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POLYNOMIAL EXTENSION OPERATORS
FOR H1, H (curl) AND H (div) - SPACES ON A CUBE

M. COSTABEL, M. DAUGE, AND L. DEMKOWICZ

Abstract. This paper is devoted to the construction of continuous trace lift-
ing operators compatible with the de Rham complex on the reference hexahe-
dral element (the unit cube). We consider three trace operators: The standard
one from H1, the tangential trace from H (curl) and the normal trace from
H (div). For each of them we construct a continuous right inverse by sepa-
ration of variables. More importantly, we consider the same trace operators
acting from the polynomial spaces forming the exact sequence corresponding
to the Nédélec hexahedron of the first type of degree p. The core of the paper
is the construction of polynomial trace liftings with operator norms bounded
independently of the polynomial degree p. This construction relies on a spec-
tral decomposition of the trace data using discrete Dirichlet and Neumann
eigenvectors on the unit interval, in combination with a result on interpolation
between Sobolev norms in spaces of polynomials.

1. Introduction

Many finite element discretizations of Maxwell’s equations in three space dimen-
sions rely on the reproduction at the discrete level of the exact sequence

(1.1) H1(Ω) ∇−→ H(curl, Ω) curl−→ H(div, Ω) div−→ L2(Ω).

General constructions of finite elements related to (1.1) are analyzed in [20], and a
survey on recent discoveries of deeper connections between finite element analysis
and exact sequences can be found in [2].

In this paper, we address a central issue in connection with the discretization of
(1.1) on a hexahedral mesh by means of the polynomial spaces corresponding to
Nédélec’s hexahedron of the first type [24]. The discrete spaces corresponding to
(1.1) are built from reference spaces defined on the master hexahedron Ω = I×I×I
with I = (−1, 1), forming the exact sequence,

(1.2) Wp(Ω) ∇−→ Qp(Ω) curl−→ V p(Ω) div−→ Yp(Ω).

Here p is any positive integer, Wp(Ω) = Pp(I)⊗Pp(I)⊗Pp(I), Yp(Ω) = Wp−1(Ω) and
Qp(Ω), V p(Ω) are suitably defined; see the next section. Combined with suitable
inter-element compatibility, the exact polynomial sequence (1.2) mainly serves for
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p and hp versions of finite elements. In order to ensure or control the inter-element
compatibility, the trace operators and their right inverses play an important role.

The present work is concerned with the construction of trace liftings at the
continuous and polynomial levels, satisfying uniform bounds independently of the
degree p. At the continuous level, the trace operators naturally associated with
H1(Ω), H(curl, Ω) and H(div, Ω) are the standard trace γ0, the tangential trace
γt and the normal trace γn, respectively. The associated trace spaces are H

1
2 (∂Ω),

H− 1
2 (curl, ∂Ω) and H− 1

2 (∂Ω). It is easy to characterize these trace spaces on a
cube; see Section 2. For trace spaces defined on general polyhedra, we refer to the
work of Buffa and Ciarlet [9], and on general Lipschitz domains to the paper of
Buffa, Costabel and Sheen [10].

At the polynomial level, the question is to find extension operators defined on
polynomial subspaces of these three trace spaces, which take their values in Wp(Ω),
Qp(Ω) and V p(Ω), respectively. The construction of such operators becomes a non-
trivial task if we request the corresponding norms to be bounded independently of
the polynomial degree p. A more demanding task would be to construct extension
operators on the continuous spaces that are polynomial preserving; see the work of
Schoeberl, Gopalakrishnan and Demkowicz [26].

Existence of polynomial extension operators with p-independent bounds for the
norms is a crucial step in proving convergence for the p and hp finite element
methods. First, H1-extension operators were constructed by Babuška and Suri in
two space dimensions in [4], for both triangular and square elements. Their work
was further expanded in [3] and applied to the construction of preconditioners for
the p-method. The 2D constructions remain an active area of research; see the
recent results of Ainsworth and Demkowicz [1], and Heuer and Leydecker [18].
Construction of an H(curl) extension operator in 2D follows immediately from the
corresponding H1 operator. The operator was utilized in deriving p-estimates for
the H(curl)-conforming problems by Demkowicz and Babuška in [14].

In three space dimensions, there are fewer publications available. For H1-
extension operators on the cube, Ben Belgacem [6] has some results, and the recent
work by Bernardi, Dauge, and Maday [7] contains some constructions and many
estimates in various Sobolev norms. Muñoz-Sola [23] deals with the construction
of an H1-operator for a tetrahedron. The incoming contribution of Schoeberl,
Gopalakrishan and Demkowicz [26] presents an alternative construction for the
tetrahedron and all spaces forming the exact sequence.

Our construction of H1-, H(curl)- and H(div)-conforming, polynomial exten-
sion operators for a cube mimics closely the corresponding definitions on the con-
tinuous level obtained by using the method of separation of variables, and has been
stimulated by the work of Pavarino and Widlund [25]. Earlier work on this kind
of H1-extension operators was done by Canuto and Funaro [11] and Bernardi and
Maday [8]. It has been observed early on that the uniform p-stability of extension
operators is equivalent to certain estimates for H1/2 norms in terms of Hilbert space
interpolation of polynomial spaces [21, 6]. A complete proof of such norm estimates
is now available [7].

By inspecting our constructions, it turns out that all the lifting operators can be
characterized by orthogonality properties or variational principles. One could have
used these variational principles to define the liftings. This simple procedure would,
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however, not have allowed us to obtain the desired norm bounds independent of
the polynomial degree p which we obtain from the explicit constructions.

Organization of the paper. In Section 2 we give details of the function spaces
which we use, at the continuous as well as at the polynomial level. We define the
trace operators. We also recall the Poincaré map. Section 3 deals with questions of
continuous and polynomial extension in two dimensions. This serves as a prepara-
tory step for the 3D case. In Section 4, we address the lifting of traces in the
continuous spaces in three dimensions. In Sections 5 and 6 we construct polyno-
mial trace liftings into H1(Ω) and H(div, Ω), with the help of explicit formulae
based on the separation of variables and expansions in bases of discrete 1D Laplace
eigenvectors. The Poincaré map then allows us to derive from the previous two
liftings the construction of a lifting for H(curl, Ω) in Section 7. We emphasize
that the direct construction of such a lifting without the help of the Poincaré map
would have been a very difficult task. We conclude our paper in Section 8.

2. Sobolev and polynomial spaces

2.1. Sobolev spaces. We use Hörmander’s definitions for all considered Sobolev
spaces; see e.g. [22]. The closure of test functions C∞

0 (Ω) in Hs(Rn) is denoted by
H̃s(Ω), and for s ≥ −1

2 can be identified with distributions from Hs(Ω); see [22].
For Lipschitz domains, H̃s(Ω) and H−s(Ω) are dual to each other, for any s ∈ R.

Moreover each scale
(
H̃s(Ω)

)
s∈R

and
(
Hs(Ω)

)
s∈R

is an interpolation scale.
For any s ≥ 0, the constant functions belong to Hs(Ω) and to H̃−s(Ω). Thus

it makes sense to denote by Hs
avg(Ω) and H̃−s

avg(Ω) the functions and distributions
with zero average.

We will also use the tensor product form of these spaces, in particular on the
square I × I = (−1, 1)2. The space L2(I, Hs(I)) denotes the space of all L2-
integrable functions on I with values in the space Hs(I). As a function space
on I × I, this space is isomorphic, via an exchange of independent variables, to
the space Hs(I, L2(I)) of L2(I)-valued Hs functions on I. We will sometimes
indicate by indices the coordinates involved, so that we can write L2

(
Iy, Hs(Ix)

)
=

Hs
(
Ix, L2(Iy)

)
. Analogous definitions are used with H̃s replacing Hs. For any

s ≥ 0, it follows that

Hs(I × I) = L2
(
I, Hs(I)

)
∩ Hs

(
I, L2(I)

)
,(2.1)

H−s(I × I) = L2
(
I, H−s(I)

)
+ H−s

(
I, L2(I)

)
(2.2)

and analogously for H̃±s spaces.

2.2. Trace operators. We denote by γ0 the standard trace operator

(2.3) γ0 : H1(Ω) −→ H
1
2 (∂Ω), U �−→ u = U |∂Ω.

Here Ω is a Lipschitz 2D or 3D domain.
In 2D, the space H(curl, Ω) is defined as {E ∈ L2(Ω)2 : curlE ∈ L2(Ω)}, and,

in 3D, as

H(curl, Ω) = {E ∈ L2(Ω)3 : curlE ∈ L2(Ω)3}.
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The tangential trace γt is well defined on H(curl, Ω) in 2D and H(curl, Ω) in 3D.
In 2D, γt acts continuously from H(curl, Ω) into H− 1

2 (∂Ω), and in 3D:

(2.4) γt : H(curl, Ω) −→ H− 1
2 (curl, ∂Ω), E �−→ et =

(
E − (E · n)n

)
|∂Ω,

where n denotes the outward normal unit vector on the boundary ∂Ω. The trace
space H− 1

2 (curl, ∂Ω) is the space of tangential fields e ∈ H− 1
2 (∂Ω) such that their

surface curls curl e belong to H− 1
2 (∂Ω).

The space H(div, Ω) is the space of vector fields H with components in L2(Ω)
such that div H ∈ L2(Ω). The normal trace γn is well defined on H(div, Ω). In 2D
and 3D:

(2.5) γn : H(div, Ω) −→ H− 1
2 (∂Ω), H �−→ h = (H · n)|∂Ω.

All three trace operators γ0, γt and γn are surjective [9], and therefore there exist
continuous liftings between the spaces in (2.3), (2.4) and (2.5), respectively.

By H1
0 (Ω), H0(curl, Ω), H0(curl, Ω), H0(div, Ω) we denote the null-spaces of

the corresponding trace operators.

2.3. Tensor product polynomial spaces. Let I = (−1, 1) be the reference in-
terval. For any integer p ∈ N we denote by Pp(I) the space of polynomials of degree
≤ p on I. For p ≥ 2, let P

p
0(I) be the subspace consisting of those u ∈ Pp(I) that

are zero at ±1.
Let p, q, r ∈ N. We introduce the tensor product spaces

P
(p,q)(I2) = P

p(I) ⊗ P
q(I) and P

(p,q,r)(I3) = P
p(I) ⊗ P

q(I) ⊗ P
r(I).

Let Ω be the reference square (−1, 1)2 in 2D or the reference cube (−1, 1)3 in
3D. The spaces associated with H1(Ω) are

(2.6) Wp(I2) = P
(p,p)(I2) and Wp(I3) = P

(p,p,p)(I3).

