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OPTIMAL ORDER MULTILEVEL PRECONDITIONERS
FOR REGULARIZED ILL-POSED PROBLEMS

ANDREI DRĂGĂNESCU AND TODD F. DUPONT

Abstract. In this article we design and analyze multilevel preconditioners
for linear systems arising from regularized inverse problems. Using a scale-
independent distance function that measures spectral equivalence of operators,
it is shown that these preconditioners approximate the inverse of the opera-
tor to optimal order with respect to the spatial discretization parameter h.
As a consequence, the number of preconditioned conjugate gradient iterations
needed for solving the system will decrease when increasing the number of
levels, with the possibility of performing only one fine-level residual compu-
tation if h is small enough. The results are based on the previously known
two-level preconditioners of Rieder (1997) (see also Hanke and Vogel (1999)),
and on applying Newton-like methods to the operator equation X−1 −A = 0.
We require that the associated forward problem has certain smoothing proper-
ties; however, only natural stability and approximation properties are assumed
for the discrete operators. The algorithm is applied to a reverse-time parabolic
equation, that is, the problem of finding the initial value leading to a given
final state. We also present some results on constructing restriction operators
with preassigned approximating properties that are of independent interest.

1. Introduction

We consider the equation

(1.1) Ku = f ,

where K : X → Y is a compact linear operator between two Hilbert spaces.
Since (1.1) is generallly ill-posed, a generalized solution is given by u = K†f , where

K† : R(K) ⊕R(K)⊥ → X

is the Moore-Penrose generalized inverse of K. For f ∈ D(K†), the solution K†f
is defined as the element u ∈ X of smallest norm that minimizes the expression
||Ku − f ||2. If R(K) is not closed, then, in order to allow general perturbations in
the right-hand side of (1.1), one can approximate K† by a variety of regularization
operators that are defined on all of Y (see [16] for details). Perhaps the best known
is the Tikhonov regularization, which amounts to solving the identity-perturbed
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normal equation

(1.2) Hβu = β−1K∗f ,

where

(1.3) Hβ
def= I + β−1H and H

def= K∗K ,

with K∗ being the adjoint of K. For convenience we have multiplied the normal
equation by β−1. It should be noted that solving (1.2) is equivalent to applying
one step of Newton’s method to the minimization of the quadratic functional

(1.4) Jβ(u) =
β−1

2
||Ku − f ||2 +

1
2
||u||2

starting from the initial guess u = 0, and that Hβ is the Hessian operator associated
with the quadratic Jβ via the X -inner product. We add the subscript (resp. super-
script) h to a vector (resp. operator) to denote its discrete version, h representing
the discretization parameter. In this work, we are interested in fast solvers for com-
puting the Tikhonov regularization of K† for operators K with certain smoothing
properties.

If K∗K is smoothing, and β is small enough, then the spectrum σ(Hβ) has only a
few eigenvalues that are significantly greater than 1 (and they correspond to smooth
eigenvectors), while the remainder of the spectrum is clustered around the value 1.
Therefore unpreconditioned Krylov-type methods are expected to be efficient in
inverting Hh

β . For example, we can show that, if K is the solution operator for the
heat equation mapping the initial value onto the final-time state, then the num-
ber of conjugate gradient (CG) iterations required to solve the regularized inverse
problem down to machine precision is mesh-independent; moreover, the needed
number of iterations grows only logarithmically as β → 0 (see Chapter 7 in [16],
and also [12, 1]). However, the number of iterations needed for convergence, even
though independent of resolution, may be too large for practical use in the case of
large-scale problems, where the application of Kh (i.e., the direct problem) requires,
for example, solving a time-dependent three-dimensional partial differential equa-
tion. A standard strategy for solving large-scale optimization (or inverse) problems
is to use reduced-order models, and perform optimization (or inversion) on the
model rather than the direct (large) problem itself; this strategy usually restricts
the accuracy and resolution of the solution process. In this work we show that mul-
tilevel techniques can be successfully employed in efficiently solving certain types
of inverse problems without resorting to reduced models, thus producing highly
resolved solutions.

Multilevel methods, especially multigrid methods (MGMs), have been used ex-
tensively to efficiently solve linear systems related to partial differential equations
[2, 3, 4, 6, 8, 19]. The efficiency of MGMs relies on the availability of good smoothers,
that is, iterators that are inexpensive to apply, and that remove high-frequency com-
ponents from the approximation error. In the classical multigrid theory, originally
developed for inverting elliptic operators, standard iterators such as Jacobi and
Gauß-Seidel are natural choices for smoothers, this being related to the fact that
the operator to be inverted has roughening properties (being of differential type).
However, for operators with smoothing properties such as Hh

β , the aforementioned
iterators remove the low-frequency components from the error, thus leaving an er-
ror that cannot be represented accurately on a coarser mesh. In [25], frequently
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cited as one of the first studies of MGMs explicitly designed for ill-posed problems, a
smoother was introduced based on the idea that on high-frequency eigenvectors, the
operator Hh

β acts essentially as the identity; therefore the projector on the high-
frequency eigenspace acts as a smoother. A number of later studies [22, 23, 24]
are dedicated to MGMs for unregularized inverse problems. “Unregularized” is
meant as “not explicitly regularized”; in fact, regularization is achieved through
discretization (by limiting the highest resolution that can be used) or by prema-
ture termination of the iterative process. The goal of MGMs for unregularized
ill-posed problems is to design preconditioners that achieve a mesh-independent
error reduction, in other words, whose approximation quality is mesh-independent.
As mentioned before (see also [20, 30]), for the severely ill-posed problems under
consideration, this aim is already achieved by unpreconditioned CG. In this article
we show that, under certain circumstances, these types of problems can actually be
solved at a lower cost than just a mesh-independent number of iterations; in fact,
the number of iterations is shown to decrease with increasing number of levels.
We first construct a two-level preconditioner that is closely related to the additive
Schwarz preconditioner introduced in [30]; we denote this by TLAS (Two-Level
Additive Schwarz). The significant difference concerning TLAS between our work
and [30, 20] is that the discrete operators we are considering here are not obtained
by orthogonal projection from their continuous versions, but rather they are derived
from natural discretizations. The only assumptions we make about the discretiza-
tions are related to their approximation and stability properties. Also, our two-level
analysis is different from the one in [30, 20]; TLAS is shown here to approximate
(Hh

β )−1 to optimal order (see Section 4 for details). We use similar ideas to analyze
a two-level preconditioner for an inverse semilinear parabolic problem in a forth-
coming paper [13], the technical details therein being significantly more involved.
By simply replacing the call to the coarse-level inverse operator in TLAS with a
recursive call to TLAS, one could obtain a multilevel preconditioner which turns
out to be of suboptimal quality. In particular, the number of preconditioned CG
iterations would not decrease with increasing number of levels. However, the first
Newton iterate of the operator-function X �→ X−1 −Hh

β starting at this multilevel
operator produces an optimal order multilevel preconditioner, denoted by MLAS
(Multi-Level Additive Schwarz). MLAS has a W-cycle structure, and we should
point out that it escapes the “usual” paradigm of pre-smoothing followed by error-
correction and post-smoothing; here smoothing is intertwined with error-correction,
thus introducing an inter-smoothing step.

We would like to point out that, as in [30], the main results in this article apply
in the regime when hp � β, where p is the convergence order of the discretization
Kh (see also (2.5)). We would like to argue that this is the case for a class of
problems that motivated our research. The small parameter δ dictating the choice
of h and β for an inverse problem is related to the noise level in the data f ; that
is, one typically assumes that the actual “measured” data f used in (1.1) satisfies

||f − f0|| < δ ,

where f0 is the “correct” data. The natural assumption is that h should be chosen
so that hp ∼ δ. A priori rules for choosing β usually take into account source
conditions on u† [16]: if a Hölder-type holds,

u† = K†f0 ∈ R((K∗K)ν) ,
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then the choice β ∼ O(δ
2

2ν+1 ) gives the optimal convergence rate of

||uβ − u|| = O(δ
2ν

2ν+1 ) , as δ → 0 ,

where uβ is the solution of (1.2). Therefore

hp

β
∼ δ

2ν−1
2ν+1 ,

which implies that, for ν > 1
2 ,

hp � β, as δ → 0.

We refer the reader also to [32, 29] for discussions regarding the optimal choice of
the regularization parameter β.

One of our motivating problems is the question of recovering an early stage of
an air pollutant in an atmospheric model, given later time measurements [1]. In
this case the direct operator is given by K = S(T ), where t �→ S(t) is the solution
operator of a linear advection-diffusion equation (see also Section 6), and T > 0
is a given time. If the coefficients of the parabolic equation are smooth, then
K is infinitely smoothing. In general, Hölder-type conditions are too restrictive
and should be replaced by logarithmic source conditions [21], the case in which
an a priori choice of the regularization parameter leads to β ∼ O(δ). However,
in a practical and plausible scenario, where concentration measurements of the
pollutant are sparsely placed in space, there is a time-lag τ between the moment of
the original spill and the time when sensors determine that the pollution event has
taken place. Thus it is natural to assume that the “initial” state u† to be recovered
has a history of length τ , i.e., u† = S(τ )u0. If τ > T , that is, the “initial” state’s
history is longer than the difference T between the measurements-collection time
and the “initial” time, then u† ∈ R((K∗K)ν) with ν > 1

2 , under appropriate and
reasonable assumptions on the parabolic equation (cf. Picard’s criterion, see [16]).
A similar situation is encountered in a data assimilation setting for, say, weather
prediction. Here S(t) is the evolution operator for the velocity field of a fluid (air).
Various direct or indirect measurements provide a part of the history of a process for
which the entire state at a single time is unknown. Recovering a possible “initial
state” at an artificially chosen time t0 in the past enables “learning” the entire
state at the current time, thus potentially improving predictions from this time on.
Again, the initial state to be recovered naturally is S(τ )u, where u is a state at an
even earlier time, which again leads to a Hölder-type source condition with ν > 1

2 ,
thus making the inverse problem amenable to the case when hp � β.

This article closely follows [12] and is organized as follows: after describing
the problem in Section 2, we define the spectral distance between operators with
positive definite symmetric part in Section 3; this distance (a measure of spectral
equivalence) introduces a framework that is convenient for analyzing the two-level
(Section 4) and multilevel (Section 5) algorithms. Theorems 4.1 and 5.4 are the
central results of this paper. We present an application of these methods to inverse
problems of parabolic type in Section 6. The article concludes with a section on
numerical results. Appendix B contains a brief notation summary.

2. Notation and problem formulation

Let X = Y = L2(Ω), where Ω ⊂ Rd is an open set (d ≥ 1). Throughout this
paper we shall denote by Hm(Ω), Hm

0 (Ω) (m ∈ N) the standard Sobolev spaces,
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and by ||·|| = ||·||L2(Ω) and ||·||m (resp. | · |m) the corresponding norms (resp. semi-
norms); furthermore 〈·, ·〉 (resp. 〈·, ·〉m) will be the standard inner product in L2(Ω)
(resp. Hm(Ω)). Let H̃−m(Ω) be the dual (with respect to the L2-inner product)
of Hm(Ω) ∩ H1

0 (Ω) for m > 0. For T ∈ L(V1, V2) we denote the operator norm of
T by

|||T |||V1,V2 = sup
u∈V1\{0}

||Tu||
||u|| and |||T |||V

def= |||T |||V,V .

In the absence of any subscript, |||T ||| denotes |||T |||L2(Ω). We consider a set of ap-
proximating spaces (Vh)h∈I with

(2.1) I = {hmax/2i : i ∈ N}
that have the nesting property

(2.2) V2h ⊂ Vh ⊂ H1
0 (Ω), ∀h ∈ I \ {hmax}.

Furthermore, we denote by πh the L2-orthogonal projection onto Vh. Discretiza-
tions Kh ∈ L(Vh) of K give rise to the following discrete quadratic functional to be
minimized:

(2.3) J h
β (uh) =

β−1

2
||Khu − fh||2 +

1
2
||uh||2 ,

where fh = πh(f) ∈ Vh. Throughout this paper it is assumed that the operators K
and Kh together with their adjoints satisfy

Condition 2.1. There exists a number p > 0 (the approximation order) and
constants C1 = C1(p, |||K|||, Ω) and C2 = C2(p, Ω) such that for all h ∈ I the
following hold:

[a] stability:

(2.4)
∣∣∣∣Khu

∣∣∣∣ ≤ C1||u|| and ||(Kh)∗u|| ≤ C1||u||, ∀u ∈ Vh ;

[b] smoothed approximation:

(2.5) ||Ku −Khu|| ≤ C1h
p ||u|| and ||K∗u − (Kh)∗u|| ≤ C1h

p ||u|| , ∀u ∈ Vh ;

[c] negative-index norm approximation of the identity by the projection:

(2.6) ||(I − πh)u||
H̃−p(Ω)

≤ C2h
p ||u|| , ∀u ∈ L2(Ω) ;

[d] smoothing:

(2.7) ||Ku|| ≤ C1 ||u||H̃−p and ||K∗u|| ≤ C1 ||u||H̃−p , ∀u ∈ L2(Ω).

