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IDENTIFYING MINIMAL AND DOMINANT SOLUTIONS
FOR KUMMER RECURSIONS

ALFREDO DEAÑO, JAVIER SEGURA, AND NICO M. TEMME

Abstract. We identify minimal and dominant solutions of three-term recur-
rence relations for the confluent hypergeometric functions 1F1(a + ε1n; c +
ε2n; z) and U(a + ε1n, c + ε2n, z), where εi = 0,±1 (not both equal to 0).
The results are obtained by applying Perron’s theorem, together with uniform
asymptotic estimates derived by T. M. Dunster for Whittaker functions with
large parameter values. The approximations are valid for complex values of a,
c and z, with |ph z| < π.

1. Introduction

Hypergeometric functions of Gauss and Kummer type satisfy three-term recur-
rence relations that connect three functions of the same family whose parameters
differ by integer numbers. These identities are an important part of the theory of
hypergeometric functions, and play an essential role in some special subfamilies,
like the classical orthogonal polynomials.

From a numerical and computational perspective, three-term recurrence relations
are a valuable tool, since in principle they allow us to compute a hypergeometric
function with given values of the parameters by using two starting values and
applying an appropriate recursion. However, as is discussed in detail in [3] and [4,
Ch. 4], great care is needed in order to use these recursions numerically in a stable
way.

We recall that given a three-term recurrence relation of the form

(1.1) yn+1(z) + bnyn(z) + anyn−1(z) = 0,

where n is an integer parameter, a solution fn(z) is said to be minimal (or recessive)
when n → +∞ if

(1.2) lim
n→+∞

fn(z)
gn(z)

= 0,

for any other solution gn(z) of (1.1) that is linearly independent of fn(z). The
solution gn(z) is said to be dominant. In some cases the recursion (1.1) can also
be used for n → −∞, and a different pair of dominant and minimal solutions may
arise.
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Whenever a three term recursion admits a minimal solution, a numerically satis-
factory pair [4] is a pair of linearly independent solutions that includes the minimal
one. The importance of such a pair is due to the fact that it can be used to compute
numerically any other solution of the recursion. On the other hand, as we will see
for some of the Kummer recursions discussed in this paper, it may happen that we
can find two linearly independent dominant solutions, that can be computed rather
easily. Such a pair cannot be used to compute the minimal solution, because of
numerical cancellation, and they do not constitute a numerically satisfactory pair.

It is not difficult to verify that the minimal solution of a three-term recursion is
unique up to a multiplicative constant, and that the behavior of any other linearly
independent solution of the recursion, say yn(z), is essentially determined by the
behavior of a dominant solution, in the sense that |yn(z)/gn(z)| ∼ B as n → ∞,
B �= 0 and not depending on n. Because of this property, a generic solution of
(1.1), which can be written as yn(z) = Afn(z) + Bgn(z), where A and B do not
depend on n, will always behave as a dominant solution, unless B = 0. Since this
last condition is normally not fulfilled in numerical computation (if only because of
round-off errors), then the error when trying to compute the minimal solution fn(z)
by using the recursion in the forward direction (increasing n) becomes unacceptably
large.

The construction of numerically satisfactory pairs and the numerical behavior
explained in the last paragraph underscore the importance of identifying minimal
solutions (in both directions, increasing and decreasing n) before using a recursion
for computational purposes. In the case of recurrence relations for special functions,
several cases have already been analysed; see for example the references [3] and [8].
More recently, Gauss hypergeometric cases have been examined in detail in [5], [6],
and [4, Ch. 4].

In this paper we analyse dominant and minimal solutions of confluent hyper-
geometric recursions, revising several cases already present in the literature, and
also completing the simplest directions of recursion. The structure of the paper is
as follows. First we briefly recall properties of Kummer and Whittaker functions,
including the notation that we will use for the recursions and the connection for-
mulas that will allow us to reduce the number of cases to be analysed. In each of
these situations we will give minimal and dominant solutions (when they exist) for
complex values of the variable z in the principal sector in |ph z| < π. For obtaining
this information we will make use of Perron’s theorem, in the formulation given in
[8] and [4, §4.3], together with asymptotic estimations for Whittaker functions with
large values of the parameters from [2]. For the sake of clarity, these estimates are
grouped in the Appendix and are referred to when needed.

2. The Kummer and Whittaker functions

2.1. The Kummer functions. The Kummer differential equation, also called
confluent hypergeometric differential equation, is given by

(2.1) z
d2

dz2
w(z) + (c − z)

d

dz
w(z) − aw(z) = 0.

One solution of this equation is the confluent hypergeometric function of the first
kind
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(2.2) w1(z) = 1F1(a; c; z) =
∞∑

k=0

(a)k

(c)k

zk

k!
,

where (a)k is the Pochhammer symbol, (a)k = Γ(a + k)/Γ(a), k = 1, 2, . . ., with
(a)0 = 1. Another solution is the confluent hypergeometric function of the second
kind w2(z) = U(a, c, z). These two functions are linearly independent when a �=
0,−1,−2, . . . .

Other solutions of (2.1) are

w3(z) = z1−c
1F1(a + 1 − c; 2 − c; z),

w±
4 (z) = ez U(c − a, c, ze±πi).

(2.3)

These five solutions are related by the following connection formulas; see [1,
p. 504] and [7, §§1.9 and 2.2.2]:

U(a, c, z) =
Γ(1 − c)

Γ(a + 1 − c) 1F1(a; c; z) +
Γ(c − 1)

Γ(a)
z1−c

1F1(a + 1 − c; 2 − c; z),

1F1(a; c; z) =
e±πiaΓ(c)
Γ(c − a)

U(a, c, z) +
e±πi(a−c)+zΓ(c)

Γ(a)
U(c − a, c, ze∓πi).

