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NEW EXPANSIONS OF NUMERICAL EIGENVALUES FOR
—Au = Apu BY NONCONFORMING ELEMENTS

QUN LIN, HUNG-TSAI HUANG, AND ZI-CAI LI

ABSTRACT. The paper explores new expansions of the eigenvalues for —Au =
Apu in S with Dirichlet boundary conditions by the bilinear element (denoted
Q1) and three nonconforming elements, the rotated bilinear element (denoted
Q7°%), the extension of Q7°! (denoted EQ7°!) and Wilson’s elements. The
expansions indicate that Q1 and Q7°? provide upper bounds of the eigenvalues,
and that EQ{"t and Wilson’s elements provide lower bounds of the eigenvalues.
By extrapolation, the O(h*) convergence rate can be obtained, where h is the
maximal boundary length of uniform rectangles. Numerical experiments are
carried out to verify the theoretical analysis made.

1. INTRODUCTION

In this paper, we consider the eigenvalue problem
(1.1) —Au=Apu in S,
(1.2) u=0 in 05,
where S = [0,1]?, the function p = p(z,y) > 0 and p € C?(S). Then Eqgs. ()

and (L2) can be written in a weak form: To seek (\,u) € R x HE(S) with u # 0
such that

(1.3) a(u,v) = Mu,v), Yo € H}(S),
where HJ(S) = {v|v € H'(S),v|ss = 0}, and

(1.4) a(u,v) = //S VuVo,
(1.5) (u,v) ://Spuv.

We choose one conforming element, the bilinear element (), and three noncon-
forming elements: the rotated Q1 (denoted Q7°!), the extension of Q7°" (denoted
EQ7°") and Wilson’s element. All the above elements are defined on rectangles [J;
(see Figure[ll), and their admissible functions are defined as follows.

(1) Bilinear element ;. The piecewise interpolation functions u; € Q1 =
span{l,z,y,zy} are formulated as

(16) U(Zl) = ’U,[(Zi), 1= 1,2,374,
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FIGURE 1. The rectangular elements, where // and # denote the
line and the area elements, respectively, and < and > denote g,
and u,, at the center, respectively.

where Z; are the four corners of O;;, and O;; = {(z,y)|z; — h; < x <
zi+ hi, y; —kj Sy <y;+ kit

(2) Rotated @Q; element (Q}°"). The piecewise interpolation functions u; €
span{1, z,y, > — y*} are formulated by

(1.7) /u:/ ur, k=1,2,3,4,
Z}C ék

where /;, are the edges of [;;.
(3) Extension of Q7% (EQ7°"). The piecewise interpolation functions u; €
span{1, z,y, 22, y*} are formulated by

(1.8) /uz/ ur, k=1,2,3,4,
Li Lp
LI,
Dij Di]‘

(4) Wilson’s element. The piecewise interpolation functions uy € Py =
span{l, z,y, vy, 2%, y?} are formulated by

(1.10) w(Z;) =ur(Z;), 1=1,2,3,4,
(1.11) Uzz(0) = (ur)2z(0), yy(O) = (ur)yy(0),
where O is the center of [;;.
Let S = J;; 0ij, where O;; are quasi-uniform. Denote by V) € L?*(S) the
finite-dimensional collection of the admissible functions defined in Q1, Q7°t, FQ"°

and Wilson’s elements. The conforming @7 element is used to seek the solution
(An,up) € R x V2 (V2 C H(S)) such that

(1.12) a(un,v) = My (un,v), Yo € V2,

and the nonconforming elements, such as Q7°!, EQ7° and Wilson’s elements, are
used to seek (Ap,up) € R x V2! such that

(1.13) an(up,v) = A (up,v), Yo € V0,

!Here V0 is not a subset of Hg(S).
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where

(1.14) ap(u,v) = E // YU v.
— 0,
ij ij

In Q; and Wilson’s elements, the nodal variables are used, but in Q7°" and
EQ7°t, the line and the area variables are also chosen, which can be interpreted as
the average values on the edges 0UJ;; and those in the area [J;;. The line-area inter-
polation in Q7°" and FQ'° is, rather than the nodal interpolation, advantageous
in global superconvergence.

In this paper, we explore the expansions of the eigenvalues A,. When [;; are
uniform squares with the boundary length h, we obtain the following formulas:
(1.15)

h2

3 //s(uix +ug2/y) + O(h*), for @, element,

h2

5 //S(Um - Uyy)2 +O(h"), for Q7°! element,

A A= gp2

5 // uiy +O(hY), for EQT°! element,

s
2h? h2

_T// Uz Uyy — ?// [“m(“h)yy +“yy(uh)m] +O(h4)7

s s
for Wilson’s element.

The detailed proof for Q7°t and EQ'° elements is deferred to Section 3, and the
proof for (1 and Wilson’s elements will appear elsewhere. From the expansions of
Ap in (LIH), we may draw a few important conclusions:

(1) Both @7 and Q'°! provide an upper bound of A, but in contrast, FQ}°* and
Wilson’s elements provide a lower bound of A\. The lower estimation of A
is particularly interesting, because all conforming FEMs can only provide
an upper estimation on A.

(2) Suppose that p(z,y) is symmetric with respect to z and y. For the minimal
eigenvalue Apnin = A1, since the corresponding eigenfunction satisfies u,, =
Uyy, the Q7% element yields the high O(h*) convergence rate. Such an
ultraconvergence of Q7°! is retained for any eigenvalue whose corresponding
eigenfunction is symmetric with respect to x and y.

(3) The errors of A by Q1, Q7°" and EQ7° have the following relation:

1
(116) E|Q;ot — §(E|Q1 + E|EQ71‘”) = O(h4)’

where E = A\, — A,
(4) By the extrapolation we may reach the high O(h?*) convergence rates for
Q1, Qi°t, EQ4°t, and Wilson’s elements.

In our numerical experiments, the O(h?*) convergence rate has been confirmed by
the extrapolation for all four elements, and the further extrapolation can be carried
out for the @ element to reach the O(h%*) (k > 2) convergence rates.

