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THE POWER OF ADAPTION FOR APPROXIMATING
FUNCTIONS WITH SINGULARITIES

LESZEK PLASKOTA, GRZEGORZ W. WASILKOWSKI, AND YAXI ZHAO

Abstract. Consider approximating functions based on a finite number of
their samples. We show that adaptive algorithms are much more powerful
than nonadaptive ones when dealing with piecewise smooth functions. More
specifically, let F 1

r be the class of scalar functions f : [0, T ] → R whose deriva-
tives of order up to r are continuous at any point except for one unknown
singular point. We provide an adaptive algorithm Aad

n that uses at most n
samples of f and whose worst case Lp error (1 ≤ p < ∞) with respect to
‘reasonable’ function classes F1

r ⊂ F 1
r is proportional to n−r. On the other

hand, the worst case error of any nonadaptive algorithm that uses n samples
is at best proportional to n−1/p.

The restriction to only one singularity is necessary for superiority of adap-
tion in the worst case setting. Fortunately, adaption regains its power in the
asymptotic setting even for a very general class F∞

r consisting of piecewise
Cr-smooth functions, each having a finite number of singular points. For any
f ∈ F∞

r our adaptive algorithm approximates f with error converging to zero
at least as fast as n−r. We also prove that the rate of convergence for non-
adaptive methods cannot be better than n−1/p, i.e., is much slower.

The results mentioned above do not hold if the errors are measured in the
L∞ norm, since no algorithm produces small L∞ errors for functions with
unknown discontinuities. However, we strongly believe that the L∞ norm
is inappropriate when dealing with singular functions and that the Skorohod
metric should be used instead. We show that our adaptive algorithm retains its

positive properties when the approximation error is measured in the Skorohod
metric. That is, the worst case error with respect to F1

r equals Θ(n−r), and
the convergence in the asymptotic setting for F∞

r is n−r.
Numerical results confirm the theoretical properties of our algorithms.

1. Introduction

In traditional studies of function approximation one usually assumes that the
functions under consideration are smooth in some sense, e.g., they are r-times
continuously differentiable, and that they form a separable linear space. On the
other hand, functions appearing in practice are very often only piecewise smooth,
and their collection is more complicated than a linear space. An important example
is provided by image representation. Here edges correspond to discontinuities of
the underlying function, and the linear combination of two images need not be any
image of practical interest.
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Much attention has been recently devoted to wavelets that are now considered a
universal tool to deal with images and signals. A given function f (image, signal) is
represented by a few of the largest coefficients of its expansion in a suitable wavelet
basis (or curvelet basis in 2-D); see, e.g., [5, 8, 9, 15]. It is also believed that adaptive
methods, that rely on adjusting the choice of the basis to the underlying function
and its discontinuities (edges), are much more efficient than nonadaptive methods
where the basis is fixed for all f ’s. Note that the wavelet approach is based on the
paradigm that one has at his disposal all wavelet coefficients of f corresponding to
a given basis. This actually means that complete information about f is available.

In the present paper, we take an information-based approach. It follows the par-
adigm that only partial information about f is available, and that the only source
of information is an oracle; see, e.g., [16, 20, 24, 25, 28, 29, 30, 32, 33]. This
seems to be more suitable for numerical computations where the oracle calls usu-
ally correspond to function evaluations. In this approach the term adaption means
adjusting the selection of successive oracle calls to the results of previous calls.
Note that superiority of adaptive methods is here far less obvious since so far adap-
tive methods have been mainly developed for integration (and not approximation)
problems; see, e.g., [2, 6, 7, 12, 13, 14, 19, 22, 23]. Moreover, there are theoretical
results showing that adaption does not help for linear problems such as function
approximation. This holds in different settings, including the worst case setting
with convex classes, and the asymptotic setting with Banach function spaces; see,
e.g., [3, 17, 10, 30, 31]. Observe that singular functions of practical interest form
neither convex classes nor Banach spaces. Therefore the results mentioned above
do not contradict the common belief that adaptive methods should be used when
dealing with singularities.

The information-based approach to the approximation of singular functions was
presented in a recent paper [1]. The scalar function f to be approximated is assumed
to be globally continuous, and Cr-smooth except for exactly one (unknown) point
at which f ′ has nontrivial discontinuity. The authors use the uniform mesh of
size h to construct a nonadaptive approximation which converges to f with error
proportional to hr in the uniform norm. This result means that for singular but
globally continuous functions, adaption does not help in the asymptotic setting,
i.e., nonadaptive methods are optimal.

We consider a class F∞
r of functions with more general singularities. We assume

that f : [0, T ] → R and allow discontinuity of the function itself and/or of its
derivatives starting at order perhaps higher than one, as assumed in [1]. That is, f
may be, say, twice differentiable on [0, T ], and f (3)(s) may not exist at some point s.
Moreover, f may have more than just one (but finitely many) singular points; their
location and number are unknown. We want to approximate functions f ∈ F∞

r by
algorithms Anf that use function values at some n points x1, . . . , xn as the only
available information. We allow adaptive algorithms, in which case the choice of xj

depends on previously obtained values of f(x1), . . . , f(xj−1).
An interesting feature of discontinuous functions is that it is impossible to ap-

proximate them with small errors measured in the L∞ norm. This should not be
surprising after realizing how inappropriate the L∞ norm is for such functions. To
see this, let us consider perhaps the simplest discontinuous functions from our class
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F∞
r , indicator functions of subintervals of [0, T ] given by

fa(x) = �[0,a](x) :=
{

1 if x ∈ [0, a],
0 if x ∈ (a, T ].

Since ‖fa −fb‖L∞ = 1 whenever a �= b, the sequence {fa+1/n} does not converge to
fa in the L∞ norm even though both functions are almost identical. In particular,
the function fa cannot be represented with error smaller than 1 (in the L∞ norm)
in a floating point arithmetic of finite precision, unless a is a machine number.
Indeed, if a �= fl(a), then again ‖fa − ffl(a)‖L∞ = 1, yet ffl(a) clearly is the best
possible approximation/representation of fa one could think of. Even worse, the
constant function f ≡ 1/2 is a better (in the L∞ norm) approximation to fa than
ffl(a)! (See Section 3 for a more detailed discussion.) Of course, one could use Lp

norms with finite p, and we indeed do analyze the algorithms using Lp norms for
all p ∈ [1,∞). However, Lp norms may not be adequate for applications where
introduction of false singularities is undesirable.

In other words, one would like to use a distance (metric) that enjoys all the good
properties of the uniform norm, yet is also appropriate for discontinuous functions.
Fortunately, the Skorohod metric distS(·, ·), see (3), enjoys the desiderata above.
Roughly speaking, the distance between two functions f and g is small iff the
graph of one of them, say f , can be viewed as a slightly perturbed graph of g,
i.e., f is close to g ◦ λ for some homeomorphism λ that is close to the identity
function id(x) = x, both in the L∞ norm. Following our example, note that
distS(fa, ffl(a)) = |a − fl(a)| is small, as it should be. Moreover, for continuous
functions from our class F∞

r (e.g., with discontinuity of derivatives but not of the
function itself), the Skorohod distance is equivalent to the uniform norm. Hence,
one could say that it has the good and practical properties of the uniform norm
without the drawbacks that the norm induces for discontinuous functions. We refer
again to Section 3 for some relations between the Skorohod metric and Lp norms.

In our paper, we seek optimal nonadaptive and adaptive algorithms in the worst
case and asymptotic settings, assuming that the error of approximation is measured
in the Lp norm (1 ≤ p < ∞) or in the Skorohod metric.

We are ready to discuss the main results of the paper. Since they strongly de-
pend on the number of singular points, we begin with the class F 1

r ⊂ F∞
r that

consists of functions with at most one singular point. In Section 4 we prove that
the best nonadaptive algorithms using n function values have the rather poor con-
vergence rate n−1/p when the Lp norms are used, and n−1 when the Skorohod
metric is used; see Theorem 2 and Proposition 3. These negative results should be
contrasted with the case of globally Cr-smooth functions (having no singularities),
where nonadaptive piecewise polynomial approximation yields the error bounded
by CT r ‖f (r)‖L∞ n−r in the uniform norm, for any f and n ≥ r.

Can we do better by using adaptive algorithms? Definitely YES. In Section
5 we construct an adaptive algorithm Aad

n that achieves the optimal convergence
rate of n−r for both the Lp norms and the Skorohod metric. Moreover, the error
asymptotically behaves as though there were no singularities, i.e., for any f ∈ F 1

r

we have

(1) lim
n→∞

‖f −Aad
n f‖Lp · nr = T r · γ · ‖f (r)‖Lp
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and

(2) lim
n→∞

distS(f,Aad
n f) · nr = T r · γ · ‖f (r)‖L∞ ,

where γ depends only on r and the metric used; see Theorems 3 and 4.
We stress that (1) and (2) are only asymptotic results. If we switch to the worst

case setting, then the situation is more complicated. For the worst case error to
be of order n−r it is not enough to assume that the rth derivative is uniformly
bounded, which is the case for functions with no singularities. Actually, we prove
in Section 5.4 that for any (possibly adaptive) algorithm An its worst case error
with respect to the class

{ f ∈ F 1
r | ‖f (r)‖L∞ ≤ Lr}

is infinite, independent of whether the Lp norm or the Skorohod metric is consid-
ered. Hence, for positive worst case results we have to put more restrictions on f .
Indeed, we show that for our adaptive algorithm Aad

n we have

sup{ distS(f,Aad
n f) | f ∈ F 1

r , ‖f (r)‖L∞ ≤ Lr, ‖f ′‖L∞ ≤ L1 } = Θ(n−r)

and

sup{ ‖f −Aad
n f‖Lp |f ∈F 1

r , ‖f (r)‖L∞ ≤ Lr, ‖f ′‖L∞ ≤ L1, |∆(0)
f | ≤ D0 } = Θ(n−r),

where Lr, L1, and D0 are finite, and ∆(0)
f is the discontinuity jump of f . For the

details, see again Theorems 3 and 4, as well as Section 5.4.
Our algorithm Aad

n consists of two steps. First, an adaptive (bisection-like)
mechanism is used to detect and localize singularities; next, a piecewise polynomial
interpolation of degree r − 1 is applied. The detection mechanism is based on
ideas already developed in [21], where numerical integration of piecewise smooth
functions is considered, and relies on getting some quantitative information about
the singularity by computing rth order divided differences. Roughly speaking,
singularities with big discontinuity jumps are easily detected and localized with
small errors, and those not detected have small enough jumps not to influence the
approximation error.

