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A STABLE TEST FOR STRICT SIGN REGULARITY

V. CORTÉS AND J. M. PEÑA

Abstract. A stable test to check if a given matrix is strictly sign regular
is provided. Among other nice properties, we prove that it has an optimal
growth factor. The test is compared with other alternative tests appearing in
the literature, and its advantages are shown.

1. Introduction and motivations

An m × n matrix A is strictly sign regular (SSR) if, for each k (1 ≤ k ≤
min{m, n}), all k × k submatrices of A have a determinant with the same strict
sign (see [13]). The interest in these matrices comes from their characterizations
as variation-diminishing linear maps: the number of sign changes in the consecu-
tive components of the image of a vector is bounded above by the number of sign
changes in the consecutive components of the vector (cf. Theorem 5.6 of [1]). The
theory of variation-diminishing transformations was originated by Schoenberg [16].
Many applications of these transformations can be found in [9] and [1]. Let us now
mention some examples showing the usefulness of providing efficient tests to check if
a given matrix is SSR. These examples belong to different branches of mathematics
and, more generally, to scientific computing, and they motivate the interest of the
test proposed in this paper:

• In computer aided geometric design, it is convenient that the curve or
surface imitate the shape of the corresponding control polygon or control
net. In order to assure this property one has to check that the basis provides
a shape preserving representation, which reduces in turn to check that
certain associated matrices are SSR. See [12] and the references therein for
more details.

• In statistics, we can assure basic properties of the hypothesis test provided
by a family of densities such that their associated collocation matrices are
SSR (see [2]).

• In approximation theory, Descartes’ systems (which satisfy Descartes’ rule
of signs) are characterized by the strict sign regularity of its collocation
matrices. Moreover, the existence of these systems in a space of functions
is closely related with the existence of interpolatory systems (see [3]).
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A very important subclass of the strictly sign regular matrices is formed by the
totally positive matrices. A matrix is totally positive if all its minors are positive. In
the literature these matrices have also been called strictly totally positive matrices.
On the other hand, a matrix is totally negative if all its minors are negative. In
[7] one can find a characterization of totally negative matrices, which were called
strictly totally negative. In [5], several aspects of totally negative matrices were
studied.

A test of O(m5) arithmetic floating point operations to check if an m×n matrix
(m ≥ n) is totally positive can be derived from Theorem 1 of [11] through Gauss
elimination. Example 4.3 shows that Gauss elimination or Gauss elimination with
partial pivoting are not adequate to derive an economic test to check strict sign
regularity, in contrast to Neville elimination. Roughly speaking, Neville elimination
is an elimination procedure which produces zeros in each column by subtracting
from each row an adequate multiple of the previous one, whereas Gauss elimination
produces zeros in each column by substracting from each row an appropriated
multiple of a fixed row, called a pivot row. See [6] for more details and about
advantages of Neville elimination when dealing with totally positive matrices. A test
of O(n4) arithmetic floating point operations to check if a square n×n matrix is SSR
was proposed in [7]. Here we propose an alternative test with several advantages
over the test of [7]. Our new test uses Neville elimination, but it also uses a
pivoting strategy, recently introduced in [4] and called two-determinant pivoting.
In Theorem 6.1 we provide a new advantage of this strategy when dealing with
SSR matrices: it has optimal growth factor. Let us recall that the growth factor
of a numerical algorithm is the quotient between the ∞-norm of the output and
the ∞-norm of the initial data. In general, a small growth factor avoids overflow
and is an indicator of stability. Other recent tests controlling the growth factor
have been provided for the nonsingular M -matrices in [15] and for checking the
Routh-Hurwitz conditions in [14].

We show in Theorem 3.2 that SSR matrices can be characterized through Neville
elimination with two-determinant pivoting. This fact is used in the test proposed
in Section 4 to check if a given m × n matrix is SSR. The new test reduces the
computational cost of the test of [7]. A detailed analysis of the computational cost
of the new test is performed in Section 5. As commented above, the new test has
optimal growth factor. In contrast, in Example 6.2 we show that the test used in [7]
can have a growth factor arbitrarily large even for 2×2 matrices. In addition, we also
prove in Section 6 that, for floating point arithmetic of sufficiently high precision,
applying the new test to an SSR matrix will always provide an affirmative answer.
We finish Section 6 with an example illustrating with an SSR matrix (constructed
in the most simple way) the higher accuracy of our test over the test provided in
[7].

In scientific computing new interest on totally positive matrices and some other
SSR matrices (see [10]) comes from the fact that Neville elimination (with certain
pivoting strategies if the matrix is not totally positive) can provide factorizations
in terms of bidiagonal matrices (and permutation matrices) which, in turn, permit
accurate computations. The matrix factorization associated with our test can also
be used for this purpose. This application will be analyzed by the authors in a
future work.



A STABLE TEST FOR STRICT SIGN REGULARITY 2157

2. Neville elimination and two-determinant pivoting

for SSR matrices

Given k, m ∈ N , k ≤ m, Qk,m will denote the set of strictly increasing sequences
of k natural numbers less than or equal to m. For each α = (α1, . . . , αk) ∈ Qk,m,
its dispersion number d(α) is defined by

d(α) :=
k−1∑
i=1

(αi+1 − αi − 1) = αk − α1 − (k − 1),

with the convention d(α) = 0 for α ∈ Qk,m. Let us observe that d(α) = 0 means
that α consists of k consecutive integers. Let m, n, k, l be natural numbers with
k ≤ m and l ≤ n, let A be a real m × n matrix, and let α ∈ Qk,m and β ∈ Ql,n.
Then A[α|β] is by definition the k× l submatrix of A containing rows numbered by
α and columns numbered by β. When α = β, A[α|α] is simply denoted by A[α].

Neville elimination is a procedure to create zeros in a matrix by means of adding
to a given row a suitable multiple of the previous one. Given an m×n matrix A =
(aij)

1≤j≤n
1≤i≤m, let A(1) := (a(1)

ij )1≤j≤n
1≤i≤m be such that a

(1)
ij = aij . Let r := min{m, n}.

