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POSITIVE QUADRATURE FORMULAS III:
ASYMPTOTICS OF WEIGHTS

FRANZ PEHERSTORFER

Abstract. First we discuss briefly our former characterization theorem for
positive interpolation quadrature formulas (abbreviated qf), provide an equiv-
alent characterization in terms of Jacobi matrices, and give links and appli-
cations to other qf, in particular to Gauss-Kronrod quadratures and recent
rediscoveries. Then for any polynomial tn which generates a positive qf, a
weight function (depending on n) is given with respect to which tn is orthogo-
nal to Pn−1. With the help of this result an asymptotic representation of the
quadrature weights is derived. In general the asymptotic behaviour is different
from that of the Gaussian weights. Only under additional conditions do the
quadrature weights satisfy the so-called circle law. Corresponding results are
obtained for positive qf of Radau and Lobatto type.

1. Introduction

Let σ be a positive measure on [−1, +1] normed by
∫ +1

−1
dσ = 1 and such that the

support of dσ contains an infinite set of points. We call an interpolatory quadrature
formula (abbreviated qf) of the form

(1.1)
∫ +1

−1

f(x)dσ =
n∑

j=1

λj,n(dσ)f(xj,n) + Rn(f),

where −1 < x1 < x2 < · · · < xn < 1 and Rn(f) = 0 for f ∈ P2n−1−m (Pn denotes
as usual the set of polynomials of degree at most n), 0 ≤ m ≤ n, a (2n− 1−m, n,
dσ) qf; if dσ = w(x)dx, then we write λj,n(w), (2n−1−m, n, w)qf, . . . , and if there
is no confusion possible λj , xj , . . . ; λG

j denotes the Gaussian weights. Furthermore,
we say that a polynomial tn ∈ Pn generates a (2n − 1 − m, n, dσ) qf if tn has n
simple zeros x1 < x2 < · · · < xn in (−1, 1) and if the interpolatory qf based on the
nodes xj , j = 1, . . . , n, is a (2n− 1−m, n, dσ) qf. For qn ∈ Pn\Pn−1 we denote by
q
[1]
n the polynomial of second kind of qn with respect to dσ, i.e.,

(1.2) q[1]
n (y) =

∫ +1

−1

qn(y) − qn(x)
y − x

dσ(x).
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Note that q
[1]
n ∈ Pn−1. With the help of (1.2) we obtain for the weights λj of the

interpolatory qf (1.1) the known formula

(1.3) λj =
∫ +1

−1

tn(x)
(x − xj)t′n(xj)

dσ(x) =
t
[1]
n (xj)
t′n(xj)

for j = 1, . . . , n,

where

(1.4) tn(x) =
n∏

j=1

(x − xj).

Hence the positivity of the λj ’s is equivalent to the interlacing property of the
zeros of tn and t

[1]
n . Taking into consideration the well-known fact (see e.g. [1])

that a polynomial tn with n simple zeros generates a (2n− 1 − m, n, dσ) qf if and
only if it is orthogonal to Pn−1−m with respect to dσ, i.e.,

(1.5)
∫ +1

−1

xjtn(x)dσ(x) = 0 for j = 0, . . . , n − 1 − m,

we get the following first characterization of positive qf.

Lemma 1.1. Let n, m ∈ N0. Then tn generates a positive (2n − 1 − m, n, dσ) qf
if and only if tn is orthogonal to Pn−1−m with respect to dσ, tn and t

[1]
n have all

zeros in (−1, 1) and they strictly interlace.

Recall the simple fact that (1.5) implies that tn has a representation of the form

(1.6) tn(x) =
m∑

j=0

µjpn−j ,

where µj ∈ R and pn denotes the monic polynomial of degree n which is orthogonal
on [−1, 1] to Pn−1 with respect to dσ, i.e.,

(1.7)
∫ +1

−1

xjpn(x)dσ(x) = 0 for j = 0, . . . , n − 1.

It is well known that (pn) satisfies a recurrence relation of the form

(1.8) pn(x) = (x − αn)pn−1(x) − βnpn−2(x) n = 1, 2, . . . ,

where p−1 := 0, p0 := 1 and the βn’s are positive. Polynomials with property (1.5),
respectively of the form (1.6), are called quasi-orthogonal polynomials also.

In the following we will also need the fact that the associated polynomials (p(k)
n )

of order k, k ∈ N0, defined by

(1.9) p(k)
n (x) = (x − αn+k)p(k)

n−1(x) − βn+kp
(k)
n−2(x),

p
(k)
−1 := 0, p

(k)
0 := 1 are, by Favard’s Theorem (see [12]), orthogonal with respect to

a positive measure, denoted by σ(k), the support of which is, since all zeros of p
(k)
n

lie in (−1, +1), contained in [−1, +1], i.e.,

(1.10)
∫ +1

−1

xjp(k)
n (x)dσ(k)(x) = 0 for j = 0, . . . , n − 1,

The measure σ(k) can be given explicitly; see [13] and [18, Thm. 3.9].
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2. Review of the Characterization Theorem and applications

Theorem 2.1 (Characterization Theorem). Let n, m ∈ N0, n ≥ m, put l :=
[(m+1)/2] and let tn be a monic polynomial of degree n. The following statements
are equivalent:

(a) tn generates a positive (2n − 1 − m, n, dσ) qf.
(b) tn is orthogonal with respect to a sequence {cj}2n−1

0 which is positive definite
on [−1, 1] and satisfies the condition

(2.1) cj =
∫ 1

−1

xjdσ(x) for j = 0, . . . , 2n − 1 − m.

(c) tn can be generated by a recurrence relation of the form

(2.2) tj(x) = (x − α̃j)tj−1(x) − β̃jtj−2(x) j = 1, . . . , n,

t−1(x) := 0, t0(x) := 1, with α̃j ∈ R, β̃j > 0 and sgn tj(±1) = (±1)j for
j = 1, . . . , n, and

(2.3) α̃j = αj for j = 1, . . . , n − [m+1
2 ] and β̃j = βj for j = 2, . . . , n − [m

2 ].

(d) tn has a representation of the form

(2.4) tn(x) = gl(x)pn−l(x) − β̃n+1−lgl−1(x)pn−l−1(x),

where β̃n+1−l > 0 and β̃n+1−l = βn+1−l if m = 2l − 1 and the monic
polynomials gl and gl−1 are generated by a recurrence relation of the form

(2.5) gj(x) = (x − α̃n+1−j)gj−1(x) − β̃n+2−jgj−2(x) j = 1, . . . , l,

g−1(x) := 0, g0(x) := 1, with α̃n+1−j ∈ R, β̃n+2−j > 0 and sgn gj(±1) =
(±1)j for j = 1, . . . , l.