Next, in Section 6, we consider the general case of functions with multiple sin-
gularities. We show in Section 6.1 that, unfortunately, the worst case errors of any
algorithm with respect to any reasonable function class from F∞

r are bounded away
from zero, independent of the number n of function evaluations used; see Propo-
sition 4. In other words, the worst case errors of even optimal algorithms do not
converge to zero. This is because two or more singularity points can be arbitrarily
close to one another, which makes it impossible to distinguish them using a fixed
number n of function evaluations.

Fortunately, the lack of convergence in the worst case setting can be reversed in
the asymptotic setting, as considered in Section 6.2. Indeed, a modification of Aad

n

leads to an algorithm Aad

n that replicates the asymptotic properties (1) and (2); see
Theorem 5.

Finally, in Section 7, we report on numerical results that confirm the theoretical
properties of Aad

n and Aad

n .
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2. Basic definitions

We say that a function g : [a, b] → R is r-smooth iff g ∈ Cr−1([a, b]), with
g(r) ∈ L∞(a, b) continuous almost everywhere. The set of all r-smooth functions
defined on [a, b] will be denoted by Wr(a, b).

For given T > 0 and r ≥ 1 we consider the space F∞
r = F∞

r (0, T ) of functions

f : [0, T ] → R

that are piecewise r-smooth. Specifically, f ∈ F∞
r iff there exists an integer k =

kf ≥ 0, points 0 = s0 < s1 < · · · < sk < sk+1 = T , and functions gi ∈ Wr(si, si+1)
such that for all 0 ≤ i ≤ k and x ∈ (si, si+1), we have

f(x) = gi(x).

Moreover, f(0) = g0(0), f(T ) = gk(T ), and either f(si) = gi−1(si) or f(si) = gi(si),
1 ≤ i ≤ k, i.e., f is left- or right-continuous at each si.

The points si, 1 ≤ i ≤ k, are singularities of f . The corresponding discontinuity
jumps are denoted by

∆(j)
i := g

(j)
i (si) − g

(j)
i−1(si), 0 ≤ j ≤ r − 1.

Observe that any f ∈ F∞
r admits the useful representation

f(x) = g(x) +
k∑

i=1

�Ii
(x)

r−1∑
j=0

∆(j)
i

(x − si)j

j!
,

where g ∈ Wr(0, T ) and

Ii =
{

[si, T ] if f is right-continuous at si,
(si, T ] if f is left-continuous at si.

Here and elsewhere, �A denotes the indicator function of the set A.
We distinguish in F∞

r the classes F �
r of functions with no more than � singular

points,
F �

r := { f ∈ F∞
r | kf ≤ � }.

In particular, F 0
r = Wr(0, T ). Obviously,

F 0
r ⊂ F 1

r ⊂ · · · ⊂ F �
r ⊂ · · · and F∞

r =
∞⋃

�=0

F �
r .

For fixed � (finite or infinite) our aim is to construct efficient algorithms for
approximating functions f ∈ F �

r in a given metric (distance), choices of which will
be discussed later. We assume that the only a priori information about f is that
f ∈ F �

r . In particular, the locations of singularities are unknown; when � = ∞, we
also assume that we do not have an upper bound on the number of singularities.
However, together with this a priori information, the algorithms also use some
a posteriori information that consists of finitely many evaluations of f at certain
points xi. For instance, the algorithm may be given as

Anf =
n∑

i=1

f(xi) · fi
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for some xi ∈ [0, T ] and functions fi. These include (piecewise) polynomial or
trigonometric interpolation, splines, etc. More generally, by an algorithm we mean
a mapping of the form

Anf = ϕ(f(x1), . . . , f(xn)).

If the points xi are chosen independently of f , then the algorithm is nonadaptive.
An important particular case is provided by the equispaced sampling

xi =
i − 1
n − 1

T, 1 ≤ i ≤ n.

We also consider adaptive algorithms in which the choice of the successive xi’s and
their number n = n(f) depend on previously obtained information about f . That
is, x1 is fixed and

xi = xi

(
f(x1), . . . , f(xi−1)

)
for 2 ≤ i ≤ n(f).

The index n of An means that for any f ∈ F �
r the algorithm uses no more than n

function evaluations, i.e., n(f) ≤ n for all f .
Note that our problem is determined by the parameters T , r, �, and the metric

with respect to which the error of approximation is measured. Hence the results
will also depend on them.

Throughout this paper we denote by ‖ · ‖Lp(a,b) the Lp norm on (a, b), for 1 ≤
p ≤ ∞. To simplify notation, we write Lp instead of Lp(0, T ) if (a, b) = (0, T ). The
same applies to the space C of continuous functions and the uniform (Chebyshev)
norm.

We will also say that an x is in [a, b] with respect to f (or w.r.t. f in the sequel),
and write

x ∈f [a, b],
iff x ∈ (a, b), or x = a and f is left-continuous at x, or x = b and f is right-
continuous at x. Obviously, if f is continuous at x, then x ∈f [a, b] if and only if
x ∈ [a, b].

3. Lp
norms versus the Skorohod metric

It would be desirable to have algorithms that converge fast in the most conserva-
tive uniform L∞ norm. Unfortunately, L∞ approximation is an ill-posed problem
when dealing with discontinuous functions. Indeed, we have the following negative
result.

For a given function f : [0, T ] → R, ε ∈ R, and u ∈ (0, T ), let

fε,u := f + ε�[0,u).

Clearly, if f ∈ F �
r , then fε,u ∈ F �+1

r .

Lemma 1. Let {An}n≥1 be a sequence of (adaptive) algorithms. Then for any
function f and ε �= 0, the set of u ∈ [0, T ) for which

lim
n→∞

‖fε,u −Anfε,u‖L∞ = 0

is countable.

Proof. It is clear that Anfε,u (with 0 ≤ u < T ) takes at most 2n different values.
Moreover, if ‖fε,u0 − g‖L∞ < ε/2 for some u0 and g, then ‖fε,u − g‖L∞ > ε/2 for
any u �= u0. Hence, the error ‖fε,u − Anfε,u‖L∞ can be smaller than ε/2 for at
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most 2n values of u. Consequently, the error converges to zero with n → ∞ for at
most countably many fε,u’s. �

The lack of convergence for the L∞ approximation can be remedied by using
a weaker metric. The first and straightforward choice is Lp with 1 ≤ p < ∞.
However, there is also another possibility – the Skorohod metric.

The Skorohod metric, see, e.g., [4, 11, 18, 26], was introduced in statistics after
it had been observed that the L∞ norm is not adequate for piecewise continuous
functions (processes), since it makes the space of such functions nonseparable, i.e.,
too large. To explain this from a layman’s perspective, let us consider for a moment
functions f1/2+1/n := �[0,1/2+1/n]. As n → ∞, the functions f1/2+1/n resemble
f1/2 = �[0,1/2] almost perfectly. Yet ‖f1/2 − f1/2+1/n‖L∞ = 1 for all n. Even worse,
the constant function f∗ ≡ 1/2 is much closer to f1/2 in the L∞ norm than any
f1/2+1/n in spite of the fact that f1/2 and f∗ are so different. The Lp norms (with
p < ∞) do not have these bad properties; however, they ignore singular points,
characteristics that might be important to preserve in some applications, e.g., in
signal/image processing.

As we shall see, the Skorohod metric is free of all the problems above, and
therefore turns out to be a suitable tool for working with discontinuous functions.
It is defined as follows. Let f, g be two functions from L∞. Their Skorohod distance
is given by

(3) distS(f, g) := inf
λ∈H

(‖f ◦ λ − g‖L∞ + ‖λ − id‖L∞) ,

where id is the identity function (id(x) = x ∀x) and H is the class of homeomor-
phisms λ : [0, T ] → [0, T ] with λ(0) = 0 and λ(T ) = T .1

Stating the definition in a less formal way, the Skorohod distance between f and
g is small if there is a change of variables y = λ(x) such that f(λ(·)) is close (in
the L∞ topology) to g, and the change of variables λ is close (again in the L∞

topology) to the identity function.
Another analogy comes from the heart of numerical analysis: f(λ(·)) is a slightly

perturbed input function, and any algorithm producing g close to it is Strongly Nu-
merically Stable. Even a function as simple as f1/3 = �[0,1/3] cannot be represented
exactly in a floating point arithmetic, and the best one can do is to approximate
it by a slightly perturbed function f̃1/3 = �[0,fl(1/3)], where fl(1/3) denotes the ma-
chine representation of 1/3. Clearly distS(f1/3, f̃1/3) = |1/3 − fl(1/3)| is very small
(bounded by one third of the unit round-off); however, ‖f1/3 − f̃1/3‖L∞ = 1.

We believe that the Skorohod metric is an important way of measuring errors
for a host of applications including image analysis/processing, where preserving
discontinuities is essential. There f(λ(·)) would correspond to a slightly distorted
image of f .

Even though ‖f − g‖L∞ and distS(f, g) differ so much, it is possible to show
some relations. Obviously, we always have

distS(f, g) ≤ ‖f − g‖L∞ .

1Originally (see, e.g., [18]) the Skorohod metric was defined using the sup (uniform) norm
instead of L∞, however, under the assumption that the functions are right-continuous. It should
be clear that under such assumption, there is no difference between using the sup and the L∞

norms, and our analysis can be carried over.
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The following proposition might be known; however, we have not seen it in the
literature.

Proposition 1. Let the functions f, g ∈ L∞. If one of them satisfies a Lipschitz
condition with constant L, then

‖f − g‖L∞ ≤ max(1, L) · distS(f, g).

Hence,

‖f − g‖L∞ = distS(f, g) if L ≤ 1.

Proof. Suppose f is Lipschitz a Lipschitz function. Then for every x ∈ [0, T ] and
every λ ∈ H

|f(x) − g(x)| ≤ |f(λ(x)) − g(x)| + |f(x) − f(λ(x))|
≤ |f(λ(x)) − g(x)| + L |x − λ(x)|
≤ max(1, L) (|f(λ(x)) − g(x)| + |x − λ(x)|) .