(2.4)

It is worth noting that 1F1(a; c; z) is in general not defined when c=0,−1,−2, . . .,
due to the definition of the Pochhammer symbol. However, the function U(a, c, z)
is well defined in the first relation of (2.4) for any values of a and c, as can be
verified taking limits c → −m, m an integer, when necessary.

Other functional identities that will be used later are [1]

1F1(a; c; z) = ez
1F1(c − a; c;−z),

U(a, c, z) = z1−cU(a + 1 − c, 2 − c, z),

z1−c
1F1(a + 1 − c; 2 − c; z) = z1−cez

1F1(1 − a; 2 − c;−z),

ezU
(
c − a, c, ze±πi

)
= z1−cez±πi(1−b)U

(
1 − a, 2 − c, ze±πi

)
.

(2.5)

2.2. The Whittaker functions. The Whittaker functions are denoted by Mκ,µ(z)
and Wκ,µ(z) and are the standard solutions of the Whittaker differential equation

(2.6)
d2

dz2
w(z) =

(
1
4
− κ

z
+

µ2 − 1
4

z2

)
w(z).

This equation is the transformation of the Kummer equation (2.1) to normal form.
The parameters κ and µ are related to the parameters a and c of the Kummer
functions by the following formulas:

(2.7) κ = 1
2 (c − 2a), µ = 1

2 (c − 1).

The Whittaker functions Mκ,µ(z) and Wκ,µ(z) can be expressed in terms of the
Kummer functions. We have

Mκ,µ(z) = e−z/2z1/2+µ
1F1( 1

2 + µ − κ; 1 + 2µ; z),

Wκ,µ(z) = e−z/2z1/2+µ U( 1
2 + µ − κ, 1 + 2µ, z).

(2.8)

Conversely,

1F1(a; c; z) = ez/2z−c/2Mc/2−a,c/2−1/2(z),

U(a, c, z) = ez/2z−c/2Wc/2−a,c/2−1/2(z).
(2.9)
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Other solutions of the Whittaker equation are

(2.10)
M−κ,µ(ze±πi) = e±(µ+1/2)πiMκ,µ(z),

Wκ,−µ(z) = Wκ,µ(z).

3. Confluent hypergeometric recursions

When considering three-term recursions for confluent hypergeometric functions,
we will take fixed values of the parameters a and c and will introduce a dependence
on an integer parameter n. In other words, we will consider confluent hypergeo-
metric functions with the following notation:

(3.1) 1F1(a + ε1n; c + ε2n; z), U(a + ε1n, c + ε2n, z),

where εi = 0,±1 (ε1 = ε2 = 0 excluded), that satisfy a three-term recurrence
relation of the form (1.1).

Naturally, the choice of ε1 and ε2 will produce different directions of recursion,
that we will denote by pairs (sign(ε1), sign(ε2)). For example, when ε1 = 1 and
ε2 = 0, the recursion is denoted by (+ 0). The different choices of εi produce eight
recursions. In the next sections we will give the minimal solution in each case,
together with the region of the complex plane where it is minimal.

Remarks.

(1) It is worth noting that in order to have a recursion satisfied by both Kum-
mer functions (3.1) it is necessary to include additional factors (usually
ratios of gamma functions), which can be obtained from the connection
formulas (2.4). In all cases (except ε1 = ε2 = −1) we will take as the first
solution of the recursions the function 1F1(a + ε1n; c + ε2n; z), and derive
the rest from (2.4).

(2) When selecting the gamma functions in front of the solutions of recurrence
relations, we avoid gamma functions with negative n by using the relation

(3.2) Γ(z − n) =
(−1)nπ

sin(πz)Γ(n + 1 − z)
,

and by neglecting those factors in this relation that do not depend on n.
(3) We will not insist on treating the case c = 0,−1,−2, . . . and the problems

in the definition of the function 1F1(a; c; z) separately. In this case one
can take other solutions using (2.4), or if the 1F1 function is the minimal
solution then rescale everything and use 1F1(a; c; z)/Γ(c).

(4) In principle we could consider other values of εi, but the recursions become
increasingly more complicated. It is of interest to observe, however, that for
other specific cases simple and important recursions arise. For example, for
1F1(a + n; c + 2n; z), with special values of a and c, this Kummer function
becomes a known special function. When a = 1

2c it reduces to a Bessel
function, and when a = L − iη and c = 2L it becomes a Coulomb wave
function (see [1, Chapters 9 and 14]). The functions 1F1( 1

2a + 1
2n; 1

2 ±
1
4 ; z)

are related to parabolic cylinder functions (see [1, Ch. 19]).
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4. The (+ 0) recursion

The parameters of the three-term recursion (1.1) with respect to a are

(4.1) an =
a + n − c

a + n
, bn = −2a + 2n − c + z

a + n
.

These coefficients have the following asymptotic behavior:

(4.2) an ∼ 1, bn ∼ −2, n → ∞,

and it follows from Perron’s theorem (see [8, Theorem 13.1, Case 2] and [4, §4.3]
that

(4.3) lim sup
n→∞

|yn(z)| = 1,

for each non-trivial solution of the recursion.
Four different solutions of the recursion are

y(1)
n (z) = 1F1(a + n; c; z),

y(2)
n (z) = Γ(a + 1 − c + n) U(a + n, c, z),

y(3±)
n (z) =

(−1)n

Γ(a + n)
U(c − a − n, c, ze±πi).