(e) There are polynomials gl(x) = xl + . . ., gl−1(x) = xl−1 + . . ., whose zeros
are simple, strictly interlacing, and located in (−1, 1) such that

(2.6) tn(x) = gl(x)pn−l(x) − β̃n+1−lgl−1(x)pn−l−1(x)

with β̃n+1−l > 0 and β̃n+1−l = βn+1−l if m = 2l − 1 and sgn tn(±1) =
(±1)n.

(f) There are polynomials rl, sl−1 of degree l and l− 1 whose zeros are simple,
strictly interlacing, and located in (−1, 1) such that

(2.7) tn(x) = rl(x)pn−l(x) − (1 − x2)sl−1(x)p(1−x2)
n−l−1 (x)

with sgn tn(±1) = (±1)n, where p
(1−x2)
n−l−1 denotes the monic polynomial of

degree n − l − 1 orthogonal with respect to (1 − x2)dσ. If m = 2l − 1,
then rl, respectively, sl−1 has leading coefficient (1 − a2(n−l)−1)/2 and
(1 + a2(n−l)−1)/2, where a2(n−l)−1 is defined in (3.6) below.

First, characterization (f) has been given by the author [15] (in terms of orthog-
onal polynomials on the unit circle) and about the same time, independently, a
weaker version of (e) by Sottas and Wanner [28]. They describe positive qf having
all their nodes real and simple but not necessarily located in a given interval [a, b].
A little bit later characterizations (c) and (d) were discovered by the author in [16,
Thm. 2] (concerning (d) see the proof of Thm. 2); (b) has been added in [19]. H.
J. Schmid [23] came up with an alternative approach to Theorem 2.1(b) and (c).



2244 FRANZ PEHERSTORFER

Y. Xu [33, 34] studied the representation of the nodes polynomial tn as a char-
acteristic polynomial of a symmetric tridiagonal matrix with positive subdiagonal
entries. It might be worth mentioning that Theorem 2.1 can now be proved by
elementary methods; see [19, Proof of Thm. 3.2].

By Theorem 2.1(c) and Favard’s Theorem or directly by (b) it follows immedi-
ately that tn is orthogonal to Pn−1 with respect to a measure depending on n. This
fact has been observed by several authors [16, 27, 34]. The explicit determination of
such a measure was expected to be a difficult task; see e.g. [34]. Using the version
of (f) in terms of orthogonal polynomials on the unit circle (abbreviated OPUC)
and some facts on OPUC’s, such a measure will be derived in Theorem 3.1 below
in a relatively simple way. It is the basis for the derivation of asymptotics for the
weights.

For computational purposes it might be more convenient to describe positive
qf by the associated Jacobi matrices; compare [5, 7]. JG

n (dσ) denotes the Jacobi
matrix associated with the Gauss qf with respect to dσ. We may reformulate the
equivalence (a) ⇔ (c) of the Characterization Theorem 2.1 with the help of Jacobi
matrices as follows:

Corollary 2.2. x1, x2, . . . , xn,−1 < x1 < x2 < · · · < xn < 1, are the nodes of a
positive (2n + 1−m, n, dσ) qf if and only if x1, . . . , xn ∈ R are the eigenvalues of a
Jacobi matrix Jn of the form, l = [m+1

2 ],

(2.8) Jn =
(

JG
n−l(dσ) β̃n−l+1�en−l+1

β̃n−l+1�en−l J̃l

)

where J̃l is a Jacobi matrix with spectrum contained in (−1, 1), β̃n−l+1 > 0 and such
that the spectrum of Jn is contained in (−1, 1) and β̃n−l+1 = βn−l+1 if m = 2l− 1;
�ej denotes the j-th coordinate vector.

Proof. Necessity follows by (2.2) and (2.3) and the well-known connection with
Jacobi matrices. Note that J̃l is the Jacobi matrix associated with the orthogonal
polynomial gl from (2.5).

Sufficiency. Since Jn is a Jacobi matrix, it is associated with an orthogonal poly-
nomial tn with zeros x1, . . . , xn, x1 < x2 < · · · < xn, which satisfies a recurrence
relation of the form (2.2). By the form of the Jacobi matrix Jn it follows that (2.3)
is satisfied. Hence, tn is of the form (2.6), where gl is associated with the Jacobi
matrix J̃l. Thus by assumption on the spectrum of J̃l, gl has all zeros in (−1, 1)
which strictly interlace with the zeros of gl−1 which is associated with J̃l−1. �

If in Corollary 2.2 only β̃n−l+1 > 0 is supposed, then the smallest or largest node
may be outside of (−1, 1). Naturally the polynomial tj , j = 0, . . . , n from Theorem
2.1(c) can be written as a characteristic polynomial of the corresponding cutted
Jacobi matrix Jn also.

In the following we denote by J∗
n the Jacobi matrix which is the reverse of the

Jacobi matrix Jn. Theorem 2.1, respectively, Corollary 2.2 show how to generate
simultaneously positive qf with respect to two given measures σ and σ̃. Indeed, let,
N ∈ N,

(2.9) t2N = p̃NpN − µN+1p̃N−1pN−1,

where µN+1 > 0 and such that t2N (±1) > 0; or equivalently put in (2.8) J̃l =
(JG

N (dσ̃))∗ and β̃n−l+1 = µN+1. Then t2N generates a positive (2N − 1, 2N, dσ) as
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well as a positive (2N − 1, 2N, dσ̃) qf. This follows immediately by (2.6) putting
gN = p̃N (pN ) and gN−1 = p̃N−1(pN−1), respectively.

For n = 2N + 1, l = N , even the simplest case J̃l = (JG
N (dσ))∗, that is, when

in (2.2) α̃2N+2−j = αj , j = 1, . . . , N , and β̃2N+2−j = βj+1, j = 1, . . . , l − 1, are of
special interest. In fact, as observed by M. Spalevic [29], this leads to generalized
averaged Gaussian qf, which cover, in particular, the so-called nested and stratified
qf, found in a different way by Laurie [10]. For a more detailed discussion see
Corollary 2.5 and the following remarks.

Next let us show that the problem of positive quadrature can be reduced dra-
matically with respect to the degree with the help of associated measures.

First let us recall the known fact that

(2.10) pm = p
(m−j)
j pm−j − βm−j+1p

(m−j+1)
j−1 pm−j−1

for m ∈ N, 0 ≤ j ≤ m, where the representation is unique for j ≤ [m/2]. Thus, if
tn is orthogonal to Pn−m−1 with respect to dσ, we get

(2.11) tn =
m∑

j=0

µjpn−j = (
m∑

j=0

µjp
(n−m)
m−j )pn−m −βn−m+1(

m∑
j=0

µjp
(n−m+1)
m−j−1 )pn−m−1

which yields by Theorem 2.1 the following characterization.