Under the assumptions of this paper, the Neville elimination of A with a pivoting
strategy produces a sequence of matrices as follows:

(2.1) A = A(1) −→ Ã(1) −→ A(2) −→ Ã(2) −→ · · · −→ A(r) = Ã(r),

such that A(t) = (a(t)
ij )1≤j≤n

1≤i≤m has zeros below its main diagonal in the first t − 1
columns and A(t)[t, . . . , m|t, . . . , n] only has nonzero entries. The matrix Ã(t) =
(ã(t)

ij )1≤j≤n
1≤i≤m is obtained from the matrix A(t) by reordering the rows t, t + 1, . . . , m

of A(t) according to the given pivoting strategy. The matrix A(t+1) is obtained from
Ã(t) (1 ≤ t ≤ r − 1) according to the formula

(2.2) a
(t+1)
ij :=

⎧⎪⎪⎨
⎪⎪⎩

ã
(t)
ij , i = 1, 2, . . . , t,

ã
(t)
ij − ã

(t)
it

ã
(t)
i−1,t

ã
(t)
i−1,j , t + 1 ≤ i ≤ m, t + 1 ≤ j ≤ n,

0, t + 1 ≤ i ≤ m, 1 ≤ j ≤ t.

In this process the element

(2.3) pij := ã
(j)
ij , 1 ≤ j ≤ n, j ≤ i ≤ m,

will be called the (i, j) pivot of the Neville elimination of A. Observe that the
computational cost of Neville elimination coincides with that of Gauss elimination.

By a signature sequence we mean an (infinite) real sequence ε = (εi) with |εi| =
1, i = 1, 2, . . .. An m× n matrix A verifying εk detA[α|β] > 0 for all α ∈ Qk,m, β ∈
Qk,n and for k = 1, . . . , r is called strictly sign regular with signature ε and will
be denoted by SSR. If we write εk(A) = +1 (resp., εk(A) = −1) we mean that all
k × k submatrices of A have positive (resp., negative) determinants.

Let us recall that for γ ∈ Qk,n (k ≤ n) and an n × n matrix C with C[γ]
invertible, the Schur complement of C[γ] in C, denoted by C/C[γ], is defined as

C/C[γ] = C[γ′] − C[γ′|γ](C[γ])−1C[γ|γ′].

Then

(2.4) det(C/C[γ]) =
detC

detC[γ]
.
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We denote by Pt := (δm−t+2−i,j)1≤i,j≤m−t+1 the reverse identity matrix (m −
t+1)×(m−t+1). Let A be an m×n matrix and 1 ≤ t ≤ r−1 with r = min{m, n}.
When all the entries of A(t)[t, . . . , m|t, . . . , n] are nonzero, then we can apply the
criterion of the two-determinant pivoting strategy to obtain Ã(t)[t, . . . , m|t, . . . , n]
from a reordering of the rows of A(t)[t, . . . , m|t, . . . , n] as follows:

If t �= r, then we compute the determinant

d1 := det

(
a
(t)
tt a

(t)
t,t+1

a
(t)
t+1,t a

(t)
t+1,t+1

)
.

- If d1 > 0, then we do not perform row exchanges, that is, Ã(t) := A(t).
- If d1 < 0, then we reverse the ordering of the rows from t to m, that is,

Ã(t)[t, . . . , m|t, . . . , n] := Pt · A(t)[t, . . . , m|t, . . . , n].
If t = r, then Ã(t) := A(t).

The following result shows that strict sign regularity is inherited by all matri-
ces A(t)[t, . . . , m|t, . . . , n] when we apply Neville elimination with two-determinant
pivoting, and so the pivoting strategy is well defined for SSR matrices. Observe
that two-determinant pivoting increases the cost of Neville elimination of an m×n
matrix at most r−1 substractions and 2r−2 multiplications where r := min{m, n}.

Proposition 2.1. Let A be an m×n SSR matrix with signature ε and let us apply
Neville elimination with two-determinant pivoting. Let r := min{m, n}. Then, for
all t ∈ {1, . . . , r}, all the matrices A(t)[t, . . . , m|t, . . . , n] are SSR and ε1(A(t)) =
ε1(A).

Proof. Let us prove the result by induction on r. The result is trivial for r = 1.
Let us assume that it holds for r − 1, and let us prove it for r.

Since A is SSR, when we apply Neville elimination with two-determinant pivot-
ing, the resulting matrix Ã(1) is SSR with ε2(Ã(1)) = +1. Let us consider α1, β1

with 2 ≤ α1 ≤ m and 2 ≤ β1 ≤ n. Since ε2(Ã(1)) = +1, applying formula
(2.4) (taking C := Ã(1)[α1 − 1, α1|1, β1] and γ := (1)), we can deduce that all the
elements of the matrix A(2)[2, . . . , m|2, . . . , n] have the same strict sign which is
ε1(Ã(1))(= ε1(A)).

Now, we consider α ∈ Qs,m, β ∈ Qs,n with 1 ≤ s ≤ r − 1, 2 ≤ α1 ≤ m − s + 1,
2 ≤ β1 ≤ n−s+1 and d(α) = d(β) = 0. Using (2.4) (taking C := Ã(1)[α1−1, α|1, β]
and γ := (1)), we can observe that all the minors detA(2)[α|β] of order s with
consecutive rows and columns of the matrix A(2)[2, . . . , m|2, . . . , n] have the same
strict sign which is εs+1(Ã(1))/ε1(Ã(1)). By Theorem 2.5 of [1], we conclude that
A(2)[2, . . . , m|2, . . . , n] is an SSR matrix. So, the matrix A(2)[2, . . . , m|2, . . . , n] is
an (m − 1) × (n − 1) SSR matrix with ε1(A(2)[2, . . . , m|2, . . . , n]) = ε1(A). By the
induction hypothesis, for all k ∈ {1, . . . , r−1}, the matrices A(k+1)[k+1, . . . , m|k+
1, . . . , n] are SSR with ε1(A(k+1)[2, . . . , m|2, . . . , n]) = ε1(A(2)[2, . . . , m|2, . . . , n])(=
ε1(A)). From this last fact, and taking into account that the first row of A(k)

coincides with either the first or the last row of A, we conclude that ε1(A(k)) = ε1(A)
for all k. �
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3. A characterization of strictly sign regular matrices

In this section, a product with an empty set of indices is by definition 1 and a
sum with an empty set of indices is by definition 0. Thus, it will be useful to denote
Al := A[1, . . . , m|l, . . . , n]. We need the following auxiliary result.

Lemma 3.1. Let A be an m×n matrix with m ≥ n. If we apply Neville elimination
of A without row exchanges and all the pivots are nonzero, then given α ∈ Qk,m

with 1 ≤ α1 ≤ m − k + 1, 1 ≤ k ≤ n and d(α) = 0, we have, for 1 ≤ l ≤ k, that

(3.1) detA[α|1, . . . , k] =

⎛
⎝l−1∏

j=1

pα1+j−1,j

⎞
⎠ detA(l)[α1+l−1, . . . , α1+k−1|l, . . . , k],

where pij is the (i, j) pivot of the Neville elimination of A for 1 ≤ j ≤ n and
j ≤ i ≤ m.