Now taking the ess sup with respect to x and the inf with respect to λ completes
the proof. �

Here is another property showing a relation between the Skorohod metric and
the L1 norm. For f ∈ F∞

1 , let

c(f) := max
(

1, ‖f ′‖L∞ + T−1
k∑

j=1

|∆(0)
j |

)
,

where k is the number of discontinuities of f and ∆(0)
j , 1 ≤ j ≤ k, are the corre-

sponding discontinuity jumps.

Proposition 2. For any f, g ∈ F∞
1 we have

‖f − g‖L1 ≤ min (c(f), c(g)) · T · distS(f, g).

Proof. Without loss of generality, let c(f) ≤ c(g) and the infimum in the definition
of distS(f, g) be attained for λ, so that distS(f, g) = ‖λ − id‖L∞ + ‖f ◦ λ − g‖L∞

(otherwise we would do the standard δ-trick). Then∫ T

0

|f(x) − g(x)| dx ≤
∫ T

0

|f(λ(x)) − f(x)| dx +
∫ T

0

|f(λ(x)) − g(x)| dx.

The latter integral is upper bounded by T‖f ◦ λ − g‖L∞ . To bound the former
integral, we represent f (up to the finite set of discontinuity points sj) as

f = f1 +
k∑

j=1

∆(0)
j �[sj ,T ]

where f1 ∈ F∞
1 ∩ C. Note that ‖f ′

1‖L∞ = ‖f ′‖L∞ and

�[sj ,T ] ◦ λ − �[sj ,T ] = �[sj ,λ−1(sj))
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(by convention, �[a,b) = −�[b,a) when a > b). Hence∫ T

0

|f(λ(x)) − f(x)|dx

≤
∫ T

0

|f1(λ(x)) − f1(x)|dx +
k∑

j=1

|∆(0)
j |

∫ T

0

∣∣�[sj ,T ](λ(x))− �[sj ,T ](x)
∣∣dx

≤ T‖λ − id‖L∞‖f ′‖L∞ +
k∑

j=1

|∆(0)
j | · |λ−1(sj) − sj |

= T‖λ − id‖L∞

(
‖f ′‖L∞ + T−1

k∑
j=1

|∆(0)
j |

)
,

which completes the proof. �

Thus, in the Skorohod metric, any sequence of approximations converges at least
as fast as it does in the L∞ norm, and no faster than in the L1 norm.

There are no such relations between the Skorohod distance and the Lp norms
with 1 < p < ∞. Indeed, if f ≡ 0 and gn = �[0,1/n], then ‖f − gn‖Lp = n−1/p

converges to zero whereas distS(f, gn) = 1. On the other hand, if f = �[0,T/2]

and gn = �[0,T/2+1/n], then distS(f, gn) = n−1 converges faster than ‖f − gn‖Lp =
n−1/p.

4. Nonadaptive algorithms

It is well known that, in the space of r-smooth functions Wr = F 0
r , piecewise

polynomial interpolation of degree r − 1 based on equidistant sampling leads to
a nonadaptive algorithm with error bounded from above by C‖f (r)‖L∞n−r with
C > 0 independent of f and n. Moreover, n−r is the best rate of convergence among
all (including adaptive) algorithms. It turns out that the presence of discontinuities
causes all nonadaptive algorithms to have their errors bounded from below by n−1/p.
The purpose of this section is to show this fact.

We first show the following rather simple bounds.

Theorem 1. Let An be an arbitrary nonadaptive algorithm. Let ∆ > 0.
(i) There exists a piecewise constant function f1 ∈ F 1

r such that |∆(0)
1 | ≤ ∆ and

(4) ‖f1 −Anf1‖Lp ≥ 1
2
∆

(
T

n + 1

)1/p

.

(ii) There exists a piecewise constant function f2 ∈ F 1
r such that |∆(0)

1 | ≤ ∆ and

(5) distS(f2,Anf2) ≥ 1
2

min
(

T

n + 1
, ∆

)
.

Moreover, there exists a piecewise constant function f3 ∈ F 2
r such that |∆(0)

1 | +
|∆(0)

2 | ≤ ∆ and

(6) distS(f3,Anf3) ≥ 1
4
∆.
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Proof. Suppose that An computes f at points x1 < · · · < xn. Let x0 = 0 and
xn+1 = T . Then there exist 0 < a < b < T such that b − a ≥ T/(n + 1) and
[a, b] ⊂ [xk, xk+1] for some 0 ≤ k ≤ n. Take now two functions, g1 = ∆�(a,T ] and
g2 = ∆�[b,T ]. Since g1 and g2 share the same information (i.e., g1(xi) = g2(xi) for
all 1 ≤ i ≤ n) and ‖g1 − g2‖Lp ≥ ∆(T/(n + 1))1/p, the algorithm error cannot be
smaller than ∆(T/(n + 1))1/p/2 for at least one of the functions gi. This proves
(4). Similarly, (5) follows from the fact that for the same functions distS(g1, g2) =
min(b − a, ∆).

To show (6), we choose a, b as before and define g1 ≡ 0 and g2 = ∆�(a,b)/2.
Then, by Proposition 1, distS(g1, g2) = ‖g2‖L∞ = ∆/2, and (6) follows. �

Theorem 1 is in the spirit of the worst case setting, since a single ‘bad’ function is
selected depending on n. The following theorem shows that also asymptotically the
Lp error of nonadaptive algorithms cannot decrease faster than n−1/p. However, we
have the lower bound n−1 for the asymptotic convergence in the Skorohod metric,
independently of the number of singularities. As we shall see later, these lower
bounds are sharp. Hence for nonadaptive algorithms, the switch from the worst
case to the asymptotic setting only benefits the convergence in the Skorohod metric.

Let fε,u be defined as in Lemma 1.

Theorem 2. Let 1 ≤ p ≤ ∞. Let {An}n≥1 be any sequence of nonadaptive
algorithms. Then for any f ∈ F∞

r and ε �= 0 the sets

A =
{
u ∈ (0, T )

∣∣∣ lim
n→∞

n1/p · ‖fε,u −Anfε,u‖Lp = 0
}

and
A′ =

{
u ∈ (0, T )

∣∣∣ lim
n→∞

n · distS(fε,u,Anfε,u) = 0
}

are of Lebesgue measure zero, i.e., L(A) = L(A′) = 0.

Proof. We first show the theorem for the Lp norm. In view of Lemma 1 it suffices
to consider 1 ≤ p < ∞.

Note that for any function g the set of u ∈ (0, T ) such that ‖fε,u − g‖Lp ≤ a
is of measure at most 2(2a/|ε|)p. Indeed, for any u, v we have ‖fε,u − fε,v‖Lp =
|ε||u − v|1/p. Hence, if ‖fε,u − g‖Lp ≤ a and |u − v| > (2a/|ε|)p, then

‖fε,v − g‖Lp ≥ ‖fε,u − fε,v‖Lp − ‖fε,u − g‖Lp

≥ |ε||u − v|1/p − a > a.

The proof is similar to the proof of Lemma 4 in [21]. That is, for c > 0, we define
the sets

Bc
n :=

{
u ∈ [0, T ) | ‖fε,u −Anfε,u‖Lp ≤ c(n + 1)−1/p

}
.

Since the information takes no more than n + 1 different values for functions fε,u,
the algorithm An also takes at most n+1 different values for these functions. Hence

L(Bc
n) ≤ (n + 1)2

(
2c

|ε|(n + 1)1/p

)p

= 2
(

2c

|ε|

)p

.

Letting

Ac
n :=

{
u ∈ [0, T ) | ‖fε,u −Alfε,u‖Lp ≤ c(l + 1)−1/p ∀l ≥ n

}
,



POWER OF ADAPTION 2319

we have Ac
n ⊂ Bc

n, Ac
n ⊂ Ac

n+1 for all n, and A ⊂
⋃∞

n=1 Ac
n. Hence

L(A) ≤ lim
n→∞

L(Ac
n) ≤ 2

(
2c

|ε|

)p

.

Since c can be arbitrarily small, L(A) = 0.
To show the theorem for the Skorohod metric, observe first that

(7) distS(fε,u, fε,v) ≥ min
(
|u − v|, |ε|

1 + ‖f ′‖L∞

)
.

Indeed, let λ ∈ H be arbitrary. If λ(u) = v, then ‖λ−id‖L∞ ≥ |u−v|. On the other
hand, if λ(u) �= v and ‖λ − id‖L∞ ≤ |ε|/(1 + ‖f ′‖L∞), then there exists z ∈ (0, T )
for which

|�[0,u)(λ(z)) − �[0,v)(z)| = 1.

Then

|fε,u(λ(z)) − fε,v(z)| = |(f(λ(z)) − f(z)) + ε(�[0,u)(λ(z)) − �[0,v)(z))|

≥ −Lf · ‖λ − id‖L∞ + |ε| ≥ |ε|
1 + ‖f ′‖L∞

,

which shows (7).
The proof then proceeds as for the Lp norm by noting that for a < (1/2)|ε|/

(1 + ‖f ′‖L∞) the set of u for which distS(fε,u, g) ≤ a is of measure at most 2a. �
To complete this section, we now show that the estimates of Theorems 1 and 2

are sharp. For n ≥ 2, consider the piecewise constant approximation

Anon
n f := f(0)�[0,c1) +

n−1∑
i=2

f(xi)�[ci−1,ci) + f(T )�[cn−1,T ],

where
xi :=

i − 1
n − 1

T and ci :=
xi + xi+1

2
.

Proposition 3. Suppose that f ∈ F∞
1 has exactly k discontinuities sj with jumps

∆(0)
j , 1 ≤ j ≤ k. Then

(8)

‖f −Anon
n f‖Lp ≤ T

2(n − 1)

(
T

p + 1

)1/p

‖f ′‖L∞ +
(

T

2(n − 1)

)1/p
⎛⎝ k∑

j=1

|∆(0)
j |

⎞⎠ .

Furthermore, if k = 1 or

(9) 2 ≤ k ≤ n − 1 and
T

n − 1
< min

i �=j
|si − sj |,

then
(10)

distS(f,Anon
n f) ≤ T

2(n − 1)
‖f ′‖L∞ + min

(
T

2(n − 1)
(1 + ‖f ′‖L∞), max

1≤j≤k
|∆(0)

j |
)

.