Let us mention the references related to this paper. Numerical eigenvalues are
discussed in Babuska and Osborn [I, 2, 3], Chatelin [6], Koluta [10], Mercier et al.
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[I7], Pierce and Varga [I8], Rannacher [19], Strang and Fix [20], Wu [22] and Yang
[23, 24]. The nonconforming elements, such as the rotated bilinear element (i.e.,
Q7°") and Wilson’s element, are studied in Chen and Li [7], Hu et al. [9], Lua and
Lin [16], and Lin and Lin [I3], and the extrapolations for eigenvalues are explored
in Blum et al. [4], Lin [I2], Lin and Zhu [I4], and Lii et al. [15].

It is worth pointing out that asymptotic lower bounds for eigenvalues have been
obtained by the finite difference method (FDM) in Forsythe [8] and Weinberger [21].
In [§], for a convex S, the numerical eigenvalues by the standard five-node finite
difference equations have lower bounds, and upper and lower bounds of numerical
eigenvalues by FDM are also discussed in [21]. Since the FDM can be regarded as a
special kind of FEM involving different integration rules in Li [I1], the variational
crimes, the terminology used in [20] for FEM with nonconforming elements and
numerical integration, may produce the lower bounds of approximate eigenvalues.

2. BASIC THEOREMS
We rewrite ([L3) as:
(2.1) a(u,v) = (f,v), Yv € Hy(9),
where f = Au. Define the finite element projection R;, by
(2.2) an(Rpu,v) = (f,v), Yo € V2.

For simplicity, we assume the simple eigenvalues, and consider only a few leading
eigenvalues

(23) A< <. < /\k'7

where k is a small integer. Note that the minimal eigenvalue Ay = Ay is of great
interest in practical applications.
For the above elements, we cite the known results in [23] [24] as a lemma.

Lemma 2.1. For the quasi-uniform U;; with the mazimal boundary length h, there
ezists the follwing bound for leading eigenvalues A and their corresponding eigen-
functions u:

(2.4) |)\—)\h|+||u—uh |0,S’+HU_RhUHO,S §0h2,

where C' is a constant independent of h, and (An,up) are the FEM solutions by Q1,
Q1°t, EQ'°t and Wilson’s elements.

Below we give a new theorem.

Theorem 2.1 (Nonconforming). Let (J;; be quasi-uniform with the maximal bound-
ary length h. For the nonconforming elements, there exists the error formula

(2.5) M= A= MNu—ur,up) — ap(u —ur,up) + ap(u — Ryu, up) + O(RY),

where uw and uy are the true solution (i.e., eigenfunction) and the FEM interpolation
of u, respectively, and up and Rpu are the FEM solution of (LI3) and the FEM
projection in (22), respectively.

Proof. For the eigenfunctions,

(2.6) (u,u) =1, (up,up) = 1.
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We choose a different scale of uy, by u = (u“% Then we have (u,4y,) = 1, which
yields

(2.7) A = An(u, @p) = Ap(Rpu, ap) + Ap(u — Rpu, 4p).
Moreover, from ([LI3]) and [2.2]), we obtain

(2.8) An(Rpu, @p) = ap(Rpu, ap) = A(u, ap) = A

Since @y has a small difference from wuy, we obtain from Lemma 2]
(2.9) @n — unllo,s = H%HOS < Oh*.

Hence by means of Lemma[2.J] again, a primary expansion from (2.7)—(2.9) is given
by

(2.10)  Ap = A+ Mu(u— Rpu, ) = A+ Ap(u — Rypu,up) + O(h?).
Finally, a further expansion can be obtained:
(2.11) M= A+ M (u—up,up) 4+ Mn(ur — Ruu, up) + O(R*)
=X+ M (u—ur,up) + ap(ur — Rpu,up) + O(h4)
= XN+ Mu —ur,up) + ap(ur —w,up) + ap(u — Ryu,up) + O(hY),

where we have replaced Aj, by A from Lemma [ZI] This is the desired result ([2.1),
and completes the proof of Theorem 211 O

In Theorem 1] in order to derive the errors A\, — A, we need to evaluate the
following interpolation errors:

(2.12) (u—ug,v), ap(u—us,v), Yo € V2,
and the projection error
(2.13) an(u — Ryu,v), Yo € V0.

Note that the projection error (ZI3)) is null for the conforming elementdd and that
the estimation of (2I2]) is similar to that for Poisson’s equation. Hence the key
analysis of the nonconforming elements is to derive the expansions of (213). In this
paper, the detailed proof is provided only for Q7°* and FQ7°! (see the next section),
and the proof for the @1 and Wilson’s elements in (I.I5]) appears elsewhere.

In error estimates, we often use the Bramble-Hilbert lemma [5]: Denote by B(u)
a bounded linear function from H*(S) to RE If for a polynomial Py of degree k,
B(Py) = 0, then there exists a constant C' independent of u such that

(2.14) |B(u)| < Clulgq1,s-

In this paper, we need more expansions of higher terms of degree k + 1. We
solicit the generalized Bramble-Hilbert Lemma. Let

(2.15) Blu)= Y %//g D%+ H(u),

|a|=k+1

2For the conforming Q1 element, the expansions of [ZI2) will lead to those in (ICIH), by using
the same proof techniques in this paper.
3The bounded linear function B(u) implies that it is continuous.
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where % = 2{'25?, a1 +az = a, and a! = aglas!. H(u) in (23] is also a bounded
linear function from H**1(S) to R. We write the following lemma without proof,
whose proof is given in Lin and Lin [13].

Lemma 2.2 (Generalized Bramble and Hilbert Lemma). Let u € H¥*2(S) and
B(Py) = 0. Suppose that H(Py+1) =0 in (2I5). There exists a bound,

(2.16) |H (u)] < Clulk+a,s,

where C' is a constant independent of u.

3. Q7° AND EQ7°* ELEMENTS

In this paper, we will derive the expansions in (LI5) for Q7°" and FQ}°". We
merge their proofs together, because the main proof for both nonconforming ele-
ments has many features in common. Based on Theorem 2.1 the three terms in
(Z3F) need to be evaluated. For both Q7°% and EQ7°, from their definition of uy
and by integration by parts, we can show the following equality easily:

3.1)  ap(u—us,v)= // V(u—wur)Vo =0, Yv € Q1 or EQ}".
s

»

v
>

—1

(1) (2)

FIGURE 2. (1) e=[-1,1] x [-1,1]. (2) e=;; = [xe — he, T +
he] X [ye - kevye + ke]-

To obtain the expansions of the other two terms in (Z12) and 2I3), we need
the following lemmas.