The spaces associated with H(curl, Ω) and H(curl, Ω) are

Qp(I
2) = P

(p−1,p)(I2) × P
(p,p−1)(I2),

Qp(I
3) = P

(p−1,p,p)(I3) × P
(p,p−1,p)(I3) × P

(p,p,p−1)(I3).
(2.7)

In 3D, the spaces associated with H(div, Ω) are

(2.8) V p(I3) = P
(p,p−1,p−1)(I3) × P

(p−1,p,p−1)(I3) × P
(p−1,p−1,p)(I3).

Finally the spaces associated with L2(Ω) are Yp(Ω) = Wp−1(Ω).
Using these spaces, we have for all p ≥ 1 the following exact sequences:

Wp(Ω) ∇−→ Qp(Ω) curl−→ Yp(Ω) in 2D,(2.9)

Wp(Ω) ∇−→ Qp(Ω) curl−→ V p(Ω) div−→ Yp(Ω) in 3D.(2.10)

2.4. Polynomial traces. Let p ∈ N. In 2D, we denote by e1, . . . , e4 the edges of
the square Ω = I2; see Fig. 1. We introduce the following two trace spaces:

Wp(∂Ω) = {u ∈ H
1
2 (∂Ω) : u|ei

∈ P
p(ei), i = 1, . . . , 4},

Qp(∂Ω) = {e ∈ H− 1
2 (∂Ω) : e|ei

∈ P
p−1(ei), i = 1, . . . , 4}.

(2.11)

Note that in Wp(∂Ω), the edge traces ui := u|ei
share common values at the corners,

whereas in Qp(∂Ω), the edge traces ei := e|ei
are independent of each other.



POLYNOMIAL EXTENSION OPERATORS ON A CUBE 1971

In 3D, we denote by f1, . . . , f6 the faces of the cube Ω = I3; see Fig. 2. We
introduce the following three trace spaces:

Wp(∂Ω) = {u ∈ H
1
2 (∂Ω) : u|fi ∈ P

(p,p)(fi), i = 1, . . . , 6},

Qp(∂Ω) = {e ∈ H− 1
2 (curl, ∂Ω) : e|fi ∈ Qp(fi), i = 1, . . . , 6},

Vp(∂Ω) = {h ∈ H− 1
2 (∂Ω) : h|fi ∈ P

(p−1,p−1)(fi), i = 1, . . . , 6}.

(2.12)

Note that
• In Wp(∂Ω), the face traces ui := u|fi share common values along the edges

of the cube.
• In Qp(∂Ω), the face traces ei := e|fi share common values for their tangen-

tial traces along the edges of the cube.
• In Vp(∂Ω), the face traces hi := h|fi are independent of each other.

We end this subsection by the introduction of the polynomial subspaces with
zero trace:

Wp,0(Ω) = {U ∈ Wp(Ω) : γ0U = 0} = Wp(Ω) ∩ H1
0 (Ω),

Qp,0(Ω) = {E ∈ Qp(Ω) : γtE = 0}.
(2.13)

2.5. Poincaré map. Recall the relevant Poincaré map in three space dimensions,

(2.14) K : H(div, Ω) → H(curl, Ω), (KH)(x) = −x ×
∫ 1

0

tH(tx) dt.

For a general definition of the Poincaré map in terms of differential forms in any
space dimension, we refer, e.g., to [19] or [2]. Direct, elementary computations (see
[17]) show that:

• the map is a right-inverse of the curl operator,

(2.15) div H = 0 =⇒ curlKH = H,

• the map is continuous from H(div, Ω) into H(curl, Ω),
• the map preserves polynomials, i.e. it maps V p(Ω) into Qp(Ω).

Among other results, the map has been used in [14, 15] to prove that the constant
in the discrete Friedrichs’ inequality is independent of the polynomial degree p.

3. Polynomial extension operators in 2D

In this section we work with the reference square Ω = I2.
Construction of the polynomial extension operators follows closely the corre-

sponding construction of extension operators on the continuous level by using sep-
aration of variables, and we review the continuous case first.

3.1. Continuous extensions using separation of variables. We construct ex-
tensions on the continuous level for H1(Ω) and H(curl, Ω).

3.1.1. H1 extension operator. Consider u ∈ H
1
2 (∂Ω). The most natural, finite-

energy lift of u is obtained by considering the extension U ∈ H1(Ω) with minimum
H1-seminorm. This means that U is the solution of the Dirichlet problem for the
homogeneous Laplace equation with boundary data u.

We can alternatively construct U through four successive steps involving each
time one edge only. We begin by considering restriction u3 ∈ H

1
2 (e3) of boundary
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data u to the third edge. The lift U3 of u3 is constructed by solving the mixed
boundary-value problem for the Laplacian,

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U ∈ H1(Ω),
−∆U = 0 in Ω,

U = u3 on edge e3,

U = 0 on edge e1,

∂nU = 0 on edges e2, e4.

Here ∂n is the outer normal derivative. Problem (3.1) is well-posed. Its solution can
be represented using the expansion of u3 in the basis of 1D Neumann eigenvectors:
Let (Ψn, µn), n = 0, 1, . . . denote the Neumann eigenpairs for the 1D Laplacian

(3.2) −Ψ′′
n = µnΨn, Ψ′

n(−1) = 0, Ψ′
n(1) = 0.

Eigenvectors are orthogonal in both L2 and H1-products, and we assume that Ψn

has a unit L2-norm. We write the expansion of u3 as

(3.3) u3 =
∞∑

n=0

unΨn(x) with un =
∫

e3

u(x)Ψn(x) dx.

Then we find that U = U3 is given by

(3.4) U3(x, y) =
∞∑

n=0

unΨn(x)βµ
n(y),

where the corresponding functions β = βµ
n are found by solving the two-point

Dirichlet boundary-value problem,

(3.5) −β′′ + µnβ = 0, β(−1) = 0, β(1) = 1.

We can check that for u3 ∈ H
1
2 (e3), the solution lives in H1(Ω).

Lift U3 of boundary data u3 vanishes on the first edge, but it does not vanish on
the vertical edges. Notice that the use of Neumann boundary conditions on vertical
edges is essential. The solution of a problem with homogeneous Dirichlet conditions
replacing the Neumann conditions involves, in general, discontinuous Dirichlet data
and, therefore, may not live in H1(Ω).

We proceed now in a fully analogous way with the first edge and construct lift
U1 of restriction u1 = u|e1 of the boundary data to the first edge.

Next, we subtract from function u traces of lifts U3 and U1,

(3.6) v = u − U1|∂Ω − U3|∂Ω.

Function v ∈ H
1
2 (∂Ω) depends continuously upon the original data u and vanishes

on the first and on the third edges. Consequently, its restrictions v2, v4 to the
second and the fourth edge live in H̃

1
2 (I) with the norm bounded by the H

1
2 -norm

of the original data u.
The fact that the boundary data vanishes at endpoints in a weak sense allows

now for considering problems with pure Dirichlet boundary conditions. Lift U = U2
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of v2 is determined by solving the boundary-value problem

(3.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U ∈ H1(Ω),

−∆U = 0 in Ω,

U = v2 on edge e2,

U = 0 on edges e1, e3, e4.

Its solution U2 can be represented in terms of 1D Dirichlet eigenpairs (Φn, λn), n =
1, 2, . . .,

(3.8) −Φ′′
n = λnΦn, Φn(−1) = Φn(1) = 0

and of the corresponding solutions β = βλ
n of the two-point boundary value problem,

(3.9) −β′′ + λnβ = 0, β(−1) = 0, β(1) = 1.

U2 is given by the formula

(3.10) U2(x, y) =
∞∑

n=1

vnβλ
n(x)Φn(y), un =

∫
e2

v2Φn dy.

Lift U4 is determined in a fully analogous way. The final H1-extension is com-
puted by summing the four lifts from the individual edges,

(3.11) U =
4∑

j=1

Uj .

Finally, we record the formulas for the Neumann and Dirichlet eigenpairs,

(3.12)
Ψ0 =

1√
2
, µ0 = 0, Ψn = cos

(nπ

2
(x + 1)

)
, µn =

n2π2

4
, n = 1, 2, . . . ,

Φn = sin
(nπ

2
(x + 1)

)
, λn =

n2π2

4
, n = 1, 2, . . . .

Notice that (except for the first Neumann eigenpair) the Neumann and Dirichlet
eigenvalues are equal and we have a simple relation,

(3.13) Φn = −µ
− 1

2
n Ψ′

n, Ψn = λ
− 1

2
n Φ′

n.

Function βµ
0 is simply linear, and the remaining functions βµ

n , βλ
n are expressed in

terms of exponentials.

Remark 3.1. The global and elementwise constructions of U result in the same trace
lifting, which is the only harmonic H1(Ω) function satisfying the trace condition
γ0U = u. This defines the lift operator L0. �
3.1.2. H(curl) extension operator. In 2D, the construction of the H(curl) exten-
sion operator can be reduced to the use of the H1-extension operator. Given a
distribution et ∈ H− 1

2 (∂Ω), we compute first its average,

(3.14) e0 = 〈et, 1〉/8.

Next, we utilize the isomorphism,

(3.15) ∂t : H
1
2
avg(∂Ω) → H

− 1
2

avg(∂Ω)

and introduce the trace potential u ∈ H
1
2
avg(∂Ω) such that

(3.16) ∂tu = et − e0.
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Here ∂t is the derivative along the tangential unit vector field t such that (n, t) is
direct. The H(curl)-extension is now constructed as follows:

(3.17) E = ∇U + E0,

where U is the H1-extension of the trace potential u, and E0 ∈ Q1(Ω) is e.g. the
extension of the constant trace e0 expressed in terms of the lowest-order Nédélec
shape functions. As a consequence of the construction above we obtain the esti-
mates

‖E‖H(curl,Ω) ≤ C
(
‖U‖H1(Ω) + ‖E0‖H(curl,Ω)

)
≤ C

(
‖u‖

H
1
2 (∂Ω)

+ ‖e0‖
H− 1

2 (∂Ω)

)
≤ C‖et‖

H− 1
2 (∂Ω)

.
(3.18)

Our alternative edgewise construction relies on the fact that the average value
need not be evaluated over the whole boundary. This reveals nicely the difference
between spaces H− 1

2 (I) and H̃− 1
2 (I). We can consider the restriction of et to the

third edge. Utilizing the isomorphism

(3.19) ∂ : H
1
2
avg(I) → H− 1

2 (I),

we introduce the corresponding potential u3 ∈ H
1
2
avg(e3) such that ∂tu3 = et|e3 . The

corresponding lift from the edge is defined by taking the gradient of the lift of the
potential,

(3.20) E3 = ∇U3.