Proof. Let us consider the k × k submatrix A[α|β] of A, where β = {1, . . . , k}. If
we apply Neville elimination without row exchanges to the submatrix A[α|β], the
pivots that appear are nonzero because they form a subset of the pivots of A. Then,
for 1 ≤ l ≤ k, A(l)[α|β] has zeros below its main diagonal in the first l − 1 columns
and the first l − 1 diagonal elements are the (α1 + j − 1, j) pivots pα1+j−1,j of A

(1 ≤ j ≤ l − 1). Moreover, since A(l)[α|β] is obtained from A[α|β] by performing
elementary steps in which we add to a row an appropriate multiple of the previous
one, det A[α|β] = detA(l)[α|β] for all 1 ≤ l ≤ k. So, for all 1 ≤ l ≤ k, (3.1)
holds. �

The next result characterizes SSR matrices through Neville elimination with
two-determinant pivoting. Given an r × s matrix M , a column-initial minor of
M is a minor of the form det M [α|1, . . . , k], where α ∈ Qk,r with d(α) = 0 and
1 ≤ k ≤ min{r, s}. Analogously, a row-initial minor of M is a minor of the form
detM [1, . . . , k|α], where α and k are given as above. An initial minor of M is either
a column-initial or a row-initial minor of M .

Theorem 3.2. Let A be an m × n (m ≥ n) matrix. Then A is SSR if and only if
we can apply the Neville elimination with two-determinant pivoting to the matrices
Al := A[1, . . . , m|l, . . . , n] for l = 1, . . . , n, all the pivots are nonzero and have the
same sign, and the associated permutations occur in steps ki, with ki ≤ n− l, where
k1, . . . , kh are the steps associated to the permutations of the Neville elimination
with two-determinant pivoting of A.

Proof. Since the matrices Al for all l = 1, . . . , n are submatrices of the SSR matrix
A, they are also SSR with signature (ε1, . . . , εn−l+1). If we apply Proposition 2.1
to each matrix Al, we deduce that the matrices appearing through its elimination
process (see (2.1)), A

(j)
l [j, . . . , m|l + j − 1, . . . , n] and Ãl

(j)
[j, . . . , m|l + j − 1, . . . , n]

with j = 1, . . . , n − l + 1, are SSR with the same strict sign of A. Then, by (2.3),
we conclude that all the pivots of the Neville elimination with two-determinant
pivoting of the matrices Al for all l = 1, . . . , n have the same strict sign of A.

Now, let us see that the associated permutations to the elimination of the ma-
trices Al for all l = 1, . . . , n occur in the same steps as in A. For l = 1, . . . , n and
j = 1, . . . , n − l + 1, we denote by (ε(j)

1,l , . . . , ε
(j)
n−l−j+2,l) and (ε̃(j)

1,l , . . . , ε̃
(j)
n−l−j+2,l)

the associated signatures of the matrices

A
(j)
l [j, . . . , m|l + j − 1, . . . , n]
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and

Ãl
(j)

[j, . . . , m|l + j − 1, . . . , n],

respectively.
Let us prove by induction on j that, for l = 1, . . . , n,

(3.2) ε
(j)
i,l = ε

(j)
i,1 , 1 ≤ i ≤ n − l − j + 2.

For j = 1, the result holds, due to the fact that the matrices Al(= A
(1)
l ) are SSR

with signature (ε1, . . . , εn−l+1)
(
= (ε(1)

1,l , . . . , ε
(1)
n−l+1,l)

)
for all l = 1, . . . , n. Now,

let us assume that (3.2) holds for j and let us prove it for j + 1. Applying formula

(2.4) (taking C := Ãl
(j)

[j, . . . , j + i|l + j − 1, . . . , l + j − 1 + i] and γ := (1)) we
obtain that, for all l = 1, . . . , n, the SSR matrix A

(j+1)
l [j +1, . . . , m|l+ j, . . . , n] has

signature (ε(j+1)
1,l , . . . , ε

(j+1)
n−l−j+1,l), where

(3.3) ε
(j+1)
i,l = ε̃

(j)
i+1,l/ε̃

(j)
1,l , 1 ≤ i ≤ n − l − j + 1.

By the induction hypothesis, we know that ε
(j)
i,l = ε

(j)
i,1 for all l = 1, . . . , n with

i = 1, . . . , n − l − j + 2. So, following the criterion of the pivoting strategy, the
matrices Ã

(j)
l are obtained from A

(j)
l in the same way for all l = 1, . . . , n. Then,

we have that ε̃
(j)
i,l = ε̃

(j)
i,1 for all l = 1, . . . , n with i = 1, . . . , n − l − j + 2 and so, by

(3.3), ε
(j+1)
i,l = ε̃

(j)
i+1,1/ε̃

(j)
1,1 = ε

(j+1)
i,1 , and the induction holds for j + 1.

Taking i = 2 in (3.2), we conclude that, for all l = 1, . . . , n, the minors of order 2
of the matrices A

(j)
l [j, . . . , m|l + j − 1, . . . , n] have the same strict sign ε

(j)
2,1. So, the

associated permutations to the Neville elimination with two-determinant pivoting
of the matrices Al for all l = 1, . . . , n occur in the same steps as A.

Next we prove that the condition is sufficient for the strict sign regularity of
A. We suppose that the Neville elimination with two-determinant pivoting of a
rectangular matrix, B = (bij)

1≤j≤v
1≤i≤u (u ≥ v), is applied with all the pivots of

the same strict sign δ. Let r (0 ≤ r ≤ v − 1) be the number of permutations
needed through the Neville elimination with two-determinant pivoting of B and let
k1, . . . , kr be the steps of this elimination associated with the previous permutations.
We define kr+1 := v + 1 and k0 := 0. We note that given any positive integer d
with 1 ≤ d ≤ v, there exists a unique j ∈ {0, . . . , r} such that kj ≤ d ≤ kj+1 − 1.
Now, let us prove by induction on r that all the column-initial minors of B of order
d have the following strict sign:

(3.4) (−1)
∑j

t=1�
d−kt+1

2 � · δd, kj ≤ d ≤ kj+1 − 1, j ∈ {0, . . . , r},

where given a positive real number x, �x� denotes the greatest integer less than or
equal to x.