Proof. We first prove (8). Consider an arbitrary interval [xi, ci], where 1 ≤ i ≤ n−1.
Let Pi be the set of all indices j such that sj ∈f [xi, ci]. Then for any x ∈ [xi, ci]
we have

f(x) = gi(x) +
∑
j∈Pi

∆(0)
j �Ii,j

(x),
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for some gi ∈ F∞
1 ∩ C and Ii,j = [sj , ci] or Ii,j = (sj , ci]. Hence

|f(x) − (Anon
n f)(x)| = |f(x) − f(xi)| ≤ (x − xi)‖f ′‖L∞ +

∑
j∈Pi

|∆(0)
j |.

Similarly, for any x ∈ [ci, xi+1], 1 ≤ i ≤ n − 1, we have

|f(x) − (Anon
n f)(x)| ≤ (xi+1 − x)‖f ′‖L∞ +

∑
j∈Qi

|∆(0)
j |,

where Qi is the set of all indices j such that sj ∈f [ci, xi+1]. Observe that any sj

is in exactly one of the sets Pi or Qi. It now follows that the error can be bounded
from above by the sum of two functions: a saw-like function

A(x) = ‖f ′‖L∞ min
1≤j≤n

|x − xj |

and the piecewise constant function

B(x) =
n−1∑
i=1

(
�[xi,ci)(x)

∑
j∈Pi

|∆(0)
j | + �[ci,xi+1](x)

∑
j∈Qi

|∆(0)
j |

)
.

Straightforward calculations give

‖A‖Lp =
T

2(n − 1)

(
T

p + 1

)1/p

‖f ′‖L∞

and

‖B‖Lp =
(

T

2(n − 1)

)1/p
⎛⎝n−1∑

i=1

(( ∑
j∈Pi

|∆(0)
j |

)p

+
( ∑

j∈Qi

|∆(0)
j |

)p)⎞⎠1/p

≤
(

T

2(n − 1)

)1/p ( k∑
j=1

|∆(0)
j |

)
.

The bound (8) is now obtained by adding ‖A‖Lp and ‖B‖Lp .
We now show (10). The condition (9) implies that there is no more than one

discontinuity in any [xj , xj+1] w.r.t. f . Assume without loss of generality that
sj ∈f [xj , xj+1], where 1 ≤ j ≤ n − 1. (Otherwise we would insert some trivial
jumps.) Then for all x ∈ [xj , xj+1] we have

|f(x) − (Anon
n f)(x)| ≤ T

2(n − 1)
‖f ′‖L∞ + |∆(0)

j |

which implies

(11) distS(f,Anon
n f) ≤ ‖f −Anon

n f‖L∞ ≤ T

2(n − 1)
‖f ′‖L∞ + max

1≤j≤k
|∆(0)

j |.

On the other hand, consider the homeomorphism λ defined as the piecewise
linear function interpolating the following data:

λ(0) = 0, λ(T ) = T, and λ(cj) = sj 1 ≤ j ≤ n − 1.

Then
‖λ − id‖L∞ = max

1≤j≤n−1
|cj − sj | ≤

T

2(n − 1)
.

Since
λ([cj , cj+1]) = [sj , sj+1] for 0 ≤ j ≤ n − 1
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(where c0 = s0 = 0 and cn = sn = T ), for any x ∈ (cj , cj+1) we have

|f(λ(x)) − (Anon
n f)(x)| ≤ ‖f ′‖L∞ |λ(x) − xj |

and |λ(x) − xj | ≤ T/(n − 1). Hence

‖f ◦ λ −Anon
n f‖L∞ ≤ T

n − 1
‖f ′‖L∞

and

(12) distS(f,Anon
n f) ≤ T

2(n − 1)
(1 + 2‖f ′‖L∞).

Combining (11) and (12) we get (10). �

5. Adaptive algorithms: Single discontinuity

In this section, we provide an adaptive algorithm whose worst case error is pro-
portional to n−r. Clearly, this is a significant improvement over the convergence
of nonadaptive methods. We stress that this result holds true because we have
restricted the function class to F 1

r . As shown in the next section, adaption loses
its superiority in the worst case setting for classes of functions with possibly more
than one singular point.

Our adaptive algorithm consists of two stages. First, it tries to detect/localize
the discontinuity using adaptive sampling, and next it approximates the function
by piecewise polynomial interpolation at points that depend on the location of the
singularity.

5.1. Detection mechanism. Our mechanism for detecting the singular point sf

in (0, T ) with ‘large’ discontinuity jumps is based on the one already developed
in [21]. A theoretical justification of that mechanism is based on Lemma 2 and
Lemma 3 that are basically taken from [21]; however, the formulation of Lemma 2
is slightly different than the one in [21]. For completeness, we provide a proof in
the Appendix.

For m ≥ 1, let h = T/m and ti := ih for all (not necessarily integer) i. Denote by
f [ti, ti+1, . . . , ti+j ] the jth order divided difference of f with respect to ti, . . . , ti+j .
We also define the constant

Mr := max
0≤τ≤1

‖A−1
τ ‖∞,

where Aτ = (ai,j(τ ))r−1
i,j=0 with

ai,j(τ ) =
i+1∑
l=1

bl−i+r−1
(l − τ )j

j!
and bu =

r∏
u �=l=0

(u − l)−1.

Lemma 2. Suppose f ∈ F 1
r with the singularity sf ∈f [tk, tk+1], where r−1 ≤ k ≤

m − r. If the divided differences are bounded by

|f [ti, ti+1, . . . , ti+r]| ≤ B for k + 1 − r ≤ i ≤ k,

then the discontinuity jumps are bounded by

|∆(j)
f | ≤ Mr

(
B +

1
r!
‖f (r)‖L∞(tk+1−r,tk+r)

)
· hr−j for 0 ≤ j ≤ r − 1.
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Lemma 3. For any integer i ∈ {r, . . . , m},
|f [ti, ti+1, . . . , ti+r]| ≤ max

2i≤j≤2i+r
|f [tj/2, t(j+1)/2, . . . , t(j+r)/2]|.

Suppose now that the conditions of Lemma 2 are satisfied, i.e.,

(13) sf ∈f [tr−1, tm−r+1].

Then we can compute all possible divided differences d0
i := f [ti, . . . , ti+r], 0 ≤ i ≤

m− r, and compare them to a given threshold D. If none of them exceeds D, then
by Lemma 2 with B = D, the discontinuity jumps are ‘small’, i.e.,

(14) |∆(j)
f | ≤ Mr

(
D +

1
r!
‖f (r)‖L∞

)
hr−j , 0 ≤ j ≤ r − 1.

Otherwise, if the largest |d0
i | exceeds D, then we can perform a few, say κ, bisection-

like adaptive steps (with the use of Lemma 3), each time decreasing the mesh-size
twice, to find q such that |d̂| := |f [tq/2κ , . . . , t(q+r)/2κ ]| ≥ |d0

i |.
Now, if |d̂| ≤ ‖f (r)‖L∞/r!, then by Lemma 2 with B = ‖f (r)‖∞/r!, we have

(15) |∆(j)
f | ≤ 2Mr

r!
‖f (r)‖L∞ hr−j for all 0 ≤ j ≤ r − 1,

and if |d̂| > ‖f (r)‖L∞/r!, then

(16) sf ∈f [tq/2κ , t(q+r)/2κ ].

In addition, if (16) holds, then f is r-smooth on [0, tq/2κ ] and on [t(q+r)/2κ , T ].
Obviously, for fixed f ∈ F 1

r with nontrivial discontinuity of one of the derivatives
f (j), where 0 ≤ j ≤ r − 1, condition (13) is satisfied for the mesh-size h sufficiently
small (or m sufficiently large). Even more, if D < ∞, then for h small enough
the largest |d0

i | exceeds D so that we only have (15) or (16). However, we aim at
stronger, nonasymptotic results and therefore have to extend applicability of the
detection mechanism to the intervals (t(r−1)/2κ , tr−1] and [tm−r+1, tm−(r−1)/2κ). As
we shall see, this is sufficient to construct an algorithm with small worst case error.

The extension works for m ≥ 2(r−1) and is done by computing additional divided
differences with decreasing mesh-size in the vicinities of 0 and T . Specifically, for
1 ≤ j ≤ κ, 0 ≤ i ≤ 2(r − 1), and 2jm − 3(r − 1) − 1 ≤ i ≤ 2jm − r we compute

dj
i := f [ti/2j , t(i+1)/2j , . . . , t(i+r)/2j ].

If sf ∈f [t(r−1)/2j , t(r−1)/2j−1 ] and |dj
i | ≤ D for all i (or sf ∈f [tm−(r−1)/2j−1 ,

tm−(r−1)/2j ] and |dj
i | ≤ D for all i), then Lemma 2 can be applied with B = D and

the mesh-size h replaced by h/2j .
Observe that the detection mechanism with additional divided differences uses

(m + 1) + κ(r + 23r/2�)
function evaluations in the worst case.

Before providing a corresponding pseudocode, we comment on the choice of the
threshold D. Observe that if

(17) D ≤ ‖f (r)‖L∞/r!

and sf ∈f [(r − 1)h/2κ, T − (r − 1)h/2κ], then either inequalities (15) hold true,
or sf ∈f [qh/2κ, (q + r)h/2κ] (or both). It is clear that the best choice of D would
be D = ‖f (r)‖L∞/r! since then the adaptive steps are performed only when the
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singularity has been detected. Unfortunately (a good estimate for) ‖f (r)‖L∞ is
usually not available, and this is what we also assume in the present paper. In
such cases, to avoid a possible overestimation of |∆(j)

f | in (14), one can take D = 0.
Then (17) holds for any f ; however, the detection part is triggered regardless of
whether f has a singularity or not.

In the following procedure the parameters are: the smoothness r, a positive
integer sequence {κm}m≥1, and a threshold D.

00 procedure DETECT;
01 begin
02 input m ≥ 2(r − 1); h := T/m;
03 κ := κm; δ := (r − 1)h2−κ;
04 for i := 0 to m − r do d0

i := f [ti, . . . , ti+r];
05 for j := 1 to κ do
06 begin
07 for i := 0 to 2(r − 1) do dj

i := f [ti/2j , . . . , t(i+r)/2j ];
08 for i := 2jm − 3(r − 1) − 1 to 2jm − r do dj

i := f [ti/2j , . . . , t(i+r)/2j ]
09 end;
10 (i∗, j∗) := arg max(i,j) |dj

i |;
11 if |dj∗

i∗ | ≤ D then return ∅ else
12 begin
13 for j := j∗ + 1 to κ do
14 begin
15 for i := 0 to r do ei := f [ti∗+i/2j , . . . , ti∗+(i+r)/2j ];
16 i∗ := i∗ + (arg maxi |ei|) /2j

17 end;
18 vl := max(δ, i∗h); vr := min((i∗ + r2−κ)h, T − δ);
19 return [vl, vr]
20 end
21 end.

