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POINTWISE APPROXIMATION OF CORNER SINGULARITIES
FOR A SINGULARLY PERTURBED REACTION-DIFFUSION

EQUATION IN AN L-SHAPED DOMAIN

VLADIMIR B. ANDREEV AND NATALIA KOPTEVA

Abstract. A singularly perturbed reaction-diffusion equation is posed in a
two-dimensional L-shaped domain Ω subject to a continuous Dirchlet bound-
ary condition. Its solutions are in the Hölder space C2/3(Ω̄) and typically
exhibit boundary layers and corner singularities. The problem is discretized
on a tensor-product Shishkin mesh that is further refined in a neighboorhood
of the vertex of angle 3π/2. We establish almost second-order convergence
of our numerical method in the discrete maximum norm, uniformly in the
small diffusion parameter. Numerical results are presented that support our
theoretical error estimate.

1. Introduction

Solutions of singularly perturbed differential equations, in which highest-order
derivatives are multiplied by a small parameter, typically exhibit sharp boundary
and interior layers, which are narrow regions where solutions change rapidly. Fur-
thermore, if a problem is posed in a non-smooth two-dimensional domain, solutions
also exhibit corner singularities, which, being governed by the angle of the corner
(similarly to standard differential equations), also involve the small parameter, and
often in a non-trivial way; see, e.g., [8]. Recall that corner singularities occur if
special compatibility conditions induced by the corners of the domain are violated,
while if the corner has angle different from π/n, for any integer n, compatibility
conditions are non-local, i.e., they cannot be verified a priori [7, 20]. This is the
case even for a simple L-shaped domain Ω, in which one of the corners has angle
3π/2, which results in solutions being only in the Hölder space C 2/3(Ω̄).

In recent years much attention has been focused on robust numerical methods for
singularly perturbed problems; see, e.g., [14] for an overview; in particular, many
reliable numerical solutions have been obtained in an efficient way using locally re-
fined meshes. However, these analyses were developed mostly under the demanding
assumption that exact solutions are sufficiently smooth, e.g., in Ck(Ω̄) for k ≥ 3.

The aim or the present paper is to suggest a robust numerical method based
on a suitable mesh refinement, for one singularly perturbed problem, and establish
its almost second-order convergence in the discrete maximum norm, uniformly in
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Figure 1. Solution of model problem (1.1), (6.1); ε = 0.02.

the small parameter of the differential equation, under no demanding compatibil-
ity conditions and hence under no unrealistic assumption that exact solutions are
sufficiently smooth at the corners of the domain.

Consider a singularly perturbed reaction-diffusion equation posed in a two-
dimensional L-shaped domain Ω = (−1, 1)2 \ [0, 1]2 subject to a Dirichlet boundary
condition:

Lu := −ε2�u + q(x, y)u = f(x, y), (x, y) ∈ Ω,(1.1a)
u(x, y) = g(x, y), (x, y) ∈ ∂Ω.(1.1b)

Here the diffusion coefficient ε2 ∈ (0, 1] can take arbitrarily small positive values,
� = ∂2/∂x2 +∂2/∂y2 is the Laplace operator, the functions q and f are sufficiently
smooth, and

(1.2) q(x, y) ≥ 2α2 = const > 0.

Furthermore, g ∈ C(∂Ω) and is sufficiently smooth on the sides of ∂Ω.
Then problem (1.1) has a unique solution, which exhibits sharp boundary layers

of width O(ε| ln ε|) along the boundary ∂Ω; see Figure 1. Furthermore, the solution
has corner singularities at the vertices of Ω. In particular, if we introduce the
standard polar coordinates (r, ϕ) at the vertex (0, 0) of interior angle 3π/2, then
for r ≤ ε we have u = C(r/ε)2/3 sin[2(ϕ − π/2)/3]+ smoother terms.

Our precise assumptions on q, f and g are as follows:

(1.3) q, f ∈ C 4,λ(Ω̄), g ∈ C(∂Ω), gk ∈ C 4,λ(Γk), k = 1, . . . , 6,

for some λ ∈ (0, 1). Here {Γk}6
k=1 are the sides of Ω, ordered in the counter-

clockwise direction starting from Γ1 := {(x, 0) ∈ ∂Ω |x ∈ [0, 1]}; see Figure 2 (left);
while gk(x, y) := g(x, y) for (x, y) ∈ Γk. Furthermore, let pk, k = 1, . . . , 6, denote
the vertex that joins Γk and Γk+1 .

Note that if the boundary ∂Ω were sufficiently smooth, then the assumption of
q, f ∈ C 2,λ(Ω̄) and g ∈ C 4,λ(∂Ω) would imply that u ∈ C 4,λ(Ω̄) [12, Chap. 3,
p. 110, (1.11)]. Since our domain has corners of angle π/2 and 3π/2, we only have
u ∈ C 2/3(Ω̄) ∩ C 4,λ(Ω). Note also that to get this assertion, it would suffice to
assume that q, f ∈ C 2,λ(Ω̄) (compare with (1.3)). Additional smoothness of q and
f in (1.3) is required by Lemma 2.1.

We discretize problem (1.1) using the standard second-order five-point difference
scheme (see (3.1) for details) on a tensor-product Shishkin mesh [18, 19] that is
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Figure 2. Domain Ω = (−1, 1)2\[0, 1]2 (left); mesh for N = 4 (right).

further refined in a neighboorhood of the vertex of angle 3π/2. Our tensor-product
mesh is Ω̄h = {(xi, yj) ∈ Ω̄}, where {xi}3N

i=−3N and {yj}3N
j=−3N , such that −1 =

x−3N < . . . < x3N−1 < x3N = 1 and yj = xj , are two equal one-dimensional meshes
on [−1, 1] defined as follows. Set

(1.4) σ = min{(2/α) ε lnN ; 1/3}.
Divide each of the intervals [−1,−1 + σ], [−1 + σ,−σ], [σ, 1− σ] and [1− σ, 1] into
N equidistant subintervals respectively. In practice one usually has σ � 1 so the
mesh is fine on [−1,−1+σ] and [1−σ, 1] and coarse on [−1+σ,−σ] and [σ, 1−σ].

