decomposed into a potential and an incompressible part (see [3, 4]):

(2) v = u − λ∇ log ρ with ∇ · u = 0.

Therefore, system (1) becomes:

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ρu)t + ∇ · ((ρu − λ∇ρ) ⊗ u − λu ⊗∇ρ) − µ∆u

+λ2∇ ·
(

1
ρ
∇ρ ⊗∇ρ

)
+ ∇P = ρf in Q,

∇ · u = 0 in Q, ρt + ∇ · (ρu − λ∇ρ) = 0 in Q,

where P = q − λρt + λ(2µ + λ̃)∆ log ρ. In this paper, we will focus on a simplified
version of (3), which is obtained by eliminating the λ2-term. In fact, using the
equalities

(4) (ρu)t + ∇ · ((ρu − λ∇ρ) ⊗ u) = ρut + ((ρu − λ∇ρ) · ∇)u

(thanks to (3)c), and

− λ∇ · (u ⊗∇ρ) = −λ(u · ∇)∇ρ = −λ∇(u · ∇ρ) + λ∇ · (ρ(∇u)t),(5)
∇ · (ρ u) = u · ∇ρ(6)

(thanks to (3)b), this simplified model is rewritten as follows:

(7)

{
ρut + ((ρu − λ∇ρ) · ∇)u −∇ · (µ∇u − λρ(∇u)t) + ∇p = ρf in Q,

∇ · u = 0 in Q, ρt + u · ∇ρ − λ∆ρ = 0 in Q,

where p = P − λu · ∇ρ.
The second model of Kazhikov-Smagulov type which we will consider in this

work was analyzed by D. Bresch, E.H. Essoufi and M. Sy ([3]). Such a model can
be deduced from (1) imposing (2), Ψ(ρ) = ρ and µ = λ, and using again equalities
(4)-(6), it is written as:

(8)

{
ρut + ((ρu − λ∇ρ) · ∇)u − λ∇ · (ρ∇u − ρ(∇u)t) + ∇p = ρf in Q,

∇ · u = 0 in Q, ρt + u · ∇ρ − λ∆ρ = 0 in Q.

This model is related to a pollution problem [3, 4].
Note that the main differences with respect to the previous system (3) are that

the λ2-terms are all of potential type (included into the modified pressure p =
q − λ(λ̃ + λ)∆ log ρ) and the diffusion becomes nonlinear, changing −µ∇ · (∇u) by
−λ∇ · (ρ∇u) in the momentum system.

We complete these models with the following boundary conditions

(9) u|Σ = 0,
∂ρ

∂n

∣∣∣
Σ

= 0

(where n(x ) is the outwards unit normal vector on the boundary Γ) and initial
conditions

(10) ρ(x, 0) = ρ0(x), u(x, 0) = u0(x), x ∈ Ω.
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1.2. Weak solutions. To define the concept of weak solutions, we introduce the
following function spaces:

H = {u : u ∈ L2(Ω),∇ · u = 0 in Ω, u · n = 0 on Γ},
V = {u : u ∈ H1

0(Ω),∇ · u = 0 in Ω},

L2
0(Ω) =

{
p : p ∈ L2(Ω),

∫
Ω

p(x)dx = 0
}

,

H2
N (Ω) =

{
ρ ∈ H2(Ω) :

∂ρ

∂n
= 0 on Γ,

∫
Ω

ρ(x)dx =
∫

Ω

ρ0(x)dx
}

.

In V , the ‖u‖H1(Ω) and ‖∇u‖L2(Ω) norms are equivalent. H2
N (Ω) is an affine space,

H2
N (Ω) =

1
|Ω|

∫
Ω

ρ0(x)dx + H2
N,0(Ω) where

H2
N,0(Ω) =

{
ρ ∈ H2(Ω) :

∂ρ

∂n
= 0 on ∂Ω,

∫
Ω

ρ(x)dx = 0
}

.

In H2
N (Ω) space, the ‖∇ρ‖H1(Ω)-norm is equivalent to the ‖∆ρ‖L2(Ω)-norm.

We denote the norm and the scalar product in L2(Ω) by |·| and
(
·, ·

)
, respectively,

and the norm in H1
0 (Ω) of the gradient in L2(Ω) by ‖ · ‖.

Throughout this work, we assume the hypothesis (strictly positive density)

(11) 0 < m ≤ ρ0(x) ≤ M in Ω.

Definition 1. A pair (ρ, u) is called a weak solution of (7), (9)-(10) in (0, T ) if:
a) u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ),

ρ ∈ L∞(0, T ; H1(Ω)) ∩ L2(0, T ; H2
N (Ω)),

0 < m ≤ ρ(x, t) ≤ M, a.e. (x, t) ∈ Q.
b) ∀φ ∈ C1([0, T ]; V ) such that φ(T ) = 0,∫ T

0

{
−
(
u, ρφt + (ρu − λ∇ρ) · ∇φ

)
+

(
µ∇u − λρ(∇u)t,∇φ

)}
dt

=
∫ T

0

(
ρf , φ

)
dt +

(
ρ0u0, φ(0)

)
.

c) The equation of mass diffusion (7)c is verified almost everywhere in Q.

An analogous definition of weak solution for the second problem (8), (9)-(10) can
be made, replacing in Definition 1 the constant viscosity µ by the dependent-density
viscosity µ(ρ) = ρ.

Remark 2. As usual, the pressure p can be obtained by using b) and de Rham’s
lemma ([17]).

1.3. Known results. The existence and uniqueness of (global in time) weak solu-
tion of (7), (9)-(10) was demonstrated in [12, 1].

Theorem 3. Let u0 ∈ H, ρ0 ∈ H1(Ω) satisfying (11) and f ∈ L2(0, T ; Lp(Ω))
with p > 1. Suppose the constraint on the constants λ, µ, m and M :

(12) λ < 2µ(M − m)−1.

Then, there exists a (unique) weak solution of (7), (9)-(10) in (0, T ).
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On the other hand, the existence and uniqueness of a weak solution of (8), (9)-
(10) was established in [3, 4], without the restrictive hypothesis (12).

Theorem 4. Let u0 ∈ H and ρ0 ∈ H1(Ω) satisfying (11) and f ∈ L2(0, T ; Lp(Ω))
with p > 1. Then, there exists a (unique) weak solution of (8), (9)-(10) in (0, T ).

For the reader’s convenience, we will give an outline of both proofs in Appendices
A and B, respectively, via a semi-Galerkin method. Here, we introduce a little
difference with respect to the proofs given in [12, 1] and [3, 4], which consists
in replacing the interpolation inequality ‖∇ρ‖2

L4(Ω) ≤ C‖ρ‖L∞(Ω)|∆ρ| used to get
the L∞(0, T ; H1(Ω))∩L2(0, T ; H2(Ω)) regularity for the density by the Gagliardo-
Nirenberg interpolation inequality in 2D domains ‖∇ρ‖2

L4(Ω) ≤ C |∇ρ| |∆ρ|, in order
to avoid the use of the maximum principle for the density. Moreover, we think that
these proofs will help the reader to understand the statement of our schemes.

Other known results are the following. Salvi ([13]) proved the existence of weak
solutions in noncylindrical domains. Secchi ([15]) studied the case Ω = R

3, proving
the existence and uniqueness of strong solutions, using a fixed point argument.

With respect to the full model (3), Beirão da Veiga ([2]) and Secchi ([14]) estab-
lished the local existence of a strong solution by means of linearization and a fixed
point argument. In ([14]), Secchi proved the existence and uniqueness of a global
weak solution in 2D domains imposing smallness on λ/µ and the asymptotic be-
havior towards a weak solution of the Navier-Stokes problem with variable density.
Recently, in [10], by means of an iterative method, the existence of strong solutions
(and some error estimates) has been proved.

For the pollutant model (8), Guillén-González and Sy prove the existence of
strong solutions of (8) and find some error estimates by means of an iterative
method in [11].

From the point of view of numerical analysis, a numerical algorithm is developed
in [6, 7], for a compressible version of a Kazhikhov-Smagulov model, without using
explicitly the decomposition of the compressible velocity in terms of an incompress-
ible part. The scheme under consideration uses a discrete method of characteristics
in time and finite elements in space. The authors get optimal error estimates assum-
ing enough regularity for the continuous solution. It is important to remark that in
these works, the analysis of unconditional stable, convergent schemes towards weak
solutions is not considered.

1.4. Main results of the paper. The task of this paper is to design fully discrete
schemes, unconditionally stable and convergent, by using only C0-finite elements
for the two problems (7) and (8).

The main question to treat is: Is it possible to approximate the weak solution of
mass diffusion problems with only C0-finite elements?

The answer is positive for models (7) and (8). Moreover, unconditional stability
will be founded.

We will look for schemes using first-order finite difference in time and C0-finite
elements in space. The key idea is to find an adequate reformulation of the con-
tinuous problem, adding “stabilized terms” such that the corresponding Galerkin
finite element gives us an unconditionally stable scheme. Namely, in the case of
problem (7), (9) and (10), we will arrive at the following variational formulation:
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a.e. t ∈ (0, T ),(
d

dt
ρ(t), ρ̄

)
+

(
u(t) · ∇ρ(t), ρ̄

)
+ λ

(
∇ρ(t),∇ρ̄

)
= 0 ∀ ρ̄ ∈ H1(Ω),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
[ρ]T (t)

d

dt
u(t), ū

)
+

1
2

(
d

dt
[ρ]T (t)u(t), ū

)
+ a

(
[ρ]T (t), u(t), ū

)
+ c

(
ρ(t)u(t) − λ∇ρ(t), u(t), ū

)
=

(
[ρ]T (t)f(t), ū

)
+

(
p(t),∇ · ū

)
, ∀ ū ∈ H1

0(Ω),(
∇ · u(t), p̄

)
= 0, ∀ p̄ ∈ L2

0(Ω),

where we have defined

[ρ]T (x, t) =

⎧⎨⎩
ρ(x, t) if ρ(x, t) ∈ [m, M ],
m if ρ(x, t) < m,
M if ρ(x, t) > M,

a
(
ρ, u, v

)
= µ

(
∇u,∇v

)
+ λ

∫
Ω

(
M + m

2
− ρ

)
(∇u)t : ∇v dx

and
c
(
w, u, v

)
=

1
2

[(
(w · ∇)u, v

)
−

(
(w · ∇)v, u

)]
,

which verify adequate properties of continuity and coercivity for a(·, ·, ·) and anti-
symmetric for c(·, ·, ·); see (19), (20) and (21) below.

Then, if we choose a partition of (0, T ) of parameter k (tn = nk) and take
(Wh, V h, Mh) ⊂ H1×H1

0×L2
0 finite-element space for the velocity and the pressure

defined below, the following scheme is proposed:

Initialization: Let (u0
h, ρ0

h) ∈ (V h, Wh) be suitable approximations of (u0, ρ0), as
h → 0.

Time step (n + 1): Given (un
h, pn

h, ρn
h) ∈ Vh × Mh × Wh.