Let us first suppose that r = 0, that is, Neville elimination of B with two-
determinant pivoting does not use row exchanges. In this case, the associated
j = 0 for all d. We can observe that the (i, 1) pivots of this elimination procedure
are pi1 = bi1 for all i = 1, . . . , u. So the column-initial minor of order 1 of the matrix
B have the same strict sign δ, and (3.4) holds for d = 1. Let us define the increasing
sequence of s (1 ≤ s ≤ v) consecutive positive integers αi,s := {i − s + 1, . . . , i}
with s ≤ i ≤ u.
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Taking into account that if we apply Neville elimination to B[αi,d|1, . . . , d] no
row exchanges are needed and that the pivots are nonzero since they are also pivots
of the matrix B, we can apply Lemma 3.1 to the submatrix B[αi,d|1, . . . , d] of B
and we have

(3.5) detB[αi,d|1, . . . , d] =
d∏

k=1

pi−d+k,k, i = d, . . . , u.

Since all the pivots of the matrix B are nonzero and have the same strict sign δ,
we deduce from (3.5) that all the column-initial minors of order d (2 ≤ d ≤ v) of
the matrix B have the same strict sign δd and (3.4) holds for 2 ≤ d ≤ v.

Now, let us assume that the induction holds for r − 1 and let us prove it for
r. Let B be a matrix such that Neville elimination with two-determinant pivoting
requires r row exchanges.

Analogously to the case r = 0, we can prove for any d with 1 ≤ d ≤ k1 − 1 (if
k1 > 1) that all the column-initial minors of order d of the matrix B have the same
strict sign δd.

Taking into account the criterion of two-determinant pivoting strategy, we know
that

(3.6) B̃(k1)[k1, . . . , u|k1, . . . , v] = Pk1B
(k1)[k1, . . . , u|k1, . . . , v]

with Pk1 the backward identity of order u − k1 + 1.
If k1 �= 1, then we can apply the Neville elimination of B[αi,d|1, . . . , d] without

row exchanges up to the k1-th step and with all the pivots nonzero since they are
pivots of the matrix B. Then, applying Lemma 3.1 to the submatrix B[αi,d|1, . . . , d]
of B, we can write the following formula:
(3.7)

det B[αi,d|1, . . . , d] =

(
k1−1∏
k=1

pi−d+k,k

)
detB(k1)[αi,d−k1+1|k1, . . . , d], i = d, . . . , u.

Observe that the previous formula (3.7) trivially holds for k1 = 1. By (3.6) we can
rewrite (3.7) as
(3.8)

detB[αi,d|1, . . . , d]=(−1)�
d−k1+1

2 �

(
k1−1∏
k=1

pi−d+k,k

)
det B̃(k1)[αu−i+d,d−k1+1|k1, . . . , d],

for i = d, . . . , u.
Let us define k̃t := kt+1 − (k1 − 1) for t ∈ {0, . . . , r}. By our hypothesis, Neville

elimination with two-determinant pivoting of the rectangular matrix
B̃(k1)[k1, . . . , u|k1, . . . , v] has r − 1 permutations associated with the steps
k̃1, . . . , k̃r−1. Moreover, we can observe that det B̃(k1)[αu−i+d,d−k1+1|k1, . . . , d] is a
column-initial minor of order d̃ := d−k1 +1 of the matrix B̃(k1)[k1, . . . , u|k1, . . . , v].
Taking into account that given any d, with k1 ≤ d ≤ v, there exists a unique
j ∈ {1, . . . r} such that kj ≤ d ≤ kj+1 − 1, we can conclude that there exists a
unique j ∈ {0, . . . , r − 1} such that k̃j ≤ d̃ ≤ k̃j+1 − 1. Moreover, the pivots of the
matrix B̃(k1)[k1, . . . , u|k1, . . . , v] are also pivots of the matrix B, so that they are
nonzero and have the same strict sign δ. So, the matrix B̃(k1)[k1, . . . , u|k1, . . . , v]
satisfaces the induction hypothesis and then we have that all the column-initial mi-
nors of the matrix B̃(k1)[k1, . . . , u|k1, . . . , v] have the same strict sign that is given
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by (3.4):

(−1)
∑j−1

t=1 �
d̃−k̃t+1

2 � · δd̃, k̃j ≤ d̃ ≤ k̃j+1 − 1, j ∈ {0, . . . , r − 1}.

Now, taking into account the definition of k̃t and d̃, we can write

(3.9) sign(det B̃(k1)[αu−i+d,d−k1+1|k1, . . . , d]) = (−1)
∑j

t=2�
d−kt+1

2 � · δd−k1+1

for kj ≤ d ≤ kj+1 − 1, j ∈ {1, . . . , r}.
Finally, from (3.9) and (3.8), and taking into account the obtained result for the

column-initial minors of order d with 1 ≤ d ≤ k1 − 1, it follows that the sign of all
column-initial minors of order d, with 1 ≤ d ≤ v, of the matrix B is given by (3.4)
and it is strict. So, the induction holds.

Now, since all matrices Al for all l = 1, . . . , n satisfy the hypothesis of B and,
by our hypothesis on Al, their associated permutations occur in steps ki, with ki ≤
n − l, we have that all column-initial minors of the matrices Al for all l = 1, . . . , n
have the same strict sign given by (3.4). Taking into account that any minor of
A with consecutive rows and columns is a column-initial minor of some matrix Al

with l = 1, . . . , n, we conclude that the minors of A using d (1 ≤ d ≤ n) consecutive
rows and columns have the same strict sign εd. Then, by Theorem 2.5 of [1], A is
a strictly sign regular matrix with signature ε = (ε1, . . . , εn). �

4. A test for strict sign regularity

In this section, we provide a test to check the strict sign regularity of a matrix
A.

Remark 4.1. By Proposition 2.1, if A = (aij)
1≤j≤n
1≤i≤m (m ≥ n) is an SSR ma-

trix with signature (ε1, ε2, . . . , εn), then all the matrices A(k)[k, . . . , m|k, . . . , n],
appearing through Neville elimination with two-determinant pivoting of A, are
SSR with strict sign ε1. Thus, −A = (−aij)

1≤j≤n
1≤i≤m is an SSR matrix with signa-

ture (−ε1, ε2, . . . , (−1)nεn) and all the matrices −A(k)[k, . . . , m|k, . . . , n], appear-
ing through Neville elimination with two-determinant pivoting of −A, are SSR
with strict sign −ε1. So, the associated permutations to Neville elimination with
two-determinant pivoting of A and −A occur in the same steps, and the pivots of
−A are opposite in sign to those of A. On the other hand, if we consider P , the
backward identity matrix of order m, then PA is an SSR matrix with signature
(ε1,−ε2, . . . , (−1)�

n
2 �εn), and Neville elimination with two-determinant pivoting of

A and PA only differs in the first step, where either A or PA needs a row exchange.
Finally, AT is an n × m SSR matrix with the same signature as A. Taking into
account formula (2.4), it can be seen that the permutations of Neville elimination
with two-determinant of A and AT occur in the same steps and all the pivots have
the same strict sign ε1.