Lemma 3.1. For v € EQ'° or Q1°, there exists the equality

k2 4k
ap(u — Rpu,v) = Z {? //Umyvy - E//uzxyy”yy

2 ny
(3.2) +§//Uyyxvm - E//uyyzmvzm} +O(h5)|u‘5‘v‘2,hv

where |V|mn = (/D V2, (m=1,2), and e = O;j = [ve — he, Te + he] X [ye —
ke,ye + k) (see Figure ). Moreover, for uniform rectangles O;; with he = h and
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k. = k, there exists the following equality for v € EQT° or Q7°:
h? + k2
(33)  an(u—Rpu,v) = == //S UgzyyV + O(B)|Jull5]|v] 1,5
Lemma 3.2. Forv € EQ“’t( ),

34 [0 / [ tanera - / [+ Ol

Lemma 3.3. Forv € Q”’t(

//(U—UJ = ——// Ugg + Uyy )V 30 // Uz Vs + UyyyUy)
e

(3.5) “1‘1—8 //(Uzzyvy + Uyyx@z) + O(h‘S)‘ul&e

Lemma 3.4. Forv € EQ{Ot(e) or Q7% (e), there exists the integral equality
2

(3.6) // Uy (y — ye)vy (T, ye) + ((y — ye)? — %)vyy(%ye))

4k
//urzy”y //“zmyyvyy+O(h5)|u‘5,e|v|2,e-

The proof of Lemmas BIH3.4l is deferred to Sections BIH34l For EQT%, w
have the following theorem.

Theorem 3.1. Let 0;; be quasi-uniform. For EQYT°, there exists the eigenvalue
error

1
B7) A-A=:Y [// F2tgnyuy + h2 // tgyt] + OF?).

Moreover for uniform O;;,

h2 4 k2
(3.8) A= A= — ; //uiynLOh‘*
S

Proof. From Lemma [3.2]
(3.9) Au—ur,up) = // U — ur)pup

= )\2; [//(U—UI)(puh)I —//(U—UI)(PUh - (Puh)l)}

= AX [ [ teaattomrn = 5 [ [l ] + 000 = 00,

where we have used

(3.10) // w—un) (pun — (pun) // w— urun(p — pr) = O(hY).

Also from Lemma [3.]]

k2 h?
ah(u’ - Rhuvuh) = Z Eg // Uzwwy(uh)y + Z Ee // uazyy(uh)w + O(h4)
k2 h2
Z?//“my”y +Z ?e //”ryy“:v +O(h%).

(3.11)
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Based on Theorem [Z1] combining B1), (B3) and BII) yields the first desired

result (3.7).
Next, we prove ([B.8) for the uniform rectangles 0;;. From Lemmas B.1] and 2.1

and by integration by parts,

h2
ap(u — Rpu, up) = EZ//nyy(uh)x

k;

+ ?Z//“my(”h)y+O(h4)|u|5|uh|2,h
h? + k?

(312) = — 3 Z//umryy(uh) +O(h4)
h? + k2
== ;— Z//uxﬂcyyu+0(h4)

h? + k?
- [f o0,
S

where we have used the integration by parts again,

(3.13) //S Uppyyll = —//S Usyy s ://S Uy

and

(3.14) [un |2,h <|up —urlen + lur —ulo,n + |ul2
< Ch71|uh — uI\Lh + C’|u\2 < C|u|2

Based on Theorem [Z1] combining ([B1]), (3:9) and (312) yield the second desired
result B8) (i.e., (LIF) for EQT° with k. = h. = h). This completes the proof of
Theorem [B11 O

Below, for Q7°¢, we have the following theorem.

Theorem 3.2. Let O;; be uniform squares. For Qi°" there exists the eigenvalue
error

(3.15) Ap — A= % //s(um —uyy)? + O(hY).

Proof. For Q7°" on uniform square [J;; with A = k, we have from Lemmas B.3] and

21
AMu—wup,up) = )\//S(ufuj)(puh)lJrO(h‘l)

= A [ e b)) + 0
= —)\%2 /L(uww+uyy)pu+0(h4)

2
(3.16) = %//S(um +uyy)? + O(hY),

where we have used (ILIJ). From integration by parts, there exists the equalilty

(3.17) //Sumuyy = //Sui,y
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%

ly

FI1GURE 3. The rectangle.

For uniform squares O;; with h = k, based on Theorem 2] combining (B1),
BI12), (3I6) and [B.I7) yields the desired result (3.I5) (i.e., (LIF) for Q7°%). This

completes the proof of Theorem O

Theorems B.] and provide the desired expansions in (LI5) for FQ7°" and
Q7°t elements. It is interesting to note that Q7°! and EQ7° give the upper and the
1 1 1
lower bounds of the leading eigenvalues, respectively.

3.1. Proof of Lemma [3.1l For the nonconforming errors of Q7°" and EQ7°, we
have from 21)), 22) and the Green formula,

ou
(3.18) an(u— Rpu,v) = ;ﬁe Y ds

2(/&—/&)%1) dy+§(/€2—/&)uyv dz,

where /; are the edges in Figure Bl Since the average on /j is continuous based on
the definitions in () and (L), we have

(3.19) Z(/@ - /Zs)uxv dy =0,

where v = [, o, v ds/|€;| is constant on ¢;. Hence we obtain
sy Y - [weds =3[ - [uw-v)
e Jh L3 e Jh L3

2
Also since v|g,ue; = span{l,y — ye, (y — ye)*}, then |, e, = span{1,0, %ﬂ} More-
over, from Taylor’s formula in the y variable for each =, we have

2 % Ty Ye .
(321) (0=l = (- wglaye) + (- p)? = ) B g g
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TABLE 1. The integration, [[ (u—ur)v for u € P3\ EQ7%, v €
EQ7°t = span{l,z,y, 22 y?}, where € = [~1,1]? and the sign 0F
denotes that the computed integrals are zero.