If one uses a standard Shishkin mesh, i.e., divides the remaining part [−σ, σ]
of [−1, 1] into 2N equidistant subintervals, this will yield significant errors in the
neighbourhood of the vertex p1 of angle 3π/2, where our solution exhibits a corner
singularity; similar loss of accuracy occurs even for equations that are not singularly
perturbed [1].

Therefore, to resolve the corner singularity at p1, we introduce a geometrically
refined mesh {xi}N

i=−N on [−σ, σ]:

(1.5) xi := σ(i/N)3, i = −N, . . . , N ;

see Figure 2 (right) for an example of the tensor-product mesh obtained.
Our main result, presented by Theorem 3.1, is that the error of our numerical

method is O(N−2 ln2N) in the discrete maximum norm, uniformly in the small
parameter ε.

Problem (1.1), (1.2), posed in various domains, has often been addressed in the
numerical analysis literature. The best result known in the case of an L-shaped
domain is ε-uniform convergence of order almost 2/11 in the discrete maximum
norm by Shishkin [19].

We also refer the reader to papers [2, 3, 5], which present maximum norm error
estimates for finite difference approximations of problem (1.1), (1.2) posed in the
unit square. Clavero et al. [5] argue under the assumption that the compatibility
conditions of up to second order are satisfied at the corners of the domain, which,
combined with an analogue of our assumption (1.3), yields u ∈ C4,λ(Ω̄); it is proved
then that the error on a Shishkin mesh is O(N−2 ln2N) uniformly in ε. Andreev
[2, 3] drops the unrealistic compatibility conditions assumption and proves the
same error estimate for the same numerical method assuming only an analogue
of condition (1.3), i.e., when the exact solution u is only in C1,λ(Ω̄). Note that
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[3] also addressed the case of Dirichlet-Neumann boundary conditions and thus u
being only in Cλ(Ω̄).

Furthermore, problems similar to (1.1), (1.2) were considered in [4, 10, 13, 17].
Schatz and Wahlbin [17] derive pointwise error estimates for the Galerkin finite
elements on quasiuniform unrefined meshes in polygonal domains. Blatov [4] and
more recently Kopteva [10] establish second-order convergence, in the discrete max-
imum norm, on layer-adapted meshes in a smooth domain. Melenk [13] gives an
energy-norm exponential-convergence result for hp-finite element methods applied
to a more general reaction-diffusion equation posed in a curvilinear polygon. The
mesh in [13] also uses high-aspect-ratio mesh elements along the boundary and a
geometric mesh refinement at the corners.

The present paper is organized as follows. In §2 we decompose the exact solution
of problem (1.1) and estimate the components of this decomposition. Next, in §3
we describe our numerical method, state the main result and outline its proof. The
entire §4 and §5 address the error away from the vertex p1 of interior angle 3π/2
and in a neighbourhood of this vertex, respectively. Finally, in §6, numerical results
are presented, which support our theoretical estimate.

Notation. Let k be a non-negative integer, and λ ∈ (0, 1). We use the standard
spaces Ck(Ω̄) of functions whose derivatives up to order k are continuous in Ω̄, and
Ck,λ(Ω̄), or Cλ(Ω̄) when k = 0, of Hölder continuous functions in Ω̄. Throughout
the paper, we use the notation v(k,m) := ∂k+mv

∂xm∂ym for any sufficiently smooth function
v(x, y). Furthermore, we let C denote a generic positive constant that may take
different values in different formulas, but is always independent of the mesh and ε.
A subscripted C (e.g., C1) denotes a positive constant that is independent of N and
ε and takes a fixed value. Notation such as v = O(w) means |v| ≤ Cw for some C.

2. Exact solution: Decomposition and a priori estimates

Lemma 2.1. Under assumption (1.3), there exists a function v ∈ C 4,λ(Ω̄) such
that Lv = f for (x, y) ∈ Ω and |v(k,m)| ≤ C[1 + ε2−k−m].

Proof. We imitate the argument used in [5, §2]. Let Ω∗ := (−2, 2)× (−2, 2). Define
smooth extensions q∗, f∗ ∈ C 4,λ(Ω̄∗) of q, f ∈ C 4,λ(Ω̄) so that q∗ = q and f∗ = f
in Ω̄. Furthermore, introduce a smooth boundary condition g∗ on ∂Ω∗ such that the
solution v∗ of the equation L∗v∗ = f∗, subject to the boundary condition v∗ = g∗

on ∂Ω∗, is in C4,λ(Ω̄∗). Here the operator L∗ is defined similarly to L in (1.1) with
q replaced by q∗. Then [5, (2.5)] the function v := v∗ in Ω̄ satisfies the assertion of
our lemma.

It is crucial in the above argument that any function in C 4,λ(Ω̄) can be extended
to C 4,λ(Ω̄∗), if Ω is an L-shaped domain [6, §261]. �

Now we decompose the solution u of problem (1.1) as u = v + w, where Lw = 0
and the component w describes the boundary layers of width O(ε| ln ε|) along each
of the six sides and corner singularities at each of the six vertices of our domain
Ω. Note that the boundary layers along the sides Γk, k = 1, . . . , 6, and the corner
singularities at the vertices pk, k = 2, . . . , 6, of angle π/2 are typical phenomena in
the case of a rectangular domain; both their analytical and numerical analyses are
presented in [5, 2, 3]. To simplify our presentation, we shall focus on the corner
singularity at the vertex p1 of interior angle 3π/2 and hence make the following
assumption.
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Assumption A. Let the boundary condition function g from (1.1) satisfy g = v on
∂Ω \(Γ̃1 ∪ Γ̃2), where v is from Lemma 2.1 and Γ̃1 := {(x, 0) |x ∈ [0, 1−C0]} ⊂ Γ1,
Γ̃2 := {(0, y) | y ∈ [0, 1 − C0]} ⊂ Γ2 for some constant C0 < 1.