Notice that we cannot take the average of functionals from H− 1
2 (I). In the same

way, we construct lift E1. Upon subtracting traces of the lifts from the first and
third edges,

(3.21) ft = et − γt(E1 + E3),

we learn that the corresponding restrictions live in smaller spaces H̃− 1
2 (I), for which

the computation of the average value is now possible. This can be seen by recalling
that space H̃− 1

2 (I) is the dual of space H
1
2 (I), which includes the unit function.

Construction of the lift from the second edge is now done similarly to the global
construction. Utilizing the isomorphism

(3.22) ∂ : H̃
1
2 (I) → H̃

− 1
2

avg(I),

we represent the boundary data as,

(3.23) ft|e2 = ∂t v2 + f2,0,

where f2,0 denotes the average value. We then construct the lift by taking

(3.24) E2 = ∇U2 + E2,0,

where E0,2 ∈ Q1(Ω) is obtained with the lowest order Nédélec shape function
corresponding to the second edge. In the same way, we lift ft|e4 and define the final
lift by summing the four edge contributions,

(3.25) E =
4∑

j=1

Ej .
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Remark 3.2. Here again, the “global” and “local” constructions result in the same
extension operator Lt, which, moreover, is divergence free. Whatever the con-
struction, we find an extension in the form E = ∇U + E0 where U ∈ H1(Ω) is
harmonic and E0 ∈ Q1(Ω). Since all elements of Q1(Ω) are divergence free, we
find div E = 0. Let us prove that such an extension of the zero tangential trace
et = 0 is zero. Since ∫

Ω

curl E dx dy =
∫

∂Ω

et dt = 0,

we find that the average of curl E0 on Ω is zero. Since curl E0 is a constant, it is
zero. Using the exact sequence (1.1) we obtain U0 ∈ H1(Ω) such that E0 = ∇U0,
and we find that E = ∇(U + U0). Since div E = 0, we find that ∆(U + U0) = 0.
Since, moreover, γt∇(U +U0) = 0, we finally deduce that U +U0 is constant; hence
E is zero. �
Conclusions in 2D continuous case. The lift operators L0 and Lt satisfy the
following exact sequence and commuting diagram properties:

(3.26)

H1(Ω) ∇−→ H(curl, Ω) curl−→ L2(Ω)

γ0

⏐⏐
�⏐⏐L0 γt

⏐⏐
�⏐⏐Lt γavg

⏐⏐
�⏐⏐Lavg

H
1
2 (∂Ω) ∂−→ H− 1

2 (∂Ω)
γavg−→ R

Here, γavg is the averaging operator, and Lavg is its lifting by a constant function.
The operator L0 is uniquely determined by the condition that ∆ ◦ L0 = 0, and Lt

by the conditions that div ◦ Lt is zero and that curl ◦ Lt takes its values in R. �

3.2. Special families of 1D polynomials. We shall mimic now the continuous
construction on the discrete level. We begin by defining a number of polynomial
families defined on the master interval I = (−1, 1), with p ≥ 1 denoting a polyno-
mial degree.

Function φ
(p)
0 will denote the minimum L2-norm extension of 0 and 1 values at

the interval endpoints in the space of polynomials of order less than or equal to p.

Lemma 3.3. Let φ
(p)
0 ∈ Pp(I) satisfy φ

(p)
0 (−1) = 0 and φ

(p)
0 (1) = 1, with minimum

norm in L2(I). It follows that

(3.27) ‖φ(p)
0 ‖2

L2(I) =
2

p(p + 2)
.

Proof. See [25, Lemma 1]. �

Next we introduce the discrete Dirichlet eigenpairs,

(3.28)

⎧⎪⎪⎨⎪⎪⎩
Φi ∈ P

p
0(I)∫

I

Φ′
iv

′ = λ
(p)
i

∫
I

Φiv, ∀v ∈ P
p
0(I)

i = 2, . . . , p

and the discrete Neumann eigenpairs,

(3.29)

⎧⎪⎪⎨⎪⎪⎩
Ψi ∈ P

p(I)∫
I

Ψ′
iv

′ = µ
(p)
i

∫
I

Ψiv, ∀v ∈ P
p(I)

i = 0, . . . , p.
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Obviously both eigenvalues and the corresponding eigenvectors depend upon the
polynomial degree p, λi = λ

(p)
i , Φi = Φ(p)

i , µi = µ
(p)
i , Ψi = Ψ(p)

i . For simplicity, we
will frequently omit the superscript (p), hoping that this does not lead to confusion
with the continuous eigenpairs introduced in the previous section.

We shall assume that all discrete eigenvectors have been normalized to have a
unit L2-norm,

(3.30) ‖Φi‖L2(I) = 1, ‖Ψi‖L2(I) = 1.

Notice that the first Neumann eigenvalue µ
(p)
0 = 0, independently of p. For each of

the discrete Dirichlet and Neumann eigenvalues, we introduce the following solution
of the associated discrete 1D boundary-value problem; cf. Section 3.1.⎧⎨⎩

βλ
i ∈ P

p(I), βλ
i (−1) = 0, βλ

i (1) = 1∫
I

(βλ
i )′v′ + λ

(p)
i

∫
I

βλ
i v = 0 ∀v ∈ P

p
0(I)

(i = 2, . . . , p),(3.31)

⎧⎨⎩
βµ

i ∈ P
p(I), βµ

i (−1) = 0, βµ
i (1) = 1∫

I

(βµ
i )′v′ + µ

(p)
i

∫
I

βµ
i v = 0 ∀v ∈ P

p
0(I)

(i = 0, . . . , p).(3.32)

Notice that function βµ
0 , corresponding to the zero Neumann eigenvalue, is linear

for all values of p.

Lemma 3.4. The inverse inequality

(3.33) |f |2H1(I) ≤
(p + 1)4

2
‖f‖2

L2(I), ∀f ∈ P
p(I)

holds.

Proof. See [5]. �

Lemma 3.5. There exists a constant C > 0, independent of p, such that

(3.34)
|βλ

i |2H1(I) + λ
(p)
i ‖βλ

i ‖2
L2(I) ≤ C (λ(p)

i )
1
2 , i = 2, . . . , p,

|βµ
i |2H1(I) + µ

(p)
i ‖βµ

i ‖2
L2(I) ≤ C (µ(p)

i )
1
2 , i = 1, . . . , p.

Proof. For completeness, we shall reproduce the reasoning from [25] and prove the
second inequality. The proof of the first inequality is fully analogous. Let i ≥ 1.

• It follows from the definition (3.32) that

(3.35)
|βµ

i |2H1(I) + µ
(p)
i ‖βµ

i ‖2
L2(I) ≤ |σ|2H1(I) + µ

(p)
i ‖σ‖2

L2(I)

∀σ ∈ P
p(I) : σ(−1) = 0, σ(1) = 1.

• Next, we have

(3.36)
µ

(p)
i =

∫
I

|Ψ′
i|2 (set v = Ψ in the definition of Ψi)

≤ (p + 1)4

2
(Lemma 3.4).
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• Since i ≥ 1, the discrete eigenvalue µ
(p)
i is larger than µi, which is in turn

larger than or equal to π2

4 > 1
2 . Thus we deduce from (3.36) that there

exists an integer q, 1 ≤ q ≤ p such that

(3.37)
q4

2
≤ µ

(p)
i ≤ (q + 1)4

2
.

Now select σ = φ
(q)
0 with φ

(q)
0 defined in Lemma 3.3. We have

(3.38)
|φ(q)

0 |2H1(I) + µ
(p)
i ‖φ(q)

0 ‖2
L2(I) ≤ (q + 1)4 ‖φ(q)

0 ‖2
L2(I) (Lemma 3.4)

≤ 12q2 (Lemma 3.3).

• Substituting into (3.35),

(3.39) |βµ
i |2H1(I) + µ

(p)
i ‖βµ

i ‖2
L2(I) ≤ 12q2 ≤ 12

√
2 (µ(p)

i )
1
2 .

Notice however that the inequality (3.34)2 does not hold for index i = 0, as the
first Neumann eigenvalue is equal to zero. �

3.3. Construction of the polynomial H1 extension operator. We shall con-
sider the master square Ω shown in Fig. 1. Let u belong to the trace space Wp(∂Ω);
cf. (2.11)1.

Step 1: Lifting from a horizontal edge. We shall consider first the third edge e3.
Let u3 = u be the restriction of u to e3. Then u(x) ∈ Pp(e3), and we expand it into
the discrete Neumann eigenvectors,

(3.40) u(x) =
p∑

j=0

ujΨj(x), uj =
∫

I

uΨj

and define its polynomial extension as

(3.41) U(x, y) :=
p∑

j=0

ujΨj(x)βµ
j (y).

An evaluation of the H1-norm follows, which is straightforward if we use the defi-
nition of Ψj and Lemma 3.5.∫

Ω

|∇U |2 =
p∑

i=0

p∑
j=0

uiūj

(∫
I

Ψ′
iΨ

′
j

∫
I

βµ
i βµ

j +
∫

I

ΨiΨj

∫
I

(βµ
i )′(βµ

j )′
)

=
p∑

j=0

|uj |2
(
µ

(p)
j ‖βµ

j ‖2
L2(I) + |βµ

j |2H1(I)

)
≤ |u0|2 + C

p∑
j=1

|uj |2(µ(p)
j )

1
2 ,∫

Ω

|U |2 =
p∑

j=0

|uj |2‖βµ
j ‖2

L2(I)

≤ C

p∑
j=0

|uj |2.
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e1

e2

e3

e4
x

y

Figure 1. Master square element. Enumeration of edges. The
first and third edges are parametrized with x, and the second and
fourth edges are parametrized with y.

Consequently,

(3.42) ‖U‖2
H1(Ω) ≤ C

p∑
j=0

|uj |2
(
1 + (µ(p)

j )
1
2

)
.

Clearly, the right-hand side of (3.42) is the fractional 1
2 - norm for the polynomial

space Pp(I) obtained by the standard interpolation argument applied to the L2- and
the H1-norms and the space of polynomials. The following theorem of Bernardi,
Dauge, and Maday provides the key argument for our result.

Proposition 3.6. There exists a constant C > 0, independent of the polynomial
degree p, such that

(3.43) ‖u‖2

H
1
2 (I)

≤
p∑

j=0

|uj |2
(
1 + (µ(p)

j )
1
2

)
≤ C‖u‖2

H
1
2 (I)

for every polynomial u ∈ Pp(I), where uj =
∫

I
u Ψ(p)

j .