5.2. Adaptive piecewise polynomial interpolation. In this section, we define
and analyze the error of piecewise polynomial interpolation that is based on the
adaptive partition of [0, T ] produced by DETECT of Section 5.1.

For fixed points τi satisfying

0 ≤ τ1 < τ2 < · · · < τr ≤ 1,

let Pr(f ; a, b) be the polynomial of degree at most r − 1 interpolating f at a +
τj(b−a), with 1 ≤ j ≤ r. Further, for any collection U of points u0 < u1 < u2 < · · ·
< uk, let Pr(f ; U) be the piecewise polynomial interpolation of f determined by
U , i.e.,

Pr(f ; U) =
k∑

i=1

Pr(f ; ui−1, ui)�[ui−1,ui).

Fix a threshold D ≥ 0 and an integer sequence {κm}m≥1 satisfying κm ≥ log2(r−1),
so that

δm := (r − 1)h2−κm ≤ T

m
for all m.
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Our algorithm Aad
n is determined by r, {κm}m, and D, and is defined as follows.

We choose m ≥ 2(r− 1) and run DETECT. If the procedure returns ∅, then we let

Um := {ti | 1 ≤ i ≤ m − 1} ∪ {δm, T − δm}

and

Aad
n f := Pr(f ; Um)

+ f(0)�[0,δm/2) + f(δm)�[δm/2,δm)

+ f(T − δm)�[T−δm,T−δm/2) + f(T )�[T−δm/2,T ].

Otherwise, the procedure produces an interval [vl, vr] with δm ≤ vl ≤ vr ≤ T − δm.
Then we let

U l
m := {ti | 1 ≤ i ≤ m − 1, ti < vl} ∪ {δm, vl},

Ur
m := {ti | 1 ≤ i ≤ m − 1, ti > vr} ∪ {vr, T − δm},

and construct our algorithm as

Aad
n f := Pr(f ; U l

m) + Pr(f ; Ur
m)

+ f(0)�[0,δm/2) + f(δm)�[δm/2,δm)

+ f(vl)�[vl,(vl+vr)/2) + f(vr)�[(vl+vr)/2,vr)

+ f(T − δm)�[T−δm,T−δm/2) + f(T )�[T−δm/2,T ].

That is, Aad
n f is the piecewise polynomial of degree r − 1 except on [0, δm], [T −

δm, T ], and [vl, vr] (if this interval is created), where it is given by a piecewise
constant function.

Note that in the worst case the algorithm performs

n = n(m) := (r + 1)(m + 1) + κm (r + 23r/2�) + 1

function evaluations (those related to the detection mechanism plus those related
to the piecewise polynomial interpolation).

To analyze the error of Aad
n , we need some auxiliary results. Let 1 ≤ p ≤ ∞. It

is well known that if f ∈ Wr(a, b), i.e., f is r-smooth on [a, b], then

(18) ‖f − Pr(f ; a, b)‖Lp(a,b) ≤ α · ‖f (r)‖L∞(a,b) (b − a)r+1/p,

where

α = α(r, p) :=
1
r!

∥∥∥∥ r∏
j=1

| · −τj |
∥∥∥∥

Lp(0,1)

.

(Here and later we adopt the convention that 1/p = 0 when p = ∞.)
Inequality (18) can be easily generalized to the case of functions with one singu-

larity as follows. For 0 ≤ j ≤ r − 1, let

αj := αj(r, p) := max
0≤s≤1

‖φj,s − Pr(φj,s; 0, 1)‖Lp(0,1),

where

φj,s(x) =
(x − s)j

j!
�[s,T ](x).

Then we have the following bound, the proof of which is in the Appendix.
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Lemma 4. Let 1 ≤ p ≤ ∞. Let f ∈ F 1
r with the singular point sf ∈f [a, b] and

discontinuity jumps ∆(j)
f , where 0 ≤ j ≤ r − 1. Then

‖f − Pr(f ; a, b)‖Lp(a,b)

≤ α · ‖f (r)‖L∞(a,b)(b − a)r+1/p +
r−1∑
j=0

αj · |∆(j)
f |(b − a)j+1/p.

We are now ready to state and prove the main result about the Lp error of our
adaptive algorithm. Let

Df := max
(

D,
‖f (r)‖L∞

r!

)
.

Theorem 3. Let 1 ≤ p < ∞. If the sequence {κm}m≥1 satisfies κm = O(m),
then Aad

n uses n = O(m) function evaluations. Furthermore, for any f ∈ F 1
r and

m ≥ 2(r − 1) we have

(19) ‖f −Aad
n f‖Lp ≤ C ·

(
Dfm−r + δ1/p

m (|∆(0)
f | + δm‖f ′‖L∞)

)
,

for some C independent of f . If in addition

(20) lim
m→∞

κm − (rp − 1)log2 m = ∞,

then

(21) lim
m→∞

‖f −Aad
n f‖Lp · mr = T r α ‖f (r)‖Lp .

Proof. First consider the case when sf is w.r.t. f in one of the ‘small’ subintervals
[0, δm], [T − δm], or [vl, vr], each of length at most δm. Then the Lp error of Aad

n

can be upper bounded by

‖f −Aad
n f‖Lp ≤ T 1/pα‖f (r)‖L∞hr + 2 · δ

1+1/p
m

2(1 + p)1/p
‖f ′‖L∞

+

(
δ
1+1/p
m

2(1 + p)1/p
‖f ′‖L∞ +

(
δm

2

)1/p

|∆(0)
f |

)
,

where the three successive components of the sum are: the Lp error outside of
the ‘small’ subintervals derived from (18), the error on the two (or one) ‘small’
subintervals not containing sf (which follows from (8) of Proposition 3 with n = 2
and T replaced by δm), and the error on the ‘small’ subinterval containing sf (which
again follows from (8)).

Now consider the second, opposite case when sf is w.r.t. f in one of the ‘large’
subintervals of length at most h. This is possible only when all the divided dif-
ferences computed in lines 04 to 09 of DETECT are not larger than Df and, con-
sequently, the jumps |∆(j)

f | ≤ 2MrDfhr−j . Hence in this case, the error can be
bounded by

‖f −Aad
n f‖Lp ≤ T 1/pα‖f (r)‖L∞hr + 3 · δ

1+1/p
m

2(1 + p)1/p
‖f ′‖L∞

+
(

α‖f (r)‖L∞ +
2Mr

r!

( r−1∑
j=0

αj

)
Df

)
hr+1/p,



2326 L. PLASKOTA, G.W. WASILKOWSKI, AND Y. ZHAO

where the last component of the sum is the error on the ‘large’ interval containing
sf , derived from Lemma 4 and inequalities (14) and (15).

Inequality (19) is now obtained by combining both cases.
To prove (21), observe first that sf ∈f [vl, vr] for sufficiently large m. For any

interval [ti−1, ti] that has empty intersection with (0, δm) ∪ (vl, vr) ∪ (T − δm, T )
(i.e., except for 3 or 4 intervals), the approximation (Aad

n f)(x) = Pr(f ; ti−1, ti)(x).
Hence for any such interval the error can be bounded by

α|f (r)(ξ−i )|hr+1/p ≤ ‖f −Anf‖Lp(ti−1,ti) ≤ α|f (r)(ξ+
i )|hr+1/p,

where ξ−i , ξ+
i ∈ [ti−1, ti]. Since by (20) the error on the ‘small’ subintervals is

asymptotically negligible, it follows that

h−rp‖f −Aad
n f‖p

Lp = h−rp
m∑

i=1

‖f −Aad
n f‖p

Lp(ti−1,ti)

can be asymptotically bounded from below and from above by Riemann sums
m∑

j=1

hαp|f (r)(ξ±j )|p

of the function αp|f (r)|p. By definition of the space, any function f ∈ F∞
r is

Riemann integrable. (If necessary, we formally set zero for f (r) at points where this
derivative is not defined.) Hence we obtain (21) by letting m → ∞. �

A corresponding result about the error of Aad
n with respect to the Skorohod

metric is as follows.

Theorem 4. For any f ∈ F 1
r and m ≥ 2(r − 1) we have

(22) distS(f,Aad
n f) ≤ Ĉ ·

(
Dfm−r + δm‖f ′‖L∞ + min(δm, |∆(0)

f |)
)

,

for some Ĉ independent of f . Moreover, if

lim
m→∞

κm − (r − 1)log2 m = ∞,

then

(23) lim
m→∞

distS(f,Aad
n f) · mr = T r α ‖f (r)‖L∞ .

Proof. First consider the case when sf is in one of the three ‘small’ intervals of
length δm. We can assume without loss of generality that sf ∈f [vl, vr]. Then,
taking λ = id we have

distS(f,Aad
n f) ≤ max

(
|∆(0)

f | + δm

2
‖f ′‖L∞ , α‖f (r)‖L∞hr

)
.

On the other hand, define the homeomorphism λ as the piecewise linear interpola-
tion of the data: λ(0) = 0, λ(T ) = T , and λ(c) = sf with c = (vl + vr)/2. Then
‖λ − id‖L∞ = δm/2. For x /∈ (vl, vr) the error can be estimated as

|f(λ(x)) − (Aad
n f)(x)| ≤ |f(λ(x)) − f(x)| + |f(x) − (Aad

n f)(x)|

≤
{

δm‖f ′‖L∞ if x ∈ [0, δm] ∪ [T − δm, T ],
δm‖f ′‖L∞/2 + α‖f (r)‖L∞hr otherwise.
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For x ∈ (vl, vr) we show, similar to the proof of (10), that the error is at most
δm‖f ′‖L∞ . Thus, in this case we also have

distS(f,Aad
n f) ≤ ‖λ − id‖L∞ + ‖f ◦ λ −Aad

n f‖L∞

≤ δm

2
(1 + ‖f ′‖L∞) + max

(
δm

2
‖f ′‖L∞ , α‖f (r)‖L∞hr

)
.

Now consider the case when sf is not in any of the ‘small’ intervals. Then we
have (14) or (15) and

distS(f,Aad
n f) ≤ ‖f −Aad

n f‖L∞

≤ max

⎛⎝δm

2
‖f ′‖L∞

⎛⎝α‖f (r)‖L∞ +
2Mr

r!