Remark 2.2. Note that Assumption A is made only to simplify the presentation.
Combining the analysis that we present under Assumption A with the analyses
[2, 3] for the rectangular domain, yields our main result, Theorem 3.1, without
Assumption A.

Remark 2.3. Assumption A implies that the compatibility conditions at the vertices
pk, k = 2, . . . , 6, of up to second order are satisfied so that u ∈ C 4,λ(Ω̄\p1).

Theorem 2.4. (i) Under Assumption A, the solution u of problem (1.1), (1.2),
(1.3) satisfies

(2.1a) |u(k,m)| ≤ Cε−k−m[1 + (r/ε)2/3−k−m], 1 ≤ k + m ≤ 4,

where r :=
√

x2 + y2. In particular, for r ≤ ε we have u = χ + z, where

(2.1b) |χ| ≤ C(r/ε)2/3, |z(k,m)| ≤ Cε−k−m.

(ii) Furthermore, u allows the decomposition u = v + w in Ω̄, where v is from
Lemma 2.1 and

(2.2a) |v(k,m)| ≤ C[1 + ε2−k−m], |w| ≤ C min{eαx/ε ; eαy/ε};
and there exist functions w1 and w2 defined in the domains Ω1 := (0, 1) × (−1, 0)
and Ω2 := (−1, 0) × (0, 1), respectively, such that

Lw1 = 0, |w − w1| ≤ Ce−αx/ε, |w(k,m)
1 | ≤ C[1 + ε2−k + ε−m] in Ω1;

(2.2b)

Lw2 = 0, |w − w2| ≤ Ce−αy/ε, |w(k,m)
2 | ≤ C[1 + ε−k + ε2−m] in Ω2;

(2.2c)

for 0 ≤ k + m ≤ 4.

Proof. (i) Since the operator L satisfies the maximum/comparison principle, we
have |u| ≤ C. Let the stretching transformation from (x, y) to the new coordinates
x̂ := x/ε and ŷ := y/ε map the original domain Ω into the domain Ω̂, in which
(1.1) implies −�û + q̂ û = f̂ , where the notation v̂(x̂, ŷ) := v(x, y) is used for
any function v. Next, restrict û to the subdomain Ω̂′, which is obtained from
Ω̂ by excluding such O(1) neighbourhoods of each of its six vertices that ∂Ω̂′ is
sufficiently smooth. Then, using Schauder-type estimates (see, e.g., [12, Chap. 3,
p. 110, (1.13)]) one can show that |û(k,m)| ≤ C in Ω̂′. This implies (2.1a) in the
corresponding subdomain Ω′ of Ω since r ≥ Cε in Ω′. Thus it remains to obtain
(2.1) in a certain O(ε) neighbourhood of each of the six vertices of Ω.

Next consider the O(ε) neighbourhood of any of the vertices pj , j = 2, . . . , 6
of interior angle π/2, e.g., p4 = (−1,−1). This neighbourhood is covered by the
rectangle D := (−1,−1/2)2, on whose boundary u ∈ C 4,λ, and at whose vertices
the compatibility conditions are satisfied by Remark 2.3. Hence estimate (2.1a)
holds true in D̄ by [5, Theorem 2.2].

Finally, consider the ε-neighbourhood of the vertex p1 of interior angle 3π/2,
which can be covered by a domain Ωε ⊂ (−Cε, Cε)2 ∩ Ω such that ∂Ωε\p1 is
smooth. Then, by Remark 2.3, we have u ∈ C 4,λ(∂Ωε\p1). Next, transforming Ωε
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by (x̂, ŷ) = (x, y)/ε into Ω̂ε, we get L̂û = −�û + q̂ û = f̂ in Ω̂ε, with û = ĝ on
∂Ω̂ε ∩ ∂Ω̂ and |û(k,m)| ≤ C on the remaining part of ∂Ω̂ε. To establish (2.1) in Ω̄ε,
it suffices to show that in the domain Ω̂ε we have

(2.3) û = χ̂ + ẑ, |χ̂(m,k)| ≤ Cr̂ 2/3−m−k, |ẑ(m,k)| ≤ C for 0 ≤ k + m ≤ 4,

where r̂ =
√

x̂2 + ŷ2. Note that the above decomposition in the case of q̂ ≡ 0
immediately follows from [7, Theorem 6.4.2.6]. Our operator L̂ involves q̂ > 0 and
thus is not directly covered by the analysis in [7]. We also refer the reader to the
classical technique by Kondrat’ev [9], which yields decompositions similar to (2.3)
for general elliptic operators, with the smooth-component analogue of ẑ being in a
suitable Sobolev space, while we require ẑ to be in the Hölder space C 4,λ. Hence we
shall outline a proof of (2.3) for L̂ with q̂ > 0; see [8, p. 182] for a similar argument.

First, note that û ∈ C implies �û ∈ L2, which, by [7, Theorem 5.1.3.5], yields
û = χ̂0 + ẑ0, where χ̂0 is a singular function such that |χ̂0| ≤ Cr̂ 2/3 and χ̂0 ∈ C 2/3,
while ẑ0 ∈ W 2

2 . Here W 2
2 is a standard Sobolev space, for which have W 2

2 ⊂ C 2/3

by the Sobolev imbedding theorem; see, e.g., [7, §1.4.4]. Thus û ∈ C 2/3 and hence
�û ∈ C 2/3. Now, [7, Theorem 6.4.2.6] yields û = χ̂1 + ẑ1, where χ̂1 is a singular
function similar to χ̂0, while ẑ1 ∈ C 2,2/3. Finally, we decompose as û = χ̂2 + ẑ2,
where �χ̂2 = q̂χ̂1 and �ẑ2 = q̂ẑ1− f̂ . Then applying [7, Theorem 6.4.2.6] again we
see that ẑ2 = χ̂3+ ẑ with ẑ ∈ C 4,λ′

, λ′ = min{2/3, λ}. Furthermore, χ̂ := χ̂2+ χ̂3 is
a singular function that satisfies (2.3), where χ̂2 is estimated using [9, Theorem 1.3].
Thus we established (2.3) in Ω̂ε.