Corollary 2.3. Let n, m ∈ N, n ≥ 2m, µ0, . . . , µm ∈ R, µ0 �= 0. Then the following
statements are equivalent:

(a) tn =
∑m

j=0 µjpn−j generates a positive (2n − 1 − m, n, dσ) qf.

(b)
∑m

j=0 µjp
(n−m)
m−j and

∑m
j=0 µjp

(n−m+1)
m−j−1 have all zeros in (−1, 1), they strictly

interlace, and

(2.12) (±1)n

⎛
⎝pn−m

m∑
j=0

µjp
(n−m)
m−j − βn+1−mpn−m−1

m∑
j=0

µjp
(n−m+1)
m−j−1

⎞
⎠ (±1) > 0.

(c)
∑m

j=0 µjp
(n−m)
m−j generates a positive (m−1, m, dσ(n−m)) qf and (2.12) holds.

Condition (2.12) guarantees that the smallest and largest zero of tn is in (−1, 1).
Let us discuss briefly how to obtain on the basis of Corollary 2.3 (c) a simple,

rather complete description of quasi-orthogonal polynomials of finite length which
generate positive qf for n ≥ n0. This kind of problem has been pointed out in
several papers; see [3, 8, 14, 17, 24, 33, 34]. Suppose that the recurrence coefficients
of (pk) satisfy

(2.13) lim
n

αn = 0 and lim
n

λn =
1
4

(for instance, by Rakhmanov’s Theorem (2.13) holds if σ′ > 0 a.e. on [−1, +1]).
Then by (1.8), for fixed k, m ∈ N, uniformly on compact subsets of C,

(2.14) lim
n

p
(n)
k (x) = Ûk(x) and σ(n−m) ∗−→

n→∞

√
1 − x2

where Ûk(x) = 2−k sin(k + 1) arccosx/ sin arccos x is the monic Chebyshev poly-
nomial of second kind of degree k and, as usual, ∗−→ denotes weak convergence.
Thus by Corollary 2.3(c) and (2.14), it is reasonable to expect (under additional
conditions possibly) that

∑m
j=0 µjpn−j generates for every n ≥ n0 a positive (2n−

1 − m, n, dσ) qf if
∑m

j=0 µjÛm−j generates a positive (m − 1, m,
√

1 − x2) qf and
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conversely. Now we know by [16, Corollary 2] or Theorem 4.1(a) below that∑m
j=0 µjÛm−j generates a positive (m−1, m,

√
1 − x2) qf if

∑m
j=0 µjz

j has all zeros
in |z| < 1/2 and, indeed, as we have proved in [20, Corollary 3.4], for measures σ
in the Szegő class the last condition is sufficient also that

∑m
j=0 µjpn−j generates

a positive (2n − 1 − m, n, dσ) qf for every n ≥ n0. On the other hand, it can be
shown [20] that

∑m
j=0 µjz

j has all zeros in |z| ≤ 1
2 if

∑m
j=0 µjpn−j has all zeros in

(−1, 1) for every n ≥ n0, in particular, if it generates a positive (2n− 1−m, n, dσ)
qf for every n ≥ n0.

2.1. Application to Gauss-Kronrod quadratures. Let us demonstrate some
consequences of the Characterization Theorem to Gauss-Kronrod qf, abbreviated
by G-K qf which are (4N+1−m, 2N+1, dσ) qf, 0 ≤ m ≤ N , with nodes at the zeros
of pN . By Theorem 2.1 we obtain the following complete characterization of positive
G-K qf given by the author in [16, Corollary 4]. Note that the added equivalence
(c) and the last statement on the positivity, which we expect to be of importance
in future studies of G-K qf, follow immediately by (2.15) and Theorem 2.1(e) and
Lemma 1.1, respectively. Because the proof gives other important information
needed in the following and is short and simple we reproduce it.

Corollary 2.4. Let N, k ∈ N0, N ≥ 2k. The following three statements are
equivalent:

(a) There exist a positive (4N + 1 − 2k, 2N + 1, dσ) qf which has N nodes at
the zeros of pN .

(b) There exist polynomials gk, gk−1 which satisfy the conditions of the Char-
acterization Theorem 2.1(d) such that

(2.15) pN = gkp
(N+1)
N−k − β̃2N+2−kgk−1p

(N+1)
N−k−1,

where β̃2N+2−k > 0.
(c) pN generates a positive (2N − 1 − 2k, N, dσ(N+1)) qf.

Moreover, the G-K qf is positive if and only if pN and
∫ pN (x)−pN (t)

x−t dσ(N+1) have
strictly interlacing zeros on (−1, 1).

Proof. Suppose that t2N+1(x) = pN (x)EN+1(x) generates a positive (4N + 1 −
2k, 2N + 1, dσ) qf. Then it follows by Theorem 2.1 that

(2.16) pNEN+1 = t2N+1 = gkp2N+1−k − β̃2N+2−kgk−1p2N−k.

Plugging in (2.16) and the representations (2.10) for p2N+1−k and p2N−k we obtain

pNEN+1 = t2N+1 =(gkp
(N+1)
N−k − β̃2N+2−kgk−1p

(N+1)
N−k−1)pN+1

− βN+2(gkp
(N+2)
N−k−1 − β̃2N+2−kgk−1p

(N+2)
N−k−2)pN

(2.17)

and thus, since pN and pN+1 have no common zero, (2.15) follows.
The sufficiency part follows by putting t2N+1 as in (2.17) and using (2.10) which

gives (2.16) and by Theorem 2.1 the assertion. �
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Obviously, recalling the equivalence of (e) and (d) in Theorem 2.1, representation
(2.15) is equivalent to the fact that the Jacobi matrix

(2.18)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

αN+2

√
βN+3√

βN+3 αN+3

√
βN+4

. . . . . . . . .√
β2N+1−k α2N+1−k

√
β̃2N+2−k

. . . . . . . . .√
β̃2N α̃2N

√
β̃2N+1√

β̃2N+1 α̃2N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has the same eigenvalues as the Jacobi matrix JG
N (dσ). In this form our above

characterization (2.15) of positive G-K qf was given by Laurie [10] about ten years
later. In the sequel characterization (2.15), i.e., Corollary 4 from [16], was missed
also in [2, p. 1038] and the survey papers [5] and [11, Theorem 2], where it is
called Laurie’s fundamental result on Gauss-Kronrod quadrature. It turned out
that (2.15), respectively, (2.18) is important from the computational point of view
also [2, 5].