(4.4)

Using the Whittaker notation, the parameters are (see (2.7))

(4.5) κ = 1
2 (c − 2a − 2n), µ = 1

2 (c − 1).

Since κ < 0 for large n, the asymptotic relations in (9.3)–(9.6) cannot be applied
straightforwardly. However, we have several relations between these functions that
are useful when identifying the minimal and dominant solutions of the recursion.

4.1. The solution y
(1)
n (z). This solution is related to the Whittaker function

Mκ,µ(z). In order to reverse the sign of κ we use the relation (see (2.10))

(4.6) Mκ,µ(z) = e∓(µ+1/2)πiM−κ,µ(ze±πi).

It follows that we can use the asymptotic relation given in (9.3) for the solution
y
(1)
n (z), when we replace z with ze±πi. We will choose the plus sign whenever
−π < ph z ≤ 0 and the minus sign when 0 < ph z ≤ π; hence, the principal
argument is always maintained.

The J−Bessel function in the asymptotic relation (9.3) has argument 2
√

κz,
since the quantity c(α) in (9.10) and (9.12) has the following behavior (see also
[2, Eq. (3.11)])

(4.7) c(α) = 4 − 1
6α2 + O

(
α4

)
, α → 0.

Therefore, the J−Bessel function has its argument in the right half-plane (see
(9.12)), and it can be written in terms of the modified I−Bessel function, because
of the relation

(4.8) Jν

(
we±

1
2 πi

)
= e∓

1
2 νπiIν(w), −1

2π < ph w ≤ 1
2π,

which follows from [1, Eq. 9.6.3]. Since the modified Bessel function Iν(w) is ex-
ponentially large as �w → +∞, we conclude that the solution y

(1)
n (z) is not a

candidate for the minimal solution of the recursion.
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The approximations for this solution can also be obtained from known estimates
in the literature. From [7, p. 80] it follows that

(4.9) M−κ,µ(z) ∼
√

z Γ(2µ + 1)κ−µI2µ(2
√

κz), κ → ∞
in the sector −π < ph z < π, or in terms of the Kummer 1F1−function,

(4.10) 1F1(a + n; c; z) ∼ Γ(c)(nz)(1−c)/2 ez/2 Ic−1(2
√

nz), n → ∞.

4.2. The solution y
(2)
n (z). This solution is the minimal solution for z inside the

sector −π < ph z < π. This follows from the estimates given in the Appendix,
but we can also use the analogs of the estimates in (4.9)–(4.10). From [7, p. 81] it
follows that we have, in terms of the modified K−Bessel function,

(4.11) W−κ,µ(z) ∼ 2
√

zκµ

Γ( 1
2 + µ + κ)

K2µ(2
√

κz), κ → ∞

in the sector −π < ph z < π, or in terms of the Kummer U−function,

(4.12) Γ(a + n + 1 − c)U(a + n, c, z) ∼ 2(nz)
1−c
2 ez/2 Kc−1(2

√
nz), n → ∞.

The function Kν(w) is exponentially small as �w → +∞, and we conclude that

(4.13) lim
n→∞

y
(2)
n (z)

y
(1)
n (z)

= 0, −π < ph z < π,

from which it follows that the solution y
(2)
n (z) is the minimal solution of this recur-

sion for all non-negative z.

5. The (− 0) recursion

In this case the coefficients can be obtained directly from the (+ 0) recursion

(5.1) an =
n − a

c − a + n
, bn =

2a − 2n − c + z

c − a + n
.

These coefficients have the following asymptotic behavior:

(5.2) an ∼ 1, bn ∼ −2, n → ∞,

and it follows from Perron’s theorem (see [8, Theorem 13.1, Case 2] and [4, §4.3]
that

(5.3) lim sup
n→∞

|yn(z)| = 1,

for each non-trivial solution of the recursion.
Four different solutions are

y(1)
n (z) = 1F1(a − n; c; z),

y(2)
n (z) =

(−1)n

Γ(c − a + n)
U(a − n, c, z),

y(3±)
n (z) = Γ(1 − a + n) U(c − a + n, c, ze±πi),

(5.4)

which follow from the connection formula (2.4).
The information given by Perron’s theorem in (5.3) is not sufficient to identify

the minimal and dominant solutions. The asymptotic behavior for n → +∞ follows
from the large κ behavior of the Whittaker functions given in (9.3)–(9.6), since the
Whittaker parameters are

(5.5) κ = 1
2 (c − 2a + 2n), µ = 1

2 (c − 1).
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In principle it is possible to analyse the behavior of the solutions y
(1)
n (z) and

y
(2)
n (z) by using these parameters, together with the approximations (9.3) and (9.4),

without any change of sign in the parameters. However, there is a simpler way
to identify the minimal solution: we use the known asymptotic behavior of the
Hankel functions in (9.5) and (9.6). When the argument w is large we have (see [1,
Eqs. (9.2.3) and (9.2.4)])

H(1)
ν (w) ∼

√
2

πw
ei(w− 1

2νπ− 1
4 π), −π < ph w < 2π,(5.6)

H(2)
ν (w) ∼

√
2

πw
e−i(w− 1

2νπ− 1
4π), −2π < ph w < π.(5.7)

As before, the argument of the Hankel functions in (9.5) and (9.6) is 2
√

κz, now
with positive κ.