Remark 2.2. Condition 2.1 implies that there is a C = C(p, |||K|||, Ω) such that

||Hu||L2 ≤ C ||u||
H̃−p , ∀u ∈ L2(Ω) ,(2.8)

and

(2.9) ||K(I − πh)u|| ≤ Chp ||u|| and ||K∗(I − πh)u|| ≤ Chp ||u|| , ∀u ∈ L2(Ω).

In order to minimize J h
β we need to invert the discrete version of Hβ , namely

(2.10) Hh
β

def= I + β−1Hh, with Hh def= (Kh)∗Kh.

Lemma 2.3. The following approximation property holds:

(2.11)
∣∣∣∣πh(Hh − H)u

∣∣∣∣ ≤ Chp ||u|| , ∀u ∈ Vh,

for some constant C = C(p, |||K|||, Ω).
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Proof. For u ∈ Vh we have∣∣〈πh(Hh − H)u, u
〉∣∣ =

∣∣||Khu||2 − ||Ku||2
∣∣

≤ ||Khu −Ku|| ·
(
||Khu|| + ||Ku||

)
≤ C(C + |||K|||) hp||u||2 ,

and (2.11) follows from the symmetry of πh(Hh − H) ∈ L(Vh). �

It follows from the definition of Hβ , that for all u ∈ L2(Ω),

(2.12) ||u||2 ≤ 〈Hβu, u〉 ≤
(

1 +
C

β

)
||u||2 ,

with C = C(p, |||K|||, Ω), and similar estimates hold for the discrete Hessian. This
implies that the quadratic Jβ is positive definite and has a unique minimizer given
by

(2.13) umin = umin
β = β−1(Hβ)−1 K∗f.

Similarly the minimizer of the discrete quadratic is

(2.14) umin
h = umin

h,β = β−1(Hh
β )−1

(
Kh

)∗
fh.

We refer the reader to [15, 16] for results concerning convergence of umin
β or to K†f .

The next result shows that umin
h approximates umin to optimal order in the L2-norm

and plays a role in the analysis of the multilevel method.

Theorem 2.4. Assume that Condition 2.1 holds. Then there exists a constant
C = C(p, |||K|||, Ω) such that for h ≤ h0(β, p, |||K|||, Ω) we have the following stability
and error estimates:

||umin
h || ≤ C

(
||umin|| + β−1hp||f ||

)
,(2.15)

||umin
h − umin|| ≤ C

hp

β

(
||f || + ||umin||

)
.(2.16)

Proof. Denote by eh = umin
h − umin. We have

Hβeh = β−1
{(

(Kh)∗ −K∗) fh −K∗(I − πh)f + (H − Hh)umin
h

}
.

Therefore

β||eh||2
(2.12)

≤ β 〈Hβeh, eh〉
=

〈(
(Kh)∗ −K∗) fh −K∗(I − πh)f + (H − Hh)umin

h , eh

〉
(2.5), (2.9)

≤ Chp||f || ||eh|| +
〈
(H − Hh)umin

h , eh

〉
(I−πh)eh⊥Vh= Chp||f || ||eh|| +

〈
πh(H − Hh)umin

h , πheh

〉
+

〈
Humin

h , (I − πh)eh

〉
(2.11)

≤ Chp||eh||(||f || + ||umin
h ||) +

〈
Kumin

h ,K(I − πh)eh

〉
(2.9)

≤ Chp||eh||(||f || + ||umin
h ||) ,

with C = C(p, ||K||, Ω). Hence it follows that

(2.17) ||umin
h − umin|| ≤ C

hp

β

(
||f || + ||umin

h ||
)
.
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Since

||umin
h || ≤ ||umin|| + ||umin

h − umin|| ≤ ||umin|| + C
hp

β

(
||f || + ||umin

h ||
)

,

we obtain (2.15) and (2.16), for h small enough. �

3. The spectral distance

In this section we define a scale-independent distance between operators with
positive definite symmetric part, and we study its relevant properties. This spectral
distance is a measure of spectral equivalence between two operators and introduces
a convenient framework for the multilevel analysis in Section 5.

Throughout this section (X , 〈·, ·〉) is a real, finite-dimensional Hilbert space. As
usual, ||u|| =

√
〈u, u〉 is the Hilbert-space norm of u ∈ X . Denote by

L+(X ) = {T ∈ L(X ,X ) : 〈Tu, u〉 > 0, ∀u ∈ X \ {0}}
the set of operators with positive definite symmetric part. All operators in this
section are assumed to be in L+(X ). If A ∈ L+(X ) is symmetric, we write ||u||A

def=√
〈Au, u〉 = ||A 1

2 u||. Our object of study is the preconditioned Richardson iteration

(3.1) xn+1 = xn + M(b − Hxn)

leading to the solution x∗ of the equation

Hx = b ,

where b ∈ X , H ∈ L+(X ). Later we will specialize to H being symmetric (we
think of H being Hessian Hh

β from (2.10)), but we allow the preconditioner M to
be nonsymmetric, for reasons explained in Section 4.2. The results we prove for
H symmetric (essentially Theorem 3.12 and Corollary 3.13) apply to the reverse
situation as well, with the preconditioner M being symmetric and the operator H
nonsymmetric, a situation that has been studied beginning with [10, 14, 17]. Also,
some of the techniques in this section are rooted in the aforementioned papers. It
is well known that the error en = xn − x∗ satisfies

en = (I − MH)ne0.

If H is symmetric, then

en = H− 1
2 (I − H

1
2 MH

1
2 )n H

1
2 e0

and

||en||H ≤ |||I − H
1
2 MH

1
2 |||n · ||e0||H .(3.2)

Therefore the quantity |||I − MH||| (or |||I − H
1
2 MH

1
2 |||, if H is symmetric) is an

upper bound for the convergence rate of (3.1). Another quality-measure for the
preconditioner M , especially useful when neither M nor H are symmetric, is the
spectral radius ρ(I − MH). Although all the above quantities measure, in spirit,
how far M−1 is from H, none of them is a distance function in a strict mathematical
sense. For technical reasons that will become clear in Section 5 we prefer to assess
the quality of M by using an actual (scale-free) distance function to measure how
far M−1 and H are from each other.

We denote the complexification of X by

XC = X ⊗R C = {u + i v : u, v ∈ X} ,
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and we consider the natural extension of the inner product on X to a Hermitian
product on the complex vector space XC:

〈u1 + i v1, u2 + i v2〉 = 〈u1, u2〉 + 〈v1, v2〉 + i (〈v1, u2〉 − 〈u1, v2〉) ;

for T ∈ L(X ) define the complexification of T to be T C ∈ L(XC) (the space of
C-linear maps), where

T C(u + i v) = T (u) + i T (v).
We will drop the superscript C whenever there is no potential for confusion. Fur-
thermore, we denote by Br(z0) the open disc {z ∈ C : |z − z0| < r}.

Definition 3.1. Let T1, T2 ∈ L+(X ). We define the spectral distance between T1

and T2 to be

dX (T1, T2) = sup
w∈XC\{0}

∣∣∣∣∣ln
〈
T C

1 w, w
〉〈

T C
2 w, w

〉 ∣∣∣∣∣
= sup

(u,v)∈X×X\{(0,0)}

∣∣∣∣ln 〈T1u, u〉 + 〈T1v, v〉 + i (〈T1v, u〉 − 〈T1u, v〉)
〈T2u, u〉 + 〈T2v, v〉 + i (〈T2v, u〉 − 〈T2u, v〉)

∣∣∣∣ ,

where ln is the branch of the logarithm corresponding to C \ (−∞, 0].

We should point out that, for T1, T2 ∈ L+(X ), the quotients
〈
T C

1 w, w
〉
/
〈
T C

2 w, w
〉

do not lie in (−∞, 0]. Also note that, if T = Ts + Ta with Ts (resp. Ta) being the
symmetric (resp. antisymmetric) part of T , then

(3.3)
〈
T C(u + i v), u + i v

〉
= 〈Tsu, u〉 + 〈Tsv, v〉 + 2i 〈Tav, u〉 .

The polarization identity

〈Tu, v〉 =
1
4
(〈T (u + v), u + v〉 − 〈T (u − v), u − v〉

+i 〈T (u + i v), u + i v〉 − i 〈T (u − i v), u − i v〉)
implies that dX (T1, T2) = 0 if and only if T1 = T2. We leave as an exercise to the
reader the verification of the symmetry and triangle inequality (see also [12]).

The following elementary (but nontrivial) inequalities prove useful in evaluating
the spectral distance.

Lemma 3.2. If α ∈ (0, 1) and z ∈ Bα(1), then

(3.4)
ln(1 + α)

α
|1 − z| ≤ | ln z| ≤ | ln(1 − α)|

α
|1 − z|.

For |ln z| ≤ δ we have

(3.5)
1 − e−δ

δ
| ln z| ≤ |1 − z| ≤ eδ − 1

δ
| ln z|.

Proof. The modulus of the analytic function f : Bα(1) → C defined by f(z) =
ln z/(1 − z) attains its extreme values on the boundary ∂Bα(1), as f has no zeros
in Bα(1). On the circle Cα(1) = {ζ : |1 − ζ| = α} we have |f(z)| = α−1|ln z|;
hence the extreme values of |f(z)| are attained at the same points as the extremes
of |ln z|2. The problem is thus reduced to showing that the maximum of |ln z|2 on
the circle Cα(1) is attained at ζ = 1− α, and the minimum at ζ = 1 + α. We leave
this calculus problem as an exercise (hint: Draw tangents from the origin to Cα(1),
and parametrize the two resulting arches using polar coordinates around 0. Use the
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angle as the free variable. The functions to be analyzed are g1,2(θ) = ln(ρ1,2(θ))2 +
θ2, with ρ1,2(θ) = cos θ ±

√
α2 − sin2 θ). For (3.5) we proceed similarly. �

Remark 3.3. We should note the following short one-line proof of the fact that the
global maximum of |ln z| on Cα(1) is located at z = 1 − α:

|ln z| =

∣∣∣∣∣
∞∑

n=1

(−1)n−1 (z − 1)n

n

∣∣∣∣∣ ≤
∞∑

n=1

αn

n
= |ln(1 − α)|.

However, we found no such simple argument for showing that the global minimum
is at z = 1 + α.

The following result shows that, even if neither M nor H is symmetric, the
spectral radius of (I − MH) is controlled by the spectral distance between M−1

and H.

Lemma 3.4. Let M, H ∈ L+(X ) such that dX (M−1, H) ≤ δ. Then

(3.6) ρ(I − MH) ≤ eδ − 1
δ

dX (M−1, H).

In particular, if dX (M−1, H) < ln 2, then ρ(I − MH) < 1.

Proof. Let λ ∈ σ(I − MH). Then there exists a unit vector u ∈ XC such that
(I − MH)u = λu, which further implies that

λ = 1 − 〈Hu, u〉
〈M−1u, u〉 .

Hence

ρ(I − MH) ≤ sup{|1 − z| : z = 〈Hu, u〉 /
〈
M−1u, u

〉
for some u ∈ XC \ {0}}

(3.5)

≤ eδ − 1
δ

dX (M−1, H).

�

Remark 3.5. In general, the converse of (3.6) does not hold. For example, let

H =
[

1 1
0 1

]
, and M = I. Then ρ(I − MH) = 0, but dX (M−1, H) �= 0.

A concept related to the spectral distance is the numerical range or field of values
of an operator T , which is defined in [18] as

W (T ) =
{〈

T Cu, u
〉

: u ∈ XC, ||u|| = 1
}

;

the numerical radius is

w(T ) = sup{|λ| : λ ∈ W (T )}.

We recall two results from [18]:

Theorem 3.6 (Theorem 1.3-1 in [18]). For any T ∈ L(X ),

(3.7) w(T ) ≤ |||T ||| ≤ 2w(T ).
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This is basically saying that w(·), which is a norm, is equivalent to the operator
norm ||| · |||. However, for symmetric operators we have

(3.8) |||T ||| = w(T ) ,

since W (T ) = co(σ(T )) (co(A) denotes the convex hull of the set A). The next
result is about mapping of the numerical radius under a power function:

Theorem 3.7 (Theorem 2.1-1 in [18]). For any T ∈ L(X ),

(3.9) w(Tn) ≤ (w(T ))n
, n = 1, 2, 3, . . . .

By analogy we define the joint numerical range to be

(3.10) W (T1, T2) =
{
〈T1w, w〉
〈T2w, w〉 : w ∈ XC \ {0}

}
.

Note that W (T, I) = W (T ). With this definition the spectral distance becomes

(3.11) dX (T1, T2) = sup{| ln(λ)| : λ ∈ W (T1, T2)}.

Remark 3.8. If T2 is symmetric, then

(3.12) W (T1, T2) = W (T− 1
2

2 T1T
− 1

2
2 ).

This is easily seen from the change of variable w = T
− 1

2
2 v in (3.10).