We mention that by (2.17) and (2.15) the so-called Stieltjes polynomial EN+1

has a representation of the form

(2.19) EN+1(x) = pN+1(x) − βN+2

∫
pN (x) − pN (t)

x − t
dσ(N+1)(t)

which can be derived also with the help of the representation

EN+1pN =
N∑

j=0

µjp2N+1−j

and (2.11); see [22]. Having in mind Corollary 2.4(c) and the discussion following
Corollary 2.3 (for more information on associated polynomials and measures see
[21, Section 3]) we conjecture that for every N ≥ N0 positive G-K quadrature is
not possible, if pN (., w) does not admit positive (N −1, N,

√
1 − x2) quadrature for

N ≥ N0, where w is supposed to be continuously differentiable.

2.2. Extensions of the Gauss qf with arbitrary degree of exactness.

Corollary 2.5. a) pNEN+1 generates a positive (2N, 2N + 1, dσ) qf if and only if
EN+1 = pN+1 + (αN+1 − α̃N+1)pN − β̃N+2gN−1, where gN−1 ∈ PN−1 is such that
gN−1 and pN have strictly interlacing zeros in (−1, 1) and α̃N+1 ∈ R and β̃N+2 > 0
are such that EN+1(1) > 0 and (−1)N+1EN+1(−1) > 0.

If α̃N+1 = αN+1, then the (2N, 2N + 1, dσ) qf becomes a (2N + 1, 2N + 1, dσ)
qf, and if in addition β̃N+2 = βN+2, then a (2N + 2, 2N + 1, dσ) qf.

b) t2N+1 = pNEN+1 generates a positive (4N + 1 − m, 2N + 1, dσ), 0 ≤ m ≤
2N +1, qf if and only if gN+1 := EN+1+βN+1pN−1 and gN := pN can be generated



2248 FRANZ PEHERSTORFER

by a recurrence relation (2.5), n = 2N + 1, with the constraints

α̃
2N+1−[

m+1
2 ]−ν

= α
2N+1−[

m+1
2 ]−ν

ν = 0, 1, . . . , N − [m+1
2 ],(2.20)

β̃2N+1−[
m
2 ]−ν = β2N+1−[

m
2 ]−ν ν = 0, 1, . . . , N − [m

2 ].(2.21)

Proof. Concerning a). Necessity. By Theorem 2.1(e),

(2.22) t2N+1 = gN+1pN − βN+1gNpN−1.

By (2.22) and t2N+1 = pNEN+1 we get

gN = pN and EN+1 = gN+1 − βN+1pN−1.

Sufficiency. Put

(2.23) gN+1 = (x − α̃N+1)pN − β̃N+2gN−1.

Then, setting gN = pN ,

t2N+1 = pNEN+1 = gN+1pN − βN+1pN−1gN .

Since gN−1 and pN have interlacing zeros by (2.23), gN+1 and gN = pN have
interlacing zeros which implies by Theorem 2.1(e) the assertion.

Concerning b). Necessity follows as in the proof of part a) and by (2.3).
Sufficiency. For simplicity of writing, let m = 2k. By (2.20) and (2.21) and

induction arguments, gN+1 and gN can be written in the form

gN = gkp
(N+1)
N−k − β̃2N+2−kgk−1p

(N+1)
N−k−1,

and
gN+1 = gkp

(N)
N+1−k − β̃2N+2−kgk−1p

(N)
N−k,

where β̃2N+2−k > 0, which implies (compare (2.16) and (2.17)) that

gN+1pN − βN+1gNpN−1 = gkp2N+1−k − β̃2N+2−kgk−1p2N−k,

which is the assertion. �

Note the difference of G-K quadrature, where the extension polynomial EN+1 is
uniquely determined by (2.19).

If in the first statement of Corollary 2.5 we put gN−1 = pN−1 and let β̃N+2 ∈ R+

and α̃N+1 ∈ (−1, 1) be such that

(2.24) β̃N+2 + (α̃N+1 − αN+1)
pN

pN−1
(±1) <

pN+1

pN−1
(±1),

then it follows that the polynomial

(2.25) t2N+1 = pN (pN+1 + (αN+1 − α̃N+1)pN − β̃N+2pN−1)

generates a positive (2N, 2N + 1, dσ) qf. We note that there always exist α̃N+1 ∈
(−1, 1) and β̃N+2 > 0 such that (2.24) is satisfied. The weights λν,2N+1(dσ) asso-
ciated with the ν-th zero of pN , ν = 1, . . . , N , are given by

(2.26) λν,2N+1(dσ) =

(
β̃N+2

β̃N+2 + βN+1

)
λG

ν,N (dσ).

(2.26) follows by (1.3) and the fact that by a straightforward calculation

(2.27) (pNEN+1)[1](y) = EN+1(y)p[1]
N (y) +

∫
p2

Ndσ
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and that at the zeros xν of pN by (2.25)

EN+1(xν) = −(βN+1 + β̃N+2)pN−1(xν)

= −(βN+1 + β̃N+2)
∫

p2
N−1dσ/p

[1]
N (xν).

(2.28)

If we put in addition to (2.25) β̃N+2 = βN+1 and α̃N+1 = αN+1, then the degree
of exactness is raised by one and the (2N + 1, 2N + 1, dσ) qf becomes the so-called
averaged Gaussian qf introduced by Laurie in [9]. By (2.26) the weights associated
with the zeros of pN become half of the Gaussian weights.

The case when in (2.25) α̃N+1 = αN+1 and β̃N+2 = βN+2, which yields degree
of exactness 2N + 2, was studied recently by Spalevic in [29]. His starting point
was Theorem 2.1(c) by putting there, α̃2N+2−j = αj , j = 1, . . . , N , and β̃2N+2−j =
βj+1, j = 1, . . . , l − 1, n = 2N + 1.

Let us mention that in the last two cases condition (2.24) need not be satisfied
anymore, that is, that two nodes may be outside.

3. Explicit weight function for positive qf

Next let us demonstrate how to obtain a representation of positive qf with the
help of orthogonal polynomials on the unit circle, given in [15]; see also [16, 19].
Denote by Φn(z) = zn + . . . , n ∈ R0, the polynomial orthogonal on [0, 2π] with
respect to the positive measure

(3.1) ψ(ϕ) =

{
−σ(cos ϕ) for ϕ ∈ [0, π],
σ(cos ϕ) for ϕ ∈ (π, 2π],

i.e.,

(3.2)
∫ 2π

0

e−ikϕΦn(eiϕ)dψ(ϕ) = 0 for k = 0, . . . , n − 1.

