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THE ZEROS OF DEDEKIND ZETA FUNCTIONS AND
CLASS NUMBERS OF CM-FIELDS

GEON-NO LEE AND SOUN-HI KWON

Abstract. Let F ′/F be a finite normal extension of number fields with Galois
group Gal(F ′/F ). Let χ be an irreducible character of Gal(F ′/F ) of degree
greater than one and L(s, χ) the associated Artin L-function. Assuming the
truth of Artin’s conjecture, we have explicitly determined a zero-free region
about 1 for L(s, χ). As an application we show that, for a CM-field K of
degree 2n with solvable normal closure over Q, if n ≥ 370 as well as n /∈
{384, 400, 416, 448, 512}, then the relative class number of K is greater than
one.

1. Introduction

For a number field M we let DM , hM , and κM be the absolute value of the
discriminant, the class number of M , and the residue of ζM (s), the Dedekind zeta
function of M at s = 1, respectively. Let K be a CM-field of degree 2n and let
k be its maximal totally real subfield. Then we have ζK(s) = ζk(s)L(s, χ) and
DK = D2

kf , where f is the norm of the relative discriminant. Let h−
K = hK/hk be

the relative class number of K.
In [M2], Kumar Murty proved that there are only finitely many CM-fields K

with class number one if the normal closure N of k has a solvable Galois group. In
this paper we determine explicitly a zero-free region about 1 for ζK(s), assuming
the truth of Artin’s conjecture. We apply this result to get an explicit lower bound
for the relative class number of CM-fields.

Before stating our result we define the following functions as in [M2]. For an
integer n, let

e(n) = max
pα||n

α

and

δ(n) = (e(n) + 1)231/312e(n)−1.

Our result is as follows.

Theorem 1. (1) Let F ′/F be a normal extension of number fields with Galois group
Gal(F ′/F ). Let χ be an irreducible character of Gal(F ′/F ) of degree larger than
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one, fχ its Artin conductor, and L(s, χ) the associated Artin L-function. Assume
the truth of Artin’s conjecture for F ′/F . Then L(σ, χ) has no real zeros in the range

(1.1) 1 − 0.023932
χ(1)3 log Aχ

≤ σ ≤ 1

where Aχ = D
χ(1)
F NF/Q(fχ).

(2) Let L/E be an extension of number fields of degree n whose Galois closure
is solvable. Suppose that ζL(s) has a real zero σ in the range

1 − 0.011966
ne(n)δ(n) log dL

≤ σ ≤ 1.

Then, there is a field B with E ⊆ B ⊆ L and [B : E] ≤ 2 such that ζB(σ) = 0.
(3) Let K be a CM-field of degree 2n with solvable normal closure over Q. Then

ζK(σ) has no real zeros in the range

(1.2) 1 − 0.000443
n(2n)e(2n)δ(n)

D
− 1

2n

K ≤ σ ≤ 1.

In particular, if n ≥ 774, then ζK(σ) has no real zeros in the range

(1.3) 1 − D
− 1

2n

K

1.78244 × 1040 × (1.03412)n
≤ σ ≤ 1.

The proof is given in Section 2. We apply these estimates to get lower bounds
for h−

K .

Theorem 2. Let K be a CM-field of degree 2n with solvable normal closure over
Q. If n ≥ 774, then

(1.4) h−
K ≥ (1.12806)n

3.04616 × 1040
≥ 1.05043 > 1.

If, in addition, 401 ≤ n ≤ 773 and n /∈ {405, 416, 432, 448, 480, 512}, then we have
h−

K > 1.

This theorem is proved in Section 3. In Section 4 we will give a better lower
bound for h−

K than (1.4).

2. Proof of Theorem 1

We use Kumar Murty’s approach.