⎛⎝r−1∑
j=0

αj

⎞⎠ Df

⎞⎠ hr

⎞⎠ .

Inequality (22) is obtained by combining both cases.
To show (23) we use arguments similar to those in the proof of (21). �

5.3. Worst case setting. The bound (19) in Theorem 3 establishes the following
result in the worst case setting. Let F1

r be the class of functions f ∈ F 1
r with

uniformly bounded jumps |∆(0)
f | and first and rth derivatives of f , i.e.,

F1
r = F1

r (Lr, L1, D0) := { f ∈ F 1
r | ‖f (r)‖L∞ ≤ Lr, ‖f ′‖L∞ ≤ L1, |∆(0)

f | ≤ D0 }

for some finite L1, Lr, and D0. Then the worst case Lp error of Aad
n with respect

to F1
r satisfies

sup
f∈F1

r

‖f −Aad
n f‖Lp ≤ C · n−r,

where C is independent of n and f (but it depends on Lr, L1, D0). Similarly, for
the Skorohod metric we have

sup
f∈F̂1

r

distS(f,Aad
n ) ≤ Ĉ · n−r

with respect to the class

F̂1
r = F1

r (Lr, L1,∞) := { f ∈ F 1
r | ‖f (r)‖L∞ ≤ Lr, ‖f ′‖L∞ ≤ L1 }.

Note that F1
r ⊂ F̂1

r .

Remark 1. It is clear that the adaptive algorithm Aad
n can be generalized by apply-

ing interpolation (or extrapolation) by polynomials of order s ∈ {0, 1, . . . , r} in the
intervals [0, δm], [vl, vr], [T − δm, T ] (where zero approximation is used for s = 0).
It can be shown that the Lp error of such a modified algorithm Ãad

n can be bounded
as

‖f − Ãad
n f‖Lp ≤ C ·

(
‖f (r)‖L∞n−r + δ1/p

m

( s−1∑
j=0

δj
m|∆(j)

f | + δs
m‖f (s)‖L∞

))
,

where dependence on the successive discontinuity jumps |∆(j)
f | rapidly decreases

(e.g., if κm = m, then δ
1/p
m vanishes at an exponential rate). Consequently, we have

the corresponding worst case results for the classes

F1
r (s) := { f ∈ F 1

r | ‖f (r)‖L∞ ≤ Lr, |∆(j)
f | ≤ Dj , 0 ≤ j ≤ s − 1, ‖f (s)‖L∞ ≤ Ls }.
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We chose to work with s = 1 for a number of reasons. First, dependence of the
error on quantities other than f (r) is practically negligible. Second, if κm increases
faster than log2 m and slower than m, then the same algorithm Aad

n (i.e., with the
same set of parameters) satisfies the estimates of Theorems 3 and 4. Third, in the
Skorohod metric, the algorithm Ãad

n does not work well for s = 0, and taking s ≥ 2
is useless because in this way dependence on f ′ cannot be removed from the error
formula, due to the L∞ norm of the homeomorphism λ.

5.4. Lower bounds. It is well known that for functions with no singularities (f ∈
Wr = F 0

r ) the worst case Lp error (1 ≤ p ≤ ∞) is of order n−r with respect to the
class of functions with uniformly bounded ‖f (r)‖L∞ . Moreover, this convergence
cannot be improved, and uniform boundeness of the rth derivative is crucial.

One can ask if a similar result holds true in F 1
r . That is, if it is possible to

construct an algorithm with the worst case error of order n−r in the class

F̃1
r = F1

r (Lr,∞,∞) := { f ∈ F 1
r | ‖f (r)‖L∞ ≤ Lr }

that is larger than F1
r and F̂1

r . Unfortunately, the answer to this question is neg-
ative since any algorithm has an infinite worst case error even for the subclass
F1

r (0,∞,∞). To show this, let g1 and g2 be two r-smooth functions that will be
specified later. Consider the following functions dependent on gi’s and parameter-
ized by s ∈ (0, T ):

fs := g1 �[0,s) + g2 �[s,T ].

Of course, they belong to F 1
r . Let An be an arbitrary adaptive algorithm that

evaluates f at n points xj = xj(f(x1), . . . , f(xj−1)). To simplify the notation, we
will write xj = xj(f). Since the value of fs at x depends only on whether x < s or
x ≥ s, we have that ∣∣∣∣ ⋃

s∈(0,T )

{x1, x2(fs), . . . , xn(fs)}
∣∣∣∣ ≤ 2n − 1.

Therefore, there is an interval (a, b) ⊂ (0, T ) of length T2−n that contains no point
xj(fs), i.e.,

b − a = T 2−n and (a, b) ∩
⋃

s∈(0,T )

{x1, x2(fs), . . . , xn(ft)} = ∅.

This means that the algorithm An cannot distinguish between the functions fa+δ

and fb−δ (for sufficiently small δ), and its error is bounded from below by ‖fa+δ −
fb−δ‖Lp/2 and distS(fa+δ, fb−δ)/2, respectively.

Now consider g1 ≡ 0 and g2 ≡ D0. Clearly, fa+δ and fb−δ belong to F1
r (0, 0, D0),

which is a very small subset of F1
r (0,∞,∞). Since

‖fa+δ − fb−δ‖Lp = D0(T2−n − 2δ)1/p,

we have

sup
f∈F1

r (0,0,D0)

‖f −Anf‖Lp ≥ D0

2
(
T2−n

)1/p and sup
f∈F1

r (0,0,∞)

‖f −Anf‖Lp = ∞

for any algorithm An. The result above does not hold for the Skorohod distance
since the class F1

r (0, 0,∞) admits an adaptive algorithm with its worst case er-
ror equal to T2−n. Therefore to get a meaningful lower bound, we use different
functions gi. Namely, we take g1(x) = A1 + Lx and g2(x) = A2 + Lx for some
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constants Ai and L. Note that if λ(a + δ) �= b − δ, then ‖fa+δ ◦ λ − fb−δ‖L∞ ≥
|A1 − A2|. However, when λ(a + δ) = b − δ, then ‖λ − id‖L∞ ≥ b − a − 2δ
and ‖fa+δ ◦ λ − fb−δ‖L∞ ≥ |L|(b − a − 2δ). This shows that distS(fa+δ, fb−δ) ≥
min(|A1 − A2|, (|L| + 1)(b − a − 2δ)). Note that for both functions, |A1 − A2| is
the discontinuity, L is the norm of the first derivative, and the norm of the rth
derivative is zero. Hence we conclude that

sup
f∈F 1

r (0,L1,D0)

distS(f,Anf) ≥ 1
2

min
(
D0 , (1 + L1)T2−n

)
for any algorithm An. In particular, supf∈F 1

r (0,∞,∞) distS(f,Anf) = ∞, as claimed.
These lower estimates show that uniform boundeness of only ‖f (r)‖L∞ is not

sufficient for the worst case error (measured in the Lp norm or the Skorohod metric)
to be finite.

Remark 2. The convergence rate n−r cannot be improved, not only in the worst
case, but also in the asymptotic setting. This follows from the general results of
Trojan [27] that can be rephrased as follows. Let {An}n be an arbitrary sequence
of algorithms and {γn}n be any positive sequence converging to infinity (however
slowly). Then the set of f ∈ Cr for which lim supn→∞ ‖f − Anf‖Lpnr/γn < ∞
is nowhere dense. Although the results of [27] were proven for errors measured
in norms of Banach spaces, due to Proposition 1, the same result holds for the
approximation problem with the Skorohod metric.

6. Adaptive algorithms: Multiple discontinuities

In this section, we consider functions with possibly multiple singularities. Unlike
the case of one singularity, the results now depend significantly on whether the
problem is considered in the worst case setting or in the asymptotic setting.

6.1. Worst case setting. A natural generalization of the class F1
r to the case of

multiple discontinuities is

F�
r,q = F�

r,q(Lr, L1, D0) := { f ∈ F �
r | ‖f (r)‖L∞ ≤ Lr, ‖f ′‖L∞ ≤ L1, ‖∆

(0)

f ‖q ≤ D0 },

where ∆
(0)

f =
(
∆(0)

1 , . . . , ∆(0)
kf

)
∈ R

kf is the vector of all discontinuity jumps of f ,

‖∆(0)

f ‖q =
( kf∑

j=1

|∆(0)
j |q

)1/q

for 1 ≤ q < ∞,

and ‖∆(0)

f ‖∞ = max1≤j≤kf
|∆(0)

j |. Let Anon
n be the nonadaptive algorithm from

Proposition 3. Due to (8), for � < ∞ the worst case error of Anon
n over F�

r,q is
bounded as

sup
f∈F�

r,q

‖f −Anon
n f‖Lp ≤ C� · n−1/p.

Surprisingly, this error bound cannot be improved by any other (adaptive) algo-
rithm. We also have that for the worst case approximation in the Skorohod metric
with respect to the class

F̂�
r = F̂�

r(Lr, L1,∞) := { f ∈ F �
r | ‖f (r)‖L∞ ≤ Lr, ‖f ′‖L∞ ≤ L1 },

the error equals infinity.
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Proposition 4. Let 2 ≤ � ≤ ∞ and 1 ≤ q ≤ ∞. For any (adaptive) algorithm An

using n function evaluations we have

sup
f∈F�

r,q

‖f −Anf‖Lp ≥ D02−1/q��/2�1−1/q

(
T

n + 1

)1/p

(with the convention that ∞a = ∞ for a > 0, and ∞0 = 1) and

sup
f∈F̂�

r

distS(f,Anf) = ∞.

Proof. Let x1 ≤ x2 ≤ · · · ≤ xn be the points at which the function values are
computed for f ≡ 0. Let 0 ≤ a < b ≤ T be such that b − a ≥ T/(n + 1) and
[a, b] ⊂ [xk, xk+1] for some k (where x0 = 0, xn+1 = T ).

For 2 ≤ � < ∞, we denote k := ��/2� and ∆ := D0(2k)−1/q, and define

f∗ := ∆
k∑

j=1

�(a+δj,b−δj), 0 < δ <
b − a

2k
.