Note that if σ is absolutely continuous on [−1, +1] and σ′(x) = w(x), then ψ is
absolutely continuous with ψ′(ϕ) = w(cos ϕ)| sinϕ| for ϕ ∈ [0, 2π]. It is well known
(see e.g. [25, 31]) that the Φn’s satisfy a recurrence relation of the type

(3.3) Φn(z) = zΦn−1(z) − an−1Φ∗
n−1(z) for n ∈ N,

where an ∈ (−1, 1) for n ∈ N0 and where Φ∗
n(z) = znΦn(z−1) denotes the reciprocal

polynomial of Φn. The polynomials pn and p
(1−x2)
n−1 orthogonal on [−1, +1] with

respect to dσ and (1− x2)dσ, respectively, can be given by OPUC’s as follows (see
[31, Section 11.5] or [26])

2n−1pn(x) = Re{z−n+1Φ2n−1(z)} =
Re{z−nΦ2n(z)}

1 − a2n−1
,(3.4)

2n−1p
(1−x2)
n−1 (x) =

Im{z−n+1Φ2n−1(z)}
sin ϕ

=
Im{z−nΦ2n(z)}
(1 + a2n−1) sinϕ

,(3.5)

where x = 1
2 (z + z−1), z = eiϕ, ϕ ∈ [0, π]. The parameters are given by (see [26])

(3.6) a2n−1 = 1 − (un + vn) and a2n = (vn − un)/(vn + un),

where

(3.7) un = pn+1(1)/pn(1) and vn = −pn+1(−1)/pn(−1).
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Let us assume that tn has a representation of the form (2.6). Following [16, 19] we
put

(3.8) sl−1(x) =
e+
n−l − e−n−l

2
β̃n+1−lgl−1(x)

and

(3.9) rl(x) = 2(gl(x) − (x +
e+
n−l + e−n−l

e+
n−l − e−n−l

)sl−1(x)),

where

(3.10) e±n−l =
pn−l−1(±1)
pn−l(±1)

.

Representing (x2 − 1)p(1−x2)
n−l−1 (x) in the form (see [31, Thm.2.5])

(x2 − 1)p(1−x2)
n−l−1 (x) = pn+1−l(x) − µ1,n−lpn−l(x) − µ2,n−lpn−l−1(x)(3.11)

= (x − αn+1−l − µ1,n−l)pn−l(x) − (µ2,n−l + βn+1−l)pn−l−1(x)

we get by considering (3.11) at the points ±1,

(3.12) µ2,n−l + βn+1−l =
2

e+
n−l − e−n−l

and αn+1−l + µ1,n−l = −
e+
n−l + e−n−l

e+
n−l − e−n−l

,

which gives again by straightforward calculation that

(3.13) rl(x)pn−l(x) − (1 − x2)sl−1(x)p(1−x2)
n−l−1 (x) = glpn−l − β̃n+1−lgl−1pn−l−1.

Furthermore, we put

(3.14) qm(z) = (2z)l{rl(
1
2
(z + z−1)) +

(z − z−1)
2

sl−1(
1
2
(z + z−1))} if m = 2l

and
(3.15)

qm(z) = 2(2z)l−1{
rl( 1

2 (z + z−1))
1 − a2(n−l)−1

+
(z − z−1)

2
sl−1( 1

2 (z + z−1))
1 + a2(n−l)−1

} if m = 2l − 1,

i.e., for m = 2l,

(3.16) rl(x) = 2−l Re{e−ilϕqm(eiϕ)} and sl−1(x) = 2−l Im{e−ilϕqm(eiϕ)}
sin ϕ

,

and for m = 2l − 1 (see [16, Lemma 2]),

(3.17) rl(x) = (1 − a2(n−l)−1)2−l Re{e−i(l−1)ϕqm(eiϕ)}
and

(3.18) sl−1(x) = (1 + a2(n−l)−1)2−l Im{e−i(l−1)ϕqm(eiϕ)}
sin ϕ

.

Then the representation (2.6) becomes

tn(x) = rl(x)pn−l(x) − (1 − x2)sl−1(x)p(1−x2)
n−l−1 (x)

= Re{z−n+1qm(z)Φ2n−1−m(z)}
(3.19)

where x = cos ϕ, z = eiϕ, ϕ ∈ [0, π].
The point is now, if gl(x) and gl−1(x) have all zeros in (−1, 1) and if they are all

simple and interlaced, then it can be shown by Cauchy’s Index Theorem (see [16])
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that qm(z) has all zeros in the open unit disk |z| < 1; the converse statement holds
true also. Hence qmΦ2n−1−m, n ∈ N, is a polynomial which has all zeros in |z| < 1
which has many important consequences as we shall see.

Recall that by Characterization Theorem 2.1 tn is orthogonal with respect to
some positive measure depending on n; see also [27, Thm. 3.8] concerning the
existence of such measures having a special form. In the following theorem we give
such a measure explicitly. We mention that there may be several positive measures
with respect to which tn is orthogonal; uniqueness is guaranteed only if the second
kind of polynomials also coincide.

Theorem 3.1. Let n, m ∈ N0, n ≥ m, and let tn be a monic polynomial of degree
n. The following statements are equivalent:

(a) tn generates a positive (2n − 1 − m, n, dσ) qf.
(b) tn(x) has a representation of the form

(3.20) 2n−1tn(x) = Re{z−n+1qm(z)Φ2n−1−m(z)};
x = 1

2 (z + z−1), z = eiϕ, ϕ ∈ [0, π], where qm(z) = zm + . . . is a real
polynomial with all zeros in |z| < 1.

(c) tn(x) is orthogonal on [−1, 1] to Pn−1 with respect to a weight function of
the form, x = cos ϕ, ϕ ∈ [0, π],

(3.21) vm,n(x) =
1

|qm(eiϕ)|2|Φ2n−1−m(eiϕ)|2
√

1 − x2

where qm(z) = zm + . . . is a real polynomial with all zeros in |z| < 1.

Proof. (a)⇔(b) has been shown in [15, Thm. 2]; see also [16].
Concerning (b)⇒(c). Since (qmΦ2n−1−m)(z) has all zeros in |z| < 1 it follows

[4] that (qmΦ2n−1−m)(z) is orthogonal on the unit circle to {e−ikϕ}2n−2
k=0 with re-

spect to the weight function f(ϕ) = 1/|qmΦ2n−1−m(eiϕ)|2. Thus (see [31, Section
11.5]), Re{z−n+1(qmΦ2n−1−m)(z)} is orthogonal on [−1, 1] to Pn−1 with respect to
vm,n(x)dx.

(c)⇒(a). Since |qm(eiϕ)|2 is a cosine polynomial of degree m, it follows that
tn is on [−1, 1] orthogonal to Pn−m−1 with respect to dx/|Φ2n−m−1(eiϕ)|2

√
1 − x2.