The next result characterizes totally positive matrices through Neville elimina-
tion with two-determinant pivoting.

Proposition 4.2. Let A be an m × n matrix. Then the following conditions are
equivalent:

(1) A is totally positive.
(2) Neville elimination with two-determinant pivoting of A and AT can be car-

ried out without row exchanges, and all the pivots are positive.



A STABLE TEST FOR STRICT SIGN REGULARITY 2163

Proof. (1) ⇒ (2) Applying the proof of Proposition 2.1 to a totally positive matrix
A, we obtain that Ã(1) = A(1) and A(2)[2, . . . , m|2, . . . , n] is totally positive; then it
can be proved by induction that all the matrices A(k)[k, . . . , m|k, . . . , n] are totally
positive. Then, we do not need row exchanges through Neville elimination with
two-determinant pivoting of A, and all the pivots are positive. By Remark 4.1, we
obtain the result for AT , and (2) follows.

(2) ⇒ (1) By applying formula (3.5) to B = A and to B = AT , we obtain that
the column-initial minors of A and AT are positive. Then, by Theorem 4.1 of [6],
A is totally positive. �

Taking into account the Schur complement formula (2.4), one can easily deduce
that all pivots and multipliers of Gauss elimination of a totally positive matrix A
are positive (and so, also those of Al := A[1, . . . , m|l, . . . , n] for all l = 1, . . . , n
and of their transposes). However the following example shows that their positivity
does not imply the total positivity of A. This illustrates the convenience of using
Neville elimination when dealing with these matrices (and, more generally, with
SSR matrices).

Example 4.3. The matrix

A =

⎛
⎝1 2 1

1 4 5
1 3 4

⎞
⎠

is not totally positive because det A[2, 3|1, 2] < 0. Let us denote by p
(l)
ij (resp., q

(l)
ij )

and m
(l)
ij (resp., n

(l)
ij ) the pivots and multipliers of Gauss elimination of Al (resp.,

(Al)T ). Gauss elimination of A = A1 (resp., AT = (A1)T ) produces an upper
triangular matrix U (resp., V ):

U =

⎛
⎝1 2 1

0 2 4
0 0 1

⎞
⎠ , (resp., V =

⎛
⎝1 1 1

0 2 1
0 0 1

⎞
⎠)

by means of the positive pivots p
(1)
11 = 1, p

(1)
22 = 2, p

(1)
33 = 1 (resp., q

(1)
11 = 1, q

(1)
22 =

2, q
(1)
33 = 1) and multipliers m

(1)
21 = m

(1)
31 = 1, m

(1)
32 = 1/2 (resp., n

(1)
21 = 2, n

(1)
31 =

1, n
(1)
32 = 2). Gauss elimination of A2 (resp., (A2)T ) has positive pivots p

(2)
11 =

2, p
(2)
22 = 3 (resp., q

(2)
11 = 2, q

(2)
22 = 3) and multipliers m

(2)
21 = 2, m

(2)
31 = 3/2, m

(2)
32 =

5/6 (resp., n
(2)
21 = 1/2). Gauss elimination of A3 (resp., (A3)T ) has positive pivots

p
(3)
11 = 1 (resp., q

(3)
11 = 1) and multipliers m

(3)
21 = 5, m

(3)
31 = 4. Observe that, for the

matrix A, Gauss elimination coincides with Gauss elimination with partial pivoting.
In contrast, after applying one step of Neville elimination of A with two-determinant
pivoting (and so, without row exchanges), we deduce that A is not totally positive
because we obtain a negative pivot p32 = −1.

Taking into account Remark 4.1 and Proposition 4.2 we can derive the following
results.

Proposition 4.4. Let A be an m × n matrix. Then the following conditions are
equivalent:

(1) −A is totally positive.
(2) Neville elimination with two-determinant pivoting of A and AT can be car-

ried out without row exchanges, and all the pivots are negative.
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Proposition 4.5. Let A be an m × n matrix and let P be the backward identity
matrix of order m. Then the following conditions are equivalent:

(1) PA (resp., −PA) is totally positive.
(2) Neville elimination with two-determinant pivoting of A and AT only needs

one row exchange in the first step, and all the pivots are positive (resp.,
negative).

The next result characterizes totally negative matrices through Neville elimina-
tion with two-determinant pivoting.

Proposition 4.6. Let A be an m × n matrix with m ≥ n. Then the following
conditions are equivalent:

(1) A is totally negative.
(2) The (i, n) entries, i = n, . . . , m, of A are negative, and we can apply the

Neville elimination with two-determinant pivoting of A and AT , needing
only two row exchanges associated to the first and the second steps, and all
the pivots are negative.

Proof. First we prove that the condition is necessary. Since A is totally negative,
it is obvious that ain < 0 for all i = n, . . . , m. Moreover, the first step of Neville
elimination with two-determinant pivoting of A needs a row exchange obtaining
Ã(1) := P1A, where P1 is the backward identity matrix of order m. By Remark 4.1,
Ã(1) is SSR with signature (ε̃(1)

1 , . . . , ε̃
(1)
n ), where ε̃

(1)
k = (−1)�

k
2 �+1. By Proposition

2.1, A(2)[2, . . . , m|2, . . . , n] is SSR with signature (ε(2)
1 , . . . , ε

(2)
n−1) and ε

(2)
1 = ε1 =

−1. By formula (2.4) (taking C := Ã(1)[1, α|1, β] and γ = (1), with α ∈ Qk,m,
β ∈ Qk,n, 1 < α1, β1, and 1 ≤ k ≤ n − 1), we have ε

(2)
k = ε̃

(1)
k+1/ε̃

(1)
1 = (−1)�

k+1
2 �

with k = 1, . . . , n − 1. Since ε
(2)
2 = −1, we need a row exchange for obtaining

Ã(2)[2, . . . , m|2, . . . , n] = P2A
(2)[2, . . . , m|2, . . . , n], where P2 is the backward iden-

tity matrix of order m − 1. By Remark 4.1, Ã(2)[2, . . . , m|2, . . . , n] is SSR with
signature (ε̃(2)

1 , . . . , ε̃
(2)
n−1), where ε̃

(2)
k = (−1)�

k+1
2 �+� k

2 � = (−1)k. Then, the ma-
trix −Ã(2)[2, . . . , m|2, . . . , n] is totally positive and, by Proposition 4.4, the Neville
elimination with two-determinant pivoting of Ã(2)[2, . . . , m|2, . . . , n] does not need
row exchanges, and all the pivots are negative. The result for AT also follows from
Remark 4.1.