(1) Find ρn+1
h ∈ Wh such that for each ρ̄h ∈ Wh:(
ρn+1

h − ρn
h

k
, ρ̄h

)
+

(
un

h · ∇ρn
h, ρ̄h

)
+ l

(
∇ρn+1

h ,∇ρ̄h

)
= 0.

(2) Find (un+1
h , pn+1

h ) ∈ Vh × Mh such that for each (ūh, p̄h) ∈ Vh × Mh:⎧⎪⎨⎪⎩
(

[ρn
h]T

un+1
h − un

h

k
, ūh

)
+

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
+a

(
[ρn+1

h ]T ,un+1
h , ūh

)
+ c

(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h , ūh

)
=

(
[ρn+1

h ]T f n+1, ūh

)
+

(
pn+1

h ,∇ · ūh

)
,(

∇ · un+1
h , p̄h

)
= 0.

Defining in [0, T ] the functions uk,h, ρh,k as constant by subintervals such that
uk,h(t) = un

h and ρh,k(t) = ρn
h on (tn−1, tn], respectively, we arrive at the following

main result:

Theorem 5. Let u0 ∈ V , ρ0 ∈ H2
N (Ω) satisfying (11) and f ∈ L2(0, T ; Lp(Ω))

with p > 1. Suppose the constraint on the constants λ, µ, m and M : λ <
2µ(M−m)−1. Then, the whole sequence (uk,h, ρh,k) converges towards the (unique)
weak solution (u, ρ) of problem (7), (9) and (10) (see Definition 1), strongly in
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L2(0, T ; L2(Ω) × H1(Ω)), weak-star in L∞(0, T ; L2(Ω) × H1(Ω)) and weakly in
L2(0, T ; H1

0(Ω)) × L4(0, T ; W 1,4(Ω)).

Remark 6. The term c
(
ρn+1

h un
h−λ∇ρn+1

h ,un+1
h , ūh

)
of the velocity-pressure scheme

can be changed by c
(
ρn

hu
n
h − λ∇ρn+1

h ,un+1
h , ūh

)
, keeping all results of this paper.

After a justification of the choice of the scheme made in Section 2, we give
the proof of the previous convergence theorem from Section 3 to Section 6. An
analogous result for the second problem (8), (9)-(10) will also be obtained in Section
7. Moreover, a generalization of this second model will be presented in Section 8,
obtaining an unconditional stable scheme, but its convergence remains as an open
problem.

2. Design of the numerical scheme

This section is devoted to designing an unconditionally stable, convergent scheme,
using the backward Euler scheme in time (considering for simplicity a uniform par-
tition of [0, T ] with time step k = T/N : (tn = nk)n=N

n=0 ), and finite elements in
space.

In order to get an easy implementation, we are going to define a linear scheme
with decoupled problems with respect to (u, p) and ρ in each time step. Concerning
the space discretization, we only choose at most H1-conformed finite element spaces
for the density, velocity and pressure, which we denote by (Wh, V h, Mh) ⊂ H1 ×
H1

0×L2
0 with the density space Wh generated by P1 continuous finite elements and

velocity-pressure spaces (V h, Mh) satisfying the stability Babuska-Bezzi condition
([8]).

To start these requirements, a first attempt would be the following scheme.
Let ρn

h ∈ Wh and un
h ∈ V h be given.

(1) Find ρn+1
h ∈ Wh such that for each ρ̄h ∈ Wh:

(13)
(

ρn+1
h − ρn

h

k
, ρ̄h

)
+

(
un

h · ∇ρn
h, ρ̄h

)
+ λ

(
∇ρn+1

h ,∇ρ̄h

)
= 0.

(2) Find (un+1
h , pn+1

h ) ∈ Vh × Mh such that for each (ūh, p̄h) ∈ Vh × Mh:

⎧⎪⎨⎪⎩
(

ρn
h

un+1
h − un

h

k
, ūh

)
+

(
((ρn+1

h un
h − λ∇ρn+1

h ) · ∇)un+1
h , ūh

)
−

(
pn+1

h ,∇ · ūh

)
+
(
µ∇un+1

h − λρn+1
h (∇un+1

h )t,∇ūh

)
=

(
ρn+1

h f n+1, ūh

)
,

(14)

(
∇ · un+1

h , p̄h

)
= 0,(15)

where f n+1 =
1
k

∫ tn+1

tn

f(t) dt.
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Remark 7. The approximation of (ρut)(tn+1) by ρn
h

un+1
h − un

h

k
is justified for the

equality:(
ρn

h

un+1
h − un

h

k
,un+1

h

)
+

1
2

(
ρn+1

h − ρn
h

k
,un+1

h · un+1
h

)
=

1
2

(∫
Ω

ρn+1
h |un+1

h |2 − ρn
h|un

h|2
k

+
∫

Ω

ρn
h|un+1

h − un
h|2

k

)
,

which is a discrete version of the continuous relation:(
ρ

d

dt
u, u

)
+

1
2

(
d

dt
ρ, u · u

)
=

1
2

d

dt

∫
Ω

ρ|u|2.

Throughout this work we assume the following hypotheses:
(H1) Either

u0 ∈ H and ρ0 ∈ H1
N (Ω) with k/h2 ≤ C,

or
u0 ∈ V and ρ0 ∈ H2

N (Ω).
(H2) The boundary of Ω is a polygon such that the continuous dependency in

the H2-norm of the Poisson-Neumann problem holds (see (29)). This is
true, for instance, if Ω is convex ([8]).

(H3) The triangulation of Ω and the discrete spaces. Let {Th}h>0 be a regular,
quasi-uniform family of triangulations of Ω, with h = max

K∈Th

hK (hK =

diameter of K), and

Wh = {xh ∈ C0(Ω) : xh|K ∈ P1(K), ∀K ∈ Th}.
In particular, this discrete space verifies the following properties ([5]) which
we are going to use in this paper:

• the inverse inequalities:

‖∇ρ̄h‖L4(Ω) ≤ C h−1/2|∇ρ̄h|, ∀ ρ̄h ∈ Wh,

‖ρ̄h‖H1(Ω) ≤ C h−1|ρ̄h|, ∀ ρ̄h ∈ Wh,

• and the interpolation errors:

|ρ̄ − Ihρ̄| ≤ C h ‖ρ̄‖H1(Ω),

‖ρ̄ − Ihρ̄‖H1(Ω) + h1/2‖ρ̄ − Ihρ̄‖W 1,4(Ω) ≤ C h‖ρ̄‖H2(Ω), ∀ ρ̄ ∈ H2(Ω),

where Ih is the interpolation operator from H2(Ω) into Wh.
On the other hand, we choose (Vh, Mh) verifying the interpolation errors:

|ū − Jhū| + h ‖ū − Jhū‖H1(Ω) ≤ C h2‖ū‖H2(Ω), ∀ ū ∈ H2(Ω) ∩ H1
0(Ω),

|p̄ − Khp̄| ≤ C h‖p̄‖H1(Ω), ∀ p̄ ∈ H1(Ω) ∩ L2
0(Ω),

where Jh and Kh are interpolation operators from H2(Ω)∩H1
0(Ω) into V h

and from H1(Ω) ∩ L2
0(Ω) into Mh, respectively.

(H4) Inf-sup condition. There is a constant β > 0 (independent of h) such that
∀ p̄h ∈ Mh,

‖p̄h‖L2
0(Ω) ≤ β sup

ūh∈Vh\{0}

(
p̄h,∇ · ūh

)
‖ūh‖H1(Ω)

.
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For instance, a manner of defining the discrete spaces (V h, Mh) verifying (H3)
and (H4) is:

Mh = Wh ∩ L2
0(Ω)

and to select V h there are several possibilities ([8]). For instance:
(1) (Taylor-Hood)

V h = {vh ∈ C0(Ω) : vh|K ∈ P2(K), ∀K ∈ Th}2 ∩ H1
0(Ω).

(2) (Mini-element) Define P(K) = [P1(K)]2 ⊕ αKλ1λ2λ3 with αK ∈ R
2 and

λi ∈ P1 such that λi(aj) = δij , aj being the vertices of the triangle K.
Then, we consider

V h = {vh ∈ C0(Ω) : vh|K ∈ P(K), ∀K ∈ Th}2 ∩ H1
0(Ω).

To obtain estimates of scheme (13)-(15), the idea is to follow the proof of the
existence Theorem 3 (see Appendix A), but we find the following main difficulties:

(1) We cannot assure the maximum principle for the discrete density ρn
h.

(2) The density equation doesn’t hold pointwise (as used in the proof of Theo-
rem 3; see Appendix A), or more concretely, we cannot take ρ̄h = 1

2u
n+1
h ·

un+1
h in (13), because in general un+1

h · un+1
h /∈ Wh.

(3) The incompressibility condition doesn’t hold pointwise; therefore∫
Ω

(∇un+1
h )t : ∇un+1

h �= 0

in general.
(4) We are not going to get strong H2 estimates for the discrete density ρn

h,
since we are approximating in H1 (or at the most in W 1,∞), but not in H2.

To treat difficulty (1), i.e. the absence of the maximum principle, we define the
following truncating (by nodes) operator: Given wh ∈ Wh, one defines [wh]T ∈ Wh

such that:

[wh]T (xi) =

⎧⎨⎩
wh(xi) if wh(xi) ∈ [m, M ],
m if wh(xi) < m,
M if wh(xi) > M,

where xi are the nodes of the mesh Th.
To treat difficulty (2), we add to the discrete momentum system (14) the follow-

ing terms:

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
− 1

2

(
ρn+1

h un
h − λ∇ρn+1

h ,∇(un+1
h · ūh)

)
,

where we have only truncated the discrete densities in the first term. Then, we
change (14) by
(16)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
[ρn

h]T
un+1

h − un
h

k
, ūh

)
+

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
+
(
((ρn+1

h un
h − λ∇ρn+1

h ) · ∇)un+1
h , ūh

)
− 1

2

(
ρn+1

h un
h − λ∇ρn+1

h ,∇(un+1
h · ūh)

)
+
(
µ∇un+1

h −λ[ρn+1
h ]T (∇un+1

h )t,∇ūh

)
=
(
[ρn+1

h ]T f n+1, ūh

)
+
(
pn+1

h ,∇ · ūh

)
,

where we have also truncated the discrete density in the terms∫
Ω

ρn+1
h (∇un+1

h )t : ∇ūh dx and
(
ρn+1

h f n+1, ūh

)
.
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This last truncation is considered to reduce the hypothesis on the external force f
acting on the system.

With respect to difficulty (3), in order to “control” the term

−λ

∫
Ω

[ρn+1
h ]T (∇un+1

h )t : (∇ūh) dx

we add to (16) the term:

λ

∫
Ω

M + m

2
(∇un+1

h )t : (∇ūh) dx.

Then, taking ūh = un+1
h in (16), we obtain the following estimate (equivalent to

(85)):

(17)
∣∣∣∣λ ∫

Ω

(
[ρn+1

h ]T − M + m

2

)
(∇un+1

h )t : (∇un+1
h ) dx

∣∣∣∣ ≤ λ
M − m

2
‖un+1

h ‖2.