Now Φ2n−m−1(z) is the polynomial orthogonal on the unit circumference to
{e−ikϕ}2n−m−2

k=0 with respect to dψ(ϕ), where ψ(ϕ) is the measure from (3.1). It is
known (see [4, p. 200]) that

(3.22)
∫ +π

−π

eikϕ

|Φ2n−1−m(eiϕ)|2 dϕ =
∫ +π

−π

eikϕdψ(ϕ) k = 0, . . . , 2n − 1 − m,

hence

(3.23)
∫ +1

−1

xk

|Φ2n−1−m(eiϕ)|2
√

1 − x2
dx =

∫ +1

−1

xkdσ(x) k = 0, . . . , 2n− 1−m.

Thus it follows that tn is on [−1, 1] orthogonal to Pn−m−1 with respect to dσ(x).
Since tn is orthogonal with respect to vm,n, it has n simple zeros xj = cos ϕj , j =
1, . . . , n. Now, by the Gaussian formula, recall that |qm(eiϕ)|2 is a cosine polynomial
of degree ≤ m, we have that

(3.24)
∫ +1

−1

p(x)|qm(eiϕ)|2vm,n(x)dx =
n∑

j=0

λG
j (vm,n)|qm(eiϕj )|2p(xj)
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for any p ∈ P2n−1−m and thus

(3.25) λj(w) = λG
j (vm,n)|qm(eiϕj )|2 > 0 j = 1, . . . , n,

which proves the implication. �

Note that |(qmΦ2n−1−m)(eiϕ)|2 in the denominator of (3.21) is a positive cosine
polynomial of degree ≤ 2n − 1.

4. Positive quadrature formulas of Radau and Lobatto type

The statements given in Theorem 3.1 can be extended easily to measures of the
form (1 − x)α(1 + x)βdσ(x), α, β ∈ {0, 1}, which are of importance in connection
with positive qf of Radau and Lobatto type. We call an interpolation qf with n
nodes and degree of exactness 2n − 1 − m a (2n − 1 − m, n, dσ) qf of Radau, resp.
Lobatto type, if one, respectively, two nodes coincide with the boundary points ±1
and all other nodes are simple and in (−1, 1).

Theorem 4.1. Suppose that qm(z) has all zeros in |z| < 1.

a)

(4.1) 2n−1t
(1−x2)
n−1 (cosϕ) :=

Im{z−n+1qm(z)Φ2n−1−m(z)}
sin ϕ

,

where x = 1
2 (z + z−1), z = eiϕ, ϕ ∈ [0, π], is orthogonal on [−1, 1] to Pn−2

with respect to the weight function (1−x2)vm,n(x) and generates a positive
(2n − 3 − m, n − 1, (1 − x2)dσ) qf. vm,n is defined in (3.21).

Moreover, (x2 − 1)t(1−x2)
n−1 generates the Lobatto qf with respect to vm,n

and a positive (2n − 1 − m, n + 1, dσ) qf of Lobatto type.
b)

(4.2) 2nt(1+x)
n (x) :=

Re{z−n+1/2qm(z)Φ2n−1−m(z)}
cos ϕ/2

,

respectively,

(4.3) 2nt(1−x)
n (x) :=

Im{z−n+1/2qm(z)Φ2n−1−m(z)}
sin ϕ/2

is orthogonal to Pn−1 with respect to (1±x)vm,n(x) and generates a positive
(2n − 1 − m, n, (1 ± x)dσ)qf.

Moreover, (1± x)t(1±x)
n generates the Radau qf with respect to vm,n and

a positive (2n − m, n + 1, dσ) qf of Radau type.

Proof. The orthogonality property follows by [31, Section 11.5] again. As in the
proof of the implication (c) ⇒ (a) from Theorem 3.1 it follows that it generates a
corresponding positive qf with respect to (1−x2)dσ. Since (x2−1)t(1−x2)

n−1 generates

the Lobatto qf if and only if t
(1−x2)
n−1 is orthogonal with respect to (1 − x2)dσ, part

a) is proved.
Analogously part b) follows. �
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5. Asymptotics of weights

In the following, p
(1±x)
n denotes the monic polynomial of degree n orthogonal

with respect to (1± x)dσ as p
(1−x2)
n denotes that one is orthogonal with respect to

(1 − x2)dσ.

Lemma 5.1. Denote by R
(x2−1)
n , R

(x±1)
n , and Rn−1 the polynomials of the second

kind of (y2 − 1)p(1−x2)
n−1 (y), (y ± 1)p(1±x)

n (y) and of pn(y) with respect to dσ. Then
the following relations hold:

(5.1) pn(y)R(x2−1)
n (y) − (y2 − 1)p(1−x2)

n−1 (y)Rn−1(y) = cn

where

(5.2) cn =
∫ +1

−1

p2
n(t)dσ(t) +

∫ +1

−1

[p(1−x2)
n−1 (t)]2(1 − t2)dσ(t)

and

(5.3) (y + 1)p(1+x)
n (y)R(x−1)

n (y) − (y − 1)p(1−x)
n (y)R(x+1)

n (y) = dn

where

(5.4) dn =
∫ +1

−1

[p(1−x)
n (t)]2(1 − t)dσ(t) +

∫ +1

−1

[p(1+x)
n (t)]2(1 + t)dσ(t).

Proof. To show that (5.1) holds it suffices obviously to demonstrate that the poly-
nomial of the second kind of (y2 − 1)p(1−x2)

n−1 (y)pn(y) with respect to dσ has the
following two representations:

(5.5) (y2 − 1)p(1−x2)
n−1 (y)Rn−1(y) +

∫ +1

−1

p2
n(t)dσ(t)

and

(5.6) pn(y)R(x2−1)
n (y) −

∫ +1

−1

[p(1−x2)
n−1 (t)]2(1 − t2)dσ.

Indeed, on the one hand, the polynomial of the second kind can be written in the
form

(y2 − 1)p(1−x2)
n−1 (y)

∫ +1

−1

pn(y) − pn(t)
y − t

dσ(t)

+
∫ +1

−1

(y2 − 1)p(1−x2)
n−1 (y) − (t2 − 1)p(1−x2)

n−1 (t)
y − t

pn(t)dσ

(5.7)

and, on the other hand, in the form

pn(y)
∫

(y2 − 1)p(1−x2)
n−1 (y) − (t2 − 1)p(1−x2)

n−1 (t)
y − t

dσ

+
∫

pn(y) − pn(t)
y − t

p
(1−x2)
n−1 (t)(t2 − 1)dσ(t).