Now we prove that the condition is sufficient. Applying formula (3.4) (taking
r = 2, δ = −1, k1 = 1 and k2 = 2) to A and AT , we obtain that the initial minors
of A are negative. Now, for t = 1, . . . , m − n + 1, let us prove by induction on
t that A[t, . . . , n + t − 1|1, . . . , n] is totally negative. If t = 1, we note that the
initial minors of any order of A[1, . . . , n] are also initial minors of A, which are
negative. Then, by Remark 3.6 of [7], we have that A[1, . . . , n] is totally negative,
and the result holds for t = 1. Let us assume that it holds for t − 1, and let us
prove it for t. By the induction hypothesis, A[t− 1, . . . , n+ t− 2|1, . . . , n] is totally
negative. In consequence, all the row-initial minors of order not greater than n− 1
of A[t, . . . , n + t − 1|1, . . . , n] are negative. The column-initial minors of any order
of A[t, . . . , n + t − 1|1, . . . , n] (one of them being the whole determinant) are also
column-initial minors of A, and so are negative. So, by Remark 3.6 of [7], we have
that A[t, . . . , n + t − 1|1, . . . , n] is totally negative, and the induction holds for t.

Taking into account that any minor of A with consecutive rows and columns
is a minor of some totally negative matrix A[t, . . . , n + t − 1|1, . . . , n] with t =
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1, . . . , n + t − 1, we can conclude that the minors of A using d (1 ≤ d ≤ n)
consecutive rows and columns are negative. Then, by Theorem 2.5 of [1], A is
totally negative. �

Remark 4.1 and Proposition 4.6 allow us to derive the following results.

Proposition 4.7. Let A be an m × n matrix with m ≥ n. Then the following
conditions are equivalent:

(1) −A is totally negative.
(2) The entries (i, n), i = n, . . . , m, of A are positive, and we can apply the

Neville elimination with two-determinant pivoting of A and AT , needing
only two row exchanges associated to the first and the second steps, and all
the pivots are positive.

Proposition 4.8. Let A be an m×n matrix with m ≥ n and let P be the backward
identity matrix of order m. Then the following conditions are equivalent:

(1) PA (resp., −PA) is totally negative.
(2) The entries (i, n), i = 1, . . . , m − n + 1, of A are negative (resp., positive)

and we can apply the Neville elimination with two-determinant pivoting of
A and AT , needing only one row exchange associated to the second step,
and all the pivots are negative (resp., positive).

The following result provides a test to check if a matrix is SSR. In the Introduc-
tion we have commented on many problems where such a test can be useful.

Theorem 4.9. Let A be an m × n (m ≥ n) matrix. Let Al := A[1, . . . , m|l, . . . , n]
for l = 1, . . . , n. Then A is SSR if and only if we can apply the Neville elimination
with two-determinant pivoting of A (and then the associated permutations occur in
steps k1, . . . , kh) and the following conditions hold:

(1) All the pivots of Neville elimination with two-determinant pivoting of the
matrix A = A1 are nonzero with sign ε1.

(2) For all i = 1, . . . , m − n + 1 and i = n, . . .m, ε1ain > 0.
(3) a) If Neville elimination with two-determinant pivoting of A does not use

permutations, then we can also apply the same elimination of AT , it
does not use permutations and all its pivots are nonzero with sign ε1.

b) If k1 > 2, then we can apply the Neville elimination with two-deter-
minant pivoting of the matrices Al for l=2, . . . , n−k1+1, the associated
permutations occur in steps ki ≤ n − l and (An−k1+1)T does not need
row exchanges. Moreover, all their pivots are nonzero with sign ε1.

c) If k1 ≤ 2 and h = 1, then we can apply the Neville elimination of AT

with two-determinant pivoting, only one permutation occurs in step k1

and all its pivots are nonzero with sign ε1.
d) If k1 = 2 and h > 1, then we can apply the Neville elimination with

two-determinant pivoting of the matrices Al for l = 2, . . . , n − k2 + 1
and (An−k2+1)T , and the associated permutations occur in steps ki ≤
n−l and k1, respectively. Moreover, all their pivots are nonzero with
sign ε1.

e) If k1 = 1 and k2 > 2, then we can apply the Neville elimination with
two-determinant pivoting of the matrices Al for l = 2, . . . , n − k2 + 1
and (An−k2+1)T , and the associated permutations occur in steps ki ≤
n − l and k1, respectively. Moreover, all their pivots are nonzero with
sign ε1.
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f) If k1 = 1, k2 = 2 and h = 2, then we can apply the Neville elimination
of AT with two-determinant pivoting, and only two permutations occur
in steps k1 and k2. Moreover, all its pivots are nonzero with sign ε1.

g) If k1 = 1, k2 = 2 and h > 2, then we can apply the Neville elimination
with two-determinant pivoting of the matrices Al for l = 2, . . . , n −
k3 +1 and (An−k3+1)T , and the associated permutations occur in steps
ki ≤ n − l and k1, k2, respectively. Moreover, all their pivots are
nonzero with sign ε1.

Proof. If A is SSR, then (1) holds by Theorem 3.2 and (2) is obvious. Since the
submatrices Al are also SSR, again by Theorem 3.2, (3) follows.

Conversely, assume that (1), (2), and (3) hold. If permutations are not needed,
by Propositions 4.2 and 4.4, either A or −A is totally positive. If k1 =1 and h=1,
then, by Proposition 4.5, either PA or −PA is totally positive. If k1 =2 and h=1,
then, by Proposition 4.8, either PA or −PA is totally negative. If k1 = 1, k2 = 2
and h=2, by Propositions 4.6 and 4.7, either A or −A is totally negative. Hence, in
cases a), c) and f), we have already proved that A is SSR and so the converse holds.

If k1 > 2, by (3), the Neville elimination with two-determinant pivoting of
An−k1+1 (resp., (An−k1+1)T ) can be carried out without row exchanges and all
their pivots are nonzero with sign ε1. So, by Propositions 4.2 and 4.4, either
An−k1+1 or −An−k1+1 is totally positive. Then, for l = n − k1 + 2, . . . , n, since Al

or −Al are submatrices of An−k1+1 or −An−k1+1 respectively, they are also totally
positive.