(ii) The estimate for v in (2.2a) immediately follows from Lemma 2.1. Next,
combining (1.1) with Lv = f and Assumption A, we arrive at the following problem
for w = u − v:

(2.4) Lw = 0 in Ω; w = g − v on Γ̃1 ∪ Γ̃2; w = 0 on ∂Ω \(Γ̃1 ∪ Γ̃2).

By the maximum/comparison principle, |w| ≤ C in Ω̄. Now, restrict w to the
rectangle [−1, 0] × [−1, 1], on whose boundary w = 0 except for the side x = 0,
where |w| ≤ C. Applying the comparison principle, we see that |w| ≤ Ceαx/ε in this
rectangle. Combining this with a similar estimate |w| ≤ Ceαy/ε in [−1, 1]× [−1, 0],
we get the desired estimate for w in (2.2a).

It remains to obtain (2.2b) as estimate (2.2c) is similar. Introduce the domain
Ω∗∗

1 := (−1, 1) × (−1, 0) and extend the boundary condition function g − v to
{(x, 0) |x ∈ [−1, 0)} so that [g − v]∗∗(x, 0) = 0 for x ∈ [−1,−1/2]. Now, define
w1 := w∗

1 in Ω̄1, where w∗
1 is a solution to the following problem:

Lw∗
1 = 0 in Ω∗∗

1 , w∗
1(−1, y) = w∗

1(1, y) = w∗
1(x,−1) = 0, w∗

1(x, 0) = [g − v]∗∗;

compare with [5, problem (2.6)]. Imitating the argument used in [5, pp. 1746-1747],
we get |w(k,m)

1 | ≤ C[1 + ε2−k + ε−m]. Finally, by the comparison principle, the
estimate |w−w1| ≤ Ce−αx/ε follows from L[w−w1] = 0 in Ω1 and w = w1 on ∂Ω1

except for the side x = 0, where |w − w1| ≤ C. �

3. Numerical method. Main result

We require the computed solution U to satisfy the standard five-point finite-
difference discretization of problem (1.1):

LhUij := −ε2�hUij + q(xi, yj)Uij = f(xi, yj), (xi, yj) ∈ Ωh,(3.1a)

Uij = g(xi, yj), (xi, yj) ∈ ∂Ωh,(3.1b)
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where

(3.1c) �hUij :=
Ui+1,j−Uij

hi+1
− Uij−Ui−1,j

hi

�i
+

Ui,j+1−Uij

hj+1
− Uij−Ui,j−1

hj

�j
.

Here, as usual, Uij is associated with the mesh node (xi, yj) of the tensor-product
mesh Ω̄h described in §1, while ∂Ωh := ∂Ω ∩ Ω̄h and Ωh := Ω ∩ Ω̄h. In (3.1c) we
used the standard notation hi := xi −xi−1 = yi −yi−1 and �i = (hi +hi+1)/2. One
can easily check that hi ≤ CN−1 for all i. In particular, for i = 1, . . . , N , by (1.5),
we have hi = h−i+1 = xi − xi−1 = σ(3i2 − 3i + 1)/N3, which implies
(3.2)
hi ≤ CN−1, i = −N + 1, . . . , N ; |hi+1 − hi| ≤ CN−2, i = −N + 1, . . . , N − 1.

Note that, by condition (1.2), the discrete operator Lh from (3.1a) satisfies the
discrete maximum/comparison principle, and furthermore, there exists a unique
solution of discrete problem (3.1) [15, 16].

Now we state our main result.

Theorem 3.1. Let u(x, y) be a solution of problem (1.1), (1.2), (1.3), and Uij a
solution of discrete problem (3.1). Then

(3.3) |Uij − u(xi, yj)| ≤ CN−2 ln2N, (xi, yj) ∈ Ω̄h.

Proof. To simplify the presentation, we give a proof invoking Theorem 2.4, i.e.,
under the simplifying Assumption A that we made in §2. Note that one can establish
the general case of Theorem 3.1, without Assumption A; see Remark 2.2.

Consider two cases.
Case A. σ < 1/3. In this case, the proof is made in two steps, to which we devote

all of §§4, 5. First, in §4, the error estimate (3.3) is obtained in the subdomain
Ω̄h\(−σ, σ)2; then in §5 we prove (3.3) in the remaining neighbourhood of the
vertex p1 of interior angle 3π/2. Combining Corollary 4.4 and Theorem 5.2, yields
the desired estimate (3.3) in Case A.

Case B. σ = 1/3. Then by (1.4), we have ε−1 ≤ C ln N . Since this case is less
interesting, we shall only sketch the proof. Transforming the domain Ω by (x̂, ŷ) =
(x, y)/ε into Ω̂, we obtain a problem in Ω̂ similar to (1.1), but with ε := 1. Our
mesh Ωh is then transformed into the mesh Ω̂h with hi ≤ Cε−1N−1 ≤ CN−1 ln N .
Now, the proof is made in a single step, which applies to the whole domain Ω̂ and
combines the arguments used to prove Lemma 4.2 and Theorem 5.2. �

4. Error away from the vertex of angle 3π/2

In this section we shall estimate the error Uij − u(xi, yj) in Ω̄h\(−σ, σ)2, i.e., at
a distance of O(σ) away from the vertex p1 of interior angle 3π/2.

Modifying a barrier function from [5], introduce the auxiliary discrete function
B(xi0 ; xi) defined by

(4.1) B(xi0 ; xi) :=

⎧⎪⎨
⎪⎩

1, xi ≥ xi0 ,
i0∏

j=i+1

(1 + αhj/ε)−1, xi < xi0 .

This function is a discrete analogue of min{e−α(xi0−x) ; 1}.
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Lemma 4.1. For the function B(xi0 ; xi) from (4.1), we have

LhB(xi0 ; xi) ≥
{

0, xi 
= xi0 ,
αεN, xi = xi0 ;(4.2a)

LhB(0;−xi) ≥ 0, xi > 0.(4.2b)

Furthermore,

(4.3) B(0;−σ) ≤ CN−2 if σ < 1/3.