Proof. See [7, Ch. II, Thm. 4.2]. �

Consequently, the H1-norm of the lift U = U3 given by (3.41) is bounded by the
H

1
2 (e3)-norm of trace u = u3, which, in turn, is bounded by the global norm of the

trace u on the whole boundary. Notice that, by construction, the lift U3 has a zero
trace on the lower edge e1. Repeating thus exactly the same construction for the
first edge, we obtain a lift U1 of the trace u1. The polynomial trace

(3.44) v = u − γ0(U1 + U3)

vanishes along the horizontal edges and, consequently, has zero vertex values.
Step 2: Lifting from a vertical edge. We consider now the function v given

by (3.44). Its restrictions v2 and v4 to either of the two vertical edges are now
bounded in the H̃

1
2 -norm,

(3.45) ‖vi‖
H̃

1
2 (ei)

≤ C‖u‖
H

1
2 (∂Ω)

, i = 2, 4.
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Consider the second edge and expand the function v2 now in terms of the discrete
Dirichlet eigenvectors,

(3.46) v2(y) =
p∑

j=2

vjΦj(y), vj =
∫

I

vΦj .

The extension U = U2 to the square element is now defined as follows:

(3.47) U(y) =
p∑

j=2

vjβ
λ
j (x)Φj(y).

By exactly the same arguments as in the previous paragraph, we show that

(3.48) ‖U‖2
H1(Ω) ≤ C

p∑
j=2

|vj |2
(
1 + (λ(p)

j )
1
2

)
.

The discrete norm on the right-hand side of (3.48) turns out to be equivalent to
the continuous H̃

1
2 -norm.

Proposition 3.7. There exists a constant C > 0, independent of the polynomial
degree p, such that

(3.49) ‖v‖2

H̃
1
2 (I)

≤
p∑

j=2

|vj |2
(
1 + (λ(p)

j )
1
2

)
≤ C‖v‖2

H̃
1
2 (I)

for every polynomial v ∈ P
p
0(I), where uj =

∫
I
u Φ(p)

j .

Proof. Such norm equivalences were stated in [6]. For a proof, see [7, Ch. II,
Theorem 4.6 and inequality (4.9)]. �

Notice that the lift does not alter the trace on the remaining edges. Let U4

denote the analogous lift from the vertical edge e4. We have proved

Theorem 3.8. The operator

(3.50) L(p)
0 : Wp(∂Ω) � u �−→ U :=

4∑
j=1

Uj ∈ Wp(Ω)

defines a polynomial lift of traces. Its norm from H
1
2 (∂Ω) into H1(Ω) is indepen-

dent of the degree p.

Remark 3.9. We can see that for any u ∈ Wp(∂Ω), the lift L(p)
0 u coincides with the

solution U ∈ Wp(Ω) of the discrete Dirichlet problem

(3.51) γ0U = u and
∫

Ω

∇U · ∇V = 0 ∀V ∈ Wp,0(Ω).

Thus, despite its nonsymmetric construction, L(p)
0 is canonical. �
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3.4. Construction of the polynomial H (curl) extension operator. Let p ≥ 1
be an integer and let et be an element of Qp(∂Ω); cf. (2.11)2. Using the construction
in the continuous case first, we obtain an extension in H(curl, Ω) in the form
E = ∇U + E0 with harmonic U ∈ H1(Ω) and E0 ∈ Q1(Ω). We define our
polynomial extension L(p)

t et by the formula

(3.52) L(p)
t et = ∇

(
L(p)

0 u
)

+ E0, with u = γ0U ∈ Wp(∂Ω).

Indeed we check that

γt L(p)
t et = γt∇(L(p)

0 u) + γtE0

= ∂t(L(p)
0 u)|∂Ω + γtE0

= ∂tu + γtE0 = et.

Let us prove furthermore that definition (3.52) is independent of the way that
E is split into ∇U + E0 with harmonic U ∈ H1(Ω) and E0 ∈ Q1(Ω): Let us
consider two such representations of E, E = ∇U +E0 = ∇U ′+E′

0, with harmonic
U, U ′ ∈ H1(Ω) and E0, E′

0 ∈ Q1(Ω). Therefore ∇(U − U ′) = E′
0 − E0. Using the

exact sequence (2.9), we find that E′
0 −E0 = ∇U0 with a (harmonic) U0 ∈ W1(Ω).

We deduce that, after the possible addition of a constant, U − U ′ = U0. Hence

∇L(p)
0 γ0(U − U ′) = ∇L(p)

0 γ0U0.

Since U0 is a harmonic element of W1(Ω) ⊂ Wp(Ω), it satisfies

L(p)
0 γ0U0 = U0.

Finally
∇L(p)

0 γ0(U − U ′) = ∇U0 = E′
0 − E0,

which proves the independence of L(p)
t et of the representation of E.

Theorem 3.10. The operator

(3.53) L(p)
t : Qp(∂Ω) � et �−→ E = ∇

(
L(p)

0 u
)

+ E0 ∈ Qp(Ω)

defines a polynomial lift of tangential traces. Its norm from H− 1
2 (∂Ω) to H(curl, Ω)

is bounded independently of the degree p.

Proof. The definition of L(p)
t and the fact that it lifts tangential traces are clear

from the considerations above. The uniform boundedness with respect to p is a
consequence of estimates (3.18) for the extension in the continuous case, and of the
uniform boundedness of the scalar extensions L(p)

0 (Theorem 3.8). �

Conclusions in 2D polynomial case. With p ≥ 1 any integer, the lift oper-
ators L(p)

0 and L(p)
t satisfy the following exact sequence and commuting diagram

properties, reproducing those of the continuous case:

(3.54)

Wp(Ω) ∇−→ Qp(Ω) curl−→ Yp(Ω)

γ0

⏐⏐
�⏐⏐L(p)
0

γt

⏐⏐
�⏐⏐L(p)
t

γavg

⏐⏐
�⏐⏐Lavg

Wp(∂Ω) ∂−→ Qp(∂Ω)
γavg−→ R

Here, γavg is the averaging operator, and Lavg is its lifting by a constant function.



POLYNOMIAL EXTENSION OPERATORS ON A CUBE 1981

The operator L(p)
0 is uniquely determined by the extra condition of orthogonality

(3.51), and L(p)
t by

(3.55)
∫

Ω

E · ∇V = 0 ∀V ∈ Wp,0(Ω) and curlE ∈ R

for E = L(p)
t et with et any element of Qp(∂Ω). �

4. 3D extension operators on the continuous level

As in 2D, we will discuss first the construction of the extension operators on
the continuous level. In this section, we will use the 1D Dirichlet and Neumann
eigenpairs (Φn, λn) and (Ψn, µn) as defined in Section 3.1, equations (3.8) and (3.2).

4.1. H1 extension operator. The procedure is fully analogous to its 2D counter-
part. Let Ω denote the master hexahedron shown in Fig. 2. We begin with the top
face f2. Let u2 ∈ H

1
2 (f2) denote the restriction of the boundary data u ∈ H

1
2 (∂Ω)

to face f2. The corresponding lift U2 is constructed by solving the following mixed
boundary-value problem for the Laplacian:

(4.1)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U ∈ H1(Ω),
−∆U = 0 in Ω,

U = u2 on face f2,

U = 0 on face f1,

∂nU = 0 on faces f3, f4, f5, f6.

Separation of variables leads to two Neumann eigenvalue problems in terms of x
and y coordinates, and a two-point Dirichlet boundary-value problem in terms of
the coordinate z,

(4.2) −β′′ + (µn + µm)β = 0, β(−1) = 0, β(1) = 1.

Functions β = βµµ
nm, n, m = 0, 1, . . . depend upon pairs of Neumann eigenvalues

µn, µm. The solution U = U2 reads as follows:

(4.3) U2(x, y, z) =
∞∑

n=0

∞∑
m=0

unmΨn(x)Ψm(y)βµµ
nm(z),

with unm =
∫

f2

u2(x, y)Ψn(x)Ψm(y) dxdy.

In the same way we lift from the bottom face f1. We subtract then the traces of
the lifts U1, U2 from the original boundary data,

(4.4) v = u − (U1 + U2)|∂Ω.

Next, we construct the lifts from the pair of vertical faces f3, f5. The key point is
that, after the subtraction of the first two lifts, function v vanishes over the horizon-
tal faces. Its restriction v5 to face f5 lives in space H

1
2 (Ix, L2(Iz))∩L2(Ix, H̃

1
2 (Iz))

with the norm controlled by the H
1
2 norm of the original data. Consequently, we
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can impose homogeneous Dirichlet boundary conditions on faces f1, f2. Lift U = U5

is defined as the solution of the problem

(4.5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U ∈ H1(Ω),
−∆U = 0 in Ω,

U = v5 on face f5,

U = 0 on faces f1, f2, f3,

∂nU = 0 on faces f4, f6.

Separation of variables now leads to the Neumann eigenvalue problem in the x
coordinate and the Dirichlet eigenvalue problem in the z direction. We need to
define a new family of solutions β = βµλ

nm to the two-point boundary-value problem,

(4.6) −β′′ + (µn + λm)β = 0, β(−1) = 0, β(1) = 1.

The solution U = U5 reads as follows:

(4.7) U5(x, y, z) =
∞∑

n=0

∞∑
m=1

unmΨn(x)βµλ
nm(y)Φm(z)

with unm =
∫

f5

v5(x, y)Ψn(x)Φm(z) dxdz.

In the same way we construct lift U3. Upon subtracting lifts U3, U5, the modified
boundary data vanishes over faces f1, f2, f3, f5,

(4.8) w = u − (U1 + U2 + U3 + U5)|∂Ω.

Consequently, the traces w4 and w6 of function w on the remaining vertical faces
f4, f6 live in space H̃

1
2 (I2). We determine lift U = U4 by solving a Dirichlet problem

for the Laplacian,

(4.9)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U ∈ H1(Ω),

−∆U = 0 in Ω,

U = w4 on face f4,

U = 0 on faces f1, f2, f3, f5, f6.

The solution depends continuously on ‖w4‖
H̃

1
2 (f4)

, which, in turn, is bounded by

the H
1
2 (∂Ω)-norm of the original data. Lift U4 is expressed in terms of Dirichlet

eigenfunctions,

(4.10) U4(x, y, z) =
∞∑

n=1

∞∑
m=1

unmβλλ
nm(x)Φn(y)Φm(z),

with unm =
∫

f4

w4(y, z)Φn(y)Φm(z) dydz

and solutions β = βλλ
nm to the two-point boundary-value problem,

(4.11) −β′′ + (λn + λm)β = 0, β(−1) = 0, β(1) = 1.
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In the same way we construct the lift from face f6. The final extension is constructed
by summing the six individual face lifts,

(4.12) U =
6∑

j=1

Uj .