If k1 = 2 and h > 1, by (3), the Neville elimination with two-determinant
pivoting of An−k2+1 (resp., (An−k2+1)T ) can be carried out with one row exchange
associated to the second step and all their pivots are nonzero with sign ε1. So,
by Proposition 4.8, either PAn−k2+1 or −PAn−k2+1 is totally negative. Then,
for l = n − k2 + 2, . . . , n, since PAl or −PAl are submatrices of PAn−k2+1 or
−PAn−k2+1, respectively, they are also totally negative.

If k1 = 1 and k2 > 2, by (3), the Neville elimination with two-determinant
pivoting of An−k2+1 (resp., (An−k2+1)T ) can be carried out with one row exchange
associated to the first step and all their pivots are nonzero with sign ε1. So, by
Proposition 4.5, either PAn−k2+1 or −PAn−k2+1 is totally positive. Then, for l =
n−k2 +2, . . . , n, since PAl or −PAl are submatrices of PAn−k2+1 or −PAn−k2+1,
respectively, they are also totally positive.

If k1 = 1 and k2 = 2 and h > 2, by (3), the Neville elimination with two-
determinant pivoting of An−k3+1 (resp., (An−k3+1)T ) can be carried out with two
row exchanges associated to the first and the second step and all their pivots are
nonzero with sign ε1. So, by Proposition 4.6 and Proposition 4.7, either An−k3+1 or
−An−k3+1 is totally negative . Then, for l = n− k3 + 2, . . . , n, since Al or −Al are
submatrices of An−k3+1 or −An−k3+1, respectively, they are also totally negative.

In all remaining cases b), d), e) and g), when we apply Neville elimination with
two-determinant pivoting to the matrices Al for l = 1, . . . , n, all the pivots are
nonzero and have sign ε1 and the associated permutations occur in the steps ki

with ki ≤ n − l. So, by Theorem 3.2 A is SSR. �
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5. Computational cost

This section deals with the computational cost of the previous test defined by
Theorem 4.9. Given an m × n (m ≥ n) matrix A, this test checks if A is SSR per-
forming the Neville elimination with two-determinant pivoting of some submatrices
of A.

Let us start by analyzing the computational cost of the Neville elimination with
two-determinant pivoting of one matrix A = (aij)

1≤j≤n
1≤i≤m with m ≥ n.

Considering as an arithmetic floating point operation any of the following op-
erations: +,−, / or ∗. For each step k (1 ≤ k ≤ n − 1) we have to carry on one
substraction and two multiplications applying two-determinant pivoting strategy,
and (m−k)(n−k+1) substractions, (m−k)(n−k+1) multiplications and (m−k)
quotients applying the Neville elimination process. Therefore, the computational
cost of the Neville elimination with two-determinant determinant pivoting of A,
denoted by Cn, is

(5.1) Cn :=

(
n−1∑
k=1

(m − k)(2(n − k) + 1)

)
+ 3(n − 1) ≈ mn2 − n3

3

arithmetic floating point operations.
In particular, Neville elimination with two-determinant pivoting of an n × n

matrix requires approximately 2n3/3 arithmetic floating point operations. In fact,
Neville elimination requires the same cost as Gauss elimination (approximately
2n3/3 arithmetic floating point operations), and two-determinant pivoting requires
n − 1 additional substractions and 2n − 2 additional multiplications.

If the m×n (m ≥ n) matrix A belongs to one of the important classes of matrices
considered in Proposition 4.2 and Propositions 4.4–4.8, by (5.1) the computational
cost of our test will be bounded by approximately 2m3/3 arithmetic floating point
operations. In general, by Theorem 4.9, we can observe that we have to apply the
Neville elimination with two-determinant pivoting strategy at most to n matrices
A1, . . . , An of orders m×n, m× (n−1), . . . , m×1, respectively, for checking if A is
an SSR matrix. So, the maximum computational cost of the test, denoted by Cn,
will be computed as follows:

Cn :=
n∑

r=1

Cn−r+1,

where Cn−r+1 is by (5.1)

(5.2) Cn−r+1 ≈ mn2 − n3

3
− 2mnr + n2r + mr2 − nr2 +

r3

3
.

Taking into account (5.2) it can be checked that the approximate number of
arithmetic floating point operations is

Cn ≈
(

mn2 − n3

3

)
n +

(
n2 − 2mn

2

)
n2 −

(
m − n

3

)
n3 +

n4

12
.

Observe that, if m = n, then Cn is bounded above approximately by n4/4.
Now, taking into account a)–g) of Theorem 4.9, we observe that we only have to

apply the Neville elimination with two-determinant pivoting strategy to l matrices
(1 ≤ l ≤ n) A1, . . . , Al of orders m×n, m×(n−1), . . . , m×(n− l+1), respectively,
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for checking if A is an SSR matrix. So, the computational cost of the test, denoted
in this case by Cl, will be computed as follows:

Cl :=
l∑

r=1

Cn−r+1,

where Cn−r+1 is given by (5.2).
Taking into account (5.2) it can be checked that the approximate number of

arithmetic floating point operations is

Cl ≈
(

mn2 − n3

3

)
l +

(
n2 − 2mn

2

)
l2 −

(
m − n

3

)
l3 +

l4

12
.

6. Growth factor and finite precision

Let A be an m × n matrix. The growth factor associated to Neville elimination
with two-determinant pivoting is given by

(6.1) ρ∗(A) =
maxi,j,k |a(k)

ij |
maxi,j |aij |

,

with A(k) = (a(k)
ij )1≤j≤n

1≤i≤m of the sequence (2.1).
The following result shows that this growth factor is 1 when A is SSR.

Theorem 6.1. If A is an m × n SSR matrix, then the growth factor (6.1) corre-
sponding to Neville elimination with two-determinant pivoting is optimal:

(6.2) ρ∗(A) = 1.

Proof. Let r := min{m, n}. It is sufficient to see that

(6.3) |a(t+1)
ij | ≤ |ã(t)

ij |, t + 1 ≤ i ≤ m, t + 1 ≤ j ≤ n, 1 ≤ t ≤ r − 1.

By Proposition 2.1 we know that ε1(A) = ε1(A(t))(= ε1(Ã(t))) for all t ≥ 1. This
implies by (2.2) that

(6.4) sign(ã(t)
ij ) = sign

(
ã
(t)
it

ã
(t)
i−1,t

ã
(t)
i−1,j

)
= sign(a(t+1)

ij ).

Now, taking into account that

a
(t+1)
ij = ã

(t)
ij − (ã(t)

it /ã
(t)
i−1,t)ã

(t)
i−1,j ,

(6.3) follows from (6.4). �

Obviously, the growth factor (6.2) avoids overflows in practical computations.
In addition, let us recall that the growth factor is an indicator of the stability
of an elimination process. The following example shows, in this sense, a clear
advantage of the two-determinant pivoting in Neville elimination with respect to
Neville elimination without pivoting (as it was used in [7]).