Observe that f1 := f∗ and f−1 := −f∗ share the same information, and they are
both in F�

r,q. Note also that f1(x) = ∆k for any x ∈ (a + δk, b − δk). Therefore,
for any δ, the worst case Lp error of An is at least

1
2
‖f1−f−1‖Lp ≥ ∆k(b−a−2δk)−1/p ≥ D02−1/q��/2�1−1/q

(
T

n + 1
− 2δ

⌊
�

2

⌋)1/p

.

The bounds for � = ∞ are obtained by taking � → ∞ above.
For the result in the Skorohod metric it suffices to note that for arbitrary D0 the

worst case error is at least
1
2

distS(f1, 0) =
1
2
D02−1/q��/2�1−1/q.

�

Remark 3. Consider the classes

F�
r,q(s) := { f ∈ F �

r | ‖f (r)‖L∞ ≤ Lr, ‖∆
(j)

f ‖q ≤ Dj , 0 ≤ j ≤ s − 1, ‖f (s)‖L∞ ≤ Ls }

that are generalizations of F1
r (s) from Remark 1. Observe that Proposition 4 also

remains valid in F�
r,q(s) with 1 ≤ s ≤ r, since the functions constructed in the proof

belong to those classes. The situation is slightly different for s = 0, where, for any
An, one can show that

sup
f∈F�

r,q(0)

‖f −Anf‖Lp ≥ L0T
1/p min

((
��/2�
n + 1

)1/p

, 1

)
and

sup
f∈F̂�

r,q(0)

distS(f,Anf) ≥ 1
2
L0.

The results of this section can be summarized as follows. In the worst case
setting, adaption helps for the classes F �

r only when � = 1. This is in agreement
with the corresponding results for the integration problem; see [21].

Fortunately, adaption regains its superiority in the asymptotic setting discussed
below.



POWER OF ADAPTION 2331

6.2. Asymptotic setting. In this section, we show that the convergence rate of
n−r can be preserved even in the class F∞

r , if we switch from the worst case setting
to the asymptotic setting. That is, instead of fixing n and considering the ‘worst’
functions, we have a sequence of algorithms An and, for a fixed function f , we
inspect how fast the error goes to zero when n → ∞. We assume that f ∈ F∞

r ,
i.e., the only a priori knowledge used is that f is r-smooth except at a finite (but
unknown) number of singular points.

Since the number of singularities is unknown, the DETECT procedure of Section
5.1 needs to be modified to accommodate this situation. For a given m, our modified
procedure will work as though there were up to �m singularities, where �m converges
with m to infinity. Moreover, as we look at the asymptotic behavior, the procedure
will not need to sample with increasing resolution in vicinities of 0 and T .

Indeed, for sufficiently large m (depending on f) we have that �m exceeds the
number kf of singular points of f . Moreover, h = T/m is small enough to separate
those singular points, and to separate them from the boundary of [0, T ]. Then the
detection mechanism works for each of the singular points as though it was unique.

The modified detection mechanism is given by the following pseudocode, where
the parameters are: the smoothness r, a threshold D, and positive integer sequences
{κm}m≥1 and {�m}m≥1. It returns the set V of subintervals suspected to contain
essential singularities. S is an auxiliary set of indices.

00 procedure DETECT;
01 begin
02 input m ≥ (r − 1); h := T/m; S := V := ∅;
03 κ := κm; � := �m;
04 for i := 0 to m − r do di := f [ti, . . . , ti+r];
05 while ( |S| < � ) and ( maxi |di| > D ) do
06 begin
07 i∗ := arg maxi |di|; S := S ∪ {i∗};
08 for i := max(0, i∗ − r + 1) to min(i∗ + r − 1, m − r) do di := 0;
09 end;
10 for every i∗ ∈ S do
11 begin
12 for j := 1 to κ do
13 begin
14 for i := 0 to r do ei := f [ti∗+i/2j , . . . , ti∗+(i+r)/2j ];
15 i∗ := i∗ + (arg maxi |ei|) /2j

16 end;
17 vl := i∗h; vr := (i∗ + r2−κ)h;
18 V := V ∪ {[vl, vr]}
19 end;
20 return V
21 end.

The resulting algorithm Aad

n relies on piecewise polynomial approximation of
degree r−1, except for the subintervals in V , where it is given by piecewise constant
approximation. Of course, there are up to �m detected subintervals.
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Formally, Aad

n is defined as follows. Let

Pm :=
⋃

[vl,vr ]∈V

(vj , vr)

and
Um := { vl, vr | [vl, vr] ∈ V } ∪ { ti | 0 ≤ i ≤ m, ti �∈ Pm }.

Then

Aad

n f := Pr(f ; Um)�[0,T )\Pm
+ f(T )�{T}

+
∑

[vl,vr ]∈V

f(vl)�[vl,(vl+vr)/2) + f(vr)�[(vl,vr)/2,vr).

Observe that in the worst case, the number of function evaluations is now at
most

n = n(m) = (r + 1)m + r�m(κm + 1) + 1.

We have the following theorem, the proof of which follows from our discussion
and the proofs of Theorems 3 and 4.

Theorem 5. Let limm→∞ �m = ∞ and �mκm = O(m). Then Aad

n uses n = O(m)
function evaluations. Additionally,

(a) if limm→∞ κm − (rp − 1) log2(m) = ∞, then

lim
m→∞

‖f −Aad

n f‖Lp · mr = T r α(r, p) ‖f (r)‖Lp , 1 ≤ p < ∞;

(b) if limm→∞ κm − (r − 1) log2(m) = ∞, then

lim
m→∞

distS(f,Aad

n f) · mr = T r α(r,∞) ‖f (r)‖L∞ .

7. Test results

We implemented and tested both Aad
n and Aad

n algorithms for regularity r = 2, 4
with errors measured both in the Skorohod metric and the L2 norm. We report the
test results for the following four functions:

f1(x) =
{

x(sin(x) + 0.1), x ∈ [0, π),
(x − 2π)(0.1 − sin(x)), x ∈ [π, 2π],

f2(x) = sin(8x)/16 + e−16|x−1|, x ∈ [0, π],

f3,4(x) = e−(x−1)2 +
5∑

j=1

∆(0)
j �[0,sj)(x), x ∈ [0, π].

The functions f3 and f4 have five singular points with the same discontinuity jumps
given by ∆(0)

i , [∆(0)
1 , ∆(0)

2 , ∆(0)
3 , ∆(0)

4 , ∆(0)
5 ] = [0.8,−0.14, 0.06,−0.1, 0.2] and with

singular points given, respectively, by sj = jπ/6 for f3, and [s1, s2, s3, s4, s5] =
[π/6, π/6 + 0.03, π/2, π/2 + 0.07, π/2 + 0.073] for f4. Note that the singular points
of f3 are evenly spaced, whereas singular points of f4 are clustered, s1 ∼ s2 and
s3 ∼ s4 ∼ s5.

For interpolations Pr(·, a, b) we used points equidistributed over (a, b) (including
the endpoints). All the tests are performed under the choice of

κm = 2r ∗ (log2(m) − log2(T ))�.
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Figure 1. Graphs of test functions

When estimating the Skorohod distance, we used the corresponding piecewise linear
interpolation as λ. Unless stated otherwise, we set the parameter D = 0 to show
that the algorithms work well even for this most conservative choice of D.

The tables provide the total number of function evaluations used (denoted by n)
as well as the estimated errors (denoted respectively by sko dist and l2 error).

We begin with the first four tables, where the results for r = 2 and r = 4
are provided, respectively, in the left and right parts. The function f1 has only
discontinuity at sf = π, with the discontinuity jump 0.2π. Table 1 clearly shows
that the errors of Aad

n are proportional to m−r and that n is proportional to m(r−1).
The function f2 has only one singular point, sf = 1; however, this time |∆(0)

1 | = 0
and |∆(1)

1 | = 32. Also here, the errors are proportional to m−r, and n is close to
m(r − 1); see Table 2.

Table 1. Errors of Aad
n for f1

m n sko dist l2 error n sko dist l2 error
50 129 6.13E-03 7.57E-03 515 6.14E-07 1.57E-05

100 203 1.53E-03 1.89E-03 777 3.83E-08 6.95E-07
150 271 6.80E-04 8.42E-04 997 7.56E-09 1.36E-08
200 327 3.83E-04 4.73E-04 1189 2.39E-09 3.07E-08
300 445 1.70E-04 2.10E-04 1559 4.72E-10 5.18E-10

Since the functions f3 and f4 have five singular points, we use them to test Aad

n

with
�(m) =

m

2r log2(m)
.
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Table 2. Errors of Aad
n for f2

m n sko dist l2 error n sko dist l2 error
50 159 5.16E-02 1.35E-02 643 2.14E-04 4.15E-05

100 233 1.90E-02 4.16E-03 905 1.91E-05 3.34E-06
150 295 1.07E-02 2.27E-03 1123 4.73E-06 8.34E-07
200 357 5.80E-03 1.16E-03 1317 1.43E-06 2.36E-07
300 469 2.91E-03 5.70E-04 1685 3.16E-07 5.24E-08

In addition to the errors and the number of function evaluations, we provide the
number of subintervals chosen by the algorithm in the detection process. This
number is marked by n sin in the second and the sixth column. Since D = 0, it is
not surprising that the number n sin of detected subintervals equals ��(m)�.

Tables 3 and 4 show that the errors are quite large unless m is large enough. For
f3 we have the errors not proportional to m−r until m = 150 for r = 2 and m = 400
for r = 4. The corresponding values of m are even much higher (in the thousands)
for f4. This is because the singular points of f4 are clustered and require a very
small spacing h in order to be distinguished from each other during the detection
stage. Nevertheless, both tables are consistent with our theoretical results on the
worst case and asymptotic settings for functions with multiple singularities: the
former setting does not work, but the latter does.