Proof of point (1). For any character χ (i.e., not necessarily irreducible) of
Gal(F ′/F ), we let Vχ be the underlying space of χ. For each infinite place ν
of F , denote by σν the conjugacy class of Frobenius elements at primes of F ′ di-
viding ν and denote by χ±

ν (1) the dimension of the subspace on which σν acts by
±1. Following Murty ([M1] and [MM]) we set

aχ =
∑

χ+
ν (1), bχ =

∑
χ−

ν (1), and cχ = χ(1)r2(F ),

where the sums range over the real infinite places ν of F and r2(F ) is the number
of complex places of F . Set

G(s, χ) = (π−s/2Γ(s/2))aχ(π−(s+1)/2Γ((s + 1)/2))bχ((2π)−sΓ(s))cχ

and
Λ(s, χ) = As/2

χ G(s, χ)L(s, χ).
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Let δ(χ) = (χ, 1) be the multiplicity of the trivial representation in χ. We
assume Artin’s conjecture. Then, (s(s−1))δ(χ)Λ(s, χ) is entire and, using its infinite
product, we obtain that for Re(s) > 1, we have

−Re
L′

L
(s, χ) ≤ −

∑
ρ

Re(
1

s − ρ
) +

1
2

log Aχ + Re
G′

G
(s, χ) + δ(χ)Re(

1
s

+
1

s − 1
),

where the sum over ρ is over any subset of zeros of Λ(s, χ) with 0 < Re ρ < 1. (See
[M1, p. 291] and [Od1, p. 391].) For real σ with 1 < σ < 3/2, Re G′/G(σ, χ) < 0
because all of the three terms Γ′/Γ(σ/2) − log π, Γ′/Γ((σ + 1)/2) − log π, and
Γ′/Γ(σ) − log(2π) are negative. Hence, for 1 < σ < 3/2,

(2.1) −Re
L′

L
(σ, χ) ≤ −

∑
ρ

Re(
1

σ − ρ
) +

1
2

log Aχ + δ(χ)(
1
σ

+
1

σ − 1
).

(See [M1, (2.2)].) Now we are ready to prove (1.1). From now on we assume that
χ is an irreducible character of Gal(F ′/F ) of degree larger than one. Let φ be an
irreducible constituent of χ⊗ χ̄ which is not the identity character or χ. Let ρ = β
be a real zero of L(s, χ) with 0 < β < 1. Following the proof of [M1, Proposition
3.7] and [HR, p. 297], we have that for σ > 1,

0 ≤ −2
(

L′

L
(σ, χ) +

L′

L
(σ, χ̄)

)
− ζ ′F

ζF
(σ)

−L′

L
(σ, χ ⊗ χ̄) − L′

L
(σ, φ ⊗ φ̄) −

(L′

L
(σ, φ) +

L′

L
(σ, φ̄)

)
− I ′

I
(σ),

where I(s) is some entire function that is real for real s. Since fχ⊗χ̄ divides
f
χ̄(1)
χ f

χ(1)
χ̄ = f

2χ(1)
χ (see [Ma, p. 80] and [Od1, Lemma1]), we have log Aχ⊗χ̄ ≤

2χ(1) log Aχ. Similarly, fφ⊗φ̄|f
2φ(1)
φ and fφ|fχ⊗χ̄|f2χ(1)

χ , so log Aφ ≤ 2χ(1) log Aχ and
log Aφ⊗φ̄ ≤ 4χ(1)3 log Aχ.

Using (2.1), we find that for 1 < σ < 3/2,

−L′

L
(σ, χ) − L′

L
(σ, χ̄) ≤ − 2

σ − β
+ log Aχ,

−ζ ′F
ζF

(σ) ≤ 1
σ

+
1

σ − 1
+

1
2

log Aχ,

−L′

L
(σ, χ ⊗ χ̄) ≤ χ(1) log Aχ +

1
σ

+
1

σ − 1
,

−L′

L
(σ, φ ⊗ φ̄) ≤ 2χ(1)3 log Aχ +

1
σ

+
1

σ − 1
,

−L′

L
(σ, φ) − L′

L
(σ, φ̄) ≤ 2χ(1) log Aχ,

and log Aχ ≤ 1
2χ(1) log Aχ ≤ 1

4χ(1)2 log Aχ ≤ 1
8χ(1)3 log Aχ. Hence,

0 ≤ − 4
σ − β

+
3

σ − 1
+ 3χ(1)3 log Aχ.

Now choosing

σ = 1 +
α

χ(1)3 log Aχ
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for a sufficiently small α > 0 gives the zero-free region

1 − β ≥ −3α2 + α

(3α + 3)χ(1)3 log Aχ
.

For x > 0, the function h(x) = (−3x2 + x)/(3x + 3) reaches its maximum
(7 − 4

√
3)/2 = 0.023932 · · · at x = 2/

√
3 − 1 = 0.1547 · · · . Taking α = 0.1547

yields the desired zero-free region (1.1).
The point (2) follows immediately from [M2, Theorem 2.1] with c1 = 0.023932.