Noting that the J− and Y −Bessel functions in (9.3) and (9.4) are linear combi-
nations of the Hankel functions, we see that they are exponentially large whenever
2
√

κz is not real. This exponential growth means that the solutions y
(1)
n (z) and

y
(2)
n (z) are not minimal when �z �= 0, because, as we discuss next, the minimal

solution decreases exponentially.
Observe that when z belongs to the upper half-plane, the Hankel function

H
(1)
ν (2

√
κz) present in (9.5) becomes exponentially small for large values of κz, and

when z belongs to the lower half-plane, the Hankel function H
(2)
ν (2

√
κz) present

in (9.6) becomes exponentially small for large values of κz. Then, using the rela-
tions between the Whittaker functions and the Kummer functions given in (2.8)
and (2.9), together with (9.5) and (9.6), we conclude that when z is in the upper
half-plane, the solution

(5.8) y(3−)
n (z) = Γ(1 − a + n)U(c − a + n, c, ze−πi)

is the unique minimal solution of the recurrence relation, whereas if z is in the lower
half-plane, then

(5.9) y(3+)
n (z) = Γ(1 − a + n)U(c − a + n, c, zeπi)

is the minimal solution.
When z is not real both y

(1)
n (z) and y

(2)
n (z) are dominant solutions. On the

negative real axis y
(3−)
n (z) is the minimal solution when we take ph z = +π and

y
(3+)
n (z) is minimal when ph z = −π. The other solutions y

(1)
n (z) and y

(2)
n (z) are

dominant solutions on the negative real axis.
On the positive real axis there is no minimal solution. All Bessel and Han-

kel functions have positive arguments, and none of the four solutions in (5.4) is
exponentially decreasing when z > 0.

We observe that for a = 0,−1,−2, . . . the solutions y
(1)
n (z) and y

(2)
n (z) are linearly

dependent, in fact, they reduce to polynomials and are oscillating for c > 0 and
z > 0. This known behavior also follows from the relation with the Laguerre
polynomials ([8, p. 190])

(5.10) L(α)
n (z) =

(−1)n

n!
U(−n, α + 1, z) =

(
n + α

n

)
1F1(−n; α + 1; z).
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6. The (−+) and (+−) recursions

6.1. The (−+) recursion. The coefficients of the recursion (1.1) are given by

an = (c + n − 1)(c + n)(−a + n)(−n + a + z − 1)/dn,

bn = (c + n)(n3 + (3z + c − 2a)n2

+ (3z + c − 6az + a2 − 5z2 + a − 2ac − 1)n + z3

+ z2(4a − c − 1) + 3az(a − 1) + a(ac − c − a + 1))/dn,

dn = z(c + 2n + 1 − a)(c + 2n − a)(−n + z + a).

(6.1)

We have

(6.2) an ∼ n

4z
, bn ∼ − n

4z
, n → ∞.

The application of Perron’s theorem (see [8, Theorem 13.1, Case 1] and [4, §4.3])
yields the following behavior of the solutions:

(6.3)
fn+1(z)
fn(z)

∼ 1,
gn+1(z)
gn(z)

∼ n

4z
, n → ∞,

the solution fn being minimal. If a − n �= 0,−1,−2, . . ., then two independent
solutions of the recursion are the Kummer functions

y(1)
n (z) = 1F1(a − n; c + n; z),

y(2)
n (z) =

(−1)nΓ(c + n)
Γ(c − a + 2n)

U(a − n, c + n, z).
(6.4)

Bearing in mind the connection between the Kummer and Whittaker functions
given in (2.8) and (2.9), we see that the corresponding Whittaker functions have
parameters

(6.5) κ = 1
2 (c − 2a + 3n), µ = 1

2 (c + n − 1),

and it is clear that the shift n → n+1 is equivalent to κ → κ+3/2 and µ → µ+1/2.

6.1.1. Asymptotic estimates. When n → ∞ both κ and µ tend to ∞, so in order
to describe the behavior of the Whittaker functions when n → ∞ we will need
asymptotic expansions for large κ that hold uniformly with respect to µ. Dunster’s
expansions summarized in (9.3)–(9.6) can also be used in the present case.

The parameter ξ of (9.1) is again small for fixed z, and from (6.5) we conclude
that α → 2/3 when n is large. The quantity ζ used in the asymptotic estimates is
small because |ξ| is small, and we have the same behavior as in (9.10):

(6.6) ζ = c(α)ξ + O
(
ξ2

)
, ξ → 0.

In the present case α does not tend to 0; using κ/µ → 3 we obtain

(6.7) c(α) =
32
3e

+ O(n−1), n → ∞.

Since ξ = O(n−1) for fixed z, then

(6.8) ζ =
32
3e

ξ + O
(
ξ2

)
, ξ → 0.
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With this estimate, the argument of the Bessel functions that appear in the asymp-
totic expansions (9.3)–(9.6) can be taken as

(6.9) κ
√

ζ ∼ κ

√
32
3e

z

κ
=

√
32
3e

κz.

6.1.2. The solution y
(1)
n (z). To assign the minimal solution of this recursion, we

concentrate on the asymptotic expansion for Mκ,µ(z) given in (9.3). We will esti-
mate the following ratio (see also (6.5)):

(6.10) Rκ,µ(z) =
Mκ+3/2,µ+1/2(z)

Mκ,µ(z)

for large values of κ and µ, using κ/µ → 3. The relevant factor in the asymptotic
behavior of Mκ,µ(z) is (see (9.3) and also (9.8) and (9.9))

(6.11) F̃κ,µ(z) J2µ

(
κ
√

ζ
)

,

where

(6.12) F̃κ,µ(z) = eµΓ(2µ + 1)Ψκ,µ,

and Ψκ,µ is given in (9.7).
A long but straightforward computation shows that

(6.13)
F̃κ+3/2,µ+1/2(z)

F̃κ,µ(z)
∼ 1

2

√
n, n → ∞.