Proof. To simplify the presentation, we fix i0 and use the notation Bi := B(xi0 ; xi)
throughout this proof. The estimate LhBi ≥ 0 in (4.2a) is straightforward for
i > i0, while for i < i0, a similar estimate is obtained in [5, (3.10)]. Thus it remains
to consider LhBi0 . Since D−Bi = (α/ε)Bi−1 for i ≤ i0, a calculation shows that

LhBi0 =
αε

�i0

Bi0−1 + q(xi0 , yj) ≥
αε

�i0

(1 + t)−1 +
2αε

hi0

t, t :=
αhi0

ε
,

where we invoked (1.2). Now, noting that �i0 and hi0 do not exceed N−1, while
(1 + t)−1 + 2t ≥ 1 ∀t, we obtain (4.2a) for xi = xi0 .

Estimate (4.2b) is similar to (4.2a) for i < i0.
Finally, estimate (4.3) follows from (1 + αhj/ε)−1 ≤ exp[−αhj/ε + C(hj/ε)2].

Indeed, combining this with (1.4) and σ < 1/3, we get

B(0;−σ) = B(x0; x−N ) ≤ e−ασ/ε
[
1 + C

0∑
j=−N+1

(hj/ε)2
]
≤ CN−2. �

Next, we introduce a discrete analogue Vij of the function v from Lemma 2.1:

(4.4) LhVij = fij in Ωh; Vij = v(xi, yj) on ∂Ωh.

Lemma 4.2. Let the function v be from Lemma 2.1 and let Vij be a solution of
problem (4.4). Then |Vij − v(xi, yj)| ≤ CN−2 for (xi, yj) ∈ Ω̄h.

Proof. Since we closely imitate the proof of [5, estimate (3.8)], we only sketch our
argument. Invoking the estimate for v in (2.2a), we get

∣∣Lh[Vij − v(xi, yj)]
∣∣ ≤ C

{
εN−1, xi or yj ∈ {±(1 − σ), ±σ},
N−2, otherwise.

Note that the first line here corresponds to the transition points of our mesh, while
the second line corresponds to the points, where the mesh is uniform or, if xi or yj

is in (−σ, σ), where the mesh is smooth and satisfies |hi+1 − hi| ≤ CN−2, by (3.2).
At the transition points ±(1−σ), ±σ, we used the calculation |Lh[Vij−v(xi, yj)]| ≤
Cε|hi+1 − hi| ≤ εN−1.

Now, to estimate Vij − v(xi, yj), we recall B(xi0 ; xi) defined in (4.1), construct
the discrete barrier function

Bij := C̄N−2
[
1 + B(−1 + σ; xi) + B(−σ; xi) + B(σ; xi) + B(1 − σ; xi)

+ B(−1 + σ; yj) + B(−σ; yj) + B(σ; yj) + B(1 − σ; yj)
]
,

and, invoking the discrete comparison principle and (4.2a), obtain |Vij−v(xi, yj)| ≤
Bij ≤ CN−2. �
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Imitating the decomposition u = v + w of Theorem 2.4, we decompose our
computed solution Uij as Uij = Vij + Wij , where Wij is a discrete analogue of the
solution w of problem (2.4). Thus Wij satisfies

(4.5) LhWij = 0 in Ωh; Wij =
{

w(xi, yj) on ∂Ωh ∩ (Γ̃1 ∪ Γ̃2);
0 on ∂Ωh \ (Γ̃1 ∪ Γ̃2).

Lemma 4.3. Let w be from Theorem 2.4, let Wij be a solution of problem (4.5),
and let σ < 1/3. Then

|Wij − w(xi, yj)| ≤ C

{
N−2 in Ω̄h \ (−σ, 1]2,

N−2 ln2N in Ω̄h ∩
(
[σ, 1]×[−σ, 0] ∪ [−σ, 0]×[σ, 1]

)
.

Proof. First, we obtain the desired estimate in Ωh\(−σ, 1]2. Using CB(0, xi) and
CB(0, yj) (recall (4.1) and (4.2a)) as barrier functions for problem (4.5), we observe
that |Wij | ≤ C min{B(0, xi); B(0; yj)}. This implies that in Ωh\(−σ, 1]2 we have
|Wij | ≤ CB(0,−σ) ≤ CN−2, where we invoked (4.3). Now, combining (2.2a), (1.4),
and σ < 1/3, we also get |w| ≤ Ce−ασ/ε ≤ CN−2 in the same domain. Since both
Wij and w are O(N−2) in Ωh\(−σ, 1]2, the desired estimate follows.

It remains to prove the estimate of our lemma in Ω′
1 := [σ, 1]×[−σ, 0] as in the

domain [−σ, 0]×[σ, 1] it is obtained similarly. Restrict the function w1 of (2.2b) to
Ω′′

1 := (0, 1) × (−σ, 0) ⊃ Ω′
1 and let its discrete analogue W1,ij satisfy

LhW1,ij = 0 in Ω̄h ∩ Ω′′
1 , W1,ij = w1(xi, yj) on Ω̄h ∩ ∂Ω′′

1 .

Then, imitating the proof of [5, Proposition 3.1], we get |W1 − w1| ≤ CN−2 ln2N
in Ω′′

1 and hence in Ω′
1. By (2.2b), we also have |w − w1| ≤ Ce−ασ/ε ≤ CN−2

in Ω′
1. Thus to get the desired estimate, it suffices to show |W − W1| ≤ CN−2

in Ω′
1. Note that Lh[W − W1] = 0 in Ω′′

1 , while on ∂Ω′′
1 we have |W − W1| =

|(W −w) + (w −w1)| ≤ C[N−2 + e−αx/ε]. Now invoking the comparison principle,
we see that |W − W1| ≤ C[B(0,−xi) + N−2] in Ω′′

1 , and hence |W − W1| ≤ CN−2

in Ω′
1. �

Corollary 4.4. Let u be a solution of problem (1.1), (1.2), (1.3), and Uij a solution
of problem (3.1). Then if σ < 1/3, we have |Uij − u(xi, yj)| ≤ CN−2 ln2N in
Ω̄h\(−σ, σ)2.