�

Proof of point (3). The first statement follows from [M2, Proposition 3.2] and the
proof of [M2, Theorem 3.2]. For the second statement we consider the function

f(x) = 2 log2 x + log2 x(log2 24 + log2 x) + 2 log2(log2 x + 1)

for x > 0. Then

f ′(x) =
2 + log2 24

x log 2
+

2 log2 x

x log 2
+

2
x log 2(log2 x + 1)

,

which is decreasing for x ≥ e. So, f(x) ≤ f(x0) + (x − x0)f ′(x0) for x ≥ x0 ≥ e.
For n ≥ n0 ≥ 3,

n(2n)e(2n)δ(n) ≤ n(2n)log2 n+1(log2 n + 1)231/312log2 n−1

= (31/3/6)n2(24n)log2 n(log2 n + 1)2

= (31/3/6)2f(n)

≤ (31/3/6)2f(n0)−n0f ′(n0)(2f ′(n0))n.

We evaluate f(774) = 162.0883 · · · and f ′(774) = 0.048399 · · · , so

(2.2) n(2n)e(2n)δ(n) ≤ 7.8962 × 1036 × (1.03412)n for n ≥ 774.

Substituting (2.2) into (1.2) yields (1.3). This completes the proof of Theorem 1.
The reason why we take n0 = 774 will become apparent in Section 3 below. �

3. Proof of Theorem 2

Our proof of Theorem 2 is similar to [B]. From the analytic class number formula
we have

(3.1) h−
K =

QKωK

(2π)n

√
DK

Dk

κK

κk
≥ 2D

1/4
K

(2π)n

κK

κk
,

where QK ∈ {1, 2} is the Hasse unit index of K and ωK denotes the number of roots
of unity in K ([W]). Using Weil’s explicit formula we get a lower bound for DK (see
(3.2) below) and an upper bound for κk (see (3.3) below). To get a lower bound for
κK we combine Louboutin’s result in [Lou] and our estimate of the zero-free region
about 1 for ζK(s) obtained in Section 2. Gathering together those three bounds we
get an explicit lower bound for h−

K . (See (3.5) below.)
For a real-valued function F satisfying the conditions in [B, Proposition 3] we

set

In(F ) =
4
n

∫ ∞

0

F (x) cosh(x/2)dx +
∫ ∞

0

(1 − F (x))ex/2

sinh(x)
dx.
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We use Weil’s explicit formula with

F (x) =

⎧⎨
⎩

9
( sin(x/b) − (x/b) cos(x/b)

(x/b)3
)2

/ cosh(x/2) for x �= 0,

1 for x = 0,

where b is the constant which is chosen so as to minimize the value In(F ) for a
given n. Then we obtain a good lower bound

(3.2)
1
n

log Dk ≥ log(8πeγ) +
π

2
− In(F ),

where γ is an Euler constant. (For Weil’s explicit formula, see [La, Ch. XVII].
For lower bounds on discriminants, see [Poi1] and [Poi2], [Od2], and [B, Subsection
3.1].)

Remark. Integrating by parts five times and using
∫ ∞

0

sin x

x
dx =

π

2
we obtain the

following formula, which is useful to evaluate In(F ):∫ ∞

0

( sin x − x cosx

x3

)2

dx =
π

15
.

In [B, Theorem 8] it was shown that for any totally real number field k of degree
n ≥ m we have

(3.3) κk ≤ Eσ

( Dk

C5(m)n

)c4(m)

,

where Eσ = 1 if ζk(s) has no real zero in the range 1/2 < β < 1, Eσ =
(1 − β)/(σm − β) otherwise, σm is a constant depending only on m, and c4(m)
and C5(m) are explicitly computable constants. The possible values for c4(m) and
C5(m) for some m with 400 ≤ m ≤ 774 are given in Table 1. Note that σm is not
too small (i.e., σm > 1.001 for 400 ≤ m ≤ 774).