In order to estimate the Bessel function in (6.11) we note that in this case both
the order and the argument are large, so we will use an asymptotic estimation
of this Bessel function for large order which holds uniformly with respect to the
argument. This can be accomplished by means of the Airy-type approximation
[1, Eq. 9.3.6]

(6.14) Jν(νw) =
(

4χ

1 − w2

)1/4
[

Ai(ν2/3χ)
ν1/3

+
exp(−2

3νχ3/2)
1 + ν1/6|χ|1/4

O
(
ν−4/3

)]
,

which holds for large values of ν, uniformly for −π < ph z < π. Here the variable
χ is defined as in [1, Eq. 9.3.38]:

(6.15) 2
3χ3/2 = log

1 +
√

1 − w2

w
−

√
1 − w2.

In the present situation, if we set β = 32/(3e), our Bessel function reads

(6.16) J2µ(
√

βκz) = J2µ

(
2µ

√
βκz

2µ

)
.

Therefore, we use the parameters

(6.17) ν = 2µ, w =
√

βκz

2µ
,

and we see that the argument of the Airy function in (6.14) is large when µ is
large, which allows us to use an asymptotic estimate for this function. Using
[1, Eq. 10.4.59] we obtain

(6.18) Ai(ν2/3χ) = 1
2π−1/2ν−1/6χ−1/4e−

2
3νχ3/2 (

1 + O(ν−1)
)
.
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It follows that we can estimate (6.14) in the form

(6.19) Jν(νw) ∼ (1 − w2)−1/4 1√
2πν

e−
2
3 νχ3/2

, ν → ∞.

Since our objective is to estimate the ratio of two Whittaker functions, with
parameters κ + 3/2, µ + 1/2 and κ, µ respectively, we define the following shifted
variables:

(6.20) w̃ =

√
β(κ + 3/2)z

2µ + 1
, 2

3 χ̃3/2 = log
1 +

√
1 − w̃2

w̃
−

√
1 − w̃2.

Thus the ratio of Bessel functions satisfies

(6.21)
J2µ+1((2µ + 1)w̃)

J2µ(2µw)
∼

(
1 − w̃2

1 − w2

)−1/4 (
1 − 1

2µ + 1

)1/2
e−

2
3 (2µ+1)χ̃3/2

e−
2
32µχ3/2 .

The first two terms of this approximation tend to 1 when n → ∞, and it can be
verified that

(6.22)
e−

2
3 (2µ+1)χ̃3/2

e−
2
32µχ3/2 ∼ 2

√
z

n
, n → ∞.

Hence,

(6.23) Rκ,µ(z) =
Mκ+3/2,µ+1/2(z)

Mκ,µ(z)
∼

√
z, n → ∞.

Taking into account the first relation in (2.8), that is,

(6.24) Mκ,µ(z) = e−z/2z1/2+µ
1F1( 1

2 + µ − κ; 1 + 2µ; z),

it follows that

(6.25) Rκ,µ(z) =
Mκ+3/2,µ+1/2(z)

Mκ,µ(z)
=

√
z

1F1(−1
2 + µ − κ; 2 + 2µ; z)

1F1( 1
2 + µ − κ; 1 + 2µ; z)

.

This finally gives

(6.26) 1F1(−1
2 + µ − κ; 2 + 2µ; z)

1F1( 1
2 + µ − κ; 1 + 2µ; z)

∼ 1, n → ∞,

and expressing κ and µ in terms of a, c and n it follows that the Kummer function
1F1(a− n; c + n; z) is the minimal solution of the (−+) recursion when n → ∞ for
all complex z. The solution y

(2)
n (z) related to the other Kummer function in (6.4)

is a dominant solution for all z.

6.2. The (+−) recursion. In this case the coefficients are

an = −z(2n + a − c)(2n − 1 + a − c)(n + a + z)/dn,

bn = (n − c)(−n3 + (−2a + 3z + c)n2

+ (2ac − a2 + 1 − a − c + 5z2 + 6az − 3z)n + z3

+ z2(4a − c − 1) + 3az(a − 1) + a(ac − a − c + 1))/dn,

dn = (n − c + 1)(−c + n)(a + n)(n + a + z − 1),

(6.27)

and they satisfy

(6.28) an ∼ −4z

n
, bn ∼ −1, n → ∞.
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The application of Perron’s theorem (see [8, Theorem 13.1, Case 1] and [4, §4.3])
yields the following behavior of the solutions:

(6.29)
fn+1(z)
fn(z)

∼ −4z

n
,

gn+1(z)
gn(z)

∼ 1, n → ∞,

the solution fn being minimal. Two independent solutions of (6.27) are the Kummer
functions

y(1)
n (z) = 1F1(a + n; c − n; z),

y(2)
n (z) =

Γ(a + 1 − c + 2n)
Γ(1 − c + n)

U(a + n, c − n, z).
(6.30)

A third solution can be constructed using the connection formula (2.4) and reads
(6.31)

y(3)
n (z) =

Γ(a + 1 − c + 2n)Γ(c − n − 1)
Γ(a + n)Γ(1 − c + n)

z1−c+n
1F1(a + 1 − c + 2n; 2 − c + n; z).