On the other hand, applying Leibnitz’ rule in the term

−1
2

(
ρn+1

h un
h − λ∇ρn+1

h ,∇(un+1
h · ūh)

)
,

we rewrite (16) as:
(18)⎧⎪⎨⎪⎩
(

[ρn
h]T

un+1
h − un

h

k
, ūh

)
+

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
+a

(
[ρn+1

h ]T ,un+1
h , ūh

)
+c

(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h , ūh

)
=

(
[ρn+1

h ]T f n+1, ūh

)
+

(
pn+1

h ,∇ · ūh

)
,

where we have defined

a
(
ρ, u, v

)
= µ

(
∇u,∇v

)
+ λ

∫
Ω

(
M + m

2
− ρ

)
(∇u)t : ∇v dx

and

c
(
w, u, v

)
=

1
2

[(
(w · ∇)u, v

)
−

(
(w · ∇)v, u

)]
,

which verify the properties:

a
(
[ρ]T , u, u

)
≥ µ1

2
‖u‖2 where

µ1

2
= µ − λ

M − m

2
(> 0), (using (12)),(19)

a([ρ]T , u, v) ≤ C ‖u‖ ‖v‖ (using ‖[ρ]T ‖L∞(Ω) ≤ M),

c
(
w, u, u

)
= 0,(20)

c
(
w, u, v

)
≤ C ‖w‖L3(Ω)‖u‖ ‖v‖.(21)

Finally, we will see that difficulty (4) can be circumvented.
In conclusion, we define the following numerical scheme:

Initialization: Let (u0
h, ρ0

h) ∈ (V h, Wh) be suitable approximations of (u0, ρ0), as
h → 0.
Time step (n + 1): Given (un

h, pn
h, ρn

h) ∈ Vh × Mh × Wh.

(1) Find ρn+1
h ∈ Wh such that for each ρ̄h ∈ Wh:

(22)
(

ρn+1
h − ρn

h

k
, ρ̄h

)
+

(
un

h · ∇ρn
h, ρ̄h

)
+ λ

(
∇ρn+1

h ,∇ρ̄h

)
= 0.
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(2) Find (un+1
h , pn+1

h ) ∈ Vh × Mh such that for each (ūh, p̄h) ∈ Vh × Mh:

⎧⎪⎨⎪⎩
(

[ρn
h]T

un+1
h −un

h

k
, ūh

)
+

1
2

(
[ρn+1

h ]T −[ρn
h]T

k
,un+1

h · ūh

)
+a

(
[ρn+1

h ]T ,un+1
h , ūh

)
+c

(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h , ūh

)
=

(
[ρn+1

h ]T f n+1, ūh

)
+

(
pn+1

h ,∇ · ūh

)
,

(23)

(
∇ · un+1

h , p̄h

)
= 0.(24)

From the computational point of view, we propose a scheme where in each time
step we have to solve two (decoupled) linear systems: the diffusion problem (22)
for ρn+1

h and the problem of Stokes type (23)-(24) for (un+1
h , pn+1

h ).
To conclude this section, we shall see that the linear systems (22) and (23)-(24)

are well-posed; that is, the existence and uniqueness of a solution hold. Indeed, as
they can be written as algebraic linear systems, it suffices to verify the uniqueness
of a solution for each problem, which will be deduced in particular from the a priori
scheme estimates of the next section.

3. A priori scheme estimates (Unconditional stability)

In order to get stability estimates in strong norms for the density, we will need
a discrete version of the 2D inequality interpolation ‖∇ρ‖2

L4(Ω) ≤ C|∇ρ||∆ρ|. For
this, we first introduce the discrete Laplacian using the following auxiliary problem:

Given (un
h, ρn

h) ∈ V h × Wh, find (ρn+1
h , ωn+1

h ) ∈ Wh × Wh such that:

(25)

⎧⎪⎨⎪⎩
(

ρn+1
h − ρn

h

k
, ω̄h

)
+

(
un

h · ∇ρn
h, ω̄h

)
+ λ

(
ωn+1

h , ω̄h

)
= 0,(

∇ρn+1
h ,∇ρ̄h

)
=

(
ωn+1

h , ρ̄h

)
,

for each (ω̄h, ρ̄h) ∈ Wh × Wh. It is easy to prove that (25) has a unique solution.

Lemma 8. Problems (25) and (22) are equivalent.

Proof. Suppose that (ρn+1
h , ωn+1

h ) is the solution of (25). Then, replacing (25)b into
(25)a for ρ̄h = ω̄h, this gives that ρn+1

h is solution of (22).
On the other hand, suppose that ρn+1

h is the solution of (22). We shall define
ωn+1

h ∈ Wh as the solution of:

(26) λ
(
ωn+1

h , ω̄h

)
= −

(
ρn+1

h − ρn
h

k
, ω̄h

)
−

(
un

h · ∇ρn
h, ω̄h

)
, ∀ω̄h ∈ Wh.

Comparing (22) and (26) for ρ̄h = ω̄h, we arrive at(
∇ρn+1

h ,∇ρ̄h

)
=

(
ωn+1

h , ρ̄h

)
, ∀ρ̄h ∈ Wh.

Consequently (ρn+1
h , ωn+1

h ) is the solution of (25). �

Remark 9. Taking ρ̄h = 1 as a test function in (25)b, one has that
∫

Ω

ωn+1
h = 0.

Lemma 10. Let ωh ∈ Wh ∩ L2
0(Ω) and ρh ∈ Wh such that:

(27)
(
∇ρh,∇ρ̄h

)
=

(
ωh, ρ̄h

)
, ∀ ρ̄h ∈ Wh.
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Then, there exists C > 0 (independent of h) such that:

(28) ‖∇ρh‖2
L4(Ω) ≤ C |∇ρh| |ωh|.

Proof. We define ρ(h) ∈ H2(Ω) as the solution of the following continuous problem:

(29) −∆ρ(h) = ωh in Ω,
∂ρ(h)
∂n

∣∣∣
∂Ω

= 0,

∫
Ω

ρ(h) dx = 0.

Since the compatibility condition
∫

Ω

ωh = 0 holds, problem (29) is well-posed and

verifies the continuous dependency property

‖ρ(h)‖H2(Ω) ≤ C |ωh|.
Now, we decompose

‖∇ρh‖L4(Ω) ≤ ‖∇ρh −∇Ih(ρ(h))‖L4(Ω)

+ ‖∇Ih(ρ(h)) −∇ρ(h)‖L4(Ω) + ‖∇ρ(h)‖L4(Ω)

(30)

where Ih is the interpolation operator from H1(Ω) into Wh. By approximation
properties of this interpolation operator ([5]),

(31) ‖∇Ih(ρ(h))−∇ρ(h)‖L4(Ω) ≤ C h1/2‖ρ(h)‖H2(Ω) ≤ C h1/2|ωh|.
Multiplying (29) by ρ̄h ∈ Wh and integrating by parts,

(32)
(
∇ρ(h),∇ρ̄h

)
=

(
ωh, ρ̄h

)
.

Comparing (32) and (25)b, one gets(
∇ρh −∇ρ(h),∇ρ̄h

)
= 0, ∀ ρ̄h ∈ Wh.

Adding and subtracting ∇Ih(ρ(h)) and considering ρ̄h = ρh − Ih(ρ(h)) ∈ Wh, we
obtain

|∇ρh −∇Ih(ρ(h))|2 = −
(
∇Ih(ρ(h)) −∇ρ(h),∇ρh −∇Ih(ρ(h))

)
≤ |∇Ih(ρ(h)) −∇ρ(h)| |∇ρh −∇Ih(ρ(h))|,

whence

(33) |∇ρh −∇Ih(ρ(h))| ≤ |∇Ih(ρ(h))−∇ρ(h)| ≤ C h ‖ρ(h)‖H2(Ω) ≤ C h |ωh|.
Therefore, using the inverse inequality ([5])

‖∇ρh −∇Ih(ρ(h))‖L4(Ω) ≤ C h−1/2|∇ρh −∇Ih(ρ(h))|
and (33), we arrive at

(34) ‖∇ρh −∇Ih(ρ(h))‖L4(Ω) ≤ Ch1/2|ωh|.
Using Gagliardo-Nirenberg’s inequality in 2D domains,

(35) ‖∇ρ(h)‖L4(Ω) ≤ C |∇ρ(h)|1/2‖ρ(h)‖1/2
H2(Ω) ≤ C |∇ρ(h)|1/2|ωh|1/2.

Applying (31), (34) and (35) in (30), one obtains

(36) ‖∇ρh‖L4(Ω) ≤ C h1/2|ωh| + C |∇ρ(h)|1/2|ωh|1/2.

From (33) and from the interpolation error |∇Ih(ρ(h))−∇ρ(h)| ≤ C h‖ρ(h)‖H2(Ω),
one has

|∇ρh −∇ρ(h)| ≤ |∇ρh −∇Ih(ρ(h))| + |∇Ih(ρ(h)) −∇ρ(h)| ≤ C h |ωh|.
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Accordingly,
|∇ρ(h)| ≤ h|ωh| + |∇ρh|.

Replacing this last inequality in (36), we get

(37) ‖∇ρh‖L4(Ω) ≤ C h1/2|ωh| + |∇ρh|1/2|ωh|1/2.

On the other hand, taking ρ̄h = ωh in (27) we arrive at

|ωh|2 =
(
∇ρh,∇ωh

)
≤ |∇ρh||∇ωh|.

Using the inverse inequality ([5]) |∇ωh| ≤ C h−1|ωh|, one has

(38) |ωh| ≤ C h−1|∇ρh|.
Combining estimates (37) and (38), one arrives at (28). �

Now, we are in position to prove stability estimates for the scheme.

Lemma 11. Suppose u0 ∈ V , ρ0 ∈ H2(Ω) and f ∈ L2(0, T ; Lp(Ω)) with p > 1.
Then, the solution of the discrete scheme (22), (23)-(24) satisfies the following
estimates:

i) max
0≤n≤N

|un
h| ≤ C, ii)

N∑
n=0

k‖un
h‖2 ≤ C, iii)

N−1∑
n=0

|un+1
h − un

h|2 ≤ C,

iv) max
0≤n≤N

|∇ρn
h| ≤ C, v)

N∑
n=0

k‖∇ρn
h‖4

L4(Ω) ≤ C, vi)
N−1∑
n=0

|∇(ρn+1
h − ρn

h)|2 ≤ C,

with C > 0 depending only on (ρ0, u0, f).

Notice that, although the discrete density does not have H2-regularity, v) implies
that the discrete density conserves the L4(0, T ; W 1,4(Ω))-regularity.