Lemma 3.9. If T1, T2 ∈ L+(X ) are symmetric, then

(3.13) dX (T1, T2) = sup
u∈X\{0}

∣∣∣∣ln 〈T1u, u〉
〈T2u, u〉

∣∣∣∣
and

(3.14)
|||I − T

1
2
1 T−1

2 T
1
2
1 |||

dX (T1, T2)
→ 1 as dX (T1, T2) → 0.

Proof. Let T12 = T
− 1

2
2 T1T

− 1
2

2 . The symmetry of T12 implies

W (T1, T2)
(3.12)
= W (T12)

(3.3)
=

{
〈T12u, u〉 + 〈T12v, v〉

〈u, u〉 + 〈v, v〉 : (u, v) �= (0, 0)
}

.

Since W (T12) is convex (Theorem 1.1-2 in [18]) we have{
〈T12u, u〉 + 〈T12v, v〉

〈u, u〉 + 〈v, v〉 : (u, v) �= (0, 0)
}

⊆
{
〈T12u, u〉
〈u, u〉 : u �= 0

}
.

The reverse inclusion being evident, we get

W (T1, T2) =
{
〈T12u, u〉
〈u, u〉 : u �= 0

}
u′=T

− 1
2

2 u
=

{
〈T1u

′, u′〉
〈T2u′, u′〉 : u′ �= 0

}
,

and (3.13) follows by (3.11). Moreover, since all operators involved are symmetric,

W (T12) = co (σ(T12)) = [λmin, λmax] ,

where λmin (resp. λmax) is the smallest (resp. largest) eigenvalue of T12. The fact
that dX (T1, T2) → 0 translates into λmin, λmax → 1; hence

|||I − T12|||
dX (T1, T2)

=
max(|1 − λmin|, |1 − λmax|)

max(|lnλmin|, |lnλmax|)
→ 1. �
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The following lemma is a restating in terms of the spectral distance of equivalent
results from [10, 14, 17].

Lemma 3.10. For symmetric operators T1, T2 ∈ L+(X ) we have

(3.15) dX (T1, T2) = dX ((T1)−1, (T2)−1).

Proof. As in the proof of Lemma 3.9 we have

W (T1, T2) =
{
〈T12u, u〉
〈u, u〉 : u �= 0

}
v=T

1
2
12u

=

{
〈v, v〉〈

T−1
12 v, v

〉 : v �= 0

}

=

⎧⎨⎩ 〈v, v〉〈
T

1
2
2 T−1

1 T
1
2
2 v, v

〉 : v �= 0

⎫⎬⎭
w=T

1
2
2 v

=

{〈
T−1

2 w, w
〉〈

T−1
1 w, w

〉 : w �= 0

}
= W (T−1

2 , T−1
1 ) ,

and the conclusion follows from (3.11). �

The remainder of this section is devoted to showing that if H is symmetric, and
H

1
2 MH

1
2 is close to I, then the spectral distance can replace |||I − H

1
2 MH

1
2 ||| in

the estimate (3.2), at the expense of a slightly increased constant on the right-
hand side (see (3.27)); this fact is not surprising, since the values of dX (T1, T2)
and |||I − T

− 1
2

1 T2T
− 1

2
1 ||| become asymptotically close as dX (T1, T2) → 0. It will be

convenient to regard the Richardson iteration (3.1) as an iteration of precondi-
tioners. More precisely, we think of (3.1) as a sequence of single iterations with
“improved” preconditioners:

(3.16) xn = x0 + Mn(b − Hx0) ,

with M0 = 0 and Mn recursively defined by Mn+1 = M +Mn −MHMn. A simple
calculation shows that

(3.17) Mn = H−1 − (I − MH)nH−1 = H− 1
2

(
I −

(
I − H

1
2 MH

1
2

)n)
H− 1

2 .

In particular M1 = M ; moreover, M2 = 2M − MHM is the first Newton iterate
with initial guess M1 of the operator-function X �→ X−1 − H, as shown below.

Remark 3.11. Define G : L+(X ) → L(X ) by G(X) = X−1 − H. Since G′(X)U =
−X−1UX−1 (see [9]), it follows that (G′(X))−1U = −XUX; the Newton iteration
for solving G(X) = 0 is

Xi+1 = Xi − (G′(Xi))−1(X−1
i − H) = 2Xi − XiHXi.

Hence the iteration is Xi+1 = NH(Xi) with

(3.18) NH(X) def= 2X − XHX.

We will be using the operator NH in designing a multilevel preconditioner in Sec-
tion 5 in the following way: given an initial (and unacceptable) guess X at H−1, the
next best guess is NH(X). By (3.17) the first Richardson iterate with NH(X) as a
preconditioner instead of M , namely the value x0 + NH(X)(b − Hx0), is equal to
x2 from (3.1). Therefore applying NH(X) amounts to performing two Richardson
iterations with M as a preconditioner.
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Theorem 3.12. Let M, H ∈ L+(X ) and Mn be defined as in (3.17). If H is
symmetric and dX (M, H−1) < ln 2, then Mn ∈ L+(X ) and

(3.19) dX (Mn, H−1) ≤ gn

(
dX (M, H−1)

)
,

where gn(x) = | ln(1 − (ex − 1)n)| = xn + O(xn+1); hence

(3.20) lim
n→∞

Mn = H−1 in the metric dX .

Proof. Let α = dX (M, H−1). By (3.11) and the fact that

max{|ew − 1| : w ∈ Bα(0)} = eα − 1,

it follows that
W (H

1
2 MH

1
2 ) = W (M, H−1) ⊂ Beα−1(1) ;

therefore

(3.21) w
(
I − H

1
2 MH

1
2

)
≤ eα − 1.

Equation (3.17) implies that

(3.22)
(
I − H

1
2 MnH

1
2

)
=

(
I − H

1
2 MH

1
2

)n

;

hence by (3.9) and (3.21) we get

(3.23) w
(
I − H

1
2 MnH

1
2

)
≤ γ

def= (eα − 1)n.

Since max{| ln(z)| : z ∈ Bγ(1)} = | ln(1 − γ)| (here we used γ < 1, which follows
from α < ln 2 and also implies that Mn is positive definite), we get

(3.24) dX (Mn, H−1) ≤ | ln(1 − (eα − 1)n)| ,

which concludes the proof. �

Corollary 3.13. Under the conditions of Theorem 3.12 the sequence xn defined by
the simple iteration (3.1) converges to the solution x∗, and we have the estimate

(3.25) ||en||H ≤ 2 g
(
dX (Mn, H−1)

)
· ||e0||H ,

where g(x) = ex − 1 = x + o(x).

Proof. The relations (3.2), (3.23) and (3.7) imply

(3.26) ||en||H ≤ 2 w
(
I − H

1
2 MnH

1
2

)
· ||e0||H .

Similarly to the proof of Theorem 3.12 we have

w
(
I − H

1
2 MnH

1
2

)
≤ g

(
dX (Mn, H−1)

)
,

with g as in the hypothesis. �

Remark 3.14. In light of the asymptotic behavior of the functions gn and g above,
we rewrite (3.25) in the following way: for every C > 2 there exists δ(C) > 0 such
that, if dX (M, H−1) < δ(C), then

(3.27) ||en||H ≤ C
(
dX (M, H−1)

)n · ||e0||H .
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4. Two-level preconditioners for the discrete Hessian

In this section we construct and analyze two-level preconditioners for the discrete
Hessian Hh

β defined in (2.10). Given that Hh
β is symmetric, it is natural to seek

preconditioners that are symmetric as well (Section 4.1). However, the results
in Section 3 show that symmetry of the preconditioner is not essential for the
Richardson iteration to converge. In Section 4.2 we investigate the possibility of
using slightly nonsymmetric operators as preconditioners for Hh

β . Nonsymmetry
may occur by allowing restriction operators other than exact L2-projections. The
main results in this section are Theorems 4.1 and 4.3, which essentially state that
the spectral distance between the constructed preconditioners and the inverse of
the Hessian is O(hp/β).

We should point out that the results presented in this section, although similar
to the ones in [30, 20] are obtained in a different context. While the discrete
operators in the aforementioned papers are obtained by orthogonal projections of
their continuous versions on the finite-dimensional spaces under consideration, our
discrete operators arise from natural finite element discretizations, and the only
assumptions made are related to convergence and stability. Naturally the results in
Section 4.1 have counterparts in [30, 20], but the techniques used here are different.

4.1. A symmetric preconditioner. For the remainder of this article we consider
on Vh the Hilbert-space structure inherited from L2(Ω). Let W2h be the orthogonal
complement of V2h in Vh, and let ρ2h be the orthogonal projection onto W2h, so
that π2h + ρ2h = I. We shall refer to Vh as the fine space in relation to V2h, which
will be the coarse space. We consider the splitting

Hh
β = π2hHh

β π2h︸ ︷︷ ︸
A1

+ ρ2hHh
β π2h︸ ︷︷ ︸

A2

+ π2hHh
β ρ2h︸ ︷︷ ︸

A3

+ ρ2hHh
β ρ2h︸ ︷︷ ︸

A4

.

Standard Fourier analysis on uniform grids shows that π2h extracts the low-frequen-
cy components from a function in Vh, while ρ2h extracts the high-frequency com-
ponents. For h � 1 it is expected that Hh inherits the smoothing character of
H = K∗K, therefore annihilates high-frequency components, i.e., Hhρ2h ≈ 0. Sim-
ilarly, ρ2hHh ≈ 0, since this operation amounts to extracting high-frequency com-
ponents from a “smoothened” function. This suggests that the cross terms A2, A3

are negligible (since A2 ≈ ρ2hπ2h = 0, A3 ≈ π2hρ2h = 0), and that A4 ≈ ρ2h

(see [11] for more details). On “smooth” components both Hh and H2h approx-
imate H well, since all eigenvectors of H corresponding to large eigenvalues are
well represented on fine grids (the high-frequency eigenvectors of H correspond to
negligible eigenvalues); hence A1 ≈ H2h

β . The resulting approximation is

Hh
β ≈ Mh

β
def= H2h

β π2h + (I − π2h).

Since π2h is a projection, the inverse (Mh
β )−1 is given explicitly by

(4.1) Lh
β = Lh

β(π2h) def= (Mh
β )−1 = (H2h

β )−1π2h + (I − π2h).

We propose Lh
β ∈ L(Vh) as a two-level preconditioner for Hh

β . Due to the similarity
with the additive Schwarz construction from domain decomposition, and in accor-
dance with [30], we denote it here as the TLAS (Two-Level Additive Schwarz)
preconditioner. We would like to remark that Mh

β and Lh
β are symmetric. It should

be noted that the projector I − π2h removes high-frequency components from the
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approximation error; therefore it acts as a smoother. However, unlike the case of
the classical multigrid, neither is the solution a fixed point for this smoother, nor
does it make sense to apply the smoother more than once.

The remainder of this section is devoted to proving the following theorem, which
gives an estimate of the distance between Lh

β and (Hh
β )−1. We write dh instead of

dVh
.

Theorem 4.1. Assume that the operators K,Kh satisfy Condition 2.1. Then there
exists a constant C = C(p, |||K|||, Ω) such that for h ≤ h0 with h0 = h0(β, p, |||K|||, Ω)
we have Mh

β ∈ L+(Vh), and

(4.2) dh(Hh
β , Mh

β ) ≤ C
hp

β
.

Before we proceed to the proof of the theorem we state the corollary which
legitimizes the use of Lh

β as a preconditioner for the Hessian.

Corollary 4.2. Under the hypotheses of Theorem 4.1 there exists a constant C =
C(p, |||K|||, Ω) such that Lh

β ∈ L+(Vh), and

(4.3) dh

(
Lh

β ,
(
Hh

β

)−1
)
≤ C

hp

β
,

for h ≤ h0 with h0 = h0(β, p, |||K|||, Ω).

Proof. The result follows directly from Theorem 4.1 and Lemma 3.10. �

We would like to remark that, for fixed β, the quality of the preconditioner Lh
β

increases with h → 0. This is different from standard multigrid preconditioning
for elliptic problems, where the goal would be to show that the right-hand side
of (4.3) is independent of h. It should not be surprising that (4.3) is such an
optimistic estimate. This is related to the adverse eigenstructure of the eigenvalue-
frequency correlation for the operator Hh

β . By increasing resolution we only add
high-frequency eigenfunctions whose eigenvalues are close to 1. On the other hand,
the low-frequency eigenvectors (with higher energy) are increasingly well approxi-
mating the continuous (smooth) eigenvectors of Hβ , and therefore they are increas-
ingly well approximated by corresponding eigenvectors of H2h

β . Hence the fine-space
operator is increasingly well approximated by the identity on the high-frequency
part, and by the coarse-space operator on the low-frequency part. We return to the
proof of Theorem 4.1:

Proof. We have the following relation on Vh:

β(Mh
β − Hh

β ) = π2h

(
H2h − H

)
π2h︸ ︷︷ ︸

A

+ (π2hHπ2h − πhHπh)︸ ︷︷ ︸
B

+ (πhHπh − Hh)︸ ︷︷ ︸
C

.