If we use Whittaker notation, then we can rewrite this last solution as

(6.32) y(3)
κ,µ(z) =

Γ(µ + κ + 1/2)Γ(µ − κ + 1)
Γ(2µ)Γ(2µ + 1)

ez/2zµ−1/2 M−κ,µ(z),

where

(6.33) κ = 1
2 (−c + 2a + 3n), µ = 1

2 (−c + n + 1).

We use the first line of (2.10), that is,

(6.34) M−κ,µ(z) = e±(µ+1/2)πi Mκ,µ(ze±πi),

again choosing the plus or minus sign depending on the phase of z. Now the
asymptotic behavior of the function Mκ,µ(ze±πi) can be analysed using the results
from the (−+) recursion, since both κ and µ are positive and show the same
dependence on n as in that case. Thus, using (6.23) we obtain

(6.35)
y
(3)
κ+3/2,µ+1/2(z)

y
(3)
κ,µ(z)

∼ −6z

κ
,

which, writing κ and µ in terms of n, gives

(6.36)
y
(3)
n+1(z)

y
(3)
n (z)

∼ −4z

n
.

Hence, the function y
(3)
n (z) is the minimal solution of the (+−) recursion, in ac-

cordance with (6.29). It can be written in terms of the other two solutions y
(1)
n (z)

and y
(2)
n (z), which are dominant:

(6.37) y(3)
n (z) =

Γ(a + 1 − c + 2n)
Γ(1 − c + n)

U(a + n, c − n, z) − 1F1(a + n; c − n; z).



2288 ALFREDO DEAÑO, JAVIER SEGURA, AND NICO M. TEMME

7. The (+ +) and related recursions

7.1. The (+ +) recursion. In this case the coefficients of the recursion (1.1) read

(7.1) an = − (c + n)(c + n − 1)
(a + n)z

, bn =
(c + n)(c + n − 1 − z)

(a + n)z
.

Therefore,

(7.2) an ∼ −n

z
, bn =

n

z
, n → ∞,

and Perron’s theorem establishes the following behavior of the solutions

(7.3)
fn+1(z)
fn(z)

∼ 1,
gn+1(z)
gn(z)

∼ −n

z
, n → ∞,

the solution fn(z) being minimal.
Four solutions of this recursion are

y(1)
n (z) = 1F1(a + n; c + n; z),

y(2)
n (z) = (−1)nΓ(c + n) U(a + n, c + n, z),

y(3±)
n (z) =

Γ(c + n)
Γ(a + n)

U(c − a, c + n, ze±πi),

(7.4)

which follows from (2.4).
In order to determine the asymptotic behavior of these solutions we first observe

that the solution y
(1)
n (z) reduces to the exponential function ez when a = c and all

complex z. Also, by using the first line in (2.5) it follows that

(7.5) y(1)
n (z) = ez

1F1(c − a; c + n;−z),

and using the series expansions in (2.2) we see that

(7.6) y(1)
n (z) = ez [1 + O(1/n)] , n → ∞,

uniformly for all bounded z. Therefore, in view of (7.3) we infer that y
(1)
n (z) of

(7.4) is the minimal solution.
The asymptotic analysis of y

(2)
n (z) is also quite simple in this case. From the

integral representation (see [1, p. 505]),

(7.7) U(a + n, c + n, z) =
1

Γ(a + n)

∫ ∞

0

e−ztta+n−1(1 + t)c−a−1 dt,

where �a > 0, �z > 0. This type of Laplace integral is discussed in [9], and it
follows from that paper that

(7.8) U(a + n, c + n, z) = z−a−n [1 + O(1/n)] , n → ∞.

From [9, §3.3] it follows that this estimate holds for bounded complex values of z
with |ph z| < 1

2π. The second relation in (2.4) can be used for extending (7.8) to
the sector |ph z| < π. This shows that y

(2)
n (z) corresponds to the function gn(z) in

(7.3), which is a dominant solution.
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7.2. The (0 +) recursion. In this case the coefficients of the recursion are (see
[1, Eq. 13.4.2])

(7.9) an =
(c + n)(c + n − 1)

z(c + n − a)
, bn =

(c + n)(1 − c − n − z)
z(c + n − a)

.

Therefore,

(7.10) an ∼ n

z
, bn = −n

z
,

and according to Perron’s theorem the solutions satisfy

(7.11)
fn+1(z)
fn(z)

∼ 1,
gn+1(z)
gn(z)

∼ n

z
,

the solution fn(z) being minimal.
Four solutions of this recursion are

y(1)
n (z) = 1F1(a; c + n; z),

y(2)
n (z) =

Γ(c + n)
Γ(c + n − a)

U(a, c + n, z),

y(3±)
n (z) = (−1)nΓ(c + n) U(c + n − a, c + n, ze±πi),

(7.12)

The asymptotic analysis of this case follows from the first connection formula in
(2.5),

(7.13) y(1)
n (z) = 1F1(a; c + n; z) = ez

1F1(c + n − a; c + n;−z),

and by using the results of the (+ +) recursion. It follows that

(7.14)
y
(1)
n+1(z)

y
(1)
n (z)

∼ 1, n → ∞,

and the solution y
(1)
n (z) is minimal in |ph z| < π, in accordance with (7.11), whereas

y
(2)
n (z) and y

(3±)
n (z) are dominant.