U Ty 3 22y xy? Y3 Notes

Uy 0 T 1y %x Y /

u—uy zy || 2¥—x | 2Py — Sy |ay? — x| P —y /
[fo(uw—wur) | 0O 0 0 0 v=1
J(u—ur)z || 0 -2 0F 0 v=2x
Jfotu—up)y || 0 0 0F 0 & llv=y
[)o(uw—wur)2? || 0 0 0 v =212
[f(uw—ur)y* | 0 0 0 0 0 v=1y?

Then
— ) d

9 k2)yyy(x ye)}dy

(Y — Ye)vy (7, ye) + ((y — ) — 3 5

</€1 /%)ux(v
.- /@

(3.22) = //e Ugg (y — Ye)Vy(T,Ye) + ((y —ye)? — %g) W] dxdy,

where we have used that

(3.23) ((y — Ye)vy (2, ye) + [(y —ye)? — %2} W)l =0,

based on vz, = vy, = 0 for Q7° and FQ7°" elements.
Similarly, we have

(3.24) (/[2 - /64)uy(v —7) dzx

h2\ Vza(Te, y)
_ 2 e\ Van(Te, y)
//“yy Te)vz (e, y) + ((f Te) 3) 2 } dzdy.
Hence for both Q7°t and EQ7°t, we obtain from (3.I8)), (3:22) and (3.24),

an(u — Rpu,v) = Z //um [(y = Ye)vy (T, ye) + ((y —ye)? — %2) w}
(3.25)

O e st (e e

The desired result (2] in Lemma BTl follows from Lemma[34l This completes the
proof of Lemma [B.11 O

3.2. Proof of Lemma Denote B(u,v) = [[,(u— us)v, where € = [-1,1]?
in Figure 2. For u € EQ7%, we have [[(u—us)v = 0. For u € P\ EQ{”, the
integration terms needed are given in Table [Il In Table [Il and other tables given
below, the zero values can be easily seen by checking odd polynomials with respect
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to x or y, and the zero values with “4” in the tables are confirmed by real integral
evaluation. Hence, we only examine those zeros with “+” and the nontrivial terms.
First, take u = 2%y and v = y for example. We have

(3.26) (z2y,y // yf Sy =0.

Similarly, for u = zy? and v = =,
(3.27) B(zy?, x) = 0.

Next, we examine the nontrivial terms in Table [l When u = 2% and v = z,

(3.28) x ,T) //x—xx—//x—x //uzmvx

Similarly, when u = 3® and v = y,

(329)  B(y’.y) //y fyyf//y -y 185 %//guyyyvy.

Define the new function

1 1
(330) H(U,U> ZB(U,U> 45 //uxxxvx E//Auyyyvy

Hence for u € P5, H(u,v) = 0, and then from Lemma 22
(3.31) [H(u,v)] < Clulaglv|ie.
Denote e = 0;; = [ze — he, e + he] X [Ye — ke, Ye + k) with the boundary lengths
2h, and 2k, (see Figure 2), where h, = O(h), k. = O(h) max{2e 2 h <1 < Cp, and Cy
is a constant independent of h. Define an affine transformation T : (z,y) — (Z, )
with
T — Te Y= Ye

he ke

Then, under 7', we have that e — € = [—1,1]? and the following equations:

(3.32) = L G=

u(z,y) = u(z,y), ur(z,9) = ur(z,y),

. dx . dy

d = — d = —

x he ) y ke b
Uz = hety, Uy = keuy.

By the affine transformation 7T in (%32) we havel

(3.33) //(u —ur)v = heke //(u —ur)v
1 1
hek.| = 4= [ taarte = 1o | [ty + OWlulszleliz
1
,Tr)[hg //umzvz + k2 //uyyyuy} + O(h®)|ulge|v]1,e-

This is the desired result (8:4) and completes the proof of Lemma O

4For simplicity, we omit the hat notation on the top in the integral of €. For instance, the
integration ffg Uz7705 is simplified as ffa UzparVe in (B33).
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TABLE 2. The integration, [[.(u —ur)v for u € P3\ Q1*, v €
Qr°t = span{l, z,y, 2> — y*}, where € = [~1,1]? and the sign 0F
denotes that the computed integrals are zero.

u x? zy y? 23
ur %+%(w2—y2) 0 %—%(xg—yg) x
U —uyr %@2"'92)—% Ty %(3324—2/2)—% -
ffg(uful) ‘% 0 -% 0
[)o(u—up)x 0 0 0 -2
JJe(u—ur)y 0 0 0 0
J(u—ur)(z? —y?) 0F 0 0" 0
2y 21> Y3 Notes
59 37 y /
vy —gy @y’ 5w |y’ —y /
0 0 v=1
O 0+ 0 V=T
0r 0 - v=y
0 0 0 v=ua?—1y>?

3.3. Proof of Lemma 3.3l Denote B(u,v) = [[,(u—ur)v. For u € P3\ Q7%, the
integration is given in Table 2l Let us check the terms with 0™ and the nontrivial
terms in Table @l First for u = 2% and v = 22 — y2, we have

g3 [[a—wpw = [[GE -3 -0
= [[ 3t - -5 =) =0

where we have used the symmetry: [[L2* = [[Ly? and [[ 2" = [[ y*. Similarly,
for u=19y? and v = 22 — 42,

(3.35) / /A (= ur)v = 0.

Next, we examine the nontrivial terms. When v = 22 and v = 1,

(3.36) //g(u—u;)v://g [%(x2+y2)—§] :—% z—é//uv

Similarly, when v = y? and v = 1,

(3.37) //é(uful)v = 7% = fé//guyyv.

Define a functional

(3.38) H(u,v) = B(u,v) + %//gumv + é//guyyv

Hence for u € Py, H(u,v) =0, Yv € Q7°, and then from Lemma [2.2]
(3.39) |H (u,v)] < Clulselv|oe.
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Then we have

1
(3.40) B(u,v) = _6//UMU //uyyv—i—o )|ulselv]oe-

Below, we consider the additional terms in Ps \ P, whose results are also listed
in Table 2. First, when u = 2%y and v = y, we have

(3.41) [ [w=ue= [[@y=gmu -0,

and when u = zy? and v = z,

(3.42) / /A (=)o = / /A (y? — %x)x ~0.