Remark 4.1. As in 2D this local construction coincides with the global extension
operator L0 defined as the Dirichlet harmonic extension. �

4.2. H (div) extension operator. We shall continue now from the other end of
the exact sequence. Given a function h ∈ H− 1

2 (∂Ω), we will construct an extension
H ∈ H(div, Ω) such that γnH = h. As in the previous cases, we will work with
one face at a time. We first consider the restriction h2 = h|f2solve ∈ H− 1

2 (f2) and
solve an auxiliary mixed problem for the Laplace operator,

(4.13)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U ∈ H1(Ω),
−∆U = 0 in Ω,

∂nU = h2 on face f2,

∂nU = 0 on face f1,

U = 0 on faces f3, f4, f5, f6.

Notice that, due to the presence of Dirichlet boundary conditions, the Neumann
data h2 need not satisfy any compatibility conditions. The lift from face f2 is now
set to the gradient of function U = U2,

(4.14) H2 = ∇U2.

As U2 is harmonic, lift H2 is divergence-free, and its L2-norm, equal to the H1-
seminorm of U2, is bounded by the H− 1

2 -norm of data h2. Moreover U2 can be
computed using separation of variables,

(4.15) U2(x, y, z) =
∞∑

n=1

∞∑
m=1

hnmΦn(x)Φm(y)γλλ
nm(z),

with hnm =
∫

f2

h2(x, y)Φn(x)Φm(y) dxdy.

where γ = γλλ
nm are solutions to the two-point boundary-value problems with Neu-

mann boundary conditions,

(4.16) −γ′′ + (λn + λm)γ = 0, γ′(−1) = 0, γ′(1) = 1.

Extension H1 from face f1 is constructed in the same way.
Next, we subtract from the original data h, the normal traces of the first two

face extensions,

(4.17) g = h − γn(H1 + H2)
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and proceed in the same way as for the H1-extensions. Extension H5 is constructed
by taking the gradient of solution U to the problem

(4.18)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U ∈ H1(Ω),
−∆U = 0 in Ω,

∂nU = g5 on face f5,

∂nU = 0 on face f1, f2, f3,

U = 0 on faces f4, f6.

Here g5 is in the space H− 1
2 (Ix, L2(Iz))+L2(Ix, H̃− 1

2 (Iz)), with the corresponding
norm controlled by the H− 1

2 (∂Ω)-norm of the original data h. Solution U = U5 is
obtained using the separation of variables,

(4.19) U5(x, y, z) =
∞∑

n=1

∞∑
m=0

gnmΦn(x)γλµ
nm(y)Ψm(z),

with gnm =
∫

f5

g5(x, y)Φn(x)Ψm(z) dxdz,

where γ = γλµ
nm are solutions to the two-point boundary-value problems with Neu-

mann boundary conditions,

(4.20) −γ′′ + (λn + µm)γ = 0, γ′(−1) = 0, γ′(1) = 1.

In the same way we construct lift H3. We subtract then from the original data h
normal traces of the four face extensions,

(4.21) f = h − γn(H1 + H2 + H3 + H5).

Functional f vanishes over faces f1, f2, f3, f5. Consequently, its restriction f 4 to face
f4 lives in space H̃− 1

2 (I2) with the corresponding norm bounded by the H− 1
2 (∂Ω)-

norm of the original data h. For functionals in H̃− 1
2 (I2), we can compute their

average values. Let f4,0 be the average of f 4,

(4.22) f4,0 = 〈f 4, 1〉/4.

We solve now a pure Neumann problem for U = U4,

(4.23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
U ∈ H1(Ω),

−∆U = 0 in Ω,

∂nU = f 4 − f4,0 on face f4,

∂nU = 0 on faces f1, f2, f3, f5, f6,

and construct the corresponding face extension as

(4.24) H4 = ∇U4 + H4,0,

where H4,0 ∈ V 1(Ω) is obtained with the lowest-order Raviart-Thomas shape
function for face f4. Function U = U4 is computed using separation of variables,

(4.25) U4(x, y, z) =
∞∑

n=0

∞∑
m=0

fnmγµµ
nm(x)Ψn(y)Ψm(z),

with fnm =
∫

f4

(f 4(x, y) − f4,0)Ψn(y)Ψm(z) dxdz,
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where γ = γµµ
nm are solutions to the two-point boundary-value problems with Neu-

mann boundary conditions,

(4.26) −γ′′ + (µn + µm)γ = 0, γ′(−1) = 0, γ′(1) = 1.

In the same way we construct lift H6. The final extension, obtained by summing
the six face lifts,

(4.27) H =
6∑

j=1

Hj

is bounded in the H(div, Ω)-norm by the H− 1
2 (∂Ω)-norm of data h.

We finish this section by recording relations between functions β and γ:
(4.28)

βλλ
nm =

(
γλλ

nm

)′
, βµλ

mn =
(
γλµ

nm

)′
, βµµ

nm =
(
γµµ

nm

)′
,

γλλ
nm =

1
λn + λm

(
βλλ

nm

)′
, γλµ

nm =
1

λn + µm

(
βµλ

mn

)′
, γµµ

nm =
1

µn + µm

(
βµµ

nm

)′
.

Remark 4.2. This local construction results in fact in a global extension operator
Ln, which, moreover, is curl free and with constant divergence. Whatever the
construction, we find an extension in the form H = ∇U + H0 where U ∈ H1(Ω)
is harmonic and H0 ∈ V 1(Ω). Since all elements of V 1(Ω) are curl free, we find
curlH = 0. Let us prove that such an extension of the zero normal trace h = 0 is
zero. Since ∫

Ω

div H dx dy =
∫

∂Ω

h dS = 0,

we find that the average of div H0 on Ω is zero. Since div H0 is a constant, it is zero;
hence div H = 0. Using the identity curlH0 = 0 with the exact sequence (1.1) we
obtain U0 ∈ H1(Ω) such that H0 = ∇U0, and we find that H = ∇(U +U0). Since
div H = 0, we find that ∆(U + U0) = 0. Since, moreover, γn∇(U + U0) = 0, we
finally deduce that U + U0 is constant; hence H is zero. �

4.3. H (curl) extension operator. Given a boundary data et ∈ H− 1
2 (curl, ∂Ω),

we are set to construct an extension E = Ltet ∈ H(curl, Ω) such that γtE = et

and

(4.29) ‖E‖H(curl,Ω) ≤ C‖et‖
H− 1

2 (curl,∂Ω)

with constant C independent of the functional et.
We will construct the operator so that we have a commuting diagram property

such as in 2D. For this we use the Poincaré map K; see §2.5. We take the surface
curl of the boundary data,

(4.30) h = curl∂Ωet,

and consider the corresponding H(div)-extension H = Lnh ∈ H(div, Ω). Since
the average of h on ∂Ω is zero, the divergence of H = Lnh is zero.

We then use the Poincaré map K to pull function H back into space H(curl, Ω),

(4.31) E0 = KH.

It follows from the continuity of map K that E0 is bounded in the H(curl, Ω)-
norm by the H(div, Ω)-norm of H and, in turn, by the H− 1

2 (curl, ∂Ω)-norm of
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data et. Since div H = 0, by the fundamental property (2.15) of the Poincaré map
we find curlE0 = H and, hence,

(4.32) curl γtE0 = γn curlE0 = γnH = h.

After subtracting from et the tangential trace of E0,

(4.33) f t = et − γtE0,

the resulting functional f t has zero surface curl and it can be identified as the
surface gradient of a potential u ∈ H

1
2
avg(∂Ω),

(4.34) f t = ∇∂Ωu.

The potential u can now be extended to U ∈ H1(Ω) using the H1-extension op-
erator L0, and the final H(curl)-extension is defined by summing up the two
contributions,

(4.35) E = ∇U + KH .

Remark 4.3. The use of the Poincaré map K introduces a “noncanonical” element
into this construction. We can get a canonical construction by replacing E0 = KH

in (4.31) by Ẽ0 defined by

(4.36) Ẽ0 = KH + ∇U0 with U0 ∈ H1
0 (Ω) such that ‖Ẽ0‖L2(Ω) is minimal.

The H(curl, Ω) norm of Ẽ0 is not larger than the one of E0, and the lift Ẽ con-
structed in this way satisfies the orthogonality conditions
(4.37)∫

Ω

curl Ẽ ·curlF = 0 ∀F ∈ H0(curl, Ω) and
∫

Ω

Ẽ ·∇V = 0 ∀V ∈ H1
0 (Ω).

It is easy to see that these two orthogonality relations determine Ẽ uniquely. �

Conclusions in 3D continuous case. The lift operators L0, Lt and Ln satisfy
the following exact sequence and commuting diagram properties:

(4.38)

H1(Ω) ∇−→ H(curl, Ω)
curl−→←−
K

H(div, Ω) div−→ L2(Ω)

γ0

⏐⏐
�⏐⏐L0 γt

⏐⏐
�⏐⏐Lt γn

⏐⏐
�⏐⏐Ln γavg

⏐⏐
�⏐⏐Lavg

H
1
2 (∂Ω) ∇−→ H− 1

2 (curl, ∂Ω) curl−→ H− 1
2 (∂Ω)

γavg−→ R

The operator L0 is uniquely determined by the condition that ∆ ◦ L0 is zero, and
Ln by the conditions that curl ◦ Ln is zero and that div ◦ Ln takes its values in R.
�

5. H1
polynomial extension operator in 3D

5.1. Additional 1D polynomials. In this section, we use the notation introduced
in Section 3.2 for the discrete 1D Dirichlet eigenpairs (Φn, λn) = (Φ(p)

n , λ
(p)
n ) and

for the discrete 1D Neumann eigenpairs (Ψn, µn) = (Ψ(p)
n , µ

(p)
n ). On top of the
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polynomials discussed in Section 3.2, we need now discrete counterparts of functions
βλλ

nm, βµλ
nm and βµµ

nm. For each pair of discrete Neumann eigenvalues µ
(p)
i and µ

(p)
j , we

introduce the corresponding polynomial βµµ
ij that solves the following 1D variational

problem, compare with (3.32),

(5.1)

⎧⎨⎩
βµµ

ij ∈ P
p, βµµ

ij (−1) = 0, βµµ
ij (1) = 1∫

I

(βµµ
ij )′v′ + (µ(p)

i + µ
(p)
j )

∫
I

βµµ
ij v = 0, ∀v ∈ P

p
0

(i, j, = 0, . . . , p).