Proof. First, we obtain a priori estimates for the velocity (un
h). Taking ūh = 2kun+1

h

and p̄h = pn+1
h in (23)-(24), using the identity (a − b, 2a) = |a|2 − |b|2 + |a − b|2,

using the properties (19) and (20) and taking into account Remark 7, one has

|
√

[ρn+1
h ]Tun+1

h |2 − |
√

[ρn
h]Tun

h|2 + |
√

[ρn
h]T (un+1

h − un
h)|2 + µ1k‖un+1

h ‖2

≤ 2k
(
[ρn+1

h ]T f n+1,un+1
h

)
≤ 2k‖[ρn+1

h ]T ‖L∞(Ω)‖f n+1‖Lp(Ω)‖un+1
h ‖Lq(Ω)

≤ µ1k

2
‖un+1

h ‖2 + Ck‖f n+1‖2
Lp(Ω),

where q is the conjugate of p such that
1
p

+
1
q

= 1. Therefore,

|
√

[ρn+1
h ]Tun+1

h |2 − |
√

[ρn
h]Tun

h|2 + |
√

[ρn
h]T (un+1

h − un
h)|2 +

µ1

2
k‖un+1

h ‖2

≤ Ck‖fn+1‖2
Lp(Ω).

(39)

Adding (39) for n = 0, ..., r with r < N , the estimates for the velocity i), ii) and
iii) hold.

To obtain a priori estimates of the discrete density, we write scheme (22) as (25).
Taking ω̄h = 2kωn+1

h in (25)a and ρ̄h = 2(ρn+1
h − ρn

h) in (25)b, we arrive at:

(40) |∇ρn+1
h |2 − |∇ρn

h|2 + |∇(ρn+1
h − ρn

h)|2 + 2λk|ωn+1
h |2 = −2k

(
un

h · ∇ρn
h, ωn+1

h

)
.
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Bounding the right-hand side term of (40) as

2 k
∣∣∣(un

h · ∇ρn
h, ωn+1

h

)∣∣∣ ≤ 2 k ‖un
h‖L4(Ω)‖∇ρn

h‖L4(Ω)|ωn+1
h |

≤ λ k |ωn+1
h |2 +

k

λ
‖un

h‖2
L4(Ω)‖∇ρn

h‖2
L4(Ω),

we get the inequality
(41)

|∇ρn+1
h |2 − |∇ρn

h|2 + |∇(ρn+1
h − ρn

h)|2 + λk|ωn+1
h |2 ≤ k

λ
‖un

h‖2
L4(Ω)‖∇ρn

h‖2
L4(Ω).

Note that ωn
h is defined for n ≥ 1 in scheme (25). For n = 0, it is enough to

define ω0
h as an approximation in Mh ⊂ L2

0(Ω) of −∆ρ0, and therefore to define ρ0
h

based on ω0
h using (25)b jointly with the additional condition

∫
Ω

ρ0
h =

∫
Ω

ρ0. Of

course, this initialization is possible in the case of initial density sufficiently regular,
concretely ρ0 ∈ H2(Ω). For the case ρ0 ∈ H1(Ω), see Remark 14 below.

Using the discrete Gagliardo-Nirenberg inequality (28) in (41), one has
(42)

|∇ρn+1
h |2−|∇ρn

h|2+|∇(ρn+1
h −ρn

h)|2+λ k |ωn+1
h |2 ≤ C k ‖un

h‖4
L4(Ω)|∇ρn

h|2+
λ

2
k|ωn

h |2.

Adding (42) for n = 0, ..., r with any r < N , we arrive at

|∇ρr+1
h |2 + λ k

r∑
n=0

|ωn+1
h |2 ≤ C

r∑
n=0

k‖un
h‖4

L4(Ω)|∇ρn
h|2 +

λ

2
k

r∑
n=0

|ωn
h |2 + |∇ρ0

h|2.

Therefore,

(43) |∇ρr+1
h |2 +

λ

2
k

r∑
n=0

|ωn+1
h |2 ≤ C

r∑
n=0

k‖un
h‖4

L4(Ω)|∇ρn
h|2 +

λ

2
k|ω0

h|2 + |∇ρ0
h|2.

Applying the discrete Gronwall ’s lemma, using that

k
N∑

n=0

‖un
h‖4

L4(Ω) ≤ max
0≤n≤N

|un
h|2 k

N∑
n=0

‖un
h‖2 ≤ C

(where i) and ii) are used) we obtain iv), vi) and

(44) k
N∑

n=0

|ωn
h |2 ≤ C.

Finally, from (28) and estimates iv) and (44), one gets v). �
Remark 12. When in the discrete equation of density (22), the convection term is
considered in a semi-implicit form, i.e. changing

(
un

h · ∇ρn
h, ρ̄

)
by

(
un

h · ∇ρn+1
h , ρ̄

)
in (22), then estimates for the discrete density iv), v) and vi) are obtained by
imposing Ch/k2 < 1, which is independent of the regularity of the data. Indeed,

we consider C
r∑

n=0

k‖un
h‖4

L4(Ω)|∇ρn+1
h |2 instead of C

r∑
n=0

k‖un
h‖4

L4(Ω)|∇ρn
h|2 in (43).

Then, in order to apply the generalised discrete Gronwall’s lemma, we need to get
that C k‖un

h‖4
L4(Ω) < 1, which holds by using an inverse inequality,

Ck‖un
h‖4

L4(Ω) ≤ C
k

h2
‖un

h‖4
L2(Ω) ≤ C

k

h2
< 1.
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Remark 13. One also has the estimate k
n∑

n=0

‖ρn
h‖2

W 1,p(Ω) ≤ C for p : 2 < p < ∞.

For this, it suffices to see ‖ρn
h‖W 1,p(Ω) ≤ C|ωn

h | and to apply (44). Indeed,

‖ρn
h‖W 1,p(Ω) ≤ ‖ρn

h − Ih(ρ(h))‖W 1,p(Ω) + ‖Ih(ρ(h)) − ρ(h)‖W 1,p(Ω) + ‖ρ(h)‖W 1,p(Ω).

Using the inverse inequality ‖ω̄h‖W 1,p(Ω) ≤ C h−(p−2)/p‖ω̄h‖H1(Ω) and (33), we
bound

‖ρn
h − Ih(ρ(h))‖W 1,p(Ω) ≤ C h−(p−2)/p‖ρn

h − Ih(ρ(h))‖H1(Ω)

≤ C h1−(p−2)/p|ωn
h | ≤ C |ωn

h |,
‖ρ(h) − Ih(ρ(h))‖W 1,p(Ω) ≤ C ‖ρ(h)‖H2(Ω) ≤ C |ωn

h |,
‖ρ(h)‖W 1,p(Ω) ≤ C ‖ρ(h)‖H2(Ω) ≤ |ωn

h |;
hence ‖ρn

h‖W 1,p(Ω) ≤ C|ωn
h | holds. �

Remark 14. Since (u0, ρ0) ∈ V × H2(Ω) has been imposed, then ‖u0
h‖ ≤ C ‖u0‖

and ω0
h was defined based on ∆ρ0 and verifying |ω0

h| ≤ C |∆ρ0|. Imposing only
(u0, ρ0) ∈ H × H1(Ω), the construction of ω0

h must change. Firstly, we con-
sider ρ0

h ∈ Wh as an approximation of ρ0 in H1(Ω) and, afterwards, we define
ω0

h from (25)b. Therefore, using the inverse inequality |∇ω0
h| ≤ C h−1|ω0

h| it is
easy to prove that |ω0

h| ≤ C h−1|∇ρ0
h|. Accordingly, to obtain the a priori esti-

mates from (43), it is necessary to impose the constraint k/h2 ≤ C (since then,
k|ω0

h|2 ≤ C (k/h2)|∇ρ0
h|2 ≤ C |∇ρ0|). An analogous form is used to make the esti-

mate k‖u0
h‖2

L4(Ω) ≤ C (k/h2)|u0
h|2 ≤ C |u0|2, which is necessary to bound the first

term of the sum C k
∑r

n=0 ‖un
h‖4

L4(Ω)|∇ρn
h|2.

Corollary 15 (Estimates for
∫
Ω

ρn+1
h ). It follows that∣∣∣∣∫

Ω

ρn+1
h

∣∣∣∣ ≤ C

where C > 0 is a constant independent of n and h.

Proof. Choosing ρ̄h = 1 in (13), we get∫
Ω

ρn+1
h =

∫
Ω

ρn
h − k

∫
Ω

un
h · ∇ρn

h.

Summing from n = 0, ..., r < N , one has∫
Ω

ρr+1
h =

∫
Ω

ρ0
h − k

r∑
n=0

∫
Ω

un
h · ∇ρn

h.

Applying the Hölder inequality to the last term of the previous equality, this gives∣∣∣∣∫
Ω

ρr+1
h

∣∣∣∣ ≤ ∣∣∣∣∫
Ω

ρ0
h

∣∣∣∣ +

(
k

r∑
n=0

|un
h|2

)1/2 (
k

r∑
n=0

|∇ρn
h|2

)1/2

≤ C,

using estimates of Lemma 11. �
Remark 16. If the density and pressure are approximated by the same space (i.e.

Wh∩L2
0(Ω) = Mh), then the average of the density is conserved, i.e.

∫
Ω

ρn
h =

∫
Ω

ρ0
h,

for each n (this property is the discrete version of the continuous one
∫

Ω

ρ(x, t1) dx =
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Ω

ρ(x, t2) dx for any t1, t2 ∈ [0, T ], whose physical meaning is the conservation of

mass). To prove it, let us see first that
(
∇·un

h, ρ̄h

)
= 0, for each ρ̄h ∈ Wh. Indeed,

taking ρ̄h − 1
|Ω|

∫
Ω

ρ̄h ∈ Mh as a test function in (22), one has

0 =
(
∇ · un

h, ρ̄h − 1
|Ω|

∫
Ω

ρ̄h

)
=

(
∇ · un

h, ρ̄h

)
− 1

|Ω|

∫
Ω

ρ̄h

∫
Ω

∇ · un
h.

Since
∫

Ω

∇ · un
h = 0, because un

h = 0 on ∂Ω, one gets
(
∇ · un

h, ρ̄h

)
= 0. Therefore,

if we choose ρ̄h = 1 in (22) and apply that
(
un

h · ∇ρn
h, 1

)
= −

(
∇ ·un

h, ρn
h

)
= 0, one

arrives at
∫

Ω

ρn+1
h =

∫
Ω

ρn
h, hence reasoning by induction

∫
Ω

ρn
h =

∫
Ω

ρ0
h, for each

n.

4. Weak convergences

In order to study the convergence of scheme (22), (23)-(24) towards the (unique)
weak solution of (7), (9)-(10), we consider the following:

Definition 17. We define the auxiliary functions:

(45)

uh,k : [0, T ] → V h such that uh,k(t) = un+1
h , tn ≤ t < tn+1,

ûh,k : [0, T ] → V h such that ûh,k(t) = un
h, tn ≤ t < tn+1,

ρh,k : [0, T ] → Wh such that ρh,k(t) = ρn+1
h , tn ≤ t < tn+1,

ρ̂h,k : [0, T ] → Wh such that ρ̂h,k(t) = ρn
h, tn ≤ t < tn+1,

ph,k : [0, T ] → Mh such that ph,k(t) = pn+1
h , tn ≤ t < tn+1,

ρ̃h,k : [0, T ] → Wh such that

ρ̃h,k(t) = ρn+1
h +

ρn+1
h − ρn

h

k
(t − tn+1), tn ≤ t < tn+1,

wh,k : [0, T ] → Wh such that wh,k(t) = wn+1
h , tn ≤ t < tn+1.