Note that all operators in the above sum are symmetric in L(Vh). We analyze the
products 〈Au, u〉 , 〈Bu, u〉 , 〈Cu, u〉. For u ∈ Vh,

| 〈Au, u〉 | =
∣∣〈(H2h − π2hH

)
π2hu, π2hu

〉∣∣ (2.11)

≤ C(2h)p ||π2hu||2 ≤ C(2h)p ||u||2 .
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Similarly, we obtain |〈Cu, u〉| ≤ Chp ||u||2. For the middle term we have

| 〈Bu, u〉 | = |〈(π2hHπ2h − πhHπh)u, u〉| u∈Vh= | 〈Hπ2hu, π2hu〉 − 〈Hu, u〉 |

=
∣∣∣||Kπ2hu||2 − ||Ku||2

∣∣∣ = ||K(I − π2h)u|| · (||Kπ2hu|| + ||Ku||)
(2.9)

≤ Chp ||u||2 ,

with C = C(p, |||K|||, Ω). Putting the above estimates together we get∣∣∣∣∣∣
〈
Mh

β u, u
〉

〈
Hh

β u, u
〉 − 1

∣∣∣∣∣∣ ≤ C
hp

β
· ||u||2

β−1 〈Hhu, u〉 + ||u||2
≤ C

hp

β
.(4.4)

Assuming Cβ−1hp
0 = α < 1 and 0 < h ≤ h0 we obtain Mh

β ∈ L+(Vh), and

sup
u∈Vh\{0}

∣∣∣∣∣∣ln
〈
Mh

β u, u
〉

〈
Hh

β u, u
〉
∣∣∣∣∣∣

(3.4)

≤ | ln(1 − α)|
α

sup
u∈Vh\{0}

∣∣∣∣∣∣
〈
Mh

β u, u
〉

〈
Hh

β u, u
〉 − 1

∣∣∣∣∣∣
≤ C

| ln(1 − α)|
α

· hp

β
.

The conclusion follows from the symmetry of Mh
β and Hh

β and from Lemma 3.9. �

4.2. Nonsymmetric preconditioners. The application of the preconditioner
Lh

β(π2h) from Section 4.1 requires computing exact (or very close to exact) L2-
projections. In this section we prove a result similar to Theorem 4.1 that applies to
a larger class of preconditioners, obtained by replacing in (4.1) the orthogonal pro-
jection π2h with a more general restriction operator Rh

2h ∈ L(Vh,V2h) that verifies
Condition 2.1[c]. A local restriction operator that satisfies a similar, but slightly
weaker condition is defined in [5]. In Section 6.3 we show how to construct local
restriction operators with the required properties.

Theorem 4.3. Assume that the operators K,Kh satisfy Condition 2.1, and that
the restriction operator Rh

2h ∈ L(Vh,V2h) satisfies for all β ∈ (0, 1] and h ∈ I,
[e] stability:

(4.5) ||Rh
2hu|| ≤ C ||u|| , ∀u ∈ Vh ;

[f ] approximation of the identity in the negative-index norm:

(4.6) ||(I − Rh
2h)u||

H̃−p(Ω)
≤ Chp ||u|| , ∀u ∈ Vh ,

with C = C(p, |||K|||, Ω). If we denote by

(4.7) Lh
β = Lh

β(Rh
2h) def= (H2h

β )−1Rh
2h + (I − Rh

2h) ,

then for h ≤ h0 with h0 = h0(β, p, |||K|||, Ω) we have Lh
β ∈ L+(Vh), and

(4.8) dh

(
(Hh

β )−1, Lh
β

)
≤ C

hp

β2
,

for some constant C = C(p, |||K|||, Ω).

Note that this result, though applying to a larger class of restriction operators,
is weaker than Theorem 4.1, due to the extra power of β in the denominator of the
right-hand side of (4.8). We first prove



2016 ANDREI DRĂGĂNESCU AND TODD F. DUPONT

Lemma 4.4. Under the hypotheses of Theorem 4.3 there exists a constant
C = C(p, |||K|||, Ω) such that, for all u ∈ Vh the following hold:

(i) smoothing properties of the discrete Hessian:

(4.9) max
(
||Hh(I − Rh

2h)u||, ||H2h(π2h − Rh
2hu)||

)
≤ Chp||u|| ;

(ii) smoothing properties of the inverse discrete Hessian:

(4.10) ||((H2h
β )−1 − I)(π2h − Rh

2h)u|| ≤ Cβ−1hp||u||.

Proof. Throughout this proof C will denote a generic constant depending only on
p, |||K||| and Ω.

(i) Conditions (2.6) and (4.6) imply that for u ∈ Vh,

(4.11)
∣∣∣∣(π2h − Rh

2h)u
∣∣∣∣

H̃−p ≤ Chp ||u|| .
For u ∈ Vh we have

||
(
H2h − π2hH

)
(π2h − Rh

2h)u||
(2.11)

≤ C(2h)p||(π2h − Rh
2h)u||

(4.5)

≤ Chp ||u|| ;

hence ∣∣∣∣H2h(π2h − Rh
2h)u

∣∣∣∣ ≤
∣∣∣∣π2hH(π2h − Rh

2h)u
∣∣∣∣ + C(2h)p ||u||

(2.8)

≤ C
∣∣∣∣(π2h − Rh

2h)u
∣∣∣∣

H̃−p(Ω)
+ Chp ||u||

(4.11)

≤ Chp ||u|| .
The inequality ∣∣∣∣Hh(I − Rh

2h)u
∣∣∣∣ ≤ Chp ||u|| , u ∈ Vh ,

follows along the same lines, and (4.9) is proved.

(ii) Since
〈
H2hu, u

〉
≥ 0, it follows that

〈
H2h

β u, u
〉
≥ ||u||2 , ∀u ∈ V2h. Hence

(4.12) ||
(
H2h

β

)−1
u|| ≤ ||u|| , for u ∈ V2h.

For u ∈ Vh,

||((H2h
β )−1 − I)(π2h − Rh

2h)u|| = β−1||(H2h
β )−1H2h(π2h − Rh

2h)u||
(4.9), (4.12)

≤ Cβ−1hp.

�

We now proceed to the proof of Theorem 4.3.

Proof. Recall that in Corollary 4.2 it was shown that

dh

((
Mh

β

)−1
,
(
Hh

β

)−1
)
≤ Cβ−1hp ,

where (
Mh

β

)−1
=

(
H2h

β

)−1
π2h + (I − π2h).

Since β ≤ 1, it suffices to show that

(4.13) dh

((
Mh

β

)−1
, Lh

β

)
≤ Cβ−2hp.
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We rewrite (4.7) as
Lh

β = I +
((

H2h
β

)−1 − I
)

Rh
2h ,

and we start by evaluating the antisymmetric part of Lh
β :〈

Lh
βu, v

〉
−

〈
Lh

βv, u
〉

=
〈((

H2h
β

)−1 − I
)

Rh
2hu, v

〉
−

〈((
H2h

β

)−1 − I
)

Rh
2hv, u

〉
=

〈((
H2h

β

)−1 − I
)

Rh
2hu, π2hv

〉
−

〈((
H2h

β

)−1 − I
)

Rh
2hv, π2hu

〉
=

〈((
H2h

β

)−1 − I
)

(Rh
2h − π2h)u, π2hv

〉
−

〈((
H2h

β

)−1 − I
)

(Rh
2h − π2h)v, π2hu

〉
.

For the last equality we have added and subtracted
〈
((H2h

β )−1 − I)π2hu, π2hv
〉

and

used the symmetry of ((H2h
β )−1 − I) on V2h. By Lemma 4.4 (ii) we get

(4.14)
∣∣〈Lh

βu, v
〉
−

〈
Lh

βv, u
〉∣∣ ≤ Cβ−1hp ||u|| · ||v|| .

Note that Mh
β = H2h

β π2h + (I − π2h) = β−1H2hπ2h + I; hence

(4.15) 〈u, u〉 ≤
〈
Mh

β u, u
〉
≤ Cβ−1 〈u, u〉 , for u ∈ Vh ,

with C = C(p, |||K|||, Ω). This implies

(4.16) C−1β 〈u, u〉 ≤
〈(

Mh
β

)−1
u, u

〉
≤ 〈u, u〉 , for u ∈ Vh.

It follows that the projection of the set W (Lh
β, (Mh

β )−1) onto the imaginary axis
(see (3.3)) satisfies∣∣∣〈Lh

βu, v
〉
−

〈
Lh

βv, u
〉∣∣∣〈

(Mh
β )−1u, u

〉
+

〈
(Mh

β )−1v, v
〉 (4.14), (4.16)

≤ C
hp

β2
· ||u|| · ||v||
||u||2 + ||v||2

;

we obtain therefore

(4.17) sup
{
|�w| : w ∈ W (Lh

β, (Mh
β )−1)

}
≤ Cβ−2hp ,

where �w is the imaginary part of a complex number w. We now turn our attention
to the projection of W (Lh

β , (Mh
β )−1) onto the real axis. Since (Mh

β )−1 is symmetric,
this amounts to computing the joint numerical range of the symmetric part of Lh

β

and (Mh
β )−1. By Lemma 3.9 we need to evaluate

(4.18)

〈
Lh

βu, u
〉

〈
(Mh

β )−1u, u
〉 = 1 +

〈
(Lh

β − (Mh
β )−1)u, u

〉
〈
(Mh

β )−1u, u
〉

for u ∈ Vh \ {0}. A simple calculation shows that

Lh
β − (Mh

β )−1 = ((H2h
β )−1 − I)(Rh

2h − π2h) ;

therefore, by Lemma 4.4 (ii) it follows that

(4.19)
∣∣〈(Lh

β −
(
Mh

β )−1
)
u, u

〉∣∣ ≤ Cβ−1hp ||u||2 ;

this, together with (4.18) and (4.16), implies

(4.20)
{
Rw : w ∈ W (Lh

β, (Mh
β )−1)

}
⊂ [1 − Cβ−2hp, 1 + Cβ−2hp] ,
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where Rw is the real part of a complex number w. Finally from (4.17) and (4.20)
it follows that

(4.21) W
(
Lh

β,
(
Mh

β

)−1
)
⊂ BCβ−2hp(1).

In particular this implies, possibly by further reducing h0 by a factor of two, that
Lh

β ∈ L+(Vh). Lemma 3.2 implies that (4.13) holds for h ≤ h0(β, p, |||K|||, Ω). �

5. A multilevel preconditioner

In this section we define a multilevel preconditioner Kh
β that is of comparable

quality with the two-level preconditioner Lh
β defined in Section 4. By analogy we

will denote the preconditioner by MLAS (Multi-Level Additive Schwarz).

5.1. Design and work estimates. Before constructing Kh
β we want to point

out that one natural way to extend Lh
β to a multilevel preconditioner Gh

β is by
replacing (H2h

β )−1 in (4.1) with the coarse-space preconditioner; thus we define the
preconditioner recursively:

(5.1) Gh
β

def= G2h
β π2h + (I − π2h).

At the coarsest level h0 we use the conjugate gradient method as an “almost direct”
solver. It is immediate that Gh

β ∈ L+(Vh). This strategy yields a multilevel precon-
ditioner with a V -cycle structure, which is very similar to the one defined in [30].
In Theorem 5.2 we prove that the distance between Gh

β and (Hh
β )−1 only depends

on the coarsest level resolution, which is consistent with the results in [30]. This
preconditioner is suboptimal, and this fact should not be surprising: the multilevel
Gh

β is in fact only a two-level operator, in the sense that we would obtain the same
Gh

β if we had used only the finest and the coarsest levels. For example, if we use
three levels corresponding to resolutions h, 2h, and 4h, then

Gh
β = G2h

β π2h + (I − π2h) =
(
G4h

β π4h + (I − π4h)
)
π2h + (I − π2h)

= G4h
β π4h + (I − π4h), since π4hπ2h = π4h.

Also we should point out that, when applying Gh
β, residuals at intermediate levels

are never computed. Thus the quality of the multilevel preconditioner Gh
β, while

not degrading, also does not improve with increasing fine-level resolution. As a
result, for example, the number of Gh

β-preconditioned conjugate gradient iterations
will be constant if h0 is kept fixed and h → 0. Our goal is to design a multilevel
preconditioner whose quality improves with increasing fine-level resolution. This
would imply that asymptotically (as h → 0) we may only need one preconditioned
iteration at the finest level.

We adopt a different strategy in defining an improved preconditioner Kh
β : in

addition to replacing (H2h
β )−1 with the coarse-space preconditioner, like before,

we perform one Newton iteration for the operator-function X → X−1 − Hh
β , as

explained in Remark 3.11. More precisely, if we denote by Gh : L(V2h) → L(Vh)
the affine operator-function

(5.2) Gh(T ) = Tπ2h + (I − π2h) ,

then we define Kh
β recursively using (3.18) by

(5.3) Kh
β

def= NHh
β

(
Gh(K2h

β )
)

= 2Gh(K2h
β ) − Gh(K2h

β ) · Hh
β · Gh(K2h

β ).
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With this notation the symmetric preconditioner from Section 4.1 is written as

Lh
β = Gh((H2h

β )−1).