Next, when u = 23 and v = z,

(3.43) //g(u—u[)vz//g(x3—x)x://€(x4—xg) - —%,

and when u = y3 and v = y, similarly

(3.44) //Q(u —ur)v = 71—85.

Now we have to recount H(u,v) for those extra nontrivial terms of P \ P, and

obtain from (B38)):
(1) When u = 2%y and v = y,

1 1 4
H(u,v):B(xzy,y)+g/[urxv+E//Auyyv 0+9+0* = //umyvy

(2) When u = zy? and v = =, similarly

H(u U //Uwyyvm

(3) When u = 2% and v = =,

H(u,v) = B(x3,x)+%//umv*f //62
R O

(4) When u = y? and v = y, similarly

4 1
H(u,v) = B %//A“yyyvy

Hence we define a new functional

(3.45) X(u,v) = H(u,v) ~ 35 //ummvz ~ 35 //uyyyvy
g5 [ ot 55 e

Obviously, for u € P3, H(u,v) =0, v € Q7°", and then from Lemma [2.2]
X (u,v) < Clulgzlv e
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Then, we conclude that

B(u, = __// Ugg + Uyy )V 30 // Uzza Uz + UyyyVy)
+_8 //A(umyvy + UzyyVs) + O(1)[ulselv]1 e

The desired result ([3.5) follows by the proof techniques via the affine transformation
T in [332). This completes the proof of Lemma B3 O

TABLE 3. The integration, [[ u,,D(v) for u € P, \ EQ{”, v €
EQ7°" = span{l,z,y,22 y?} and D(v) € span{1,0,1,0,3> — %},
where € = [—1,1]? and the sign “/” denotes the zero of integrals
due to ug, = 0.

3 2 2

w

U x|y 22 |2 oy 23| 2%y | 2v? |y
Uy 00|10 2 ]10] 0| 6x]| 2y 0 0
Sz vy VA AN ENANE NN NNy
Wevar? =) [/ /[ /0 [ /[ /[0l 0 ]/ [/]
| 2By | 2y |yt | 2%y D(v)
1222 |62y | 0 | 0 | 22
o o]/ |/] 0O v=y, D(v) =y
Lo o[/ [/ & [v=v D) =y—}]
2 1 vyy(x,0)
3.4. Proof of Lemma [3.4l Denote D(v) = yv,(z,0)+ (y° — ) 5 on é and
1 vyy z, 0
(346)  Blu,o) = [ [ wa[yv, 0,0+ (2 = 3) | teaD
€
where v € span{l,z,y,z ,y}and D(v )—spam{OOy,O7 —g}. We list in Table

Bl the integration [, u..D(v) for u € Py and v € EQ7®. Let us check the terms

with 0% and the nontrivial terms in Table Bl First, when v = 22, v = 3? and

D(v) =y* — 4, the integral is zero:

[ [reen@ =2 [ [62 = =0

Hence for u € Py, B(u,v) =0, v € EQ"}°, and then from Lemma 2.2
|B(u,v)| < Clulselv]ie

Next consider u € P3/P,. When u = 2%y and v = y,

(3.47) //gumD(v) = //g2y2 = 2 = %//Eumyvy

Also B(u,v) = 0 for u = 23, 2y%,y> and v € EQ;°" (see Table B). Define a

functional
1
H(u,v) = B(u,v) — 3 //umyvy
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For u € Ps, H(u,v) = 0. From Lemma [2Z7]
[H (u,v)| < Clulsglv]re,

which yields

1
B(u, 1}) = 5 /ﬁuxxyvy + O(l)‘u|4’g|’0|1,§-

By the affine transformation ([3.32), we have
k2N vy (2, ye
//UJL’CE y Ye vy(x ye) + ((y ye) 3 )M}
—1B@0) = 5[5 [ [[Fsasn, + 00 Eeloe]

k2 ,
_ ?//umyvy—l—O(h tleo]1e.

To discover the higher remainders of O(h*), we should also consider v € Py \ Ps;
the additional integrations are listed in Table Bl Below we consider the nontrivial
terms only. For u = 2%y?, v = y? and D(v) = y* — 3, we have

1. 32
weD(V) = 222 — =) ==
//ft (v) /[y(y 3=
which gives

1 32 1
H(u,v) :H(nyz,yQ) = B(nyQ,yQ) 3//umyvy =5 3//4y 2y

32 32 128
59 = “mwvw

Now we define a new functional

4
X(u,v) = H(u,v) + 15 // UzzyyVyy-
Hence for u € Py, X (u,v) =0, and then from Lemma 22

|X (u,v)| < Clulsz|v]2e.

This yields

1 4
Bluv) =5 [ [tenyoy = 55 [ [ tamvny + OWluls sl

The desired result (B.6) in Lemma [3.4] for EQ7°t follows from the affine transfor-

mation T in ([B32]).
Next for Q7°%, we have from Table [3]

|B(u,v)| < Clulselv]s e

The rest of the proof is exactly the same as that for FQ7°t. This completes the
proof of Lemma [3.41 O
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4. NUMERICAL EXPERIMENTS

In this section, we provide two numerical experiments of the four elements,
Q1,Q7°, EQ7°t and Wilson’s element for solving (L)) and (T2).

4.1. Function p = 1. Consider the eigenvalue problem of Laplace’s operator with

p=1,
%u  0%u
—ANu=—[Z"2=4+=2")= i
U <8x2+5‘y2) Au in S,

u=0onT =095,

where S = {(x,y),0 < z,y < 1}. Then we have the exact eigenfunctions and
eigenvaluesE

(4.1) u ¢ = 2sin(krz) sin(bry), Ao = (k* + )%, 1 <k, (< N —1.

Since the minimal and the next minimal eigenvalues, denoted by A\; and A, are the
most interesting, we only provide their computed results. In Tables d and [l we list
the numerical eigenvalues, their errors and the ratios = \582—}h| for all four elements,
where €;, = Ay, — A\, and A\, and X\ are the approximate and the true eigenvalues,
respectively. Denote h = 1/(2N) from Figure 2, and N = 2™, m = 1,2,... When
€21 ~ 2P, we may conclude the empirical convergence rates O(h?).