In an analogous way, for each couple of Dirichlet eigenvalues, we introduce the cor-
responding functions βλλ

ij , i, j = 2, . . . , p, and then functions βµλ
ij , i = 0, . . . , p, j =

2, . . . , p, corresponding to pairs (µ(p)
i , λ

(p)
j ).

Lemma 5.1. There exists a constant C > 0, independent of p, such that

|βλλ
ij |2H1(I) + (λ(p)

i + λ
(p)
j )‖βλλ

ij ‖2
L2(I) ≤ C

(
λ

(p)
i + λ

(p)
j

) 1
2

,

i = 2, . . . , p, j = 2, . . . , p,

|βµµ
ij |2H1(I) + (µ(p)

i + µ
(p)
j )‖βµµ

ij ‖2
L2(I) ≤ C

(
µ

(p)
i + µ

(p)
j

) 1
2

,

i, j = 0, . . . , p, (i, j) �= (0, 0),

|βµλ
ij |2H1(I) + (µ(p)

i + λ
(p)
j )‖βµλ

ij ‖2
L2(I) ≤ C

(
µ

(p)
i + λ

(p)
j

) 1
2

,

i = 0, . . . , p, j = 2, . . . , p.

Proof. The proof is fully analogous to the proof of (3.34). �

5.2. Step 1: Lifting from a horizontal face. Let u ∈ Wp(∂Ω) be a polynomial
trace; cf. (2.12). We first consider the horizontal face z = 1 of the master cube
Ω = I3; see Fig. 2. Let u2(x, y) be the restriction of u on this face. We expand it
into the discrete 1D Neumann eigenvectors,

(5.2) u2(x, y) =
p∑

i=0

p∑
j=0

uijΨi(x)Ψj(y) ,

and define the extension U = U2 as follows:

(5.3) U2(x, y, z) =
p∑

i=0

p∑
j=0

uijΨi(x)Ψj(y)βµµ
ij (z).
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1

2
3

4 5

6

x

y

z

Figure 2. Master cube element. Enumeration of faces. Face
numbers are located in the middle of each face. The faces are
parametrized with the corresponding master element coordinates
in the lexicographic order, i.e., faces f1, f2 are parametrized with
x, y, faces f3, f5 are parametrized with x, z, and faces f4, f6 are
parametrized with y, z.

A straightforward evaluation of the H1-norm gives (we write µi, µj for µ
(p)
i , µ

(p)
j )

(5.4)∫
Ω

|∇U |2 =
p∑

i=0

p∑
j=0

|uij |2
(
(µi + µj)‖βµµ

ij ‖2
L2(Ω) + |βµµ

ij |2H1(I)

)
= |u00|2|βµµ

00 |2H1(I) +
∑

(i,j) �=(0,0)

|uij |2
(
(µi + µj)‖βµµ

ij ‖2
L2(Ω) + |βµµ

ij |2H1(I)

)
≤ 2|u00|2 + C

∑
(i,j) �=(0,0)

|uij |2(µi + µj)
1
2 ,

∫
Ω

|U |2 =
p∑

i=0

p∑
j=0

|uij |2‖βµµ
ij ‖2

L2(I)

≤ C

p∑
i=0

p∑
j=0

|uij |2.

In the last line we have used the fact that all discrete eigenvalues µi, i > 0 are
greater than the exact eigenvalues and, therefore, are uniformly bounded away from
zero, which, by Lemma 5.1 implies that the corresponding L2-norms ‖βµµ

ij ‖2
L2(I) are

uniformly bounded. In summary, we have obtained the estimate

(5.5) ‖U‖2
H1(Ω) ≤ C

p∑
i=0

p∑
j=0

|uij |2
(
1 + (µi + µj)

1
2

)
.
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Lemma 5.2. The discrete norm on the right-hand side of (5.5) is equivalent to
the standard H

1
2 -norm on the face.

Proof. The standard L2- and H1-norms are equal to the corresponding discrete
norms. Thus, by the standard interpolation argument, the continuous H

1
2 -norm

must be bounded by the discrete H
1
2 -norm. On the other side, by Proposition 3.6,

we have

(5.6)
p∑

i=0

p∑
j=0

|uij |2
(
1 + µ

1
2
i

)
≤ C‖u‖2

L2(Iy,H
1
2 (Ix))

,

and, by the same argument,

(5.7)
p∑

i=0

p∑
j=0

|uij |2
(
1 + µ

1
2
j

)
≤ C‖u‖2

L2(Ix,H
1
2 (Iy))

.

Summing the last two inequalities we get

(5.8)

p∑
i=0

p∑
j=0

|uij |2
(
1 + (µi + µj)

1
2

)
≤ C(‖u‖2

L2(Ix,H
1
2 (Iy))

+ ‖u‖2

L2(Iy,H
1
2 (Ix))

)≈‖u‖2

H
1
2 (I2)

. �

In conclusion, the H1-norm of extension U = U2 is bounded by the H
1
2 -norm

of the data u. In exactly the same way, we construct an extension U1 from the
lower face z = −1. Notice that both extensions are zero on the opposite face and,
therefore, do not alter the original values there.

5.3. Lifting from the vertical faces. We proceed now along the lines of the
construction on the continuous level discussed in Section 4.1. Let U1 and U2 denote
the extensions from the lower and the upper horizontal faces, respectively. We
consider the trace

(5.9) v = v(x, z) = (u − U1 − U2)(x, 1, z).

Function u− U1 −U2 vanishes over the horizontal faces and, therefore, the trace v

is bounded in the norm of the H
1
2 (Ix, L2(Iz)) ∩ L2(Ix, H̃

1
2 (Iz)) space. We expand

function v now in the products of discrete Neumann and Dirichlet eigenvectors,

(5.10) v(x, z) =
p∑

i=0

p∑
j=2

vijΨi(x)Φj(z) ,

and define extension U = U5 as

(5.11) U5(x, y, z) =
p∑

i=0

p∑
j=2

vijΨi(x)βµλ
ij (y)Φj(z).

Following the same steps as in the previous section, we demonstrate that the H1-
norm of extension U5 is bounded by the H

1
2 (Ix, L2(Iz)) ∩ L2(Ix, H̃

1
2 (Iz))-norm of

trace v and, consequently, by the H
1
2 -norm of the trace u on the whole boundary.

Then, in the same way, we construct lift U3 from face y = −1.
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Having constructed the lifts U3 and U5 from the third and the fifth face, we
subtract them from u − U1 − U2 and consider the trace of the remaining function
on face x = 1,

(5.12) w(y, z) = (u − U1 − U2 − U3 − U5)(1, y, z).

As function u − U1 − U2 − U3 − U5 vanishes over faces 1, 2, 3 and 5, the trace v is
bounded in the H̃

1
2 -norm. We expand it into the discrete Dirichlet eigenvectors,

(5.13) w(x, z) =
p∑

i=2

p∑
j=2

wijΦi(y)Φj(z) ,

and define the extension as

(5.14) U4(x, y, z) =
p∑

i=2

p∑
j=2

wijβ
λλ
ij (x)Φi(y)Φj(z) .

Again, following the same steps as in the previous section, we demonstrate that
the H1-norm of extension U4 is bounded by the H̃

1
2 (I2)-norm of trace v and,

consequently, by the H
1
2 -norm of the trace u on the whole boundary. Then, in the

same way, we construct the lift U6 from face x = −1. The final extension is defined
as the sum of the contributions from the six faces, and we have proved

Theorem 5.3. On the cube Ω = I3, the operator

(5.15) L(p)
0 : Wp(∂Ω) � u �−→ U :=

6∑
j=1

Uj ∈ Wp(Ω)

defines a polynomial lift of traces. Its norm from H
1
2 (∂Ω) into H1(Ω) is bounded

independently of the degree p.

6. H (div) polynomial extension operator in 3D

Before we proceed along the lines outlined in Section 4.2, we make one impor-
tant modification. Motivated with relations (4.28) between functions γ and β on
the continuous level, we shall replace all functions γ (that have not been defined on
the discrete level at all) with derivatives of the corresponding functions β and, sim-
ilarly, express 1D Neumann eigenvectors with the derivatives of Dirichlet eigenvec-
tors, and 1D Dirichlet eigenvectors with the derivatives of Neumann eigenvectors.
Throughout this section, we use the condensed notation (Φn, λn) and (Ψn, µn) for
the discrete 1D Dirichlet and Neumann eigenpairs introduced in Section 3.2.

6.1. Step 1: Lifting from a horizontal face. Let h be a polynomial trace in
the trace space Vp(∂Ω); see (2.12). We begin with the restriction h2 of function h
to the second face. This restriction belongs to P

p−1 ⊗P
p−1. We expand it in terms

of derivatives of the discrete 1D Neumann eigenvectors,

(6.1) h2(x, y) =
p∑

n=1

p∑
m=1

hnm
Ψ′

n(x)

µ
1
2
n

Ψ′
m(y)

µ
1
2
m

.
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Notice that the functions µ
− 1

2
n Ψ′

n are L2-orthonormal. The vector-valued extension
H = H2 is now defined as follows:

(6.2)

H2 =

(
−

p∑
n=1

p∑
m=1

hnm µ
1
2
nΨn(x)

1

µ
1
2
m

Ψ′
m(y)

1
µn + µm

(
βµµ

nm

)′(z),

−
p∑

n=1

p∑
m=1

hnm
1

µ
1
2
n

Ψ′
n(x) µ

1
2
mΨm(y)

1
µn + µm

(
βµµ

nm

)′(z),

p∑
n=1

p∑
m=1

hnm
1

µ
1
2
n

Ψ′
n(x)

1

µ
1
2
m

Ψ′
m(y) βµµ

nm(z)

)
.

Notice a direct correspondence of Formula (6.2) with the gradient of function (4.15)
with the replacements outlined in the beginning of this section.

A direct calculation reveals that polynomial H2 is divergence-free. The H(div)-
norm of function H2 reduces then to its L2-norm, which we now calculate. Utilizing
the L2-orthogonality of eigenvectors Ψn and their derivatives, we obtain

(6.3) ‖H2‖2
L2(Ω) =

p∑
n=1

p∑
m=1

|hnm|2
(

1
µn + µm

‖
(
βµµ

nm

)′‖2
L2(I) + ‖βµµ

nm‖2
L2(I)

)
.

Making use of Lemma 5.1, we obtain the bound

(6.4) ‖H2‖2
L2(Ω) ≤ C

p∑
n=1

p∑
m=1

|hnm|2 (µn + µm)−
1
2 .

It remains to show now that the weighted sum on the right-hand side is equivalent to
the H− 1

2 -norm of data h2. We begin with a simple result concerning the H− 1
2 -norm

in one space dimension.