We should note that Gh is symmetry-preserving; therefore Kh
β is symmetric if Kh0

β

is so. The application of Kh
β requires one residual computation at the finest level

(see Algorithm MLAS); moreover, performing one Kh
β -preconditioned Richardson

iteration simply means to complete two Gh(K2h
β )-preconditioned Richardson iter-

ations, as explained in Section 3. This implies that there will be two calls to the
coarser-space procedure, therefore Kh

β has a W-cycle structure. We would like to
remark that the calling sequence pre-smoothing - restriction - error correction -
interpolation - post-smoothing from the classical multigrid is not appropriate for
Algorithm MLAS. Here restriction applies to the right-hand side as a whole as op-
posed to the smoothed residual, as in the classical multigrid, and smoothing occurs
again between the error-correction steps.
Algorithm MLAS. (b �→ Kh

β b)

(1) if h = h0 then return Kh0
β b // direct solve

(2) else
(3) bc ← π2hb // restriction
(4) u1 ← b − bc + K2h

β bc // smoothing and error correction
(5) r ← b − Hh

β u1 // residual computation
(6) rc ← π2hr // restriction
(7) u2 ← u1 + K2h

β rc + r − rc // smoothing and error correction
(8) return u2

Let hi = 2−ih0, i = 0, 1, . . . , l. If we denote by W (i) (resp. R(i)) the work needed
to apply Khi

β (resp. Hhi

β ), then

(5.4) W (i) ≈ R(i) + 2W (i − 1).

We have assumed that the cost of restriction and interpolation is negligible com-
pared to that of a residual computation. Indeed this is the case when Hhi

β is
represented by a dense matrix, and restriction by a sparse matrix, or when the
direct problem (i.e., applying K) is a space-time process and restriction operates
only on the spatial variables (see Section 6). If R(i− 1) ≤ 2−gR(i) for some g > 0,
then (5.4) implies

(5.5) W (l) ≤ (1 − 2−g)−1R(l) + 2lW (0).

It is shown in [16] that the unpreconditioned conjugate gradient takes a level-
independent number of iterations Ncg to solve the exponentially ill-posed problems
(Ncg still depends on β). This results in W (0) = CNcgR(0), with C = O(1) being
a universal constant. Hence we have the estimate

(5.6) W (l) ≤
(
(1 − 2−g)−1 + C2l(1−g)Ncg

)
R(l).

The number g is related to the dimension of the problem to be solved. For
example, if the forward operator K is a three-dimensional space-time operator,
and we use a time-stepping procedure with the same convergence order as the
spatial discretization, then g = 4. With l = 3 levels, (5.6) results in W (3) ≈
(16/15+0.002 ·C ·Ncg)R(3). In practice we have observed Ncg ranging from 20 to
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200 (see [1]). Hence for this numerical example the work for applying the three-level
preconditioner is a small multiple of the work for a residual computation.

In practice, algorithm MLAS should be modified so that, at the finest level, no
residual computation is performed inside the preconditioner; that is, at the finest
level MLAS should return the value u1 on line (4). Without this modification, Kh

β

would approximate (Hh
β )−1 to an excessively high order, as seen in the discussion

at the end of Section 5.2. However, we prefer to use the current definition of Kh
β for

the sake of keeping the presentation of the error estimates in the following section
free of branching.

5.2. Error estimates for the multilevel preconditioner. The main goal of
this section is to estimate the distance

(5.7) eh = dh(Kh
β ,

(
Hh

β

)−1
).

This quantity lies at the basis of the residual and error estimates, as pointed out
in Section 3. We will also estimate dh(Gh

β, (Hh
β )−1).

Lemma 5.1. Let T1, T2 ∈ L+(V2h) be symmetric. Then

(5.8) dh

(
Gh(T1),Gh(T2)

)
≤ d2h (T1, T2) .

Proof. A simple calculation shows that for any a, b > 0 the function g(x) =
|ln(a + x) − ln(b + x)| is nonincreasing on [0,∞]. Therefore

(5.9)
∣∣∣∣ln a + x

b + x

∣∣∣∣ ≤ ∣∣∣ln a

b

∣∣∣ .
Since (I − π2h) is positive semidefinite, we obtain for u ∈ Vh with π2hu �= 0,∣∣∣∣ln 〈(T1π2h + I − π2h)u, u〉

〈(T2π2h + I − π2h)u, u〉

∣∣∣∣ =
∣∣∣∣ln 〈T1π2hu, π2hu〉 + 〈(I − π2h)u, u〉

〈T2π2hu, π2hu〉 + 〈(I − π2h)u, u〉

∣∣∣∣
(5.9)

≤
∣∣∣∣ln 〈T1π2hu, π2hu〉

〈T2π2hu, π2hu〉

∣∣∣∣ ≤ d2h(T1, T2).

The conclusion follows after passing to the supremum over all u ∈ Vh with π2hu �= 0
in the inequality above. �
Theorem 5.2 (V-cycle estimates). Under the hypotheses and in the notation of
Theorem 4.1 there exists a constant C = C(p, |||K|||, Ω) such that

(5.10) dh(Gh
β, (Hh

β )−1) ≤ C
hp

0

β
.

Proof. Assume that h = h02−l with h0 small enough so that Theorem 4.1 applies.
Then

dh(Gh
β, (Hh

β )−1)
triangle ineq.

≤ dh

(
Gh

β, Lh
β

)
+ dh(Lh

β, (Hh
β )−1)

Cor. 4.2, (5.8)

≤ d2h(G2h
β , (H2h

β )−1) + Cβ−1hp.

We apply the above recursively to obtain

(5.11) dh(Gh
β, (Hh

β )−1) ≤ Cβ−1hp
0

l∑
i=0

2−ip < (1 − 2−p)−1Cβ−1hp
0 ,

which proves (5.10). �
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Lemma 5.3. Let (ei)i≥0 and (ai)i≥0 be positive numbers satisfying the recursive
inequality

(5.12) ei+1 ≤ C(ei + ai+1)2

and

(5.13) ai+1 ≤ ai ≤ f−1ai+1

for some 0 < f < 1. If a0 ≤ f
4C and if e0 ≤ 4Ca2

0, then

(5.14) ei ≤ 4Ca2
i , ∀i > 0.

Proof. We proceed by induction: the base case is in the hypothesis, and if we
assume ei ≤ 4Ca2

i , then

ei+1 ≤ C(ei + ai+1)2 ≤ C(4Ca2
i + ai+1)2

≤ C(4Cf−1aiai+1 + ai+1)2 = C(4Cf−1ai + 1)2a2
i+1

≤ C (4Cf−1a0 + 1)2︸ ︷︷ ︸
≤4

a2
i+1 ≤ 4Ca2

i+1 ,

which concludes the proof. �

Theorem 5.4 (MLAS error estimates). Assume that Condition 2.1 holds, and that

(5.15) hp
0 ≤

min
(
0.1, 2−(p+3)

)
· β

C
,

where C is the constant from Theorem 4.1. If eh0 ≤ 8
(
Cβ−1hp

0

)2 (if we solve
the system almost exactly on the coarsest grid this is automatically satisfied), then
Kh

β ∈ L+(Vh) and

(5.16) dh(Kh
β ,

(
Hh

β )−1
)
≤ 8 C

h2p

β2
, ∀h ∈ I.

Proof. Theorem 3.12 implies that, given operators M, H ∈ L+(Vh) with
dh(M, H−1) < 0.4, it follows that M ∈ L+(Vh) and

(5.17) dh(NH(M), H−1) ≤ 2 dh(M, H−1)2 ,

because | ln(1 − (ex − 1)2)| ≤ 2 x2 for x ∈ [0, 0.4]. If e2h ≤ 0.2 and Cβ−1hp ≤ 0.1,
then

dh(Gh(K2h
β ), (Hh

β )−1) ≤ dh

(
Gh(K2h

β ), Lh
β

)
+ dh(Lh

β, (Hh
β )−1)

= e2h + Cβ−1hp ≤ 0.3 ;

hence by (5.17) we obtain

(5.18) eh ≤ 2
[
dh(Gh(K2h

β ),
(
Hh

β )−1
)]2 ≤ 2(e2h + Cβ−1hp)2 ≤ 2 · 0.32 < 0.2.

Assume that h = 2−lh0, and let hi = 2−ih0. Denote by ei = ehi
and by ai =

Cβ−1hp
i . An inductive argument implies that ei ≤ 0.2 for all i, provided that

it holds for e0, and that Cβ−1hp
0 ≤ 0.1. It follows that (ai)i≥0 satisfies (5.12)

and (5.13) with f = 2−p. The other hypotheses of the theorem are tailored to fit
the corresponding hypotheses in Lemma 5.3, which implies that

�(5.19) ei ≤ 8
(
Cβ−1hp

i

)2
, for all i ≥ 0.
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The previous result shows that the quality of the multilevel preconditioner im-
proves with increasing resolution; moreover the estimate is optimal with respect
to h. We should remark that a proper comparison of the multilevel precondi-
tioner with the two-level preconditioner from Section 4 requires weighing Kh

β =
NHh

β
(K2h

β π2h +(I−π2h)) against NHh
β
(Lh

β) = NHh
β
((H2h

β )−1π2h +(I−π2h)) (rather
than Lh

β). Theorem 5.4, Corollary 4.2 and Theorem 3.12 show that the distances
from Kh

β and NHh
β
(Lh

β) to (Hh
β )−1 are asymptotically comparable, an assertion that

is confirmed by the numerical results in Section 7.
In the regime of its applicability, namely when hp � β, the estimate (5.16) seems

to provide a solution mechanism that is better than needed: if the iterative process
for finding umin

h starts with an O(1) close initial guess, then one Kh
β -preconditioned

iteration will give an O
(
(β−1hp)2

)
approximation to umin

h . This is better than
the approximation of umin by umin

h as shown in (2.16), therefore unnecessary. As
shown at the end of Section 5.1, Kh

β should be implemented so that no finest-level
residual computation should be performed inside the preconditioner. The multigrid
preconditioner can be used in conjunction with a Krylov solver, and all finest-level
Hessian-vector multiplications should be left to the iterations in the solver.

6. Application to the finite element Galerkin approximation

for parabolic problems

In this section we identify a class of linear parabolic problems and their dis-
cretizations for which Condition 2.1 is satisfied; in particular it will follow that all
results in Sections 4 and 5 apply. The verification amounts primarily to providing
links to the corresponding results in the literature. In Section 6.2 we discuss a few
results on regularization for inverse parabolic problems, and we devote Section 6.3
to the construction of local restriction operators.

6.1. The inverse problem. Let Ω ⊂ Rd be an open set, with d ≥ 1 an integer.
We consider the following initial value problem:

(6.1)

⎧⎨⎩
∂tu + A(t)u = 0 on Ω × (0,∞) ,
u(x, t) = 0 on ∂Ω × (0,∞) ,
u(x, 0) = u0(x) for x ∈ Ω ,

where

(6.2) A(t)u = −
∑

i

∂i

⎛⎝∑
j

aij(x, t)∂ju + bi(x, t)u

⎞⎠ + c(x, t)u

with aij(x, t) = aji(x, t), bi(x, t), c(x, t) being smooth functions with uniformly
bounded derivatives of all orders on Ω × [0,∞). We define the time-dependent
bilinear form a : (0,∞) × H1

0 × H1
0 → R by

(6.3) a(t; φ, ψ) =
∑
i,j

〈aij∂jφ, ∂iψ〉 +
∑

i

〈biφ, ∂iψ〉 + 〈cφ, ψ〉 , for φ, ψ ∈ H1
0 .

It is assumed that a is coercive, i.e., there exists a constant c1 > 0 independent of
t such that

(6.4) a(t; φ, φ) ≥ c1 ||φ||21 , for φ ∈ H1
0 ,
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and that the boundary ∂Ω is smooth enough for the following regularity condition
to hold:

(6.5) ||φ||2 ≤ c2 ||A(t)φ|| , for φ ∈ H1
0 ∩ H2.

This is verified for example in case Ω ⊂ R
2 is a convex polygonal domain and

aij(x, t) = α(x, t)δij with α(x, t) a positive smooth function (δ is the Kronecker
symbol), or if ∂Ω ∈ C1. For u0 ∈ L2 there exists a unique solution u : (0,∞) → H1

0

to the weak formulation of (6.1), namely

(6.6)
{

〈∂tu, φ〉 + a(t; u, φ) = 0, for all φ ∈ H1
0 , t > 0,

limt→0 ||u(t) − u0|| = 0.

(cf. [26] and [27]). We denote the time-t solution operator by S(t)u0
def= u(·, t).

Given a fixed T > 0 we define the operator K ∈ L(X ) by

(6.7) K def= S(T ) ,

with X = L2(Ω). We restate Lemmas 2.3, 2.6 and equation (2.12) in [26] as

Lemma 6.1. For p = 0, 1, 2 and t > 0,

(6.8) ||S(t)u0||Hp ≤ Ct−p/2 ||u0|| , ∀u0 ∈ L2(Ω) ,

where C is independent of t and u0.

For each fixed t > 0, the adjoint (S(t))∗ is the time-t solution operator of the
equation obtained from (6.1) by switching the signs of the bi’s, thus resulting in an
equation of the same type as (6.1). Therefore Lemma 6.1 applies to (S(t))∗ as well.