For the Q1, the EQ7°" and the Wilson’s element, we can see from Tables [ and
that

(4.2) Ain — A= O(h?),
where Ay, denotes the computed Ap (¢ = 1,2) at the mesh size h. However, for the
Q{ot’
(4.3) Ain — A= O(R?),
(4.4) Ao.n — Ao = O(R?).
Equations ([@2)—(£4) agree with those in ([LIH]) perfectly. The high convergence
rate O(h*) in ([£3) results from the symmetry of u,, = u,, for the eigenfunction
u(x,y) corresponding to Ap.

From Table @ we can find the following relative errors of \; at N = 32:
Ap— M

1

for Q1, Q1°, EQ}°t and Wilson’s elements, respectively. From (5] we can see that
Q1 provides an upper bound due to a positive relative error, and EQ’°t and Wilson’s

elements provide lower bounds due to negative relative errors. From Tables 4] and
Bl the Q7°! provide the lower and the upper bounds for A\; and \s, respectively.
.,)s where

To verify ([LI6) we have computed Eh = Eh’Q - %(Eh’Q + Eh‘ o
1 EQT°
Ej, = A p — A1. Table [l lists the results to display the O(h*) convergence rate
perfectly.

More importantly, the expansions of eigenvalues can be applied to raise the
accuracy by the extrapolation techniques. Based on the computed eigenvalues in

(4.5) = 0.803(—3), —0.387(—6), —0.802(—3), —0.240(—2),

rot
1

5The constant 2 of the eigenfunctions in (@) is used for (u,u) = 1.
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Tables @ and [B] we may use the following extrapolation formulas for Ay j:
22k>\§1k—1) _ /\él;—l)
R

for Q1, EQ7°" and Wilson’s elements, where \) = )\,. Eq. (&0) is also used for
A2, by the Q7°. Since the \; ; by the Q7°" has the higher convergence rate, the
following extrapolation formulas should be used:

(4.6) AR —

) k:1’2)3747

(4 7) )\(k) B 22k+2)\§f*1) o )\(k—l)
. h=

S ,k=1,2,3,4.

Note that in ([@6]) and (1), )\Ell) denotes the first level of extrapolation. In
computation, we have computed from the first to the fourth levels of extrapolation.
Such a procedure is like that in the Romberg integration. All the extrapolation
results are listed in Tables 7 and B for Ay, by Q7° and EQ7°". From Tables [7] and
[8 we can see

(4.8) A = A= 0(nY) for BQ},
(4.9) M) =X =0(n®) for @,

where )\g  is the better approximation of A1 at the first level of extrapolation.
Below, we list the following eigenvalues at the first and fourth levels of extrapolation:

AL =
(4.10) L " = 0.472(=9), —0.512(-5),
1
MO -n
(4.11) — = —0.135(~13), ~0.454(-8),
1

for Q7°t and EQ’°" at N = 32 respectively. Evidently, the errors in (Z10) and (I
are much smaller than those in (). Interestingly, the A{’) = 19.73920880217845
by the Q7°! has 14 significant digits, which is the most accurate value in our com-
putation.

Suppose that we only carry out the computation for N = 2,4,8, but not for
N =16 and N = 36 due to some reasons (e.g., the limitation of computer memory
or the CPU time). Based on those results, we may use (£0) and (@7 until the
second level of extrapolation only. The corresponding results are found from Tables
[dand B at N =8:

/\(2)

(4.12) ‘L’ = 0.422(—6), 0.347(~3),

for Q7°%and EQ7°* respectively. The relative errors in (EI2) are close to those
in (@A), but their signs may be changed. This fact displays a significance of the
extrapolation, based on the expansions of eigenvalue solutions given in this paper.

The above examination is for the convergence rate; it is crucial to scrutinize
numerically the principal terms of the error expansions in (LIH). First, take FQ7°!
for A; for example. Since the corresponding eigenfunction u; ; = 2sin(7x) sin(my)
from (@I, we have the principal term from (T3),

2h2 h2 4 7T4
(4.13) = // Uy = = TEN?
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where we have used h = ﬁ Then the relative value is given by
E4 7t 2

4.14 S _ .

(4.14) CT N T T 6N2(2n2) | 12N2

Based on ([{I4), for N = 2,4,8, 16,32, we obtain respectively

(4.15)e; = —0.206, —0.514(—1), —0.129(—1), —0.321(—2), —0.803(—3).

Eq. (#I5) coincides with the numerical data in Table 4 for FQ'° very well, which
verifies the principal term in (ZI3]).

Next, consider Q7° for Xg. Since the corresponding eigenfunction us; =
2sin(27x) sin(ry) from (@I) with wy, # wyy, we have the principal term from

(LI5)

h? 9 3h2rt 3t

which gives

Ey 3t _ 32

Ao 8NZ%(572)  40N?2’

Based on ([LI7), for N = 2,4,8,16,32, we obtain respectively
(4.18) € = 0.185, 0.463(—1), 0.116(—1), 0.289(—2),0.723(—3).

Eq. #IJ) also coincides with the numerical data in Table 5 for Q7°¢, which verifies
the principal term in (Z16]).

(417) €y =

4.2. Function p # 1. Since the error analysis is valid for the function p = p(z,y) >
po > 0, to verify the analysis made, we also carry out the numerical experiments
for p # 1. Choose

1

(1.19) p=pwy) =1+ - 3)-3),

which is symmetric with respect to z and y. We have

0%u  0%u )
—Au——<@+a—y2>—)\pum5’,

u=0onI =398,

where S is also the unit square. For the p in (Z19), we may evaluate []. g puv in
(L) exactly. The FEM as ([[3) can be easily performed. We provide the results
for A1 by Q7°" and EQ7°* only, and list them in Tables [0l and [[1l Since for p in
([#T19), the true solution of \; is unknown, we may compute the ratios of sequential
errors to display the empirical convergence rates[] The numerical solutions, the
sequential errors and their ratios are listed in Tables [0 and [l for Q7°* and EQ7°".
Since only the sign of £(?) is significant, it is listed in Tables [0 and [Il From Table
[II] we can see the sequential errors

6 An a posteriori error may be evaluated as follows. Since Q7°t may provide the most accurate

solution, we may choose /\54,)L = 19.7322552487 in Table [[0] as the true solution. Then the errors
such as those in Tables [[Q] and [[T] can also be computed.
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A — A
(4.20) ZL2h AL O(R2),
ALh — A1 2n

for EQ7° elements. However, from Table [I0}

Alan — A
(4.21) 21,2k T ALAR O(hY),

Ah — Al2n
for the Q7°! element. The empirical convergence rates of \; are exactly the same
as those in Section 4.1 for p = 1.