Lemma 6.1. Let w ∈ P
p−1 be expanded in terms of the derivatives of discrete

Neumann eigenvectors,

(6.5) w =
p∑

n=1

wn
Ψ′

n

µ
1
2
n

.

The following discrete norm is equivalent to the H− 1
2 -norm of w with equivalence

constants independent of the degree p,

(6.6) ‖w‖2

H− 1
2 (I)

≈
p∑

n=1

|wn|2µ
− 1

2
n .

Proof. The proof follows from the isomorphism,

(6.7) ∂ : H
1
2
avg(I) → H− 1

2 (I)

and Proposition 3.6. �

We can prove now a similar result for two space dimensions.

Lemma 6.2. Let polynomial h ∈ Pp−1 ⊗ Pp−1 be expanded in terms of the deriva-
tives of the discrete Neumann eigenvectors as in Formula (6.1). The discrete
norm (6.4) is equivalent to the H− 1

2 -norm of h with equivalence constants inde-
pendent of the degree p.
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Proof. We begin by recalling the standard tensorization result for the space
H− 1

2 (I2),

(6.8) H− 1
2 (I2) = L2(Ix, H− 1

2 (Iy)) + L2(Iy, H− 1
2 (Ix)),

where

(6.9) L2(Ix, H− 1
2 (Iy)) := {h(x, y) :

∫
I

‖h(x, ·)‖2

H− 1
2 (I)

dx < ∞}

with an analogous definition for the second space. The norm in the sum of two
normed spaces can be defined as follows:

(6.10) V = X + Y, ‖v‖X+Y = inf
x+y=v

(
‖x‖2

X + ‖y‖2
Y

) 1
2 .

Lemma 6.1 implies that

(6.11)
‖h‖2

L2(Ix,H− 1
2 (Iy))

≈
p∑

n=1

p∑
m=1

|hnm|2µ− 1
2

m ,

‖h‖2

L2(Iy,H− 1
2 (Ix))

≈
p∑

n=1

p∑
m=1

|hnm|2µ− 1
2

n .

Finally, definition (6.10) and elementary algebraic arguments lead to
(6.12)

‖h‖2

H− 1
2 (I2)

= inf
unm+vnm=hnm

(
p∑

n=1

p∑
m=1

|unm|2µ− 1
2

m +
p∑

n=1

p∑
m=1

|vnm|2µ− 1
2

n

)

≈
p∑

n=1

p∑
m=1

|hnm|2 min{µ− 1
2

m , µ
− 1

2
n }

≈
p∑

n=1

p∑
m=1

|hnm|2(µn + µm)−
1
2 .

Here sign A ≈ B indicates the existence of constants C1, C2 independent of the
function h and the polynomial degree p, such that A ≤ C1B and B ≤ C2A. �

We have demonstrated therefore the continuity of the lift operator,

(6.13) ‖H‖H(div,Ω) ≤ C‖h2‖
H− 1

2 (f2)
.

In the same way we construct then the lift from the bottom face f1.

6.2. Step 2: Lifting from faces f3, f5. We mimic the construction on the con-
tinuous level. First normal traces of lifts H1, H2 are subtracted from the original
data,

(6.14) g := h − γn(H1 + H2).

Restriction g5 of polynomial g to face f5 is expanded in terms of derivatives of the
discrete 1D Neumann and Dirichlet eigenvectors,

(6.15) g5(x, z) =
p∑

n=1

gn1
Ψ′

n(x)

µ
1
2
n

1√
2

+
p∑

n=1

p∑
m=2

gnm
Ψ′

n(x)

µ
1
2
n

Φ′
m(z)

λ
1
2
m

.



POLYNOMIAL EXTENSION OPERATORS ON A CUBE 1993

Notice that the functions λ
− 1

2
m Φ′

m, m = 2, . . . , p, complemented with constant
1/
√

2, are L2-orthonormal. The vector-valued extension H = H5 is now defined
as follows:
(6.16)

H5 =

(
−

p∑
n=1

gn1 µ
1
2
nΨn(x)

(
βµ

n

)′(y)
µn

1√
2
−

p∑
n=1

p∑
m=2

gnm µ
1
2
nΨn(x)

(
βµλ

nm

)′(y)
µn + λm

Φ′
m(z)

λ
1
2
m

,

p∑
n=1

gn1
1

µ
1
2
n

Ψ′
n(x) βµ

n(y)
1√
2

+
p∑

n=1

p∑
m=2

gnm
1

µ
1
2
n

Ψ′
n(x) βµλ

nm(y)
Φ′

m(z)

λ
1
2
m

,

−
p∑

n=1

p∑
m=2

gnm
1

µ
1
2
n

Ψ′
n(x)

(
βµλ

nm

)′(y)
µn + λm

λ
1
2
mΦm(z).

)
A direct computation reveals that H5 is divergence-free. We proceed with the
evaluation of the L2-norm,

(6.17)

‖H5‖2
L2(Ω) =

p∑
n=1

|gn1|2
(

1
µn

‖(βµ
n)′‖2

L2(I) + ‖βµ
n‖2

L2(I)

)
+

p∑
n=1

p∑
m=2

|gnm|2
(

1
µn + λm

‖(βµλ
nm)′‖2

L2(I) + ‖βµλ
nm‖2

L2(I)

)
≤ C

(
p∑

n=1

|gn1|2µ
− 1

2
n +

p∑
n=1

p∑
m=2

|gnm|2(µn + λm)−
1
2

)
where, in the last inequality, we have used Lemma 3.5 and Lemma 5.1. We continue
now with a result concerning the H̃− 1

2 -norm in one space dimension.

Lemma 6.3. Let w ∈ P
p−1 be expanded in terms of the derivatives of discrete

Dirichlet eigenvectors and a constant function,

(6.18) w = w1
1√
2

+
p∑

m=2

wm
Φ′

m

λ
1
2
m

.

The following discrete norm is equivalent to the H̃− 1
2 -norm of w with equivalence

constants independent of the degree p,

(6.19) ‖w‖2

H̃− 1
2 (I)

≈ |w1|2 +
p∑

m=2

|wm|2λ− 1
2

m .

Proof. The proof follows from the stable decomposition

(6.20) H̃− 1
2 (I) = C ⊕ H̃

− 1
2

avg(I), w = w0 + (w − w0), w0 = 〈w, 1〉/2,

the isomorphism

(6.21) ∂ : H̃
1
2 (I) → H̃

− 1
2

avg(I),

and Proposition 3.7. �

We have now a discrete version of the norm in H− 1
2 (Ix, L2(Iz))+L2(Ix, H̃− 1

2 (Iz)).

Lemma 6.4. Let h ∈ Pp−1 ⊗ Pp−1 be a polynomial expanded in terms of deriva-
tives of discrete Neumann and Dirichlet eigenvectors as in Formula (6.15). The
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following discrete norm is equivalent to the norm in the space H− 1
2 (Ix, L2(Iz)) +

L2(Ix, H̃− 1
2 (Iz)) with equivalence constants independent of the polynomial degree p:

(6.22) ‖h‖2 =
p∑

n=1

|gn1|2µ
− 1

2
n +

p∑
n=1

p∑
m=1

|gnm|2(µn + λm)−
1
2 .

Proof. Lemma 6.3 implies that

(6.23) ‖h‖2

L2(Ix,H̃− 1
2 (Iz))

≈
p∑

n=1

|gn1|2 +
p∑

n=1

p∑
m=2

|gnm|2λ− 1
2

m

and from Lemma 6.1 it follows that

(6.24) ‖h‖2

L2(Iz,H− 1
2 (Ix))

≈
p∑

n=1

|gn1|2µ
− 1

2
n +

p∑
n=1

p∑
m=2

|gnm|2µ− 1
2

n .

As discrete eigenvalues, the µn are always greater than their exact counterparts,
and only a finite number of Neumann eigenvalues is less than one. We have

(6.25)
‖h‖2 ≈

p∑
n=1

|gn1|2 min{1, µ
− 1

2
n } +

p∑
n=1

p∑
m=2

|gnm|2 min{µ− 1
2

n , λ
− 1

2
m }

≈
p∑

n=1

|gn1|2µ
− 1

2
n +

p∑
n=1

p∑
m=2

|gnm|2(µn + λm)−
1
2 ,

which ends the proof. �

Thus, we have shown that the H(div, Ω)-norm of extension H5 is bounded by
the norm of the face data g5 in the space H− 1

2 (Ix, L2(Iz)) + L2(Ix, H̃− 1
2 (Iz)), and

in turn, by the H− 1
2 (∂Ω)-norm of the original boundary data h. The lift from face

f3 is constructed in the same way.

6.3. Step 3: Lifting from faces f4, f6. We again mimic the construction of the
continuous level. Normal traces of lifts H1, H2, H3, H5 are subtracted from the
original data,

(6.26) f := h − γn(H1 + H2 + H3 + H5).

The restriction f 4 of polynomial f to face f4 is expanded in terms of derivatives of
the discrete 1D Dirichlet eigenvectors and constant functions,

(6.27) f 4(y, z) = f11
1√
2

1√
2

+
p∑

n=2

fn1
Φ′

n(y)

λ
1
2
n

1√
2

+
p∑

m=2

f1m
1√
2

Φ′
m(z)

λ
1
2
m

+
p∑

n=2

p∑
m=2

fnm
Φ′

n(y)

λ
1
2
n

Φ′
m(z)

λ
1
2
m

.

As f 4 is now controlled in the H̃− 1
2 (I2)-norm, the average value f11 of f 4 depends

continuously upon the norm, and the corresponding constant function is extended
into the element using the lowest-order Raviart-Thomas shape function HRT,4. We
proceed by defining extension H = H4 of function (6.27) with the constant f11
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removed:

Hx =
p∑

n=2

fn1 βλ
n(x)

1

λ
1
2
n

Φ′
n(y)

1√
2

+
p∑

m=2

f1m βλ
m(x)

1√
2

1

λ
1
2
m

Φ′
m(z)

+
p∑

n=2

p∑
m=2

fnm βλλ
nm(x)

1

λ
1
2
n

Φ′
n(y)

1

λ
1
2
m

Φ′
m(z),

Hy = −
p∑

n=2

fn1
1
λn

(
βλ

n

)′(x) λ
1
2
nΦn(y)

1√
2

−
p∑

n=2

p∑
m=2

fnm
1

λn + λm

(
βλλ

nm

)′(x) λ
1
2
nΦn(y)

1

λ
1
2
m

Φ′
m(z),

Hz = −
p∑

m=2

f1m
1

λm

(
βλ

m

)′(x)
1√
2

λ
1
2
mΦm(z)

−
p∑

n=2

p∑
m=2

fnm
1

λn + λm

(
βλλ

nm

)′(x)
1

λ
1
2
n

Φ′
n(y) λ

1
2
mΦm(z).