Corollary 6.2. For p = 0, 1, 2 and t > 0,

(6.9) max(||S(t)u0||, ||(S(t))∗u0||) ≤ Ct−p/2||u0||H̃−p , ∀u0 ∈ L2(Ω) ,

where C is independent of t and u0.

Proof. For u0 ∈ L2(Ω) we have

||S(t)u0||2 = 〈u0, (S(t))∗S(t)u0〉 ≤ ||u0||H̃−p · ||(S(t))∗S(t)u0||Hp

(6.8)

≤ Ct−p/2 ||u0||H̃−p · ||S(t)u0|| ,

which concludes the proof. �

We conclude that the forward and adjoint operators K and K∗ satisfy Con-
dition 2.1[d]. We discretize the forward problem via the Galerkin method using
continuous piecewise linear functions in space, and backward Euler in time. In or-
der to verify Conditions 2.1[a] and [b] we resort to the literature on error estimates
for fully discrete parabolic problems with irregular data [26, 27, 28]. For an exten-
sive presentation of finite element methods for parabolic problems, see [31]. For
simplicity we focus on the two-dimensional case (d = 2). Let Th0 be a triangulation
of the domain Ω, and let Th/2 be defined inductively to be the Goursat refinement
of Th for all h ∈ I = {h0/2i : i ∈ N} (each triangle in T ∈ Th is cut along the
three lines obtained by joining the midpoints of its edges). Note that (Th)h∈I is a
sequence of quasi-uniform triangulations. For h ∈ I define

Vh = {f ∈ C(Ω) : ∀T ∈ Th f |T linear, and f |∂Ω ≡ 0}.(6.10)
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We have Vh/2 ⊂ Vh ⊂ H1(Ω). The following estimate holds for v ∈ H1
0 ∩ H2:

(6.11) inf
φh∈Vh

||v − φh||j ≤ c3h
2−j ||v||2, j ∈ {0, 1}

(cf. [7]). Let tm = mk with m = 0, 1, . . . , Mh so that tMh
= T , with k = k(h). The

backward difference approximation Um to u(tm) is computed succesively by

(6.12)
{ 〈

dtU
m+1, φ

〉
+ a(tm+1; Um+1, φ) = 0, ∀φ ∈ Vh ,

U0 = πhu0 ,

where dtU
m+1 = k−1(Um+1 − Um). We will write for u0 ∈ L2(Ω),

(6.13) Sh(tm)u0
def= Um, m = 1, 2, . . . , Mh.

The following estimate holds with C independent of h, m (see [26, 27]):

(6.14) ||Um − u(tm)|| ≤ C t−1
m

(
h2 + k

)
||u0||, m = 1, 2, . . . .

We will choose k(h) = k0h
2; therefore the discrete operator

(6.15) Kh def= Sh(T ) ∈ L(Vh)

satisfies Conditions 2.1[a,b]. The adjoint (Sh(tm))∗ is the backward Euler Galerkin
solution of the parabolic equation whose solution operator is (S(t))∗ (under the as-
sumption that at each time step the linear solve is performed exactly). Therefore
(Kh)∗ and K∗ also satisfy Conditions 2.1[a,b]. Condition 2.1[c] is an easy con-
sequence of the Bramble-Hilbert Lemma. Due to the fact that the time-stepping
method is only first-order accurate in time, we would use four times less time steps
for the coarser level; therefore a coarse-level residual computation is four times
less costly than a fine-level residual computation (the exponent g in Section 5.1
is g = 4). We have thus verified that all results in Sections 4 and 5 apply to the
problem (1.1) with K,Kh defined as in (6.7) and (6.15). In fact this particular
model problem has been the driving force behind the development and analysis of
the MLAS preconditioner.

6.2. Some results on regularization for inverse parabolic problems. In this
section we present a few calculations that explain some of the qualitative behavior
observed in the numerical solution of regularized inverse parabolic problems from
Section 6.1. In Lemma 6.4 we show why the solution of the L2-regularized inverse
problem (1.1) with K defined by (6.7) has a square variation that is comparable
to that of the “true” initial value if β is chosen appropriately (see also Figure 1).
This fact may seem surprising, given that L2-regularization explicitly controls only
size, and not derivatives. Example 6.5 is devoted to explaining another observed
fact, namely that, when controlling the initial value for matching final-time mea-
surements, recovery of intermediate states is of significantly better quality than
that of the initial condition (see Figure 2 in Section 7). The immediate conse-
quence is that, even if the recovered initial value may not be of acceptable quality
(e.g. for localizing certain features), it still can be used successfully for improving
predictions.

Remark 6.3. Let X ,X ′ be two Hilbert spaces such that X ′ ⊆ X (X ′ does not
have to be a Hilbert-subspace of X ). Furthermore, let K ∈ L(X ) be such that
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K(X ′) ⊆ X ′, and assume that K|X ′ ∈ L(X ′) is compact. Then σ(K|X ′) \ {0} only
consists of a point-spectrum; therefore

(6.16) σ(K|X ′) ⊆ σ(K) ∪ {0}.

Lemma 6.4. Assume K is given by (6.7) and that the “data” f in (1.1) takes the
form f = Ku0 + ϕ, with ϕ ∈ X ; furthermore, assume that u0 ∈ H1

0 (Ω). Then Hβ

is continuously invertible in H1
0 (Ω) for all β > 0, and

||umin − u0||1 ≤ |||(Hβ)−1|||H1
0
· (||u0||1 + CT− 1

2 β−1||ϕ||) ,(6.17)

where C is the constant from (6.8).

Proof. Let X ′ = H1
0 (Ω). By Lemma 6.1 the operator H = K∗ · K is compact both

in L(X ) and L(X ′). Moreover, it is symmetric and positive definite in X ; hence
σ(H) ⊂ [0,∞). Remark 6.3 implies that σ(H|X ′) ⊂ [0,∞); therefore Hβ is invert-
ible in L(X ′) for all β > 0. Since

(6.18) umin − u0 = (Hβ)−1
(
−u0 + β−1K∗ϕ

)
,

the conclusion follows by (6.8). �

It should be noted that, if K is the solution operator for the heat equation,
then H is symmetric with respect to the H1

0 inner product as well; therefore
|||(Hβ)−1|||H1

0
≤ 1.

Example 6.5. Let S(t) be the solution operator for the one-dimensional heat
equation on Ω = [0, 2π] with zero boundary conditions. We will show that the
relative distance between the “exact” solution S(t)u0 and the recovered solution
S(t)umin is decaying in time. For simplicity we restrict our attention to the case of
unperturbed measurements, i.e. f = S(T )u0.

Let χk(x) = (2π)−1eikx, k ∈ Z, be the standard Fourier basis of L2(Ω), and
let û = 〈u, χk〉 be the Fourier coefficients of a function u ∈ L2(Ω). We formulate
our inverse problem in the space X = {u ∈ L2(Ω) : ûk + û−k = 0, ∀k ∈ Z}
that is invariant under S(t). We prefer to express all quantities in terms of the
basis (χk)k∈Z as opposed to an orthonormal basis of X . With the formulation and
notation from Lemma 6.4 we have

(6.19) (Hβ)−1u0 =
∞∑

k=−∞

ûk

1 + β−1 e−2Tk2 χk ,

where u0 =
∑∞

k=−∞ ûkχk. For simplicity we assume that ûk �= 0 if k �= 0 (by
construction û0 = 0), and that β � 1. By (6.18),

(6.20)
||S(t)(u0 − umin)||2

||S(t)u0||2
=

∑∞
k=−∞(1 + β−1e−2Tk2

)−2 e−2tk2 |ûk|2∑∞
k=−∞ e−2tk2 |ûk|2

.

Since for moderate and large values of k the eigenvalues µk,β = (1 + β−1e−2Tk2
)−1

of (Hβ)−1 are close to 1, the error formula (6.18) implies that the corresponding
components of u0 are not well approximated by those of umin; this results in a fairly
large relative difference between S(t)umin and S(t)u0 for small t. A slight increase in
t strongly reduces the size of the high-frequency components both in S(t)umin and
S(t)u0, and the eigenvalues of (Hβ)−1 associated with the remaining low-frequency
components are of size O(β). As a result, the expression on the right-hand side
of (6.20) will decrease over a short time interval from O(1) to O(β2). A rough
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estimate, obtained by separating the first nonzero components from the rest in the
numerator of the expression in (6.20), gives

||S(t)(u0 − umin)||2
||S(t)u0||2

≤ (βe2T )2 +

∑
|k|≥2 e−2t(k2−1)|ûk|2

|û1|2 + |û−1|2 +
∑

|k|≥2 e−2t(k2−1)|ûk|2

≤ (βe2T )2 +
e−6t||u0||2

|û1|2 + |û−1|2 + e−6t||u0||2
,

which clearly show the decay to be exponentially in t.

6.3. Construction of local restriction operators. In this section we show a
way to construct local restriction operators that satisfy conditions [e, f ] in The-
orem 4.3. Local operators, whether defined in an explicit or implicit way, are
more attractive for computational purposes than orthogonal projections, which re-
quire inverting the mass matrix on the coarse level. The local restriction operator
inherited from the classical multigrid, defined as the adjoint of the natural inter-
polation with respect to a mesh-dependent inner product approximating 〈·, ·〉L2 ,
typically satisfies the approximation property (4.6) only up to order p = 1 (see Ex-
ample 6.7). A local, explicit, symmetric restriction operator that approximates the
identity operator in negative-index norm up to higher order is defined in [5]. More
precisely, for continuous piecewise linear elements the inequality (4.6) is verified for
any p ∈ [0, 3/2), and a similar result holds for quadratics. However, our estimates
in Section 4 require, e.g. for linear elements, that (4.6) holds for p = 2. The main
result of this section, Theorem 6.6, shows how to construct restriction operators
with needed approximation properties.

For simplicity we restrict our exposition to the two-dimensional case. Consider
the quasi-uniform triangulations (Th)h∈I defined in Section 6.1. For a triangle
T ∈ Th denote by Ps(T ) the space of polynomials of total degree ≤ s− 1 restricted
to T , and let s ≥ 2 be fixed. Let Vh = V(s)

h the Lagrange finite element spaces

(6.21) Vh = {u ∈ C0(Ω) : u|T ∈ Ps(T ) for each T ∈ Th, u|∂Ω ≡ 0}.

Denote by (Φh
i )1≤i≤Nh

the Lagrange nodal basis of Vh.

Theorem 6.6. Let Rh
2h ∈ L(Vh,V2h) be a restriction operator that satisfies the

stability condition (4.5) and is local in the following sense: for each i = 1, . . . , Nh

there exists a set N h
i which is a union of triangles in Th, such that

(a) supp(Rh
2hΦh

i ) ∪ supp(Φh
i ) ⊂ N h

i ;
(b) no triangle T ∈ Th lies in more than M of the N h

i ’s, with M independent
of h;

(c) (I − Rh
2h)Φh

i ⊥ Ps(N h
i );

(d) diam(N h
i ) ≤ Kh with K independent of h.

Then there exists a constant C = C(K, M, s), independent of h, such that

(6.22) ||(I − Rh
2h)u||

H̃−s(Ω)
≤ Chs||u||, for u ∈ Vh.

Proof. Let u =
∑Nh

i=1 uiΦh
i be a function in Vh and v ∈ Hs

0(Ω). Then

〈
(I − Rh

2h)u, v
〉

=
Nh∑
i=1

ui

∫
Nh

i

(I − Rh
2h)Φh

i (x) v(x)dx.
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For any q ∈ Ps(N h
i ),∣∣∣∣∣

∫
Nh

i

(I − Rh
2h)Φh

i (x) v(x)dx

∣∣∣∣∣ (c)
=

∣∣∣∣∣
∫
Nh

i

(I − Rh
2h)Φh

i (x) (v(x) − q(x))dx

∣∣∣∣∣
≤ ||(I − Rh

2h)Φh
i ||L2(Nh

i ) · ||v − q||L2(Nh
i ).

The Bramble-Hilbert Lemma and (d) imply∣∣∣∣∣
∫
Nh

i

(I − Rh
2h)Φh

i (x) v(x)dx

∣∣∣∣∣ (4.5)

≤ C||Φh
i || · inf

q∈Ps(Nh
i )

||v − q||L2(Nh
i )

≤ C(Kh)s||Φh
i || · |v|Hs(Nh

i ).

Therefore∣∣〈(I − Rh
2h)u, v

〉∣∣ ≤ C(Kh)s
Nh∑
i=1

|ui| · ||Φh
i || · |v|Hs(Nh

i )

≤ CKshs

(
Nh∑
i=1

u2
i ||Φh

i ||2
) 1

2
(

Nh∑
i=1

|v|2Hs(Nh
i )

) 1
2

(b)

≤ (CKsM
1
2 )hs

(
n∑

i=1

u2
i ||Φh

i ||2
) 1

2

· |v|Hs(Ω)

≤ C1h
s||u|| · |v|Hs(Ω) ;

for the last inequality we used the quasi-uniformity of the triangulation. It follows
that

||(I − Rh
2h)u||

H̃−s(Ω)
= sup

v∈Hs
0 (Ω)

∣∣〈(I − Rh
2h)u, v

〉∣∣
||v||Hs(Ω)

≤ C1h
s||u||.