Table 1

m σm c4(m) C5(m) m σm c4(m) C5(m)

400 1.003274 0.339768 50.76955 448 1.003011 0.338791 51.37075
401 1.003268 0.339746 50.78313 456 1.002973 0.338645 51.46186
405 1.003244 0.339657 50.83698 464 1.002935 0.338504 51.55068
408 1.003226 0.339592 50.87684 472 1.002898 0.338367 51.63728
412 1.003203 0.339505 50.92936 480 1.002863 0.338234 51.72177
416 1.003180 0.339421 50.98112 496 1.002795 0.337980 51.88471
420 1.003158 0.339338 51.03217 512 1.002731 0.337739 52.04011
424 1.003136 0.339256 51.08253 576 1.002507 0.336891 52.59673
432 1.003093 0.339096 51.18119 640 1.002323 0.336192 53.06872
440 1.003052 0.338941 51.27722 774 1.002026 0.335057 53.86114

For a lower bound of κK we use Theorem 1 in [Lou] (see also Theorem 16 in
[B]): for any totally imaginary number field K of degree ≥ 10 and root discriminant
ρK ≥ 2π2, we have unconditionally

(3.4) κK ≥

⎧⎪⎨
⎪⎩

1
ce1/(2c) log DK

if ζK(1 − 1/(c log DK)) ≤ 0,

1 − β

2e1/(2c)
if ζK(β) ≤ 0 with 1 − 1/(c log DK) ≤ β < 1,

where c = (2 +
√

3)/4.
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Set I = [1 − 1/c log DK , 1). We consider the three following cases:
(i) ζk(s) has a zero β ∈ I.
(ii) ζk(s) has no zero in I and ζK(s) has a simple zero β in I.
(iii) ζk(s) has no zero in I and ζK(s) has no simple zero in I.
Case (i): If ζk(s) has a zero β ∈ I, then ζK(β) = 0. Note that (1 − β)/Eσ =

σm − β > σm − 1. From (3.1), (3.3), and (3.4), it follows that

h−
K ≥ σm − 1

e1/(2c)

(C5(m)c4(m)

2π

)n

D
1
4−

1
2 c4(m)

K .

Case (ii): Since ζK(s) = ζk(s)L(s, χ), we have L(β, χ) = 0. Note that Eσ = 1
here. Combining (3.1), (3.3), and (3.4), we have

h−
K ≥ 1 − β

e1/(2c)

(C5(m)c4(m)

2π

)n

D
1
4−

1
2 c4(m)

K .

Using the lower bound for 1 − β in (1.2) we have

(3.5) h−
K ≥ 0.000443

e1/(2c)n(2n)e(2n)δ(n)

(C5(m)c4(m)

2π

)n

D
1
4−

1
2 c4(m)− 1

2n

K .

Case (iii): If ζk(s) has no zero in I and ζK(s) has no simple zero in I, then
either ζK(s) has no zero at all in I or ζK(s) has a double zero in I. This is because
ζK(s) has at most two zeros with multiplicity in I by [LLO, Lemma 15]. Then
ζK(1 − 1/(c log DK)) ≤ 0 and

h−
K ≥ 2

ce1/(2c)

(C5(m)c4(m)

2π

)n D
1
4−

1
2 c4(m)

K

log DK

by (3.1), (3.3) and (3.4).
Now, we compare the three following terms:

σm − 1,
0.000433D

−1/(2n)
K

n(2n)e(2n)δ(n)
,

2
c log DK

.

The second term is the smallest one among the three terms; hence (3.5) holds.
Using (3.2) with b = 6.6467 we verify that

(3.6) D
1
2n

K ≥ D
1
n

k ≥ 55.1658

for any CM-field of degree 2n ≥ 2 · 774. Substituting (2.2), (3.6), and the values
c4(774) and C5(774) in Table 1 into (3.5) yields (1.4).

In a similar way we have explicitly computed the lower bounds for h−
K for all

n ≤ 773 and have verified that h−
K > 1 for 401 ≤ n ≤ 773 except for n = 405, 416,

432, 448, 480, and 512. Our computational results are summarized in Table 2.
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Table 2

n b D
1/n
k ≥ h−

K ≥ n b D
1/n
k ≥ h−

K ≥
400 5.2873 52.2941 0.0000278 460 5.5516 52.9951 2.6 × 108

401 5.2919 52.3071 1.4 × 1011 464 5.5684 53.0368 1.5425
402 5.2966 52.3201 2.1 × 108 472 5.6017 53.1184 109302
403 5.3012 52.3330 2.1 × 1011 480 5.6345 53.1979 0.001496
404 5.3058 52.3459 14272 486 5.6589 53.2562 4.0920
405 5.3103 52.3587 0.05238 488 5.6670 53.2754 1835091
406 5.3149 52.3714 4.4 × 108 496 5.6991 53.3509 406.6
407 5.3195 52.3841 4.2 × 1011 500 5.7151 53.3880 1.5 × 1010