A direct computation shows again that divH = 0. We proceed with the evaluation
of the L2-norm,
(6.28)

‖H‖2
L2(Ω) =

p∑
n=2

|fn1|2
(

1
λn

‖ (βµ
n)′ ‖L2(I) + ‖βµ

n‖L2(I)

)
+

p∑
n=2

|f1m|2
(

1
λm

‖ (βµ
m)′ ‖L2(I) + ‖βµ

m‖L2(I)

)
+

p∑
n=2

p∑
m=2

|fnm|2
(

1
λn + λm

‖
(
βλλ

nm

)′ ‖2
L2(I) + ‖βλλ

nm‖2
L2(I)

)
≤ C

(
p∑

n=2

|fn1|2λ
− 1

2
n +

p∑
m=2

|f1m|2λ− 1
2

m +
p∑

n=2

p∑
m=2

|fnm|2(λn + λm)−
1
2

)
,

where, in the last inequality, we have used Lemma 3.5 and Lemma 5.1. We have

Lemma 6.5. Let h ∈ P
p−1⊗P

p−1 be a polynomial expanded in terms of derivatives
of discrete Dirichlet eigenvectors:
(6.29)

h(y, z) =
p∑

n=2

fn1
Φ′

n(y)

λ
1
2
n

1√
2

+
p∑

m=2

f1m
1√
2

Φ′
m(z)

λ
1
2
m

+
p∑

n=2

p∑
m=2

fnm
Φ′

n(y)

λ
1
2
n

Φ′
m(z)

λ
1
2
m

.

The following discrete norm is equivalent to the norm in the space H̃− 1
2 (I2) with

equivalence constants independent of the polynomial degree p:

(6.30) ‖h‖2 =
p∑

n=2

|fn1|2λ
− 1

2
n +

p∑
m=2

|f1m|2λ− 1
2

m +
p∑

n=2

p∑
m=2

|fnm|2(λn + λm)−
1
2 .

Proof. The proof is based on the tensorization result,

(6.31) H̃− 1
2 (Iy × Iz) = L2(Iy, H̃− 1

2 (Iz)) + L2(Iz, H̃
− 1

2 (Iy)).

Lemma 6.3 implies that

(6.32) ‖h‖2

L2(Iy,H̃− 1
2 (Iz))

≈
p∑

n=2

|fn1|2 +
p∑

m=2

|f1m|2λ− 1
2

m +
p∑

n=2

p∑
m=2

|fnm|2λ− 1
2

m
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and

(6.33) ‖h‖2

L2(Iz,H̃− 1
2 (Iy))

≈
p∑

n=2

|fn1|2λ
− 1

2
n +

p∑
m=2

|f1m|2 +
p∑

n=2

p∑
m=2

|fnm|2λ− 1
2

n .

We have

(6.34)

‖h‖2 ≈
p∑

n=2

|fn1|2 min{1, λ
− 1

2
n } +

p∑
m=2

|f1m|2 min{1, λ
− 1

2
m }

+
p∑

n=2

p∑
m=2

|fnm|2 min{λ− 1
2

n , λ
− 1

2
m }

≈
p∑

n=2

|fn1|2λ
− 1

2
n +

p∑
m=2

|f1m|2λ− 1
2

m +
p∑

n=2

p∑
m=2

|fnm|2(λn + λm)−
1
2 ,

which ends the proof. �

In the same way we define the lift from face f6. Our final H(div, Ω)-extension is
defined by summing all face contributions,

(6.35) H = H1 + H2 + H3 + f4,11HRT,4 + H4 + H5 + f6,11HRT,6 + H6,

where f4,11 and f6,11 are the average values of function (6.26) over faces f4, f6, and
HRT,4, HRT,6 ∈ V 1(Ω) are the corresponding lowest-order Raviart-Thomas shape
functions. We conclude with

Theorem 6.6. Operator (6.35),

(6.36) L(p)
n : Vp(∂Ω) � h �−→ H ∈ V p(Ω),

defines a polynomial lift of normal traces. Its norm from H− 1
2 (∂Ω) into H(div, Ω)

is bounded independently of the polynomial degree p.

Remark 6.7. We can check that the lifting H is orthogonal to the curls of all fields
with zero tangential trace E ∈ Qp,0(Ω). Moreover the divergence of H is constant.
Conversely, if H ∈ V p(Ω) has these properties and a zero normal trace, it is zero.
The proof uses similar arguments as previously. We deduce first that div H = 0.
Therefore, there exists E ∈ Qp(Ω) such that curlE = H. Since γnH = 0, we
deduce that curl γtE = 0. Therefore there exists a surface potential u ∈ Wp(∂Ω)
such that ∇∂Ωu = γtE. Setting U = L(p)

0 u, we obtain that γt∇U = γtE. Finally

H = curl(E − ∇U) with E − ∇U ∈ Qp,0(Ω).

The orthogonality condition against the curls of Qp,0(Ω) gives H = 0. �

7. H (curl) polynomial extension operator in 3D

Having constructed the polynomial extension operators for the spaces H1(Ω)
and H(div, Ω), we proceed along exactly the same lines as for the continuous case
discussed in Section 4.3. We consider the exact polynomial sequence (2.10). Given
a polynomial trace et ∈ Qp(∂Ω), we compute its surface curl,

(7.1) h = curl∂Ω et

and use the H(div)-extension operator L(p)
n to construct an H(div, Ω)-extension

H of polynomial h. We then use the Poincaré map to “take out the curl” out of
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the data et and conclude that the resulting function must be a surface gradient of
a potential u ∈ Wp(∂Ω) (with a zero average),

(7.2) et − γtKH = ∇∂Ωu.

The H(curl, Ω)-extension is now obtained by summing the gradient of the H1(Ω)-
extension of the potential u with KH ,

(7.3) E = ∇U + KH .

Replicating the procedure from the continuous level is possible because the Poincaré
map is polynomial preserving. We conclude our construction with

Theorem 7.1. Operator (7.3),

(7.4) L(p)
t : Qp(∂Ω) � et �−→ E ∈ Qp,

defines a polynomial lift of the tangential trace. Its norm from H− 1
2 (curl, ∂Ω) into

H(curl, Ω) is bounded independently of the polynomial degree p.

Remark 7.2. As in the continuous case, see Remark 4.3, we can get a canonical
construction by replacing the Poincaré map K by a p-depending operator K̃ defined
as follows:
(7.5)

K̃H = KH + ∇U0 with U0 ∈ Wp,0(Ω) such that ‖K̃H‖L2(Ω) is minimal.

The operator norm of K̃ is not larger than the one of K, and the lift Ẽ con-
structed in this way satisfies the orthogonality conditions
(7.6)∫

Ω

curl Ẽ · curlF = 0 ∀F ∈ Qp,0(Ω) and
∫

Ω

Ẽ · ∇V = 0 ∀V ∈ Wp,0(Ω).

It is easy to see that these two orthogonality relations determine Ẽ uniquely. �
Conclusions in 3D polynomial case. With p ≥ 1 any integer, the lift op-
erators L(p)

0 , L(p)
t and L(p)

t satisfy the following exact sequence and commuting
diagram properties, reproducing those of the continuous case:

(7.7)

Wp(Ω) ∇−→ Qp(Ω)
curl−→←−
K

V p
div−→ Yp(Ω)

γ0

⏐⏐
�⏐⏐L(p)
0

γt

⏐⏐
�⏐⏐L(p)
t

γn

⏐⏐
�⏐⏐L(p)
n

γavg

⏐⏐
�⏐⏐Lavg

Wp(∂Ω) ∇−→ Qp(∂Ω) curl−→ Vp(∂Ω)
γavg−→ R

The operator L(p)
0 : u �→ U is uniquely determined by the extra condition of or-

thogonality,

(7.8)
∫

Ω

∇U · ∇V = 0 ∀V ∈ Wp,0(Ω)

and L(p)
n : h �→ H by

(7.9)
∫

Ω

H · curlE = 0 ∀E ∈ Qp,0(Ω) and div H ∈ R.

The “canonical” version L̃(p)
t of the lift et �→ Ẽ as defined in Remark 7.2 is uniquely

determined by the orthogonality relations (7.6). �
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8. Conclusions

In the paper, we have constructed polynomial extension operators for a master
hexahedron and the polynomial spaces forming the exact sequence corresponding to
Nédélec’s hexahedron of the first type. The polynomial extension operators mimic
closely the corresponding constructions on the continuous level based on separation
of variables. In the presentation, we have restricted ourselves to the “isotropic”
spaces (same polynomial order in each direction), but the whole procedure gener-
alizes easily to the case of anisotropic spaces as well. Given a scalar space P(p,q,r),
we arrange the element system of coordinates in such a way that p ≤ q ≤ r, and
the construction presented in this paper goes through without any changes.

The existence of polynomial extension operators completes the theory of Pro-
jection-Based Interpolation; see [15, 13] for the hexahedral element. The obtained
discrete H

1
2 (I2) and H− 1

2 (I2)-norms may be used in the automatic hp-adaptivity
algorithm presented in [12, 16].

Finally, we finish with a didactic comment on teaching the separation of vari-
ables. When presenting the solution of the Dirichlet problem for the Laplace equa-
tion on a square or cube, virtually all textbooks recommend splitting the data into
edge or face contributions, and the solution of the corresponding single edge or
face problems with pure Dirichlet conditions using the separation of variables. The
superposition principle is then used to obtain the final solution. With a regular
boundary data that guarantees the existence of a finite energy solution, the pro-
cedure breaks the solution into the corresponding edge or face solutions that, in
general, have infinite energy. This can be avoided by using the mixed boundary
conditions employed in this paper, which guarantee that all solutions corresponding
to a nonhomogeneous single edge or face data remain of finite energy. The same
comments apply to the Neumann problem.
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[14] L. Demkowicz and I. Babuška. p interpolation error estimates for edge finite elements of
variable order in two dimensions. SIAM J. Numer. Anal., 41(4):1195–1208 (electronic), 2003.
MR2034876 (2004m:65191)

[15] L. Demkowicz and A. Buffa. H1, H(curl) and H(div)-conforming projection-based interpo-
lation in three dimensions. Quasi-optimal p-interpolation estimates. Comput. Methods Appl.
Mech. Engrg, 194:267–296, 2005. MR2105164 (2005j:65139)

[16] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz, and A. Zdunek. Comput-
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