Proof. Recall that u = v + w and Uij = Vij + Wij . Now combine Lemma 4.3 with
Lemma 4.2. �

5. Error in a neighbourhood of the vertex of angle 3π/2

In this section we continue to consider the case of σ < 1/3. It remains to estimate
U −u in the subdomain Ωσ := (−σ, σ)2\[0, σ]2. Since, by Corollary 4.4, we already
know that U − u = O(N−2 ln2N) on ∂Ωσ, we restrict both U and u to Ω̄σ.

Next, transform the domain Ωσ by (x̂, ŷ) := (x, y)/ε into Ω̂σ := (−σ̂, σ̂)2\[0, σ̂]2,
where σ̂ = σ/ε and, by (1.4) combined with σ < 1/3, we get

(5.1) σ̂ := (2/α) lnN.

Note that (1.1) implies that L̂û := −�û + q̂ û = f̂ in Ω̂σ, where the notation
v̂(x̂, ŷ) := v(x, y) is used for any function v. Furthermore, by (2.1), the function û
satisfies

(5.2a) |û(k,m)| ≤ C[r̂ 2/3−k−m + 1],
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where r̂ :=
√

x̂2 + ŷ2, and can be decomposed as

(5.2b) û = χ̂ + ẑ, |χ̂| ≤ Cr̂ 2/3, |ẑ(k,m)| ≤ C.

Now our computed solution Uij is associated with the mesh nodes

(5.3) (x̂i, ŷj) := σ̂(i3, j3)/N3, i, j = −N, . . . , N,

(compare with (1.5)) and satisfies

(5.4) L̂hUij := −�̂hUij + q̂(x̂i, ŷj)Uij = f̂(x̂i, ŷj), (x̂i, ŷj) ∈ Ω̂σ,

where the discrete operator �̂h is defined similarly to �h from (3.1c) with the new
values of hi := x̂i − x̂i−1 and �i := (x̂i+1 − x̂i−1)/2. Furthermore, by (5.3), we have

(5.5) hi = x̂i − x̂i−1 = σ̂
3i2 − 3i + 1

N3
< σ̂

3i2

N3
, hi+1 − hi = σ̂

6i

N3
, for i > 0,

while h1 − h0 = 0, and h−i = hi+1, h−i+1 − h−i = −(hi+1 − hi) for i ≥ 0.

5.1. Error estimate in Ωσ. To estimate the error in the subdomain Ωσ, we shall
invoke the following auxiliary lemma.

Lemma 5.1. If a discrete function φij satisfies

(5.6) |L̂hφij | ≤ r̂−2
ij + 1, (x̂i, ŷj) ∈ Ω̂σ; |φij | ≤ C, (x̂i, ŷj) ∈ ∂Ω̂σ,

where r̂ij :=
√

x̂2
i + ŷ2

j , then |φij | ≤ C.

Proof. We defer the proof to §5.2 �

Now we present the main result of this section.

Theorem 5.2. Let u and Uij be solutions of problems (1.1), (1.2), (1.3) and (3.1)
respectively, and let σ < 1/3. Then |Uij −u(xi, yj)| ≤ CN−2 ln2N in Ωh∩(−σ, σ)2.

Proof. We have to estimate the error eij := Uij − u(xi, yj) = Uij − û(x̂i, ŷj) for
(xi, yj) ∈ Ωh ∩ (−σ, σ)2, i.e., for (x̂i, ŷj) ∈ Ω̂σ. Using (5.4) and Corollary 4.4, one
can easily check that

(5.7) L̂heij = ψij , (x̂i, ŷj) ∈ Ω̂σ; |eij | ≤ CN−2 ln2N, (x̂i, ŷj) ∈ ∂Ω̂σ,

where

(5.8) ψij := �̂hû(x̂i, ŷj) −�û(x̂i, ŷj)

is the truncation error. We claim that

(5.9) |ψij | ≤ CN−2 ln2N (r̂−2
ij + 1), (x̂i, ŷj) ∈ Ω̂σ.

Then, applying the discrete maximum/comparison principle to problem (5.7), we
obtain |eij | ≤ C(N−2 ln2N) φij , where φij is from Lemma 5.1. This implies the
desired error estimate.

Thus, to complete the proof, it suffices to show (5.9). Consider two cases.
Case A. |i| + |j| ≥ 2. Using Taylor series expansions, we get ψij = ψ1,ij + ψ2,ij ,

where

|ψ1,ij | ≤ C
(
| (hi+1 − hi) û(3,0)(x̂i, ŷj) | + �

2
i |û(4,0)(ξ̂ij , ŷj)|

)
,(5.10)

|ψ2,ij | ≤ C
(
| (hj+1 − hj) û(0,3)(x̂i, ŷj) | + �

2
j |û(0,4)(x̂i, η̂ij)|

)
,
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for some ξ̂ij ∈ [x̂i−1, x̂i+1] and η̂ij ∈ [ŷj−1, ŷj+1]. We shall prove the analogue of
estimate (5.9) only for the component ψ1,ij with i ≥ 0, since for ψ1,ij with i < 0,
and for ψ2,ij , analogous estimates are obtained similarly.

First, note that (5.5) and σ̂i3/N3 = x̂i ≤ r̂ij imply

hi+1 − hi ≤
6σ̂2/3

N2
r̂
1/3
ij , �i ≤ hi+1 ≤ C

σ̂i2

N3
≤ C

σ̂1/3

N
r̂
2/3
ij .

Next, combining this with (5.10) and (5.2a), we get

|ψ1,ij | ≤ C
( σ̂2/3

N2
r̂
1/3
ij [r̂2/3−3

ij + 1] +
σ̂2/3

N2
r̂
4/3
ij [r̂2/3−4

i−1,j + 1]
)
.