7.3. The (0−) recursion. The coefficients of this recursion can be obtained from
(7.9),

(7.15) an =
z(c − n − a)

(c − n)(c − n − 1)
, bn =

1 − c + n − z

c − n − 1
.

Therefore,

(7.16) an ∼ − z

n
, bn = −1,

and Perron’s theorem establishes the following behavior of the solutions

(7.17)
fn+1(z)
fn(z)

∼ − z

n
,

gn+1(z)
gn(z)

∼ 1,

the solution fn(z) being minimal.
Three solutions of this recursion are

y(1)
n (z) = 1F1(a; c − n; z),

y(2)
n (z) =

Γ(a + 1 − c + n)
Γ(n + 1 − c)

U(a, c − n, z),

y(3)
n (z) =

(−1)n Γ(a + 1 − c + n)
Γ(1 − c + n)Γ(−c + n)

zn
1F1(a + 1 − c + n, 2 − c + n, z).

(7.18)
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The reason for using the first connection formula in (2.4) instead of the second
one is that we can now use again the results from the (+ +) recursion to analyse
the solution y

(3)
n (z). It follows directly that

(7.19)
y
(3)
n+1(z)

y
(3)
n (z)

∼ − z

n
, n → ∞,

and the solution y
(3)
n (z) is minimal in |ph z| < π, in accordance with (7.17), whereas

y
(1)
n (z) and y

(2)
n (z) are dominant.

7.4. The (−−) recursion. In this case, the recursion for the Kummer 1F1 func-
tion [1, Eq. 13.4.14] leads to an inconclusive result when applying Perron’s theorem.
However, if we use the recursion corresponding to the U function [1, Eq. 13.4.27],
then the coefficients are

(7.20) an = −z(a − n), bn = c − n − 1 − z.

Therefore,

(7.21) an ∼ −zn, bn = −n,

and Perron’s theorem establishes the following behavior of the solutions

(7.22)
fn+1(z)
fn(z)

∼ z,
gn+1(z)
gn(z)

∼ n,

the solution fn(z) being minimal.
Three solutions of this recursion are

y(1)
n (z) = Γ(1 − c + n) 1F1(a − n; c − n; z),

y(2)
n (z) = U(a − n, c − n, z),

y(3)
n (z) =

Γ(−a + n + 1)
Γ(2 − c + n)

zn
1F1(a + 1 − c, 2 − c + n, z).

(7.23)

Now we can use the results from the (0 +) recursion to analyse the solution
y
(3)
n (z), and it follows that

(7.24)
y
(3)
n+1(z)

y
(3)
n (z)

∼ z, n → ∞.

Hence the solution y
(3)
n (z) is minimal in |ph z| < π, in accordance with (7.22),

whereas y
(1)
n (z) and y

(2)
n (z) are dominant.

8. Concluding remarks

Minimal and dominant solutions of confluent hypergeometric three-term recur-
rence relations have been presented. The cases studied correspond to the functions
1F1(a+ε1n, c+ε2n, z) and U(a+ε1n, c+ε2n, z), where n is an integer parameter and
εi = 0,±1 (not both equal to 0). This produces eight different recursions, whose
solutions can be analysed by applying Perron’s theorem together with asymptotic
estimates obtained for Whittaker functions with large values of the parameters.
Some cases are related to each other, but for the sake of completeness we have con-
sidered each case separately. However, by using connection formulas, the analysis
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for related cases could be simplified. The results hold for complex values of a and
c and complex values of z in |ph z| < π.

9. Appendix: Asymptotic estimates of Whittaker functions

We summarize the asymptotic estimates of the Whittaker functions as given in
[2]. From these estimates the asymptotic estimates of the Kummer functions follow
by using the relations in (2.9).

Let

(9.1) ξ =
z

κ
, α =

2µ

κ
, ξ1 = 2 −

√
4 − α2, ξ2 = 2 +

√
4 − α2.

Then the differential equation (2.6) can be written in the form

(9.2)
d2

dξ2
w(ξ) =

[
κ2 (ξ − ξ1)(ξ − ξ2)

4ξ2
− 1

4ξ2

]
w(ξ).

We consider large positive values of κ, with µ/κ ∈ [−1+δ, 1−δ], 0 < δ < 1, δ being
fixed. The differential equation has turning points at ξ1 and ξ2 when κ is large. For
ξ in complex domains containing ξ1 it is possible to derive asymptotic expansions
in terms of Bessel functions, and in complex domains containing ξ2 expansions in
terms of Airy functions; see [2].

We give the relevant details on the Bessel case, because the Kummer recursions
in this paper are considered for fixed z; hence, if κ → ∞, the variable ξ1 is small,
and we need approximations that are valid for ξ in domains near the origin.1

We have the following asymptotic representations (see [2, §6]):

Mκ,µ(z) = Fκ,µ(z)eµΓ(2µ + 1)Ψκ,µ

×
[
J2µ

(
κ
√

ζ
)

Aκ,µ(z) +
√

ζ

κ
J ′

2µ

(
κ
√

ζ
)

Bκ,µ(z)
]

,
(9.3)

Wκ,µ(z) = Gκ,µ(z)eκκ−κΨκ,µΓ
(
κ + µ + 1

2

)
Γ

(
κ − µ + 1

2

)
×

[{
J2µ

(
κ
√

ζ
)

sin(κ − µ)π − Y2µ

(
κ
√

ζ
)

cos(κ − µ)π
}

Aκ,µ(z)

+
√

ζ

κ

{
J ′

2µ

(
κ
√

ζ
)

sin(κ − µ)π − Y ′
2µ

(
κ
√

ζ
)

cos(κ − µ)π
}

Bκ,µ(z)
]