Example 6.2. Let ε be a positive real number and let A be the SSR matrix given
by

A =
(

ε 1
1 1

)
.
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If we carry out Neville elimination without pivoting and Neville elimination with
two-determinant pivoting, we obtain the upper triangular matrices U and V , re-
spectively:

U =
(

ε 1
0 1 − 1

ε

)
, V =

(
1 1
0 1 − ε

)
.

Then the growth factor associated to Neville elimination with two-determinant
pivoting of A is ρ∗(A) = 1, in contrast to the corresponding one associated to
Neville elimination without pivoting, which is 1

ε −1, and so can be arbitrarily large.

Now, we analyze the computed sequence of matrices Â(t) obtained when we
apply Neville elimination with two-determinant pivoting of A with finite precision
arithmetic.

Proposition 6.3. Let A be an m × n SSR matrix and r := min{m, n}. Let us
assume that when applying Neville elimination with two-determinant pivoting, the
associated permutations appear at steps k1, . . . , kh and all pivots have the same
strict sign of A. Then, for floating point arithmetic of sufficiently high precision,
the Neville elimination with two-determinant pivoting of A also produces matrices
Â(t) (t = 1, . . . , r) with Â(t)[t, . . . , m|t, . . . , n] of the same strict sign of A and the
associated permutations also occur in steps ki ≤ r − t.

Proof. Let us prove by induction on r that, for sufficiently high finite precision
arithmetic, the elimination procedure of an m×n SSR matrix A leads to a sequence
of computed matrices Â(t) such that Â(t)[t, . . . , m|t, . . . , n] are SSR and Â(t) tend
to A(t) when the roundoff unit u tends to zero.

The result is trivial for r = 1. Let us assume that it holds for r − 1 and let us
prove it for r. Since Â(1) = A and A is SSR, one step of Neville elimination with
two-determinant pivoting of A can be applied, producing Ã(1) and Â(2). The matrix
A(2)[2, . . . , m|2, . . . , n] is SSR by Proposition 2.1, the first row of A(2) coincides with
the first row of Ã(1) and in places (2, 1), . . . , (m, 1) A(2) has zeros. By formula (2.2),
Â(2) also has zeros in entries (2, 1), . . . , (m, 1), and its first row coincides with that
of A(2). The elements a

(2)
ij (2 ≤ i ≤ m, 2 ≤ j ≤ n) can be expressed as a quotient of

determinants of Ã(1) by the Schur complement formula (2.4). So, since Ã(1) is SSR,
by the continuity of the determinants, we have that Â(2)[2, . . . , m|2, . . . , n] tends
to A(2)[2, . . . , m|2, . . . , n] when u tends to zero. In conclusion, Â(2) tends to A(2)

when u tends to zero. Moreover, since any determinant of A(2)[2, . . . , m|2, . . . , n]
is a Schur complement of a minor of the SSR matrix Ã(1), again by (2.4) and the
continuity of the determinant, we can deduce that Â(2)[2, . . . , m|2, . . . , n] is SSR for
u sufficiently small. Then Â(2)[2, . . . , m|2, . . . , n] satisfies the induction hypothesis
and so Â(t)[t, . . . , m|t, . . . , n] is SSR for all t ≥ 3 for u sufficiently small, and the
matrices Â(t)[2, . . . , m|2, . . . , n] tend to A(t)[2, . . . , m|2, . . . , n] when u tends to zero.
Therefore Â(t) also tends to A(t) when u tends to zero, and the induction holds.

Since we have seen that for each t = 1, . . . , r the matrix Â(t)[t, . . . , m|t, . . . , n]
tends to A(t)[t, . . . , m|t, . . . , n], which is SSR with the sign of A by Proposition 2.1,
we conclude that Â(t)[t, . . . , m|t, . . . , n] has the same strict sign as A.

Finally, since A(t)[t, . . . , m|t, . . . n] is SSR for t = 1, . . . , r, then

det(A(t)[t, t + 1]) �= 0
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for t = 1, . . . , r−1. Taking into account that determinants are continuous functions,
since Â(t) tends to A(t) when the unit roundoff tends to zero, for a sufficiently
high precision det(Â(t)[t, t + 1]) has the same strict sign of det(A(t)[t, t + 1]) for
t = 1, . . . , r − 1. So, the last statement of the proposition follows. �

Now, we compare the behavior of the test for strict sign regularity introduced
in Section 4 with that of [7]. For this purpose, given an SSR matrix A, we apply
the test to A checking if it is SSR. We use MATLAB with floating point arith-
metic of finite precision for numerical experiments. We also carry out an analogous
experimentation with the test for strict sign regularity appearing in [7]. Roughly
speaking, the test of [7] uses Neville elimination without row and column exchanges.
As Theorem 6.1 and Example 6.2 have shown, the growth factor of Neville elim-
ination with two-determinant pivoting clearly has a better behavior than Neville
elimination without permutations. Now, we shall illustrate how these tests work
for checking the strict sign regularity of a matrix in finite precision arithmetic. We
have chosen the matrix A of the following example because it is very easy to justify
that it is SSR and its construction is very simple.

We consider a nonsingular n × n matrix B given by

B = F1 . . . Fn−1Gn−1 . . . G1

with Fi, Gi of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . .
. . .

0 1
mi+1,1 1

. . .
. . .

mn,n−i 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

. . .
. . .

1 0
1 m1,i+1

. . .
. . .

1 mn−i,n

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively, for i = 1, . . . , n − 1.
If mhj , mjh > 0 for all h = i + 1, . . . , n and j = 1, . . . , n − i, then by Theorem

4.3 of [8], B is totally positive. Let us consider the matrix C with the form of B
obtained by taking the simplest choice mhj = mjh = 1 for all h = i + 1, . . . , n and
j = 1, . . . , n − i.

If A := PC, where P is the backward identity matrix, then A is SSR. For n = 10,
we use Matlab with floating point arithmetic of a minimun number of 4 digits in
order to get Â(1) = A. Then, the test associated to Neville elimination with two-
determinant pivoting already gives an affirmative answer (‘A is SSR’) with 4 digits
of precision. However, the test associated with [7] needs at least of 6 digits to obtain
that A is SSR. For n = 15, we have to consider 7 digits in order to obtain that
Â(1) = A. Then, the test associated to Neville elimination with two-determinant
pivoting gives an affirmative answer with 7 digits of precision. However, the test
associated to Neville elimination without permutations needs at least 11 digits to
obtain that A is SSR.
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