4.3. Numerical conclusions. Based on the numerical results, we may draw a few
important conclusions:

(1) The Q1 and the EQ7° provide the upper and the lower bounds respectively.
The Q7! provides the lower bound for Ay and other A\ whose corresponding
function u satisfies ug, # uny

(2) For the minimal eigenvalue A\pnin = A1, the corresponding eigenfunctions
satisfy g, = tyy, and the Q7% element yields the high O(h*) convergence
rates. Such an ultraconvergence of Q7°! holds for any eigenvalues whose
eigenfunctions are symmetric with respect to x and y.

(3) We list in Table [l the computed results, to show the validation of (LIM]).

(4) By the first level of extrapolation, the superconvergence O(h?) can be ob-
tained by all four FEMs.

(5) For Q7°, the ultraconvergence for \; as

A = A= 0%, i =0,1,2,3,

can be achieved numerically by multiple levels of extrapolation; see Table
Bl

(6) The principal terms of the eigenvalue errors for Q7°t and EQ7°" have been
verified by our numerical experiments.

Concluding remarks. The new expansions of numerical eigenvalues by four FEMs
are summarized in (I5]), whose proof for the two nonconforming elements Q7°¢
and EQ7° is provided in this paper. Not only can ([ILI5) display an upper or a
lower bound of the FEM solution of leading eigenvalues, but it can also lead to
higher superconvergence rates by the extrapolation techniques. All the theoretical
analyses have been verified by the numerical experiments in Section 4. Moreover,
the best convergence rates have been obtained numerically by multiple levels of
extrapolation for both Q7°¢ and EQ'°t elements.

"Numerically, the Q7! also provides the lower bound of A1, based on Table [l for p = 1, and
on Table [I{ for p # 1.
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TABLE 4. The first eigenvalue solutions A; ; for —Au = Au by

the four FEMs, where the true \;

272 = 19.73920880217872,

en = 252 Ratio = |22 and h = 5k
N 2 4 8 16 32
A1,n by Q1 24.000000 | 20.773284 | 19.994161 | 19.802707 | 19.755068
A1, by Q7°° 19.200000 | 19.707183 | 19.737241 | 19.739086 | 19.739201
A1,n, by EQT° 16.848019 | 18.818638 | 19.491886 | 19.676196 | 19.723380
A1,n by Wilson’s 13.321013 | 17.296011 | 19.023223 | 19.551919 | 19.691833
cn by Q1 0.216 | 0.524(-1) | 0.129(-1) | 0.322(-2) | 0.803(-3)
cn by Q7 0.273(-1) | -0.162(-2) | -0.997(-4) | -0.620(-5) | -0.387(-6)
=, by EQLo 0.146 | -0.466(-1) | -0.125(-1) | -0.319(-2) | -0.802(-3)
en by Wilson’s -0.325 -0.124 -0.363(-1) | -0.949(-2) | -0.240(-2)
Ratio by Q1 / 4.12 4.06 4.02 4.00
Ratio by Q[ Vi 168 163 16.1 16.0
Ratio by EQ'°* / 3.14 3.72 3.92 3.98
Ratio by Wilson’s / 2.63 341 3.82 3.95

TABLE 5. The second eigenvalue solutions Ay for —Au = Au
where the true Ao = 572 = 49.3480220054,

by the four FEMs,

ep = /\2;\—2_)‘2, Ratio = |24] and h = e

N 2 4 8 16 32
A2.n by Q1 / 58.3866 51.5436 49.8897 49.4829
Ao by Qret 58.5366 51.3290 49.9022 49.4897 49.3836
Ao, by EQet 41.6696 | 46.3304 48.4088 49.0993

Ao, by Wilson’s 21.8182 38.6181 45.7010 48.3394

eh by O1 / 0.183 | 0.445(-1) | 0.110(-1) | 0.273(-2)
e, by Q17 0.186 | 0.401(-1) | 0.112(-1) | 0.287(-2) | 0.722(-3)
e by EQ[ 20156 | -0.611(-1) | -0.190(-1) | -0.504(-2)

e, by Wilson’s -0.558 -0.217 -0.739(-1) | -0.204(-1)

Ratio by Q1 / / 412 4.0 4.01
Ratio by Q7° / 4.64 3.57 3.91 3.98
Ratio by EQ% / 255 321 378

Ratio by Wilson’s / 2.57 2.94 3.62

TABLE 6. The errors Ay, — A; for Q1, Q7°" and EQ'°, where

E = )\Lh — A1, Eh = Eh|Q;‘ot — %(Eh|Q1 + Eh|EQi‘ot), Ratio

Egh/Eh and h = ﬁ

N

2

4

8

16

32

)\l,h by Ql

24.0000000000

20.7732840104

19.9941613125

19.8027073568

19.7550682351

A1n by QT

19.2000000000

19.7071826998

19.7372410126

19.7390863687

19.7392011588

A1 by EQT°*

16.8480192154

18.8186378768

19.4918862529

19.6761961558

19.7233798827

Ep, by Q1 4.26079 1.03408 0.254953 0.634986(-1) [ 0.158594(-1)
Ej, by Q7% -0.539209 -0.320261(-1) | -0.196779(-2) | -0.122433(-3) | -0.764336(-5)
Ey, by EQT -2.89119 -0.920571 -0.247323 -0.630126(-1) | -0.158289(-1)
Ey, -1.22401 -0.887782(-1) | -0.578277(-2) | -0.365388(-3) | -0.229001(-4)
Ratio | / | 13.79 | 15.35 | 15.83 | 15.96 |
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TABLE 7. The first A1, by extrapolation from the Q7°" solu-

tions, where the true A; = 2% = 19.73920880217872, A{")

k )\(k)_)\l . k k 0
, el = SLACS ) Ratio(k) = €5 /a1, AL

k k—1 k—1
2? +2>‘§,h )_Ag,Qh)
22k+2,1

.
Arp and h = 5.