(5.8)

Using the orthogonality property of pn respectively, p
(1−x2)
n−1 , (5.5) and (5.6) fol-

low. Relation (5.3) is proved similarly by showing that the polynomials of the



2254 FRANZ PEHERSTORFER

second kind of (y2 − 1)p(1+x)
n (y)p(1−x)

n (y) with respect to dσ has the following two
representations:

(5.9) (y + 1)p(1+x)
n (y)R(x−1)

n (y) −
∫

[p(1−x)
n (t)]2(1 − x)dσ

and

�(5.10) (y − 1)p(1−x)
n (y)R(x+1)

n (y) +
∫

[p(1+x)
n (t)]2(1 + x)dσ.

Lemma 5.2. Let cn, dn be given by (5.1) and (5.3) and let xj,n and yj,n−1 be the

j-th zero of pn and p
(1−x2)
n−1 , respectively. Then

(5.11) λG
j,n(dσ) =

cn

(1 − x2
j,n)p(1−x2)

n−1 (xj,n)p′n(xj,n)

(5.12) λG
j,n−1((1 − x2)dσ) =

−cn

pn(yj,n−1)(p
(1−x2)
n−1 )′(yj,n−1)

.

Furthermore,

(5.13) λG
j,n((1 ± x)dσ) =

−dn

(uj,n ∓ 1)p(1∓x)
n (uj,n)(p(1±x)

n )′(uj,n)

where uj,n denotes the j-th zero of p
(1±x)
n , respectively.

Proof. Relation (5.11) follows immediately by (1.3) and (5.1); note that by notation
p
[1]
n ≡ Rn−1.

Concerning (5.12). Using the fact that by Christoffel’s formula [31, Section 2.5]
(y2 − 1)p(1−x2)

n−1 (y) = pn+1(y) − µ1,npn(y) − µ2,npn−1(y), µ1,n, µ2,n ∈ R, one ob-

tains by straightforward calculation that at the zeros y of p
(1−x2)
n−1 the relation

(p(1−x2)
n−1 )[1](y) = −R

(x2−1)
n (y) holds, which gives by (1.3) and (5.1) the assertion.

Relation (5.13) follows similarly by (5.3) and (1.3) taking into consideration the
fact that with the help of Christoffel’s formula at the zero u of p

(1±x)
n the relation

(p(1±x)
n )[1](u) = ±R

(y±1)
n (u) holds. �

Theorem 5.3. Let dσ(x) = w(x)dx be such that f(ϕ) = w(cos ϕ)| sin ϕ| is positive
and from Lip γ, 0 < γ ≤ 1, on [α, β] ⊆ [0, π] and that log f(ϕ) is integrable on [0, π].
Suppose that (tn) generates a positive (2n−m(n)−1, n, w) qf with quadrature weights
λj,n(w) and nodes xj,n = cos ϕj,n and that the associated qm(n) satisfy uniformly
on [α, β] the limit relation

(5.14) Re{eiϕ

n

q∗
′

m(n)(e
iϕ)

q∗m(n)(e
iϕ)

} −→
n→∞

h(ϕ).

Then

(5.15)
π sin ϕj,nw(cos ϕj,n)

nλj,n(w)
= 1 − h(ϕj,n) + o(1)

uniformly for all ϕj,n ∈ [α + ε, β − ε], ε > 0.
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Furthermore, the weights λj,n−1((1 − x2)w) of the positive (2n − 3 − m, n − 1,

(1 − x2)w) qf, whose nodes xj,n−1 = cos ψj,n−1 are the zeros of t
(1−x2)
n−1 from (4.1),

are given asymptotically by

(5.16)
π sin3 ψj,n−1w(cos ψj,n−1)

nλj,n−1((1 − x2)w)
= 1 − h(ψj,n−1) + o(1)

uniformly for all ψj,n−1 ∈ [α + ε, β − ε], ε > 0.
Finally, the weights λj,n((1 ± x)w) of the positive (2n − 1 − m, n, (1 ± x)w)

qf, whose nodes xj,n = cos ηj,n are the zeros of t
(1±x)
n from (4.2) and (4.3), are

asymptotically given by

(5.17)
π(1 ± yj,n) sin ηj,nw(cos ηj,n)

nλj,n((1 ± x)w)
= 1 − h(ηj,n) + o(1)

uniformly for all ηj,n ∈ [α + ε, β − ε], ε > 0.

Proof. For brevity let us put g2n−1(z) = zqm(z)Φ2n−1−m(z), hence g∗2n−1(z) =
q∗m(z)Φ∗

2n−1−m(z), and let

(5.18) tn(cos ϕ) = Re{e−inϕg∗2n−1(e
iϕ)}

and

(5.19) − sin ϕt
(1−x2)
n−1 (cos ϕ) = Im{e−inϕg∗2n−1(e

iϕ)}.

Since

Im{e−inϕg∗2n−1(eiϕ)} d

dϕ
Re{e−inϕg∗2n−1(e

iϕ)}

− Re{e−inϕg∗2n−1(e
iϕ)} d

dϕ
Im{e−inϕg∗2n−1(eiϕ)}

= Im{(e−inϕg∗2n−1(eiϕ))
d

dϕ
(e−inϕg∗2n−1(e

iϕ))}

= Im{(−in)|g∗2n−1(e
iϕ)|2 + ieiϕg∗

′

2n−1(e
iϕ)g∗2n−1(eiϕ)},

(5.20)

it follows that at the zeros of tn(cos ϕ),

(5.21)
sin2 ϕ t

(1−x2)
n−1 (cos ϕ)t′n(cos ϕ)
n|g∗2n−1(eiϕ)|2 = 1 − Re{eiϕ

n

g∗
′

2n−1(eiϕ)
g∗2n−1(eiϕ)

}.

Recalling the orthogonal properties of tn and t
(1−x2)
n−1 with respect to vn,m and

(1 − x2)vn,m (see Theorem 3.1 and 4.1) we may apply (5.11) to dσ = vn,m(x)dx.
Using the fact that cn = π, which follows by

(5.22) t2n(x) + (1 − x2)t(1−x2)
n−1 (x) = |g∗2n−1(e

iϕ)|2 = 1/vn,m(x)
√

1 − x2

and (5.2), we obtain by (5.21) that
π

nλG
j,n(vn,m)|q∗m(eiϕ)|2|Φ∗

2n−1−m|2

= 1 − (Re{eiϕ

n

q∗
′

m(eiϕ)
q∗m(eiϕ)

} + Re{eiϕ

n

Φ∗′

2n−1−m(eiϕ)
Φ∗

2n−1−m(eiϕ)
}).

(5.23)



2256 FRANZ PEHERSTORFER

To simplify asymptotically (5.23) we need to recall the following fact. Since f ∈
Lip γ, we know that

(5.24) Φ∗
2n−m−1(e

iϕ) = 1/D(eiϕ) + O(
1
nγ

)

uniformly on [α, β] where D is the so-called Szegő function, i.e., D(z) is analytic
on |z| < 1 and on [α, β] satisfies

(5.25) w(cos ϕ)| sinϕ| = |D(eiϕ)|2,

since w(cos ϕ) is continuous there. Furthermore, let us prove that (5.24) implies
that uniformly on [α + ε, β − ε], ε > 0,

(5.26)
1
n
|
Φ∗′

2n−1−m(eiϕ)
Φ∗

2n−1−m(eiϕ)
| −→

n→∞
0.