,

(9.4)

W−κ,µ(ze−πi) = Hκ,µ(z)eκκ−κΨκ,µ

×
[
H

(1)
2µ

(
κ
√

ζ
)

Aκ,µ(z) +
√

ζ

κ
H

(1)
2µ

′
(
κ
√

ζ
)

Bκ,µ(z)
]

,
(9.5)

W−κ,µ(zeπi) = Iκ,µ(z)eκκ−κΨκ,µ

×
[
H

(2)
2µ

(
κ
√

ζ
)

Aκ,µ(z) +
√

ζ

κ
H

(2)
2µ

′
(
κ
√

ζ
)

Bκ,µ(z)
]

.
(9.6)

Here

(9.7) Ψκ,µ =
(κ − µ)(κ−µ)/2

(κ + µ)(κ+µ)/2
,

and Fκ,µ(z), Gκ,µ(z), Hκ,µ(z), and Iκ,µ(z) are quantities that are not relevant in
the present discussion, because

(9.8) lim sup
κ→∞

|Fκ,µ(z)|1/κ = 1, lim sup
κ→∞

∣∣∣∣Fκ+k,µ+m(z)
Fκ,µ(z)

∣∣∣∣ = 1,

1The factor eκ on the right-hand sides of (9.4)-(9.6) was included after private communications
with Mark Dunster.
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where k and m are fixed numbers. Similarly for Gκ,µ(z), Hκ,µ(z), and Iκ,µ(z). The
functions Aκ,µ(z) and Bκ,µ(z) have the asymptotic expansions

(9.9) Aκ,µ(z) ∼
∞∑

s=0

As(ζ)
κ2s

, Bκ,µ(z) ∼
∞∑

s=0

Bs(ζ)
κ2s

, κ → ∞,

uniformly with respect to z in a bounded complex domain that contains the origin,
with −π < ph z ≤ π. Details on the coefficients in these expansions are not needed
in our analysis because Aκ,µ(z) and Bκ,µ(z) have the same limsup behavior as in
(9.8).

The quantity ζ is defined in [2, Eq. (6.2)].2 In the present discussion, because
|ξ| is small (see (9.1)), we use ([2, Eq. (3.9)])

(9.10) ζ = c(α)ξ + O
(
ξ2

)
, ξ → 0,

where

(9.11) c(α) =
4
eκ

√
κ2 − µ2

(
κ + µ

κ − µ

)κ/(2µ)

,

which follows from operating in [2, Eq. (3.10)]).
Combining these two relations, we decide to use the following argument for the

Bessel and Hankel functions that are needed:

(9.12) κ
√

ζ ∼ κ
√

c(α)ξ =
√

c(α)κz.

Acknowledgements

The authors acknowledge financial support from Ministerio de Educación y Cien-
cia, project MTM2006–09050. The authors thank Mark Dunster for helpful dis-
cussions on the asymptotic formulas for the Whittaker functions.

References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs,
and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55,
U.S. Government Printing Office, Washington, 1964. MR29:4914

[2] T. M. Dunster, Uniform asymptotic expansions for Whittaker’s confluent hypergeometric
functions, SIAM J. Math. Anal. 20 (1989), no. 3, 744–760. MR990876 (90e:33012)

[3] W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Review 9
(1967), no. 1, 26–82. MR0213062 (35:3927)

[4] A. Gil, J. Segura, and N. M. Temme, Numerical methods for special functions, SIAM,
Philadelphia, PA, 2007.

[5] A. Gil, J. Segura, and N. M. Temme, The ABC of hyper recursions, J. Comp. Appl. Math
190 (2006), no. 1, 270–286. MR2209508 (2006m:33003)

[6] , Numerically satisfactory solutions of hypergeometric recursions, Math. Comp 76
(2007), no. 259, 1449–1468. MR2299782

[7] L. J. Slater, Confluent hypergeometric functions, Cambridge University Press, New York,
1960. MR0107026 (21:5753)

[8] N. M. Temme, Special functions, A Wiley-Interscience Publication, John Wiley & Sons
Inc., New York, 1996, An introduction to the classical functions of mathematical physics.
MR97e:33002

[9] N. M. Temme, Uniform asymptotic expansions of Laplace integrals, Analysis 3 (1983), 221–
249. MR756117 (85j:41059)

2On the left-hand side of that equation κ should be replaced by κ2 (3 times).

http://www.ams.org/mathscinet-getitem?mr=29:4914
http://www.ams.org/mathscinet-getitem?mr=990876
http://www.ams.org/mathscinet-getitem?mr=990876
http://www.ams.org/mathscinet-getitem?mr=0213062
http://www.ams.org/mathscinet-getitem?mr=0213062
http://www.ams.org/mathscinet-getitem?mr=2209508
http://www.ams.org/mathscinet-getitem?mr=2209508
http://www.ams.org/mathscinet-getitem?mr=2299782
http://www.ams.org/mathscinet-getitem?mr=0107026
http://www.ams.org/mathscinet-getitem?mr=0107026
http://www.ams.org/mathscinet-getitem?mr=97e:33002
http://www.ams.org/mathscinet-getitem?mr=756117
http://www.ams.org/mathscinet-getitem?mr=756117


IDENTIFYING SOLUTIONS FOR KUMMER RECURSIONS 2293

DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce

Road, CB3 0WA, United Kingdom

E-mail address: ad495@cam.ac.uk
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