Using Lemma 11, Corollary 15 and the generalized Poincaré inequality

‖ρ‖H1(Ω) ≤ C

(
|∇ρ| +

∣∣∣∣∫
Ω

ρ

∣∣∣∣) ,

we arrive at the following:

Lemma 18. The following estimates (independent of h and k) hold:

{uh,k}h,k, {ûh,k}h,k in L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1
0(Ω)),(46)

{ρh,k}h,k, {ρ̂h,k}h,k in L∞(0, T ; H1(Ω)) ∩ L4(0, T ; W 1,4(Ω)),(47)

{wh,k}h,k in L2(0, T ; L2(Ω)).(48)

Moreover,

(49) ‖uh,k − ûh,k‖2
L2(0,T ;L2(Ω)) ≤ Ck and ‖ρh,k − ρ̂h,k‖2

L2(0,T ;H1(Ω)) ≤ Ck.

Taking into account estimates (46)-(47) given in Lemma 18, there exist sub-
sequences (denoted in the same way ) with the corresponding weak convergences
towards limit functions u, û, ρ, ρ̂. Moreover, thanks to (49), the identities of the
limits u = û and ρ = ρ̂ hold.
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Lemma 19. There exist subsequences of {uh,k}h,k, {ûh,k}h,k, {ρh,k}h,k, {ρ̂h,k}h,k

(denoted in the same way) and limit functions u, ρ verifying the following weak
convergences as (h, k) → 0:

uh,k → u and ûh,k → u in
{

L2(0, T ; H1
0(Ω))-weak ,

L∞(0, T ; L2(Ω))-weak∗,

ρh,k → ρ and ρ̂h,k → ρ in
{

L4(0, T ; W 1,4(Ω))-weak ,
L∞(0, T ; H1(Ω))-weak∗,

wh,k → w in L2(0, T ; L2(Ω))-weak .

5. Strong convergences

As usual in this type of nonlinear system, to obtain the convergence of the scheme
we must get strong convergence for the approximations in some suitable space in
order to identify the limit of the nonlinear terms.

5.1. Strong Convergence for the density in L2(Ω).

Lemma 20.

k

N∑
n=0

∣∣∣∣ρn+1
h − ρn

h

k

∣∣∣∣2 ≤ C,

where C > 0 depends only on (ρ0, u0, f).

Proof. Taking ρ̄h =
ρn+1

h − ρn
h

k
in (22) and using the identity (a − b, 2a) = |a|2 −

|b|2 + |a − b|2 we arrive at

(50)

∣∣∣∣ρn+1
h −ρn

h

k

∣∣∣∣2 +
λ

2k
(|∇ρn+1

h |2 − |∇ρn
h|2 + |∇ρn+1

h −∇ρn
h|2)

= −
(
un

h · ∇ρn
h,

ρn+1
h − ρn

h

k

)
.

We estimate the right-hand side as follows:

(51)
(
un

h · ∇ρn+1
h ,

ρn+1
h − ρn

h

k

)
≤ 1

2
‖un

h‖2
L4(Ω)‖∇ρn

h‖2
L4(Ω) +

1
2

∣∣∣∣ρn+1
h − ρn

h

k

∣∣∣∣2 .

Multiplying (50) by 2k , incorporating (51) and summing for n = 0, ..., N − 1 one
gets

k
N−1∑
n=0

∣∣∣∣ρn+1
h − ρn

h

k

∣∣∣∣2 + λ|∇ρN
h |2 ≤ k

N−1∑
n=0

‖un
h‖2

L4(Ω)‖∇ρn
h‖2

L4(Ω) + λ|∇ρ0
h|2,

where

k

N−1∑
n=0

‖un
h‖2

L4(Ω)‖∇ρn
h‖2

L4(Ω) ≤
1
2

(
k

N−1∑
n=0

‖un
h‖4

L4(Ω) + k

N−1∑
n=0

‖∇ρn
h‖4

L4(Ω)

)
≤ C,

thanks to the estimates from Lemma 11. �

Remark 21. As a consequence of the previous corollary, one has∥∥∥∥ d

dt
ρ̃h,k

∥∥∥∥
L2(0,T ;L2(Ω))

≤ C.
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On the other hand, by Lemma 11, ‖ρ̃h,k‖L4(0,T ;W 1,4(Ω)) ≤ C holds. Then, applying
a compactness theorem of Aubin-Lions type,

ρ̃h,k → ρ in L4(0, T ; Lp(Ω)) as (h, k) → 0, with 1 ≤ p < ∞.

From this convergence we deduce that

ρh,k, ρ̂h,k → ρ in L2(0, T ; L2(Ω)) as (h, k) → 0,

using that

‖ρ̃h,k − ρk,h‖2
L2(0,T ;L2(Ω)) ≤ ‖ρ̂h,k − ρk,h‖2

L2(0,T ;L2(Ω)) = k

N−1∑
n=0

|ρn+1
h − ρn

h|2 ≤ C k.

Corollary 22. It follows that

k

N∑
n=0

∣∣∣∣ [ρn+1
h ]T − [ρn

h]T
k

∣∣∣∣2 ≤ C.

Proof. Using Lemma 20, it suffices to prove that |[ρn+1
h (x, t)]T − [ρn

h(x, t)]T | ≤
|ρn+1

h (x, t) − ρn
h(x, t)| pointwise in Q (here | · | denotes the absolute value func-

tion). But, this pointwise estimate is easy to verify taking into account that the
approximations for the density are finite elements of degree 1. �
5.2. Strong convergence for the density in H1(Ω). Using the compactness of
the discrete density in L2(0, T ; L2(Ω)), we are going to improve the strong conver-
gence for the discrete density to the L2(0, T ; H1(Ω)) space. For this, we firstly have
to identify w = −∆ρ. Indeed, let η ∈ C∞

c (Q). We consider ηn
h as the interpolated

function of η(tn) in Wh and define ηh,k ∈ L∞(0, T ; Wh) as the piecewise con-
stant function taking values ηn+1

h in (tn, tn+1]. Then ηh,k → η in L∞(0, T ; H1(Ω))
strongly as (h, k) → 0. Therefore, setting ρ̄h = ηn+1

h in (25)b, multiplying by k,
summing over n and doing (h, k) → 0, we get∫

Q

(
∇ρ,∇η

)
←

∫
Q

(
∇ρh,k,∇ηh,k

)
=

∫
Q

(
wh,k, ηh,k

)
→

∫
Q

(
w, η

)
.

Therefore, it is clear that w = −∆ρ in L2(Q), and consequently ρ ∈ L2(0, T ; H2(Ω)).
Next, taking η ∈ C∞(Q) and proceeding in the same manner, we recover the

boundary condition
∂ρ

∂n
= 0 on Σ.

Corollary 23. One has that ‖ρh,k − ρ‖L2(0,T ;H1(Ω)) → 0 as (h, k) → 0.

Proof. Considering ρ̄h = ρn+1
h in (25)b, multiplying by k and summing over n, one

has∫ T

0

|∇ρh,k|2 =
∫ T

0

(
wh,k, ρh,k

)
→ −

∫ T

0

(
∆ρ, ρ

)
=

∫ T

0

|∇ρ|2 as (h, k) → 0

because of {ρh,k} → ρ strongly in L2(0, T ; L2(Ω)) and {wh,k} → −∆ρ weakly in
L2(0, T ; L2(Ω)). Therefore, since ‖ρh,k‖L2(Q) → ‖ρ‖L2(Q) as (h, k) → 0 by Remark
21, we have obtained that ‖ρh,k‖L2(0,T,H1(Ω) → ‖ρ‖L2(0,T ;H1(Ω)) as (h, k) → 0.
Finally, from ρh,k → ρ weakly in L2(0, T ; H1(Ω)) by Lemma 19, we infer the desired
result. �

Taking into account estimate iv) of Lemma 11, it is easy to check that

ρ̂h,k → ρ in L2(0, T ; H1(Ω)) as (h, k) → 0.
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5.3. Convergence for the density scheme. At this point, we study the conver-
gence (as (h, k) → 0) for the incompressible condition and for the density scheme.

Proposition 24. The limit function u satisfies

∇ · u = 0 in Ω × (0, T ).

Proof. Let q ∈ H1(0, T ; H1(Ω)) be such that
∫

Ω

q(x) dx = 0. We define qn
h as the

interpolated into Mh of q(tn) and by qh,k ∈ L∞(0, T ; Mh) the piecewise constant
function taking values qn+1

h on (tn, tn+1]. Then, one has

(52) qk,h → q in L∞(0, T ; L2(Ω)).

Taking pn+1
h = qn+1

h as a test function in (24), multiplying by k and adding for n,

(53)
∫ T

0

(
∇ · uh,k, qh,k

)
dt = 0.

Thus, taking the limit in (53) as (h, k) → 0 and using that

∇ · uh,k → ∇ · u in L2(0, T ; L2(Ω))-weak, as (h, k) → 0,

one arrives at

0 = lim
(h,k)→0

∫ T

0

(
∇ · uh,k, qh,k

)
dt =

∫ T

0

(
∇ · u, q

)
dt.

Consequently, ∇ · u = 0 holds in Q. �
Proposition 25. The limit function ρ ∈ L∞(0, T ; H1

N (Ω)) ∩ L2(0, T ; H2
N (Ω)) sat-

isfies:

(54) ρt + u · ∇ρ − λ∆ρ = 0 a.e. in Q

and the pointwise estimate

0 < m ≤ ρ(x, t) ≤ M < ∞ in Q.

Proof. Let η ∈ C∞
c (Q). We define ηn

h as the interpolated function of η(tn) into
Wh. We define ηh,k ∈ L∞(0, T ; Wh) as the piecewise constant function taking
values ηn+1

h on (tn, tn+1]. One can also prove the following strong convergences as
(h, k) → 0:

(55) ηk,h → η in L∞(0, T ; H1(Ω)).

Taking ρ̄h = ηn+1
h as a test function in (22), multiplying by k and summing over

n, we arrive at

(56)
−

∫ T

0

( d

dt
ρh,k, ηh,k

)
dt +

∫ T

0

(
ûh,k · ∇ρ̂h,k, ηh,k

)
dt

+ λ

∫ T

0

(
∇ρh,k,∇ηh,k

)
dt = 0.

Taking the limit as (h, k) → 0 in (56) and using the following convergences as
(h, k) → 0:

• ûh,k → u in L2(0, T ; H1
0(Ω))-weak,

• ρ̂h,k → ρ in L2(0, T ; H1(Ω))-strong,
d

dt
ρh,k → d

dt
ρ in L2(0, T ; L2(Ω))-

weak,
the proof is concluded by using the additional regularity ρ ∈ L2(0, T ; H2(Ω)). �
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5.4. Strong Convergence in L2(Ω) for the truncated density. Using Propo-
sition 25, we establish the following compactness result.

Proposition 26.

(57) [ρh,k]T , [ρ̂h,k]T → ρ in L2(0, T ; L2(Ω))-strong, as (h, k) → 0.