Indeed,

| d

dϕ
Φ∗

2n−m−1(e
iϕ)| ≤| d

dϕ
(Φ∗

2n−m−1(e
iϕ) − Φ∗

[
√

2n−m−1](e
iϕ))|

+ | d

dϕ
Φ∗

[
√

2n−m−1](e
iϕ)|;

(5.27)

hence, by the local version of Bernstein’s inequality we get

max
ϕ∈[α+ε,β−ε]

| d

dϕ
Φ∗

2n−m−1(e
iϕ)|(5.28)

≤ const((2n − m − 1) max
ϕ∈[α,β]

|Φ∗
2n−m−1(e

iϕ) − Φ∗
[
√

2n−m−1](e
iϕ)|

+
√

2n − m − 1 max
ϕ∈[α,β]

|Φ∗
[
√

2n−m−1](e
iϕ)|).

Using the obvious fact that | d
dϕΦ∗

2n−m−1(eiϕ)| = |Φ∗′

2n−1−m(eiϕ)| and (5.24) in
conjunction with the facts that D(eiϕ) �= 0 on [α, β] and m(n) ≤ n relation, (5.26)
follows.

Thus the right hand side of (5.23) becomes by (5.14), the right hand side of
(5.15). With the help of (5.24), (5.25) and (3.25) the left hand side of (5.23) takes
the form of the left hand side of (5.15) which proves (5.15).

For (5.16) we first observe that by (5.20) at the zeros ψ of Im{einϕg∗2n−1(e
−iϕ)}

satisfies

− sin2 ψ tn(cosψ)(t(1−x2)
n−1 )′(cos ψ)

n|g∗2n−1(eiψ)|2

= 1 − (Re{eiψ

n

q∗
′

m(eiψ)
q∗m(eiψ)

} + Re{eiψ

n

Φ∗′

2n−1−m(eiψ)
Φ∗

2n−1−m(eiψ)
}).

(5.29)

(5.16) now follows as above by (5.12); recall that cn = π, and by (5.24), (5.25) and
the fact that

(5.30) λG
j,n((1 − x2)vm,n) = |q∗m(eiψ)|2λj,n((1 − x2)w).

To prove (5.17) we first observe that at the zeros η of cos ϕ
2 t

(1+x)
n (cos ϕ) =

Re{e−i(n− 1
2 )ϕg∗2n−1(eiϕ)} or of sin ϕ

2 t
(1−x)
n (cosϕ) = Im{e−i(n− 1

2 )ϕg∗2n−1(eiϕ)} the



POSITIVE QF 2257

following equality holds:

Im{e−i(n− 1
2 )ηg∗2n−1(eiη)} d

dη
Re{e−i(n− 1

2 )ηg∗2n−1(e
iη)}

− Re{e−i(n− 1
2 )ηg∗2n−1(e

iη)} d

dη
Im{e−i(n− 1

2 )ηg∗2n−1(eiη)}

= Im{(e−i(n− 1
2 )ηg∗2n−1(eiη))

d

dη
(e−i(n− 1

2 )ηg∗2n−1(e
iη))}

= −(n − 1
2
)|g∗2n−1(e

iη)|2 + Re{eiηg∗
′

2n−1(e
iη)g∗2n−1(eiη)}.

(5.31)

Proceeding as above we obtain with the help of (5.13) that

(1 ± y)dn

(2n − 1)λj,n((1 ± x)w)|Φ∗
2n−m−1(eiη)|2

= 1 − 2 Re{ eiη

2n − 1
g∗

′

2n−1(eiη)
g∗2n−1(eiη)

}.
(5.32)

Since

(5.33)
(1 + x)

2
(t(1+x)

n (x))2 +
(1 − x)

2
(t(1−x)

n (x))2 = |g∗2n−1(e
iϕ)|2,

it follows that dn = 2π. Using (5.24) and (5.25) and the boundedness of the
λj,n((1 ± x)w)’s the assertion follows. �

If the sequence (m(n)) is bounded, then h(ϕ) ≡ 0 on [α, β] if 0 < c1 ≤ |q∗m(n)(e
iϕ)|

≤ c2 on [α, β]. For unbounded sequences (m(n)) the following corollary may be
convenient.

Corollary 5.4. If there holds uniformly for ϕ ∈ [α, β],

(5.34) lim
m

q∗m(n)(e
iϕ) = Q(eiϕ) with Q(eiϕ) �= 0,

then in (5.14) h(ϕ) ≡ 0, and thus the asymptotic formulas (5.15)-(5.17) satisfy the
circle law which reads in the standard case (5.15) as

(5.35) nλj,n(w) = π
√

1 − x2
j,nw(xj,n) + o(1)

uniformly for all x′
j,n with arccos xj,n ∈ [α + ε, β − ε], ε > 0, and correspondingly

in the other cases.
In particular, (5.34) is satisfied if (qm(n)(z)) is a sequence of OPUC’s with respect

to some weight functions f̃(ϕ), where f̃(ϕ) is positive and from Lip γ on [α, β], and
log f̃(ϕ) is integrable on [0, π].

Proof. By (5.34) it follows as in the proof of (5.26) that uniformly on [α+ ε, β− ε],

(5.36)
1
m
|q

∗′

m(eiϕ)
q∗m(eiϕ)

| −→
m→∞

0,

which gives by m(n) ≤ n and Theorem 5.3 the assertion. Concerning the last
statement see (5.24). �

For Gaussian qf with respect to weight functions which satisfy the assumption
that w(x)

√
1 − x2 is positive on [−1, 1] and is from Lip γ, the circle law dates back

to Szegő [30]. Recently V. Totik [32] has shown that it holds a.e. for general
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measures, correspondingly modified with respect to the equilibrium measure. For
the classical Radau and Lobatto qf the circle law was recently investigated in [6].

Naturally there are many classes of polynomials which satisfy (5.14) but not
(5.34) in general; for instance, Fekete or Faber polynomials for simple connected
domains contained in the open unit disk. Let us give a simple example.

Example 5.5. Let, α ∈ (−1, +1), and limn
m(n)

n = 1. Then an explicit asymptotic
expression for the weights follows immediately by (5.15) and

1 − h(ϕ) = Re{ 1
1 − αeiϕ

} =
1 − α cos ϕ

1 + α2 − 2α cos ϕ
.
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