N 2 4 8 16 32
A1,n [19.20000000000000(19.70718269984467(19.73724101257975/19.73908636870386|19.73920115882359
Aglzb / 19.74099487983432|19.73924490009542|19.73920939244547(19.73920881149824
)\(1?,)1 / / 19.73921712263925(19.73920882883198|19.73920880227686
A¢) / / / 19.7392087963072519.73920880217272
A / / / / 19.73920880217845
< -0.273(-1) -0.162(-2) -0.997(-4) -0.620(-5) -0.387(-6)
D / 0.905(-4) 0.183(-5) 0.299(-7) 0.472(-9)
5 . - . - . _
=) / / 0.422(-6) 0.135(-8) 0.497(-11)
P / / / -0.297(-9) -0.304(-12)
ey / / / / -0.135(-13)
Ratio(0) 7 16.8 16.3 16.1 16.0
Ratio(1) ] 7 195 61.2 63.3
Ratio(2) 7 7 7 312 272
Ratio(3) / / / 7 979
TABLE 8. The first A\ j, by extrapolation from the EQ7°" solutions,
where the true A, = 272 = 19.73920880217872, where A\") =
PRIV (k) _ A , (k) (k)| y(0)
PNl ) = M Ratio(k) = [l /2071, AT = A
_ 1
and h = 3N
N 2 1 8 16 32
X1, | 16.8480192154 | 18.8186378768 | 19.4918862529 | 19.6761961558 | 19.7233798827
A / 19.4755107640 | 19.7163023782 | 19.7376327901 | 19.7391077917
A% / / 19.7323551525 | 19.7390548176 | 19.7392061251
A / / / 19.7391611615 | 19.7392085268
A / / / / 19.7392087126
<0 -0.146 -0.466(-1) -0.125(-1) -0.319(-2) -0.802(-3)
el / -0.134(-1) ~0.116(-2) ~0.798(-4) -0.512(-5)
<2 / / -0.347(-3) -0.780(-5) ~0.136(-6)
e / / / -0.241(-5) ~0.140(-7)
4
e / / / / -0.454(-8)
Ratio(0) / 3.14 3.72 3.92 3.98
Ratio(1) / / 115 145 15.6
Ratio(2) / / / 445 57.5
Ratio(3) / / / i 173
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TABLE 9. The second A by extrapolation from the Q7°" solu-
tions, where the true A, = 5m2 = 49.34802200544679, A{") =
22k \(F=D) _z (k=D AR x, ) k), (k 0
S ) = S22 Ratio(k) = [efy) /64, A = Ao
and h = 5.
N 2 1 8 16 32
N2 | 58.5365853659 | 51.3289965050 | 49.9021574073 | 49.4897065300 | 49.3836320249
A / 48.9264668847 | 49.4265443748 | 49.3522220042 | 49.3482738566
NS / / 49.4598828741 | 49.3472681395 | 49.3480105867
2P / / / 49.3454806040 | 49.3480223716
A0 / / / / 49.3480323393
£ 0.186 0.401(-1) 0.112(-1) 0.287(-2) 0.722(-3)
el / -0.854(-2) 0.159(-2) 0.851(-4) 0.510(-5)
2 / / 0.227(-2) -0.153(-4) -0.231(-6)
e® / / / ~0.515(-4) 0.742(-8)
4 N
s / / / / 0.209(-6)
Ratio(0) / 164 357 3.01 3.08
Ratio(1) / / 5.37 187 16.7
Ratio(2) / / / 143 66.0
Ratio(3) / / / / 6940
TABLE 10. The first Ay 5 for —Au = \pu by Q7°* , where )\gk,)L =
RNV A (k) (R () - (k) / (k)| (0)
SR, £ = )‘1,h_)‘1,2h’ Ratio(k) = |es,) /e;, |, M=
1
Arp and h = 5.
N 2 1 8 16 32
X1, | 19.2000000000 | 19.7011813280 | 19.7303925515 | 19.7321400854 | 19.7322481452
A / 19.7345933897 | 19.7323399681 | 19.7322575477 | 19.7322552892
A= / / 19.7323041995 | 19.7322562394 | 19.7322552534
A / / / 19.7322560513 | 19.7322552495
A / / / / 19.7322552487
e / -0.501 -0.292(-1) -0.175(-2) -0.107(-3)
B / / 0.225(-2) 0.824(-4) 0.226(-5)
B / / / 0.480(-4) 0.986(-6)
3
)] / / / / 0.802(-6)
Ratio(0) / / 17.16 16.71 16.32
Ratio(1) / / / 27.34 36.49
Ratio(2) / / / 7 18.64
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TABLE 11. The first )\1 » for —Au = Apu by EQ7°" | where )x(k,i

2k y (b=1) _ (k—1)
E e o A - A, Ratio(k) = |=5) /(P A =
Aip and b = ﬁ
N 2 1 8 16 32
Nin | 17.7264222820 | 19.1414166129 | 19.5800759724 | 19.6984491727 | 19.7286510415
>\<1) / 19.6130813898 | 19.7262957589 | 19.7379069061 | 19.7387183311
>\<12})l / / 19.7338433835 | 19.7386809826 | 19.7387724261
A / / / 19.7387577699 | 19.7387738776
A / / / / 19.7387739407
£ / -1.415 -0.439 0.118 -0.302(-1)
\:—:“)| / / 0.113 0.116(-1) 0.811(-3)
B / / / 0.484(-2) 0.914(-4)
X / / / / 0.161(-4)
Ratio(0) / / 3.23 3.71 3.92
Ratio(1) / / / 9.75 14.31
Ratio(2) / / / / 52.90
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