�

Example 6.7 (Standard restriction operator on a uniform grid). Let Ω be the unit
square (0, 1) × (0, 1) ⊂ R

2 and (T2−k)k=0,1,... the uniform three-line meshes1 with
each of the small triangles in T2−k having side length hk = 2−k. Obviously T2−(k+1)

is the Goursat refinement of T2−k . Let s = 2 in (6.21) and define our spaces to
consist of continuous, piecewise linear, doubly-periodic functions:

(6.23) Vper
hk

= {u ∈ Vhk
: u(x1, 0) = u(x1, 1), u(0, x2) = u(1, x2)}.

We extend the functions in Vhk
to R2 in an obvious way. Let {P k

i : i = 1, . . . , 2k}
be the vertices of T2−k not lying on {(x1, x2) : x1 = 1 or x2 = 1}, and denote by
(Φk

i )i=1,...,2k the corresponding nodal basis functions. We introduce, as in [7], the
mesh-dependent inner products on Vper

hk
:

(6.24) 〈u, v〉k
def=

h2
k

2

2k∑
i=1

u(P k
i )v(P k

i ), for u, v ∈ Vper
hk

.

1The three-line mesh is obtained by dividing the square into equally sized squares with sides
parallel to the coordinate axes, and by further cutting each little square along its slope-one
diagonal.
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It should be noted that 〈·, ·〉k is obtained by applying the second-order correct
cubature rule

(6.25)
∫
	P1P2P3

u(x) dx ≈ area(�P1P2P3)
3∑

i=1

u(Pi)

to the L2-inner product; hence

(6.26) 〈u, 1〉k = 〈u, 1〉 =
∫

Ω

u(x) dx, for u ∈ Vper
hk

.

The standard restriction operator Rk
k−1 : Vper

hk
→ Vper

hk−1
is defined by the equation

(6.27)
〈
Rk

k−1u, v
〉

k−1
= 〈u, v〉k , ∀u ∈ Vper

hk
, v ∈ Vper

hk−1
.

A simple calculation shows that

(6.28) (Rk
k−1u)(P k

i ) =
1
4
u(P k

i ) +
1
8

6∑
α=1

u(P k
ια

) ,

where P k
ι1 , . . . , P

k
ι6 are the vertices directly connected to P k

i in the graph of Thk

(periodicity assures that every vertex has exactly six neighbors in the graph). This
shows that

(6.29) supp(Rk
k−1Φ

k
i ) =

6⋃
α=1

supp(Φk
ια

) def= N k
i .

Obviously N k
i satisfies conditions (a), (b) and (d) from Theorem 6.6 (diam(N k

i ) ≤
8
√

2 hk). It remains to verify (c). By construction, if u ∈ Vper
hk

, then

(6.30)
〈
(I − Rk

k−1)u, 1
〉

=
〈
(I − Rk

k−1)u, 1
〉

k
= 〈u, 1〉k −

〈
Rk

k−1u, 1
〉

k
= 0.

Orthogonality on linear functions follows by symmetry: fix i and define the reflec-

tion with respect to P k
i to be x

rk
i�−→ P k

i −x. Then N k
i is rk

i -invariant (rk
i (N k

i ) = N k
i )

and Φk
i is rk

i -symmetric (i.e. Φk
i ◦ rk

i = Φk
i ), and so is (I − Rk

k−1)Φ
k
i . If we denote

by p1 and p2 the projections onto the two coordinate axes, then the functions

x �→ (I − Rk
k−1)Φ

k
i (x) · pα(x − P k

i ), α = 1, 2,

are rk
i -antisymmetric (if T : A → A is a bijection and f : A → C, then f is called

T -antisymmetric if f ◦ T + f = 0); hence

(6.31)
∫
Nk

i

(I − Rk
k−1)Φ

k
i (x) · pα(x − P k

i ) dx = 0.

The equalities (6.30) and (6.31) can be rewritten as

(6.32) (I − Rk
k−1)Φ

k
i ⊥ P2(N h

i ).

Theorem 6.6 implies that

(6.33) ||(I − Rk
k−1)u||H̃−2(Ω)

≤ Ch2||u|| for u ∈ Vper
hk

.

For unstructured triangular meshes the restriction Rk
k−1 still satisfies

(I − Rk
k−1)Φ

k
i ⊥ 1 ,
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but typically (I−Rk
k−1)Φ

k
i is not orthogonal on all linear functions; hence in general

we can only conclude that

(6.34) ||(I − Rk
k−1)u||H̃−1(Ω)

≤ Ch||u|| for u ∈ Vper
hk

.

Remark 6.8. We note that a result similar to Theorem 6.6 holds for tensor-product
finite elements, and that the same argument as in Example 6.7 can be used to
show that the standard restriction operator used for continuous, piecewise linear
tensor-product finite elements in Rd also satisfies the optimal negative-index norm
estimates (6.33), provided the mesh is uniform and the functions are periodic.

Example 6.9. We return to the framework of Section 6.1, that is, the case of an
unstructured quasi-uniform triangular grid on a polygonal domain Ω ⊂ R2, with
Vh consisting of continuous piecewise linear functions (s = 2). We define a local
restriction operator Rh

2h by explicitly enforcing condition (c) in Theorem 6.6 in the
following way: for each fine nodal basis function Φh

M choose a coarse-mesh triangle
∆A1A2A3 with all vertices in the interior of Ω, such that, in the fine mesh, M is
adjacent or equal to one of A1, A2 or A3. (E.g., if M is a coarse node, choose
A1 = M ; if M is the midpoint of an interior edge, let A1, A2 be the vertices of
that edge; if M is the midpoint of an edge connecting a coarse-mesh vertex A1 to
the boundary, then again let A2, A3 be two neighbors of A1 that are adjacent to
each other.) Let (Φ2h

i )i=1,2,3 be the nodal variables in V2h that are associated with
A1,2,3 respectively. We define

(6.35) Rh
2hΦh

M =
3∑

j=1

αjΦ2h
j ,

with (αj)j=1,2,3 chosen so that

(6.36) (I − Rh
2h)Φh

M ⊥ L, ∀L ∈ P2.

Let (Li)i=1,2,3 be the basis of P2 obtained by linearly extending Φ2h
i |∆A1A2A3 to

R2. The system (6.36) translates into

(6.37)
3∑

j=1

〈
Φ2h

j , Li

〉
αj =

〈
Φh

M , Li

〉
, i = 1, 2, 3.

Under additional regularity assumptions on the meshes (Th)h∈I we can show that
the system (6.37) is diagonally dominant, therefore nonsingular, and that the re-
sulting restriction operator is uniformly bounded, thus verifying condition [e] in
Theorem 4.3. More precisely we can show that for every node M in the fine mesh,
the system (6.37) has a solution (αj)j=1,2,3 with |αj | ≤ C, where C is independent
of h. This implies that the restriction operators are uniformly bounded. For details
see Appendix A. The other hypotheses in Theorem 6.6 are satisfied by construction;
therefore

(6.38) ||(I − Rh
2h)u||

H̃−2(Ω)
≤ Ch2 ||u|| , ∀u ∈ Vh.
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Figure 1. Evolution of exact solution versus recovered system for
β = 10−3; we used 400 intervals.

7. A numerical example

We present a simple numerical example that illustrates the application of the
multilevel preconditioner MLAS to the inverse problem defined in Section 6.1.

Data: In this example, Ω = (0, 1), and the coefficients are a11(x, t) ≡ 4 · 10−3,
b1(x, t) ≡ 0.4, c(x, t) ≡ 0.05. The exact initial value u0 to be recovered is a Gauss-
ian with µ = 0.75 and σ = 0.03. The final time is T = 1. We consider six
uniform grids on (0, 1) with the base grid having h0 = 1/200, and for sequent grids
hk = 2−kh0, i = 1, 2, 3, 4, 5. We approximate the solution by its Galerkin projec-
tion onto the space of continuous piecewise linear functions, and we use backward
Euler for time discretization. At each level the time step is uniform, with the base
level time step of dt0 = 1/100. Due to the fact that the approximation in time is
only first order, we refine the time step by dtk+1 = dtk/4. For each of the levels
k = 0, 1, 2, 3, 4 we solve the inverse problem using CG preconditioned by MLAS
with 1 ≤ i ≤ 6 − k levels of refinement (one level of refinement simply means un-
preconditioned CG); that is, with each of the base cases we refine the problem until
the maximal resolution of h5 = 1/6400 is reached. For each of β = 10−3, 10−4, 10−6

we test the V-cycle and the W-cycle preconditioner (MLAS) from Section 5. MLAS
is modified so that, at the finest level, only one recursive call to the coarse space
solver is performed at each iteration; therefore no residual is computed at the finest
level in the preconditioner. This way comparison between the W-cycle and the
V-cycle preconditioner is fair (in fact the two are identical if only two levels are
used). In Figure 1 we show the time-evolution of the system starting from the
“exact” initial value versus the recovered initial value at times 0, 0.5 and 1 for
β = 10−3.
Targets: Due to the fact that the Hessian is never formed, it is difficult to evaluate
directly the spectral distance between the inverse of the Hessian and the tested
preconditioners. We evaluate the quality of the preconditioners indirectly by looking
at the number of preconditioned CG iterations needed to obtain a residual whose
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norm is rtol = 10−12 times smaller than the norm of the right-hand side. We use the
zero-function as the initial guess. Our goal is to verify the following consequences
of Theorems 5.2 and 5.4:

1. V-cycle: for a fixed base level the number of iterations Nit is independent
of the number of refinement levels (provided the base level is sufficiently
fine); Nit decreases with increasing base-level resolution;

2. W-cycle: given a sufficiently fine base level, Nit decreases with increasing
number of refinement levels; in fact, Nit depends only on the finest resolu-
tion (if at least two levels are used).

Furthermore, we verify that unpreconditioned CG solves the problem in a number
of iterations that is independent of the mesh size, and increases slowly with β → 0.
We consider two ways of measuring the success of the solution process. An absolute
measuring unit is the number of flops needed for a direct (forward) solve. We call
the cost of the inverse solve measured in forward solves the efficiency factor, denoted
by I/F:

I/F =
cost of inverse solve
cost of forward solve

.

For unpreconditioned CG each iteration requires a matrix-vector multiplication,
which costs approximately two forward solves. Therefore the CG solve with Nit

iterations costs about 2Nit forward solves; the whole solution process includes also a
gradient computation; therefore, the efficiency factor for the unpreconditioned CG
is ≈ 2(Nit + 1). In Tables 1–6 we show for each case the number of iterations, and
in parantheses the cost of the solution process for the inverse problem computed in
“forward solves”. An alternative way of measuring success, which inherently takes
into account the difficulty of the problem, is by using the work of unpreconditioned
CG as a measuring unit (since it is quasi-proportional with the space-time size of the
problem). E.g., if the measuring time T is large, then nearly all information about
the initial value we are trying to recover is lost, and essentially we are inverting the
identity operator. CG captures this fact by solving the problem in a small number
of iterations.
Results and conclusions: A visual inspection of the recovered solution in Fig-
ure 1 (dotted line at time 0) shows that the recovered umin is a smooth curve, as
predicted by Lemma 6.4. At the same time it shows that, despite the recovery of
the initial value itself not being very accurate (umin exhibits low-frequency oscilla-
tions), S(0.5)umin is very close to S(0.5)u0; note that no measurements were taken
at time t = 0.5. The plot in Figure 2 shows an exponential-like decay of the relative
error ||S(t)(umin − u0)||/||S(t)u0||, as expressed in Example 6.5.

The left column in Tables 1–6 shows the number N of intervals used for discretiza-
tion; the column headers indicate the number of refinement levels used. E.g., for
N = 400 and three levels of refinements the finest grid will have 23−1N = 1600 in-
tervals. The entries in the first column support the assertion that unpreconditioned
CG solves the inverse problem in a mesh-independent number of iterations. The two
targets mentioned above are verified in the runs with β = 10−3 (Tables 1 and 2),
and β = 10−4 (Tables 3 and 4). Most importantly, we notice that the number
of MLAS-preconditioned CG iterations depends only on the finest-level resolution,
independent of the number of levels. In particular, this confirms the conclusion
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Figure 2. Time evolution of relative error ||S(t)(umin − u0)||/||S(t)u0||

of Theorem 5.4, thus showing MLAS to have the same approximation quality as
TLAS. A stronger decrease in regularization parameter, namely β = 10−6, causes
the base case with N = 200 to become unacceptably coarse. Specifically we see the
V-cycle preconditioned CG taking a fairly large number of iterations, thus making
this solution process as expensive as the unpreconditioned CG. Also as a result of
the base case being too coarse we see the W-cycle preconditioner losing its positive-
definiteness. Another interesting fact is noticed when using N = 400 as a base case.
Although the V-cycle preconditioner stagnates after ≈ 14 iterations (Table 5), the
W-cycle algorithm shows a certain ability of self-correction, thus overcoming the
suboptimal choice of base level. The correct base level for β = 10−6 seems to be
the one with N = 800, a point at which predicted behavior sets in. In terms of
efficiency at a given resolution, the I/F factor readings suggest that MLAS is most
efficient when maximizing the number of levels, constrained by having the base level
acceptably coarse. Using this strategy we found MLAS-preconditioned CG to work
up to four times faster than unpreconditioned CG (e.g. Table 6, N = 800 with 4
levels has an I/F of 17.7 compared to a predicted I/F of 72 for unpreconditioned
CG).