Finally, noting that |i| + |j| ≥ 2 implies ri−1,j ≥ Crij , and recalling (5.1) and
r̂ij ≤ Cσ̂, we obtain the desired estimate |ψ1,ij | ≤ CN−2 ln2N (r̂−2

ij + 1).
Case B. 0 < |i| + |j| < 2. Following the decomposition (5.2b) of û, we shall

invoke the decomposition ψij := ψij [χ̂] +ψij [ẑ], where ψij [χ̂] and ψij [ẑ] are defined
similarly to ψij in (5.8) with û replaced by χ̂ and ẑ respectively. Imitating the
argument used for Case A, we immediately get |ψij [ẑ]| ≤ CN−2 ln2 N . Next, note
that∣∣ψij [χ̂]

∣∣ ≤ C
(
h−2

1 max
|k|+|m|≤2

∣∣χ̂(x̂k, ŷm)
∣∣ +

∣∣�χ̂(x̂i, ŷj)
∣∣) ≤ Cr̂−2

ij

(
max

|k|+|m|≤2
r̂
2/3
km + r̂2

ij

)
,

since for |i|+ |j| < 2 we have r̂ij ≤ Ch1, while |�χ̂| = |�ẑ − qû + f̂ | ≤ C. Finally,
note that, by (5.3) and (5.1), we have r̂

2/3
km ≤ C(σ̂/N3)2/3 ≤ CN−2 ln2N , which

yields (5.9) in Case B. �
5.2. Proof of Lemma 5.1. An analogue of Lemma 5.1 for the uniform mesh in
a rectangular domain was presented by Volkov [21]; the proof that we present here
closely imitates his argument.

Introduce the discrete Green’s function Gh
ij;i0j0

for the operator L̂h in (5.4),
which for each (x̂i0 , ŷj0) ∈ Ω̂σ, satisfies

L̂hGh
ij;i0j0 = δh(x̂i − x̂i0 , ŷj − ŷj0), (x̂i, ŷj) ∈ Ω̂σ;(5.11a)

Gh
ij;i0j0 = 0, (x̂i, ŷj) ∈ ∂Ω̂σ.(5.11b)

Here

δh(x̂i − x̂i0 , ŷj − ŷj0) =
{

�
−1
i0

�
−1
j0

, i = i0 and j = j0,

0, otherwise,
is a discrete analogue of the Dirac δ-distribution.

The following version of a theorem from [15, 16] will be useful in our analysis.

Lemma 5.3 ([15, Theorem 3, §2, Ch. IV]). Suppose Uij = 0 for (x̂i, ŷj) ∈ ∂Ω̂σ,
and

(5.12a) Aij Uij −
∑

(xk,ym) �=(xi,yj)

Bij;km Ukm = Fij , (x̂i, ŷj) ∈ Ω̂σ,

where

(5.12b) Bij,km ≥ 0, Dij := Aij −
∑

(xk,ym) �=(xi,yj)

Bij,km > 0.

Then
max

ij
|Uij | ≤ max

ij

∣∣∣ Fij

Dij

∣∣∣.
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We shall invoke the above lemma to obtain the following estimate for the discrete
Green’s function.

Lemma 5.4. Fix arbitrary C̄ > 0 and let |i0| + |j0| ≤ C̄. Then

(5.13) 0 ≤ Gh
ij;i0j0 ≤ C for all (x̂i, ŷj) ∈ Ω̂σ.

Proof. The lower bound in (5.13) immediately follows from the discrete maximum
principle. Now we shall obtain the upper bound. To simplify the presentation,
within this proof we shall fix i0, j0 and use the notation Gh

ij := Gh
ij;i0j0

. Note that
our argument will involve the values hi and hj for |i| + |j| ≤ C̄ + 1, for which, by
(5.5), we have

(5.14) h1 ≤ hi ≤ Ch1, h1 ≤ hj ≤ Ch1.

(i) We start with a particular case of i0 = −1, 0 ≤ j0 < C̄. Rewriting the discrete
equation (5.11a) in the form (5.12) and noting that (5.11b) implies Gh

0,j0
= 0, we

observe that

(5.15) D−1,j0 = q̂(x̂−1, ŷj0) +
1

h0�−1
, F−1,j0 = �

−1
−1�

−1
j0

,

while at the other interior mesh nodes we have Dij ≥ q̂(x̂i, ŷj) and Fij = 0. Now,
Lemma 5.3 implies that Gh

ij ≤ F−1,j0/D−1,j0 , which, by (5.14), yields the upper
estimate in (5.13).

Note that for j0 = −1, 0 ≤ i0 < C̄, estimate (5.13) can be established similarly.
(ii) Next, consider i0 = −2, 0 ≤ j0 < C̄. Now D−1,j0 is given by the same

formula from (5.15), while F−1,j0 = 0. We shall focus on the discrete equation at
(x̂−2, ŷj0), where D−2,j0 = q̂(x̂−2, ŷj0) and F−2,j0 = �

−1
−2�

−1
j0

. Modify this equation
by combining it with the equation at (x̂−1, ŷj0) eliminating Gh

−1,j0
:

new eq. at (−2, j0) := eq. at (−2, j0) +
B−2,j0;−1,j0

A−1,j0

eq. at (−1, j0) .

Furthermore, since Dij is the sum of the coefficients, we observe that

D̃−2,j0 := D−2,j0 +
B−2,j0;−1,j0

A−1,j0

D−1,j0 , F̃−2,j0 = F−2,j0 = �
−1
−2�

−1
j0

,

where we used the notation D̃−2,j0 and F̃−2,j0 for the quantities Dij and Fij in the
new equation. Note that

B−2,j0;−1,j0 =
1

h−1�−2
, D−1,j0 < A−1,j0 < 4D−1,j0 ,

which implies that D̃−2,j0 ≥ q̂(x̂−2, ŷj0) + 1
4h−1�−2

. Now, applying Lemma 5.3, we

get Gh
ij ≤ F̃−2,j0/D̃−2,j0 , which, by (5.14), again yields the upper estimate in (5.13).