Proof. We will show the proof for ρh,k, and analogously it can be shown for ρ̂h,k.
We define the following pointwise truncating operator:

TM
m ρh,k(x, t) =

⎧⎨⎩
ρh,k(x, t) if ρh,k(x, t) ∈ [m, M ],
m if ρh,k(x, t) < m,
M if ρh,k(x, t) > M.

Notice that, in general, TM
m ρh,k /∈ Wh. Let us see first that TM

m ρh,k → ρ in
L2(0, T ; L2(Ω))-strong as (h, k) → 0. Indeed, since ρh,k → ρ in L2(0, T ; L2(Ω))-
strong, as (h, k) → 0, one can extract a subsequence (denoted in the same way)
such that:

ρh,k(x , t) → ρ(x, t) a.e.(x , t) ∈ Q, as (h, k) → 0.

Therefore, if we consider (x, t) ∈ Q such that ρ(x, t) ∈ (m, M), then there exist
h0(x, t) > 0 and k0(x, t) > 0 so that ρh,k(x, t) ∈ (m, M) holds for all h ≤ h0(x, t)
and k ≤ k0(x, t). Thus, ρh,k(x , t) = TM

m ρh,k(x , t) and TM
m ρh,k(x , t) → ρ(x, t) as

(h, k) → 0.
On the other hand, if (x, t) ∈ Q is such that ρ(x , t) = m, then

∀ ε > 0, ∃ (h0, k0)(x, t) such that ∀ (h, k) ≤ (h0, k0)(x, t), one has

|ρh,k(x, t) − m| = |ρh,k(x, t) − ρ(x, t)| < ε.

If we choose ε < M − m this gives TM
m ρh,k(x, t) = ρh,k(x, t) or TM

m ρh,k(x, t) = m.
Therefore, ∀ ε > 0 (with ε < M − m) and ∀ (h, k) ≤ (h0, k0)(x, t) one has

|TM
m ρh,k(x, t) − ρ(x, t)| < ε.

Finally, the remaining case of (x, t) ∈ Q such that ρ(x , t) = M is proved in the
same manner.

Consequently, we have that TM
m ρh,k(x , t) → ρ(x, t) a.e. (x , t) ∈ Q as (h, k) →

0. Therefore, using that |TM
m ρh,k(x , t)| ≤ M a.e. (x , t) ∈ Q, we can apply the

Dominated Convergence Theorem, obtaining

(58) TM
m ρh,k → ρ in L2(0, T ; L2(Ω))-strong, as (h, k) → 0.

Using the interpolation operator Ih from H1(Ω) ∩ c0(Ω̄) into Wh, it is easy to
check that

[ρh,k]T = Ih(TM
m ρh,k);

hence we can write

(59) [ρh,k]T − ρ = Ih(TM
m ρh,k) − Ih(ρ) + Ih(ρ) − ρ.

It is verified that

(60) Ih(TM
m ρh,k) − Ih(ρ) → 0 in L2(0, T ; L2(Ω)).

Indeed, taking the norm in L2(Ω),

|Ih(TM
m ρh,k) − Ih(ρ)| = |Ih(TM

m ρh,k − ρ)|
≤ |Ih(TM

m ρh,k − ρ) − (TM
m ρh,k − ρ)| + |TM

m ρh,k − ρ|
≤ C h ‖TM

m ρh,k − ρ‖H1(Ω) + |TM
m ρh,k − ρ|.
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Next, taking the norm in L2(0, T ),

‖Ih(TM
m ρh,k) − Ih(ρ)‖L2(0,T ;L2(Ω)) ≤ C h ‖TM

m ρh,k − ρ‖L2(0,T ;H1(Ω))

+ ‖TM
m ρh,k − ρ‖L2(0,T ;L2(Ω)).

Therefore, using (58) and that TM
m ρh,k is bounded in L2(0, T ; H1(Ω)) (thanks

to |∇TM
m ρh,k| ≤ |∇ρh,k| and that {ρh,k}h,k is bounded in L2(0, T ; H1(Ω))), (60)

holds.
As well Ih(ρ) − ρ → 0 in L2(0, T ; L2(Ω)), thanks to |Ih(ρ) − ρ| ≤ Ch‖ρ‖H1(Ω);

hence
‖Ih(ρ) − ρ‖L2(0,T ;L2(Ω)) ≤ C h‖ρ‖L2(0,T ;H1(Ω)).

From (59), we arrive at (57). �

5.5. Strong convergence for the velocity.

Proposition 27. The following “fractional in time” estimate holds:
(61)∫ T−δ

0

∣∣∣√[ρh,k]T (t + δ)(uh,k(t + δ) − uh,k(t))
∣∣∣2 dt ≤ C δ1/2 ∀ δ : 0 < δ < T,

with C > 0 independent of h, k and δ.

Proof. Since ρh,k and uh,k are piecewise constant functions, to obtain (61) it suffices
to consider δ as a multiple of the time step k, that is, δ = r k with r = 0, . . . , N
and to prove

(62) k
N−r∑
m=0

|
√

[ρm+r
h ]T (um+r

h − um
h )|2 ≤ C (r k)1/2, ∀ r : 0 ≤ r ≤ N.

Firstly, we will write the time derivative to the momentum equation (23) in a
conservative form. It is obtained by adding to both sides of (23) the term

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
,

as follows:

(63)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
[ρn+1

h ]Tun+1
h − [ρn

h]Tun
h

k
, ūh

)
+ a

(
[ρn+1

h ]T ,un+1
h , ūh

)
+ c

(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h , ūh

)
−

(
pn+1

h ,∇ · ūh

)
=

(
[ρn+1

h ]T f n+1, ūh

)
+

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
.

Multiplying by k and summing for n = m, ..., m − 1 + r in (63), we arrive at
(64)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
[ρm+r

h ]T um+r
h − [ρm

h ]T um
h , ūh

)
+ k

m−1+r∑
n=m

a
(
[ρn+1

h ]T ,un+1
h , ūh

)
+ k

m−1+r∑
n=m

c
(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h , ūh

)
−

m−1+r∑
n=m

(
pn+1

h ,∇ · ūh

)
= k

m−1+r∑
n=m

(
[ρn+1

h ]T f n+1, ūh

)
+

k

2

m−1+r∑
n=m

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
.
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Taking ūh = um+r
h − um

h as a test function and keeping in mind the identity(
[ρm+r

h ]Tum+r
h − [ρm

h ]Tum
h ,um+r

h − um
h

)
=

(
[ρm+r

h ]T (um+r
h − um

h ),um+r
h − um

h

)
+

(
[ρm+r

h ]T − [ρm
h ]T ,um

h · (um+r
h − um

h )
)
,

we get

(65)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|
√

[ρm+r
h ]T (um+r

h − um
h )|2 = −

(
[ρm

h ]T − [ρm+r
h ]T ,um

h · (um+r
h − um

h )
)

− k
m−1+r∑
n=m

a
(
[ρn+1

h ]T ,un+1
h ,um+r

h − um
h

)
− k

m−1+r∑
n=m

c
(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h ,um+r

h − um
h

)
+ k

m−1+r∑
n=m

(
[ρn+1

h ]T f n+1,um+r
h − um

h

)
+ k

m−1+r∑
n=m

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · (um+r
h − um

h )
)

.

On the other hand, multiplying by k, summing for n = m, ..., m−1+r and taking as
a test function ρ̄h = ρm

h − ρm+r
h in the density equation (25)a, we find the equality

(66) |ρm
h − ρm+r

h |2 = −k

m−1+r∑
n=m

(
un

h · ∇ρn
h + λωn+1

h , ρm
h − ρm+r

h

)
.

Now, estimating the right-hand side of (66) as

|ρm
h − ρm+r

h |2 ≤ k

m−1+r∑
n=m

(‖un
h‖L4(Ω)‖∇ρn

h‖L4(Ω) + λ|ωn+1
h |)|ρm

h − ρm+r
h |,

one gets

|ρm
h − ρm+r

h | ≤ C k
m−1+r∑
n=m

(‖un
h‖L4(Ω)‖∇ρn

h‖L4(Ω) + |ωn+1
h |)

≤ C k

(
m−1+r∑
n=m

‖un
h‖2

L4(Ω)‖∇ρn
h‖2

L4(Ω) + |ωn+1
h |2

)1/2

(rk)1/2

≤ C (rk)1/2.

Therefore, we have obtained that max
1≤m≤N

|ρm
h − ρm+r

h | ≤ C (r k)1/2. Consequently,

using that |[ρm
h ]T − [ρm+r

h ]T | ≤ |ρm
h − ρm+r

h |, one also obtains that

(67) max
1≤m≤N

|[ρm
h ]T − [ρm+r

h ]T | ≤ C (r k)1/2.

Multiplying by k and summing for m = 0, ..., N − r in (65) and bounding ad-
equately, we can obtain the required bound (62). For brevity, we only bound the
two main terms of (65):

(68) −k

N−r∑
m=0

(
[ρm

h ]T − [ρm+r
h ]T ,um

h · (um+r
h − um

h )
)
≤ Crk
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(69) −k2
N−r∑
m=0

m−1+r∑
n=m

c
(
ρn+1

h un
h − λ∇ρn+1

h ,um+r
h − um

h ,un+1
h

)
≤ C(rk)1/2.

Indeed, we bound (68) as follows:

−k

N−r∑
m=0

(
[ρm

h ]T − [ρm+r
h ]T ,um

h · (um+r
h − um

h )
)

≤ k

N−r∑
m=0

|[ρm
h ]T − [ρm+r

h ]T |‖um
h ‖L4(Ω)‖um+r

h − um
h ‖L4(Ω)

≤ max
1≤m≤N

|[ρm
h ]T − [ρm+r

h ]T |
(

k

N−r∑
m=0

‖um
h ‖2

L4(Ω)

)1/2(
k

N−r∑
m=0

‖um+r
h − um

h ‖L4(Ω)

)1/2

≤ C (r k)1/2 (using (67)).

We bound (69) using (21), as follows:

k2
N−r∑
m=0

m−1+r∑
n=m

c
(
ρn+1

h un
h − λ∇ρn+1

h ,um+r
h − um

h ,un+1
h

)
≤ C k2

N−r∑
m=0

m−1+r∑
n=m

‖ρn+1
h un

h − λ∇ρn+1
h ‖L3‖un+1

h ‖‖um+r
h − um

h ‖

≤ C k2
N−r∑
m=0

m−1+r∑
n=m

(
‖ρn+1

h ‖H1(Ω)‖un
h‖ + |ωn+1

h |
)
‖un+1

h ‖‖um+r
h − um

h ‖.

Interchanging the sum order (Fubini’s discrete rule) and using the estimate
‖ρn+1

h ‖H1(Ω) ≤ C, we get

k2
N−r∑
m=0

m−1+r∑
n=m

c
(
ρn+1

h un
h − λ∇ρn+1

h ,um+r
h − um

h ,un+1
h

)
≤ C k2

N−1∑
n=0

(
‖un

h‖ + |ωn+1
h |

)
‖un+1

h ‖
n∑

m=n−r+1

‖um+r
h − um

h ‖,

where

n̄ =

⎧⎨⎩
0 if n < 0,
n if 0 ≤ n ≤ N − r,
N − r if n > N − r.