408 5.3241 52.3968 1.64046 512 5.7623 53.4964 6.0 × 10−18

410 5.3332 52.4220 8.9 × 108 520 5.7934 53.5664 5.4 × 108

412 5.3422 52.4470 57211 540 5.8698 53.7345 2.1 × 1013

416 5.3603 52.4964 2.8 × 10−8 544 5.8848 53.7669 104.2
420 5.3782 52.5451 230434 576 6.0025 54.0135 1.6017
424 5.3961 52.5930 25.61 600 6.0880 54.1847 1.0 × 1015

430 5.4226 52.6637 3.0 × 1010 625 6.1745 54.3520 5.2 × 1015

432 5.4314 52.6869 0.006293 640 6.2253 54.4474 6.9917
440 5.4663 52.7781 407.8 720 6.4833 54.9019 1.5 × 1020

448 5.5008 52.8667 4.3 × 10−10 773 6.6437 55.1612 1.8 × 1041

450 5.5093 52.8885 4.0 × 1010 774 6.6467 55.1658 5.5 × 1036

456 5.5348 52.9529 6618

This completes our proof of Theorem 2.

4. An improvement on Theorems 1 and 2

The second statement of Theorem 1 point (3) and Theorem 2 can be refined as
follows.

Theorem 3. Let K be as above.
(1) If n ≥ 726, then ζK(σ) has no real zeros in the range

1 − D
− 1

2n

K

4.06231 × 1039 × (1.0362)n
≤ σ ≤ 1.

(2) If n ≥ 726, then

h−
K ≥ (1.14136)n

3.8137 × 1041
≥ 1.2808 > 1.

If, in addition, 370 ≤ n ≤ 725 and n /∈ {384, 400, 416, 448, 512}, then we
have h−

K > 1.

The proof of point (1) of Theorem 3 is similar to that of (1.3). To prove point (2)
of Theorem 3 we proceed as in [LK]. We have used Weil’s explicit formula twice:
i.e., to get lower bounds for DK and to get upper bounds for κk. In addition we
take care of prime ideals of small norms when dealing with this explicit formula of
Weil. This allows us to improve especially upper bounds for κk. Analogously to the
proof of Theorem 2 we can prove Theorem 3 point (2). We do not give the details
of our proof, which are somewhat computational. We have explicitly computed the
lower bounds for h−

K for all n ≤ 725 and give our computational results in Table 3
and Table 4.
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Table 3

Ranges of n n’s for which h−
K > 1

n ≤ 250 221, 223, 227, 229, 231, 233, 235, 237, 239, 241, 247, 249
251 ≤ n ≤ 270 251, 253, 255, 257, 258, 259, 262, 263, 265, 266, 267, 269
271 ≤ n ≤ 285 271, 273, 274, 277, 278, 279, 281, 282, 283, 285
286 ≤ n ≤ 300 286, 287, 289, 290, 291, 293, 294, 295, 298, 299
301 ≤ n ≤ 330 all n’s except for 304, 308, 312, 320, 324, 328
331 ≤ n ≤ 370 all n’s except for 336, 344, 352, 360, 368
371 ≤ n ≤ 725 all n’s except for 384, 400, 416, 448, 512

Table 4

n h−
K ≥ n h−

K ≥ n h−
K ≥

370 3.7 × 108 400 0.0160 480 1.3725
371 3.2 × 1011 410 5.3 × 1011 500 1.5 × 1013

372 27570 416 1.7 × 10−5 512 6.4 × 10−15

373 4.8 × 1011 420 1.4 × 108 520 6.1 × 1011

374 7.7 × 108 430 2.1 × 1013 540 2.6 × 1016

375 2202 440 296533 600 1.6 × 1018

380 114506 448 3.2 × 10−7 625 9.3 × 1018

384 4.8 × 10−16 450 2.9 × 1013 640 13578
390 1.4 × 1010 460 2.1 × 1011 720 4.0 × 1023
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