Similarly, one can establish estimate (5.13) for i0 = j0 = −1 and for j0 = −2,
0 ≤ i0 < C̄.

(iii) We continue repeating this argument; although as we move away from the
boundary ∂Ω̂σ, the constant multiplier in (5.13) increases; nevetherless, the argu-
ment can be applied a fixed number of times. �

Corollary 5.5. Fix arbitrary C̄ > 0 and let Bij = 0 for (x̂i, ŷj) ∈ ∂Ω̂σ,

L̂hBij =
{

r̂−2
ij + 1, |i| + |j| ≤ C̄,

0, otherwise,
for (x̂i, ŷj) ∈ Ω̂σ.
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Then 0 ≤ Bij ≤ C.

Proof. This follows from the representation of Bij through the discrete Green’s
function

Bij =
∑

|i0|+|j0|≤C̄

Gh
ij;i0j0 (L̂hBi0j0) �i0�j0 ,

since this sum involves a finite number of terms and each of them is O(1). �

Proof of Lemma 5.1. Introduce a barrier function

Φ(x̂, ŷ) := (3π − ϕ)ϕ,

where we use the standard polar coordinates (r̂, ϕ) of the point (x̂, ŷ) ∈ Ω̂σ. Since
our domain corresponds to ϕ ∈ [π/2, 2π], clearly we have Φ ≥ 5π2/4. Furthermore,
since �Φ = r̂−2Φϕϕ, we get

(5.16) L̂Φ = 2r̂−2 + q̂ Φ ≥ C(r̂−2 + 1).

We claim that for some sufficiently large C̄ we have

(5.17) L̂hΦ(x̂i, ŷj) ≥
{

C1(r̂−2
ij + 1), |i| + |j| > C̄,

−C2(r̂−2
ij + 1), |i| + |j| ≤ C̄.

Then, using Bij from Corollary 5.5, we construct the barrier

Φ̃ij := Φ(x̂i, ŷj) + (C1 + C2)Bij

so that L̂hΦ̃ij ≥ C1(r̂−2
ij + 1). Now, applying the discrete comparison principle to

problem (5.6), we obtain |φij | ≤ CΦ̃ij , which yields |φij | ≤ C.
Thus, to complete the proof, it remains to establish (5.17). Consider two cases.
Case A. |i|+|j| > C̄ for some sufficiently large C̄. Using Taylor series expansions,

we observe that

|L̂hΦ(x̂i, ŷj) − L̂Φ(x̂i, ŷj)| ≤ C
(

�i |Φ(3,0)(ξ̂ij , ŷj)| + �j |Φ(0,3)(x̂i, η̂ij)|
)

for some ξ̂ij ∈ [x̂i−1, x̂i+1] and η̂ij ∈ [ŷj−1, ŷj+1]. Note that |Φ(3,0)|+|Φ(0,3)| ≤ Cr̂−3

since [
∂
∂x̂
∂
∂ŷ

]
=

[
cos ϕ − sin ϕ

sin ϕ cos ϕ

][
∂
∂r̂

1
r̂

∂
∂ϕ

]
.

Furthermore, |i| + |j| > C̄ implies r̂i±1,j ≥ Cr̂ij and r̂i,j±1 ≥ Cr̂ij , and also
�i + �j ≤ C0r̂ij . Hence

(5.18) |L̂hΦ(x̂i, ŷj) − L̂Φ(x̂i, ŷj)| ≤ C
(
�i + �j

)
r̂−3
ij ≤ CC0r̂

−2
ij .

Note that choosing C̄ sufficiently large, we can make the constant C0 arbitrarily
small so that (5.16) combined with (5.18) yields (5.17) in Case A.

Case B. |i| + |j| ≤ C̄. Now we have r̂ij ≤ Ch1 and (5.14), and hence

|L̂hΦ(x̂i, ŷj)| ≤ Ch−2
1 max

|i|+|j|≤C̄
Φij ≤ Cr̂−2

ij ,

which yields (5.17) in Case B. �
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Table 1. Maximum nodal values of double mesh errors EN and
computational rates r in (N−1 ln N)r

N ε = 1 ε = 10−1 ε = 10−2 ε = 10−4 ε = 10−8

12 1.57e-4 2.60e-3 5.19e-3 4.96e-3 4.95e-3
24 4.16e-5 6.62e-4 1.90e-3 1.90e-3 1.90e-3
48 1.07e-5 1.65e-4 7.19e-4 7.19e-4 7.19e-4
96 2.73e-6 4.41e-5 2.52e-4 2.52e-4 2.52e-4
12 2.97 3.06 2.25 2.14 2.14
24 2.73 2.80 1.96 1.96 1.96
48 2.59 2.50 1.98 1.98 1.98

6. Numerical results

Our test problem is (1.1) with

(6.1) q ≡ 1, f = 2/(2 + x2 − xy), g2 = −y2/2, g3 = −(1 + x)/2,
gk ≡ 0, k = 1, 4, 5, 6;

see Figure 1.
Table 1 presents numerical results for our method with the parameter α :=(1.1)−1,

which is used in (1.4) to compute the mesh transition parameter σ. Since the exact
solution is unknown, to investigate the rates of convergence, for each N and ε, we
compute the double mesh errors EN := max

ij
|UN

ij − Ū2N
2i,2j |. Here UN := U is the

computed solution on the mesh described in §1 with 6N + 1 mesh nodes in each
direction, while Ū2N is the computed solution on a similar mesh that uses the same
transition parameter σ, but the (almost) doubled number 6(2N)+1 of mesh nodes
in each direction. The table also shows the rates of convergence in (N−1 ln N)r,
computed as described, e.g., in [11, §4.2], by

r :=
log2(EN/E2N )

log2
2 log2 N
log2 N+1

.

We observe that the double mesh errors EN stabilize as ε → 0, while the compu-
tational rates of convergence in (N−1 ln N)r are quite close to 2 for ε � 1 and even
higher for ε = 1, for which one can prove that the errors are O(N−2). In summary,
the numerical results fully agree with our error estimate of Theorem 3.1.
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