Next, using the inequality |n − n − r + 1| ≤ r,

k2
N−r∑
m=0

m−1+r∑
n=m

c
(
ρn+1

h un
h − λ∇ρn+1

h ,um+r
h − um

h ,un+1
h

)

≤ C

N−1∑
n=0

k
(
‖un

h‖+|ωn+1
h |

)
‖un+1

h ‖

⎛⎝ n∑
m=n−r+1

k‖um+r
h −um

h ‖2

⎞⎠1/2⎛⎝ n∑
m=n−r+1

k

⎞⎠1/2

≤ C(r k)1/2

(
k

N−1∑
n=0

(
‖un

h‖ + |ωn+1
h |

)2
)1/2 (

k

N−1∑
n=0

‖un+1
h ‖2

)1/2

≤ C (r k)1/2,

and the proof is finished. �
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Remark 28. From the a priori estimates of uh,k in L∞(0, T ; L2(Ω)) ∩ L2(0, T ;
H1

0(Ω)) and the fractional in time estimate (61), we can apply a compactness
result ([16]) of Aubin-Lions type, obtaining that

uh,k → u in L2(0, T ; L2(Ω))-strong as (h, k) → 0.

Consequently, thanks to (49),

ûh,k → u in L2(0, T ; L2(Ω))-strong as (h, k) → 0.

6. Convergence for the momentum system

In order to eliminate the discrete pressure, we are going to consider adequate
test functions, thanks to the following:

Lemma 29. Let ū ∈ H2(Ω) ∩ H1
0(Ω). Then, there exists ūh ∈ Vh such that:

i) ūh → ū in H1
0(Ω),

ii)
(
∇ · ūh, qh

)
=

(
∇ · ū, qh

)
, ∀qh ∈ Mh.

Proof. We consider th as the interpolation of ū into Vh. Then, ‖ū − th‖ → 0 as
h → 0. We define (eh, rh) ∈ Vh × Mh as the solution of the following “discrete
Stokes” problem:

(70)

⎧⎨⎩
(
∇eh,∇yh

)
−

(
rh,∇ · yh

)
=

(
∇(ū− th),∇yh

)
, ∀yh ∈ Vh,(

∇ · eh, p̄h

)
=

(
∇ · (ū− th), p̄h

)
, ∀ p̄h ∈ Mh.

It is easy to deduce, using the inf-sup condition, that (70) has a unique solution.
The estimate

‖eh‖ + |rh| ≤ C ‖ū− th‖
also holds. Since ‖ū − th‖ → 0, then (eh, rh) → 0 in H1 × L2. By defining
ūh = eh + th, one has

‖ū− ūh‖ ≤ ‖ū− th‖ + ‖eh‖ ≤ ‖ū− th‖.
Therefore, we have proved i). The statement ii) holds from the definition of ūh. �

Let v ∈ C∞
c ([0, T ) × Ω) be a free divergence function such that v(T ) = 0.

We consider vn
h the projection (by a discrete Stokes problem) of v(tn) given by

Lemma 29. We define vh,k ∈ L∞(0, T ; vh) as the piecewise constant function
taking the value vn+1

h on (tn, tn+1] and ṽh,k ∈ C0([0, T ]; V h) the corresponding
globally continuous piecewise linear function such that ṽh,k(tn) = vn

h. Then, as
(h, k) → 0, one has

vh,k → v in L∞(0, T ; H1
0(Ω)),(71)

ṽh,k → v in W 1,∞(0, T ; H1
0(Ω)).(72)

Taking ūh = vn+1
h as a test function in (63), multiplying by k, adding over n

and using the identity (discrete integration by parts in time)

N−1∑
n=0

(
ρn+1

h un+1
h − ρn

hu
n
h, v(tn+1)

)
=

(
ρN

h uN
h , vN

h

)
−

N−1∑
n=0

(
ρn

hu
n
h, vn+1

h − vn
h

)
−

(
ρ0hu0h, v0

h

)
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and the fact that vN
h = 0 (since v ∈ D([0, T ) × Ω)), the following statement holds:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
N−1∑
n=0

(
ρn

hu
n
h, vn+1

h − vn
h

)
−

(
ρ0hu0h, v0

h

)
+

N−1∑
n=0

a
(
[ρn+1

h ]T ,un+1
h , vn+1

h

)
+

N−1∑
n=0

c
(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h , vn+1

h

)
= k

N−1∑
n=0

(
[ρn+1

h ]T f n+1, vn+1
h

)
+ k

N−1∑
n=0

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · vn+1
h

)
.

Next, using Definition 17,
(73)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫ T

0

(
ρ̂h,k(t)ûh,k(t),

∂

∂t
ṽh,k(t)

)
dt −

(
ρ0hu0h, v0

h

)
+

∫ T

0

c
(
ρh,k(t)ûh,k(t) − λ∇ρh,k(t),uh,k(t), vh,k(t)

)
dt

+
∫ T

0

a
(
ρh,k(t),uh,k(t), vh,k(t)

)
dt

=
∫ T

0

(
ρT

h,k(t)fk(t), vh,k(t)
)

dt +
k

2

∫ T

0

(
∂

∂t
ρ̃T

h,k(t),uh,k(t) · vh,k(t)
)

dt

where we denote ρT
h,k, ρ̃T

h,k, fk as in the foregoing definitions.
From this weak statement for the discrete momentum system, one can pass to the

limit in a standard way thanks to the convergence properties obtained throughout
this work. Notice that, to take the limit in the last term, the estimate of Corollary
22 is used.

Then the limit function (ρ, u), jointly with an associated pressure p (obtained a
posteriori by de Rham’s lemma), is the weak solution of the continuous problem.
Notice that, thanks to the uniqueness of this weak solution in 2D domains, it is
easy to obtain the convergence of the whole sequences. Consequently, the proof of
Theorem 5 is concluded.

7. Pollution model with mass diffusion

We design a numerical scheme for problem (8), (9)-(10), following the same ideas
of the numerical scheme given in Section 2, where we will replace the stabilization
term of the momentum system

−λ

∫
Ω

M + m

2
(∇un+1

h )t : ∇ūh dx

by the term λ m
(
∇ · un+1

h ,∇ · ūh

)
. As well, the density entering into the diffusion

term in the momentum system has been truncated. Thus, we arrive at the following
numerical scheme:

Given (un
h, pn

h, ρn
h) ∈ Vh × Mh × Wh.

(1) Find ρn+1
h ∈ Wh such that for each ρ̄h ∈ Wh:

(74)
(

ρn+1
h − ρn

h

k
, ρ̄h

)
+

(
un

h · ∇ρn
h, ρ̄h

)
+ λ

(
∇ρn+1

h ,∇ρ̄h

)
= 0.
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(2) Find (un+1
h , pn+1

h ) ∈ Vh × Mh such that for each (ūh, p̄h) ∈ Vh × Mh:

⎧⎪⎨⎪⎩
(

[ρn
h]T

un+1
h −un

h

k
, ūh

)
+

1
2

(
[ρn+1

h ]T −[ρn
h]T

k
,un+1

h ·ūh

)
+ã

(
[ρn+1

h ]T ,un+1
h , ūh

)
+ c

(
ρn+1

h un
h − λ∇ρn+1

h ,un+1
h , ūh

)
=

(
[ρn+1

h ]T f n+1, ūh

)
+

(
pn+1

h ,∇ · ūh

)
,

(75)

(
∇ · un+1

h , p̄h

)
= 0,(76)

where
ã
(
ρ, u, v

)
= λ

(
ρ(∇u − (∇u)t),∇v

)
+ λ m

(
∇ · u,∇ · v

)
and c(·, ·, ·) is defined as in Section 2. Taking into account the equality (87) in (77)
and the lower estimate for the truncated density, it follows that

(77) ã
(
[ρ]T , u, u

)
≥ λ m

∫
Ω

(|rotu|2 + |∇ · u|2) dx.

Observing that
∫

Ω

(|rotu|2 + |∇ ·u|2) dx =
∫

Ω

|∇u|2 dx for any u ∈ H1
0(Ω) thanks

to the equality (88) (see Appendix B), we arrive at

ã
(
[ρ]T , u, u

)
≥ λ m‖u‖2 ∀u ∈ H1

0(Ω).

Accordingly, following the same arguments developed for the model of linear dif-
fusion, one can arrive at exactly the same conclusions. Notice that the passage to
the limit in the new diffusion term

(
[ρh,k]T (∇uh,k −∇ut

h,k),∇vh,k

)
is controlled

thanks to the convergences [ρh,k]T → ρ in L2(Q)-strong (and in L∞(Ω)-weak�),
∇uh,k → ∇u in L2(Q)-weak and ∇vh,k → ∇v in L2(Q)-strong.

8. A generalization of the pollution model

The pollution model (8) is a particular case of a general model derived in [3, 4].
For this general model, we will define a numerical scheme (using the main ideas
of the previous schemes) which will be unconditionally stable, but the convergence
remains as an open problem.

Such a model again begins from the compressible model (1) assuming this time
the following decomposition:

ρv = ρu − λ∇Ψ(ρ) with ∇ · u = 0.

Then, imposing µ = λ the compressible model (1) reads ([3, 4]):

(78)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ρu)t + ∇ ·

(
(ρu − λ∇Ψ(ρ)) ⊗ u

−λu ⊗∇Ψ(ρ)
)
− λ∇ · (Ψ(ρ)∇u) + ∇P = ρf in Q,

∇ · u = 0 in Q, ρt + ∇ · (ρu − λ∇Ψ(ρ)) = 0 in Q,

where

P = q−(µ+λ̃)∇·
(
u− λ

ρ
∇Ψ(ρ)

)
−λΨ(ρ)t−λ2

(
Ψ(ρ)∇ ·

(1
ρ
∇Ψ(ρ)

)
+

|∇Ψ(ρ)|2
ρ

)
.
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Now observe that the λ2-terms which are not canceled are all of potential type

(using an auxiliary function ϕ such that ∇ϕ(ρ) =
1
ρ
∇Ψ(ρ)) and they are included

into the modified pressure P .
Note that when Ψ(ρ) = ρ (then ϕ(ρ) = log ρ), we arrive at the pollution model

(8).
The weak definition for the general model (78) remains as follows (now, equality

(5) is again used, replacing ρ by Ψ(ρ)):

Definition 30. A pair (ρ, u) is called a weak solution of (78), (9)-(10) in (0, T ) if
it satisfies:

a) u ∈ L∞(0, T ; H) ∩ L2(0, T ; V ),
ρ ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)),
0 < m ≤ ρ(x, t) ≤ M, a.e. (x, t) ∈ Q.

b) ∀φ ∈ C1([0, T ]; V ) such that φ(T ) = 0,∫ T

0

{
−
(
u, ρφt + (ρu − λ∇Ψ(ρ)) · ∇φ

)
+ λ

(
Ψ(ρ)(∇u − (∇u)t),∇φ

)}
dt

=
∫ T

0

(
ρf , φ

)
dt +

(
ρ0u0, φ(0)

)
.

c) ∀ η ∈ C1([0, T ]; H1(Ω)) such that η(T ) = 0,∫ T

0

{
−
(
ρ, ηt

)
−

(
ρu,∇η

)
+

(
λ∇Ψ(ρ),∇η

)}
dt =

(
ρ0u0, η(0)

)
.