Table 1. Iteration count (I/F) for the V-cycle; β = 10−3

N 1 2 3 4 5 6

200 15 (32.3) 11 (61.1) 12 (31.2) 12 (26.4) 12 (26.1) 12 (26)
400 16 (34.1) 9 (48) 9 (25.7) 10 (22.4) 10 (22)
800 16 (34) 7 (38) 8 (20.9) 8 (18.4)

1600 16 (34) 6 (32) 6 (16.3)
3200 17 (36) 5 (26.7)
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Table 2. Iteration count (I/F) for the W-cycle; β = 10−3

N 1 2 3 4 5 6

200 15 (32.3) 11 (61.1) 9 (29.6) 7 (19.4) 6 (16.2) 5 (13.7)
400 16 (34.1) 9 (48) 7 (22.8) 6 (16.8) 5 (13.8)
800 16 (34) 7 (38) 6 (19.8) 5 (14.4)

1600 16 (34) 6 (32) 5 (16.9)
3200 17 (36) 5 (26.7)

Table 3. Iteration count (I/F) for the V-cycle; β = 10−4

N 1 2 3 4 5 6

200 21 (44.4) 13 (82.2) 13 (35.1) 13 (28.9) 13 (28.1) 13 (28)
400 20 (42.1) 10 (61.3) 11 (29.5) 11 (24.7) 11 (24.1)
800 21 (44) 8 (47.5) 8 (21.8) 8 (18.5)

1600 21 (44) 6 (36.2) 6 (16.9)
3200 21 (44) 5 (31.7)

Table 4. Iteration count (I/F) for the W-cycle; β = 10−4

N 1 2 3 4 5 6

200 21 (44.4) 13 (82.2) 15 (49.6) 10 (27.5) 8 (21) 6 (16.1)
400 20 (42.1) 10 (61.3) 7 (25.5) 7 (19.5) 5 (13.9)
800 21 (44) 8 (47.5) 6 (21) 6 (17)

1600 21 (44) 6 (36.2) 5 (18)
3200 21 (44) 5 (31.7)

Table 5. Iteration count (I/F) for the V-cycle; β = 10−6

N 1 2 3 4 5

200 27 (56.7) 19 (169) 23 (65.6) 25 (54.3) 22 (46.3)
400 32 (66.2) 15 (117.4) 14∗ 13∗ –
800 34 (70) 9 (73.2) 10 (29.5) 10 (22.9)

1600 34 (70) 7 (57.2) 7 (21.2)
3200 35 (72) 6 (45.7)

∗ stagnated at a low residual (corresponding to rtol = 10−11) before converging.

Table 6. Iteration count (I/F) for the W-cycle; β = 10−6

N 1 2 3 4 5

200 27 (56.7) 19 (169) –† –† –†

400 32 (66.2) 15 (117.4) 10 (39.3) 9 (25.6) 7 (18.8)
800 34 (70) 9 (73.2) 8 (30.6) 6 (17.7)

1600 34 (70) 7 (57.2) 6 (23.7)
3200 35 (72) 6 (45.7)

† multilevel preconditioner not positive definite.
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Appendix A. Sufficient conditions for well definedness

of certain local restriction operators

In this section we refer to the notation and context of Example 6.9. We introduce
a set of conditions on the meshes (Th)h∈I that prove sufficient for the systems (6.37)
to have uniformly bounded solutions.

For each vertex A of Th we denote its vicinity by

Kh
A =

⋃
{T ∈ Th : A is a vertex of T}.

Furthermore, let dh
A = sup{r > 0 : Br(A) ⊆ Kh

A} and Dh
A = inf{r > 0 : Br(A) ⊇

Kh
A}. If we assume that all triangles in the meshes (Th)h∈I have angles ≤ π/2, then

the vicinity of each vertex is convex. The next condition states that the vicinity is
somewhat balanced around the vertex.

Condition A.1. There are two constants c1, c2 ≥ 1, independent of h, such that:
(i) for any vertex A of Th, Dh

A ≤ c1d
h
A;

(ii) for any neighboring vertices A, B of Th, we have c−1
2 dh

A ≤ dh
B ≤ c2d

h
A.

It is easy to verify that (i) implies (ii) in Condition A.1, with c2 = c1; however,
in general, c2 ≤ c1, and here it is advantageous to keep track of the individual
constants. E.g., for a regular mesh (we call a mesh regular if all triangles are
equilateral) c1 = 2/

√
3, and c2 = 1, and for the usual three-line mesh (obtained

from a rectangular grid with square elements by cutting each square along its
slope-one diagonal) we have c1 = 2, c2 = 1. We wish to point out that, in case
the triangulations are obtained by Goursat refinement, then the constants c1, c2

in Condition A.1 propagate from Th0 to finer meshes; in other words, finding the
optimal constants in Condition A.1 only requires looking at the coarsest grid. For
a point A and ρ > 0 denote by ψA,ρ the “cone-hat” function

ψA
ρ (x) =

{
1 − ||x − A||/ρ for x ∈ Bρ(A),

0 otherwise.

It follows that a nodal basis function ΦA satisfies

(A.1) ψA
dh

A
≤ Φh

A ≤ ψA
Dh

A
.

The convexity of the K2h
Ai

implies that Li ≥ 0 on supp(Φ2h
i ); therefore

aii =
〈
Φ2h

i , Li

〉
≥

∫
Bdi

(Ai)

ψAi

di
Li =

πd2
i

3
,(A.2)

where di = d2h
Ai

, Di = D2h
Ai

, i = 1, 2, 3. For i �= j,

aij =
〈
Φ2h

j , Li

〉 (A.1)

≤
∫

Li≥0

ψ
Aj

Dj
Li +

∫
Li≤0

ψ
Aj

dj
Li.(A.3)

Let δi be the distance from Ai to the opposite side in ∆A1A2A3. Then δi ≥ di ≥
c−1
2 dj , and∫

Li≥0

ψ
Aj

Dj
Li =

∫ π
2

−π
2

dθ

∫ Dj

0

(
1 − ρ

Dj

)
· ρ2 cos θ

δi
dρ =

D3
j

6 δi
.(A.4)

Similarly ∫
Li≤0

ψ
Aj

dj
Li = −

∫
Li≥0

ψ
Aj

dj
Li =

d3
j

6 δi
.(A.5)
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Hence

(A.6) aij ≤
D3

j − d3
j

6 δi
≤ c2

c3
1 − 1
6

d2
j .

Since −aij satisfies the same inequality we conclude that (A.6) holds with |aij |
in place of aij . We should note that the estimate (A.6) can be quite inaccurate
even for “tame” meshes such as the three-line mesh mentioned previously, where
symmetry implies that aij = 0 for i �= j, while (A.6) is insufficient to prove that
|aij | ≤ aii (because 7/6 > π/3). If we divide the ith equation of (6.37) by aii, then
the resulting equivalent system will be represented by a matrix of the form I − B,
B = (bij)1≤i,j≤3, with bij = (δij − 1)aij/aii. If

(A.7)
3

max
i=1

∑
j 
=i

|aij | ≤ (1 − γ)aii ,

for some γ ∈ (0, 1), then ||B||∞ ≤ 1 − γ; hence

(A.8) ||(I − B)−1||∞ ≤
∞∑

k=0

||B||k∞ = γ−1.

We conclude our discussion with

Lemma A.2. If the meshes (Th)h∈I satisfy Condition A.1 such that

(A.9) γ
def= 1 − c2(c3

1 − 1)
π

> 0 ,

then there exists a constant C independent of h such that for each triangle-vertex
of Th and choice of coarse-mesh triangle ∆A1A2A3 ∈ T2h, the solution (αj)j=1,2,3

of the system (6.37) satisfies |αj | ≤ C, j = 1, 2, 3.

Proof. Quasi-uniformity of the meshes implies that for each vertex M of Th,

c h ≤ dh
M ≤ C h ,

for some constants c, C independent of h. Therefore, due to the proximity of M
to the chosen triangle ∆A1A2A3 ∈ T2h, the right-hand side of the modified sys-
tem (6.37) satisfies |

〈
Φh

M , Li

〉
|/aii ≤ C ′. In light of the estimates (A.2) and (A.6),

condition (A.9) implies (A.7). By (A.8) we obtain |αj | ≤ C ′/γ, j = 1, 2, 3. �

The condition (A.9) is not necessary for the system (6.37) to be nonsingular, as
seen from the three-line mesh example. However, it is not very restrictive either,
given that for a regular mesh the value of γ is fairly large (γ ≈ 0.82). Hence any
mesh that is locally “alike” to a regular mesh will likely satisfy (A.9).
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Appendix B. Notation summary

For quick reference we provide a list of the notation used throughout the article,
and the place where each is first used or defined, where applicable:

K a compact operator from L2(Ω) to L2(Ω) Section 1
|||K||| the operator norm of K (from L2(Ω) to L2(Ω)) Section 2
H K∗K (1.3)
Hβ I + β−1H (1.3)
Vh approximation space Section 2
h0 coarsest h that can be chosen as base case
Kh discretization of K in Vh Section 2
Hh (Kh)∗Kh (2.10)
Hh

β I + β−1Hh (2.10)
πh L2-projection onto Vh Section 2
dX (T1, T2) spectral distance between T1 and T2 Def. 3.1
NH(X) 2H − XHX (3.18)
dh dVh

Section 4
Rh

2h restriction operator Section 4.2
Lh

β two-level preconditioner (4.1), (4.7)
Gh(T ) Tπ2h + (I − π2h) (5.2)
Kh

β MLAS preconditioner (5.3)
eh dh(Kh

β , (Hh
β )−1) (5.7)

S(t) solution operator for a parabolic PDE Section 6
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13. Andrei Drăgănescu and Todd F. Dupont, A multigrid algorithm for backwards reaction-

diffusion equations, in preparation.
14. Todd Dupont, A factorization procedure for the solution of elliptic difference equations, SIAM

J. Numer. Anal. 5 (1968), 753–782. MR0246528 (39:7832)
15. Heinz W. Engl, Necessary and sufficient conditions for convergence of regularization methods

for solving linear operator equations of the first kind, Numer. Funct. Anal. Optim. 3 (1981),
no. 2, 201–222. MR627122 (82j:47018)

16. Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse problems,
Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht,
1996. MR97k:65145

17. James E. Gunn, The solution of elliptic difference equations by semi-explicit iterative tech-
niques, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 24–45. MR0179962
(31:4199)

18. Karl E. Gustafson and Duggirala K. M. Rao, Numerical range, Universitext, Springer-Verlag,
New York, 1997, The field of values of linear operators and matrices. MR98b:47008

19. Wolfgang Hackbusch, Multigrid methods and applications, Springer Series in Computational
Mathematics, vol. 4, Springer-Verlag, Berlin, 1985. MR814495 (87e:65082)

20. Martin Hanke and Curtis R. Vogel, Two-level preconditioners for regularized inverse problems.
I. Theory, Numer. Math. 83 (1999), no. 3, 385–402. MR2001h:65069

21. Thorsten Hohage, Regularization of exponentially ill-posed problems, Numer. Funct. Anal.
Optim. 21 (2000), no. 3-4, 439–464. MR1769885 (2001e:65095)

22. Barbara Kaltenbacher, On the regularizing properties of a full multigrid method for ill-posed

problems, Inverse Problems 17 (2001), no. 4, 767–788. MR1861481 (2002h:65094)
23. , V-cycle convergence of some multigrid methods for ill-posed problems, Math. Comp.

72 (2003), no. 244, 1711–1730 (electronic). MR1986801 (2004d:65069)
24. Barbara Kaltenbacher and Josef Schicho, A multi-grid method with a priori and a posteriori

level choice for the regularization of nonlinear ill-posed problems, Numer. Math. 93 (2002),
no. 1, 77–107. MR1938323 (2003h:65076)

25. J. Thomas King, Multilevel algorithms for ill-posed problems, Numer. Math. 61 (1992), no. 3,
311–334. MR1151773 (92k:65090)

26. Mitchell Luskin and Rolf Rannacher, On the smoothing property of the Galerkin method for
parabolic equations, SIAM J. Numer. Anal. 19 (1982), no. 1, 93–113. MR83c:65245

27. , On the smoothing property of the Crank-Nicolson scheme, Applicable Anal. 14
(1982/83), no. 2, 117–135. MR83m:65072

28. Rolf Rannacher, Finite element solution of diffusion problems with irregular data, Numer.
Math. 43 (1984), no. 2, 309–327. MR85c:65145
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