Table 3. Errors of Aad

n for f3

m n sin n sko dist l2 error n sin n sko dist l2 error
100 3 227 6.54E-02 1.14E-02 1 471 1.99E-01 1.91E-02
150 5 391 1.10E-04 7.42E-05 2 827 1.25E-01 2.35E-02
200 6 501 6.16E-05 4.07E-05 3 1207 9.93E-02 7.34E-03
250 7 629 3.94E-05 2.57E-05 3 1393 9.65E-02 1.02E-02
300 9 805 2.74E-05 1.82E-05 4 1787 5.35E-02 5.49E-03
400 11 1039 1.54E-05 1.01E-05 5 2369 2.35E-11 1.30E-11

Table 4. Errors of Aad

n for f4

m n sin n sko dist l2 error n sin n sko dist l2 error
100 3 227 8.56E-02 1.49E-02 1 471 1.97E-01 2.11E-02
500 13 1307 7.55E-02 3.46E-03 6 2975 8.32E-02 1.46E-03

1000 25 2751 7.14E-02 3.11E-03 12 6335 9.10E-02 1.31E-03
2000 45 5511 6.17E-07 4.06E-07 22 12819 3.80E-14 2.06E-14
4000 83 11139 1.54E-07 1.01E-07 41 26021 2.89E-15 1.31E-15

In the rest of this section, we discuss how the choice of D and/or �(m) affects the
efficiency of the algorithm. This is illustrated by the errors of Aad

n for the function
f3; see Tables 5 and 6. We begin by discussing the choice of D.

As mentioned before, a good choice would be ‖f (r)‖L∞/r! or its decent estima-
tion, which in some cases might be impossible to get. In such cases one could use
the most conservative choice D = 0 (as we have done above). However, then, too,
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Table 5. Different D and �(m) for f3 and r = 2

m n sin n sko dist n sin n sko dist
D = 0 � = �1 D = 1 � = �1

100 3 227 6.54E-02 3 227 6.54E-02
150 5 391 1.10E-04 5 391 1.10E-04
200 6 501 6.16E-05 5 451 6.17E-04
250 7 629 3.94E-05 5 521 3.95E-05
300 9 805 2.74E-05 5 581 2.74E-05
400 11 1039 1.54E-05 5 691 1.54E-05

D = 0 � = �2 D = 1 � = �2
100 15 731 2.46E-04 5 311 2.47E-04
150 20 1111 1.10E-04 5 391 1.10E-04
200 26 1501 6.16E-05 5 451 6.17E-05
250 31 1925 3.94E-05 5 521 3.95E-05
300 36 2317 2.74E-05 5 581 2.74E-05
400 46 3069 1.54E-05 5 691 1.54E-05

many subintervals might be selected in the detection process, resulting in a higher
number of function evaluations. This indeed can be seen by comparing the numbers
n sko for D = 0 and D = 1 (note that ‖f (r)

3 ‖L∞/r! ≤ 1). We report results only
for errors measured in the Skorohod distance since they are identical to those with
the L2 norm.

When the value of D is too small (say D = 0), the choice of the function �(m)
can worsen this problem. Indeed, this is illustrated in the following tables, where
we used two different choices:2

�1(m) =
m

2r log2(m)
and �2(m) =

m

log2(m)
.

For instance, in Table 6 we have the following situation. When m = 400, the
algorithm uses 2369 points when �(m) = �1(m) and over 5 times more when �(m) =
�2(m), even though the errors are the same. However, the choice of �(m) = �1(m)
is not good for smaller values of m, since �1(m) < 5; recall that f3 has five singular
points.

Note that when D is properly chosen (D = 1 for f3), the choice of �(m) is not
so important as long as �(m) is not smaller than the number of singularities, since
then the number n sin does not change and equals 5. However, if �(m) < 5, then
we have the same situation as for D = 0: the errors are too large, since n sin is
smaller than 5 and some singular points are not detected/localized.

However, even for poor choices of D and �(m), we always have n proportional
to m and the error proportional to m−r, the latter holding when m is sufficiently
large.

2Of course, given the function f , the best choice for �(m) would be the actual number of
singularities. However, this number is often unavailable.
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Table 6. Different D and �(m) for f3 and r = 4

m n sin n sko sko dist n sin n sko sko dist
D = 0 � = �1 D = 1 � = �1

100 1 471 1.99E-01 1 471 1.99E-01
150 2 827 1.25E-01 2 827 1.25E-01
200 3 1207 9.93E-02 3 1207 9.93E-02
250 3 1393 9.65E-02 3 1393 9.65E-02
300 4 1787 5.35E-02 4 1787 5.35E-02
400 5 2369 2.35E-11 5 2369 2.35E-11

D = 0 � = �2 D = 1 � = �2
100 15 2849 6.00E-09 5 1149 6.00E-09
150 20 4243 1.19E-09 5 1393 1.19E-09
200 26 5851 3.75E-10 5 1609 3.75E-10
250 31 7383 1.54E-10 5 1819 1.54E-10
300 36 8889 7.41E-11 5 2007 7.42E-11
400 46 11963 2.35E-11 5 2369 2.35E-11

Appendix

Proof of Lemma 2. Suppose that f is right-continuous at sf . (The other case is
symmetric.) Then

f(x) = g(x) +
r−1∑
j=0

∆(j)
f

(x − sf )j

j!
�[sf ,T ](x)

with g ∈ Wr(0, T ). We also have that, for any function φ,

φ[ti, ti+1, . . . , ti+r] = h−r
i+r∑
l=i

bl−iφ(tl).

By linearity of divided differences we then have

f [ti, . . . , ti+r] = g[ti, . . . , ti+r]

+
r−1∑
j=0

∆(j)
f

(
h−r

i+r∑
l=i

bl−i
(tl − sf )j

j!
�[sf ,T ](tl)

)
.

Put τ = (sf − tk)/h, t = l − k, and s = i − k + r − 1. Then

h−r
i+r∑
l=i

bl−i
(tl − sf )j

j!
�[sf ,T ](tl) = hj−r

i+r∑
l=k+1

bl−i
(l − k − τ )j

j!

= hj−r
s+1∑
t=1

bt−s+r−1
(t − τ )j

j!
.

Hence

f [ti, . . . , ti+r] = g[ti, . . . , ti+r] +
r−1∑
j=0

∆(j)
f hj−rai+r−k−1,j(τ ).

The rest of the proof goes as the proof of Lemma 3.3 in [21]. �
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Proof of Lemma 4. Assume without loss of generality that f is right-continuous at
sf . Then

f = g +
r−1∑
j=0

∆(j)
f φj,sf

,

where g ∈ Wr(0, T ). Since polynomial interpolation is linear, we have

‖f − Pr(f ; a, b)‖Lp(a,b)

≤ ‖g − Pr(g; a, b)‖Lp(a,b) +
r−1∑
j=0

|∆(j)
f | · ‖φj,sf

− Pr(φj,sf
; a, b)‖Lp(a,b).

Changing variables we obtain

‖φj,sf
− Pr(φj,sf

; a, b)‖Lp(a,b) ≤ αj · (b − a)j+1/p,

which, together with (18) and the equality ‖g(r)‖Lp(a,b) = ‖f (r)‖Lp(a,b), gives the
desired result. �
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[30] J. F. Traub and H. Woźniakowski, A General Theory of Optimal Algorithms, Academic Press,

New York, 1980. MR584446 (84m:68041)
[31] G. W. Wasilkowski, Information of varying cardinality, J. Complexity 1 (1986), pp. 107–117.

MR922813 (88m:65099)
[32] G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, 1990. MR1045442

(91g:62028)

[33] A. G. Werschulz, The Computational Complexity of Differential and Integral Equations,
Oxford University Press, Oxford, 1991. MR1144521 (93a:68061)

Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,

Banacha 2, 02-097 Warsaw, Poland

E-mail address: leszekp@mimuw.edu.pl

Department of Computer Science, University of Kentucky, 773 Anderson Hall,

Lexington, Kentucky 40506-0046

E-mail address: greg@cs.uky.edu

Department of Computer Science, University of Kentucky, 773 Anderson Hall,

Lexington, Kentucky 40506-0046

E-mail address: yaxi@uky.edu

http://www.ams.org/mathscinet-getitem?mr=0240981
http://www.ams.org/mathscinet-getitem?mr=0240981
http://www.ams.org/mathscinet-getitem?mr=2126687
http://www.ams.org/mathscinet-getitem?mr=2126687
http://www.ams.org/mathscinet-getitem?mr=971255
http://www.ams.org/mathscinet-getitem?mr=971255
http://www.ams.org/mathscinet-getitem?mr=1408328
http://www.ams.org/mathscinet-getitem?mr=1408328
http://www.ams.org/mathscinet-getitem?mr=0226684
http://www.ams.org/mathscinet-getitem?mr=0226684
http://www.ams.org/mathscinet-getitem?mr=712135
http://www.ams.org/mathscinet-getitem?mr=712135
http://www.ams.org/mathscinet-getitem?mr=1446005
http://www.ams.org/mathscinet-getitem?mr=1446005
http://www.ams.org/mathscinet-getitem?mr=2206675
http://www.ams.org/mathscinet-getitem?mr=2206675
http://www.ams.org/mathscinet-getitem?mr=0494814
http://www.ams.org/mathscinet-getitem?mr=0494814
http://www.ams.org/mathscinet-getitem?mr=0483327
http://www.ams.org/mathscinet-getitem?mr=0483327
http://www.ams.org/mathscinet-getitem?mr=1763973
http://www.ams.org/mathscinet-getitem?mr=1763973
http://www.ams.org/mathscinet-getitem?mr=1827804
http://www.ams.org/mathscinet-getitem?mr=1827804
http://www.ams.org/mathscinet-getitem?mr=0084897
http://www.ams.org/mathscinet-getitem?mr=0084897
http://www.ams.org/mathscinet-getitem?mr=958691
http://www.ams.org/mathscinet-getitem?mr=958691
http://www.ams.org/mathscinet-getitem?mr=1692462
http://www.ams.org/mathscinet-getitem?mr=1692462
http://www.ams.org/mathscinet-getitem?mr=584446
http://www.ams.org/mathscinet-getitem?mr=584446
http://www.ams.org/mathscinet-getitem?mr=922813
http://www.ams.org/mathscinet-getitem?mr=922813
http://www.ams.org/mathscinet-getitem?mr=1045442
http://www.ams.org/mathscinet-getitem?mr=1045442
http://www.ams.org/mathscinet-getitem?mr=1144521
http://www.ams.org/mathscinet-getitem?mr=1144521

	1. Introduction
	2. Basic definitions
	3. Lp norms versus the Skorohod metric
	4. Nonadaptive algorithms
	5. Adaptive algorithms: Single discontinuity
	5.1. Detection mechanism
	5.2. Adaptive piecewise polynomial interpolation
	5.3. Worst case setting
	5.4. Lower bounds

	6. Adaptive algorithms: Multiple discontinuities
	6.1. Worst case setting
	6.2. Asymptotic setting

	7. Test results
	Appendix
	Acknowledgments
	References