Remark 31. Observe that the density solution for this general model ρ ∈ L∞(0, T ;
L2(Ω)) ∩ L2(0, T ; H1(Ω)); therefore it loses one regularity order in space in com-
parison with the two earlier models (7) and (8) for which ρ ∈ L∞(0, T ; H1(Ω)) ∩
L2(0, T ; H2(Ω)). This regularity implies ρt ∈ L2(0, T ; L2(Ω)) . Now, only ρt ∈
L2(0, T ; H1(Ω)′) holds.

The existence of weak solutions for this general model (78) is established in
([3, 4]).

Theorem 32. Let u0 ∈ H, ρ0 ∈ H1(Ω) satisfying (11), f ∈ L2(0, T ; Lp(Ω)) with
p > 1 and Ψ ∈ C1([m, M ]) is a real function such that 0 < α ≤ Ψ and 0 < β ≤ Ψ′

in [m, M ]. Then, there exists at least a weak solution of (78), (9)-(10) in (0, T ).

In order to approximate numerically the general model (78), we propose the
following scheme inspired in the foregoing ideas for the models (7) and (8):
Initialization: Let (u0

h, ρ0
h) ∈ (V h, Wh) be suitable approximations of (u0, ρ0) as

h → 0.

Time step n + 1: Given (un
h, ρn

h, Ψn
h) ∈ Vh × Wh × Wh.

(1) Find ρn+1
h ∈ Wh such that for each ρ̄h ∈ Wh:

(79)
(

ρn+1
h − ρn

h

k
, ρ̄h

)
+ c

(
un

h, ρn+1
h , ρ̄h

)
+ λ

(
Ψ′([ρn

h]T )∇ρn+1
h ,∇ρ̄h

)
= 0,
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(2) Find (un+1
h , pn+1

h ) ∈ Vh × Mh such that for each (ūh, p̄h) ∈ Vh × Mh:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
[ρn

h]T
un+1

h − un
h

k
, ūh

)
+

1
2

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · ūh

)
+a

(
Ψ([ρn+1

h ]T ),un+1
h , ūh

)
+ c

(
ρn+1

h un
h − λΨ′([ρn+1

h ]T )∇ρn+1
h ,un+1

h , ūh

)
=

(
[ρn+1

h ]T f n+1, ūh

)
+

(
pn+1

h ,∇ · ūh

)
,

(80)

(
∇ · un+1

h , p̄h

)
= 0,(81)

where the trilineal forms a
(
·, ·, ·

)
and c

(
·, ·, ·

)
and the discrete truncation operator

[·]T are defined as before.
The convective term for ρn+1

h has been approximated by c
(
un

h, ρn+1
h , ρ̄h

)
instead

of
(
un

h ·∇ρn
h, ρ̄h

)
in order to obtain unconditional stability, since the control of the

explicit form introduces constraints between the discretization parameters because
the estimates for the density are now satisfied only in weak norms.

In fact, using the techniques developed for the foregoing schemes there are no
additional difficulties in obtaining the following unconditional stability estimates:

Lemma 33. Suppose u0 ∈ H, ρ0 ∈ L2(Ω) satisfying (11), f ∈ L2(0, T ; Lp(Ω))
with p > 1 and Ψ ∈ C1([m, M ]) is a real function such that 0 < α ≤ Ψ and
0 < β ≤ Ψ′ in [m, M ]. Then, the solution of the discrete scheme (79)-(81) satisfies
the following estimates:

i) max
0≤n≤N

|un
h| ≤ C, ii) k

N∑
n=1

‖un
h‖2 ≤ C, iii)

N−1∑
n=0

|un+1
h − un

h|2 ≤ C,

iv) max
0≤n≤N

|ρn
h| ≤ C, v) k

N∑
n=1

|∇ρn
h|2 ≤ C, vi)

N−1∑
n=0

|∇(ρn+1
h − ρn

h)|2 ≤ C,

with C > 0 depending only on (ρ0, u0, f).

For the convergence of the scheme (79)-(81), the main difficulty lies in the com-
pactness argument of the approximate velocity in L2(Q) based on a fractional
estimate (see Proposition (27), for which it was essential to control the terms

(82)
k2

2

N−r∑
m=0

m−1+r∑
n=m

(
[ρn+1

h ]T − [ρn
h]T

k
,un+1

h · um+r
h − um

h

)
and

(83) k2
N−r∑
m=0

m−1+r∑
n=m

c
(
ρn+1

h un
h − λΨ′([ρn+1

h ]T )∇ρn+1
h ,um+r

h − um
h ,un+1

h

)
by C(r k)γ with 0 < γ ≤ 1. Now, because of the loss of regularity of the dis-
crete density with respect to the models (7) and (8), the estimate for the discrete
time derivative of the approximate density in L2(Q) changes by an estimate in
L2(0, T ; H1(Ω)′), which is not enough to bound (82) and obviously the weak regu-
larity of the density is not sufficient to bound (83).
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Appendix A. Outline of the proof of Theorem 3

We only argue in a formal manner. Let us suppose that we have a regular enough
solution (ρ, u) of (7), (9)-(10).

First, thanks to the maximum principle applied to the parabolic problem for the
density (7)c and using (11), we can deduce that

0 < m ≤ ρ(x, t) ≤ M in Q.

To obtain a priori estimates for the velocity we need to add to the momentum
equation (7)a multiplied by v ∈ V and integrated over Ω, the density equation
multiplied by 1

2u · v and integrated over Ω, resulting in the variational equality:(
ρut, v

)
+

(
((ρu − λ∇ρ) · ∇)u, v

)
+

(
µ∇u − λρ(∇u)t,∇v

)
+

1
2

(
ρt, u · v

)
− 1

2

(
ρu − λ∇ρ,∇(u · v)

)
=

(
ρf , v

)
.

Choosing as a test function v = u, we get the following energy relation:

(84)
1
2

d

dt

∫
Ω

ρ|u|2dx + µ‖u‖2 = λ

∫
Ω

ρ(∇u)t : ∇u dx +
(
ρf , u

)
.

Making use of the equality∫
Ω

(∇v)t : ∇v dx = 0, ∀v ∈ v,

one can rewrite the first term on the right-hand side of (84) as∫
Ω

ρ(∇u)t : ∇u dx =
∫

Ω

(
ρ − M + m

2

)
(∇u)t : ∇u dx.

Since m ≤ ρ ≤ M , the inequality | ρ − (M + m)/2 | ≤ (M − m)/2 holds almost
everywhere in Q; therefore

(85) λ

∫
Ω

ρ(∇u)t : ∇u dx ≤ λ
M − m

2
‖u‖2.

Imposing the restriction on the coefficients, λ < 2µ(M−m)−1, this gives µ− λ

2
(M−

m) = µ1/2 > 0. Then, from (84), (85) and the upper bound for the density,

(86)
d

dt

∫
Ω

ρ|u|2dx + µ1‖u‖2 ≤ 2
(
ρf , u

)
≤ ε‖u‖2 + Cε‖f‖2

Lp(Ω)

with p > 1. Therefore, applying the lower bound of the density and integrating
(86) over (0, t) ∀t ≤ T , we arrive at the estimate

max
0≤t≤T

|u(t)|2 +
∫ T

0

‖u(t)‖2dt ≤ C.

Multiplying the density equation (7)c by −∆ρ, bounding the convective term thanks
to the 2D interpolation inequalities

‖u‖L4(Ω) ≤ C |u|1/2|∇u|1/2 and ‖∇ρ‖L4(Ω) ≤ C |∇ρ|1/2|∆ρ|1/2

(which are a consequence of Gagliardo-Nirenberg ’s inequality and the equivalent
norms ‖u‖H1(Ω) and |∇u|L2(Ω), and ‖∇ρ‖H1(Ω) and |∆ρ|), we arrive at

1
2

d

dt
|∇ρ|2 + λ|∆ρ|2 ≤ C ‖u‖L4‖∇ρ‖L4 |∆ρ| ≤ ε|∆ρ|2 + C |u|2|∇u|2|∇ρ|2.
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Therefore, from Gronwall’s Lemma, we get the estimate

max
0≤t≤T

|∇ρ(t)|2 + λ

∫ T

0

|∆ρ(t)|2dt ≤ C.

Through a quite technical argument ([1]), one arrives at the following estimate of
the “fractional in time derivative”∫ T−δ

0

|u(t + δ) − u(t)|2 dt ≤ C δ1/2, ∀δ ∈ (0, T ).

This estimate implies ([16]) compactness for the velocity u in L2(0, T ; L2(Ω)). From
here, it is rather standard to obtain the existence of weak solutions of ([1]), using
for instance the Faedo-Galerkin method.

Appendix B. Sketch of the proof of Theorem 4

Suppose that we have (u, ρ, q) a sufficiently regular solution of (8), (9)-(10).
From the maximum principle of the parabolic density equation (8)c and since 0 <
m ≤ ρ0(x) ≤ M < +∞, one gets 0 < m ≤ ρ(x, t) ≤ M < +∞ in Q.

Multiplying the momentum system (8)a by u, the density equation (8)c by
1
2
u·u,

integrating over Ω and using the so-called vorticity tensor W = ∇u−∇ut, we arrive
at

(87)
∫

Ω

ρ
(
|∇u|2 − (∇u)t : ∇u

)
dx =

∫
Ω

ρW : ∇u dx =
∫

Ω

ρ|rotu|2 dx.

Since W = rotu
(

0 −1
1 0

)
, one has

d

dt

∫
Ω

ρ|u|2 dx + 2 λ

∫
Ω

ρ|rotu|2 dx = 2
∫

Ω

ρf · u dx.

Using ∆ = ∇div−rot rot, one has

(88)
∫

Ω

|∇u|2 dx =
∫

Ω

(|rotu|2 + |∇ · u|2) dx;

hence since ∇ · u = 0, we get

(89)
∫

Ω

|∇u|2 dx =
∫

Ω

|rotu|2 dx.

Next, applying the lower bound for the density to
∫

Ω

ρ|rotu|2 dx ≥ m

∫
Ω

|rotu|2 dx

and the identity (89), one arrives at

(90)
d

dt

∫
Ω

ρ|u|2 dx + 2λ m

∫
Ω

|∇u|2 dx ≤ 2
(
ρf , u

)
≤ ε‖u‖2 + Cε‖f‖2

Lp(Ω)

where p > 1. Therefore, integrating (90) over (0, t) ∀t ≤ T and applying the lower
estimate for the density to the first term, one arrives at

max
0≤t≤T

|u(t)|2 +
∫ T

0

‖u(t)‖2dt ≤ C.

The bounds in L∞(H1) ∩ L2(H2) for the density are obtained as in Theorem 3. �
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