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A FINITE DIFFERENCE METHOD
ON LAYER-ADAPTED MESHES FOR AN

ELLIPTIC REACTION-DIFFUSION SYSTEM
IN TWO DIMENSIONS

R. BRUCE KELLOGG, TORSTEN LINSS, AND MARTIN STYNES

Abstract. An elliptic system of M(≥ 2) singularly perturbed linear reaction-
diffusion equations, coupled through their zero-order terms, is considered on
the unit square. This system does not in general satisfy a maximum principle.
It is solved numerically using a standard difference scheme on tensor-product
Bakhvalov and Shishkin meshes. An error analysis for these numerical methods
shows that one obtains nodal O(N−2) convergence on the Bakhvalov mesh and
O(N−2 ln2 N) convergence on the Shishkin mesh, where N mesh intervals are
used in each coordinate direction and the convergence is uniform in the singular
perturbation parameter. The analysis is much simpler than previous analyses
of similar problems, even in the case of a single reaction-diffusion equation, as it
does not require the construction of an elaborate decomposition of the solution.
Numerical results are presented to confirm our theoretical error estimates.

1. Introduction

Let M ≥ 2 be an integer. We seek the solution u = (u1, u2, . . . , uM )T of the
singularly perturbed system of M reaction-diffusion equations

Lu := −ε2∆u + Au = f in Ω = (0, 1)2, u|∂Ω = g,(1.1)

where the parameter ε satisfies 0 < ε � 1. Systems of this type are relevant, for
example, to the investigation of diffusion processes in electro-analytical chemistry in
the presence of chemical reactions. Under certain hypotheses on the data A, f and
g we shall examine a simple finite difference scheme that generates an approximate
solution of (1.1) on various layer-adapted meshes.

A problem resembling (1.1) is analysed in [4], but the hypotheses there ensure
that A is diagonally dominant and inverse-monotone so that the system satisfies a
maximum principle, while in the current paper the only hypothesis on A is Assump-
tion 1.1 below and we make no appeal to maximum principles for systems. Thus
[4] and the current paper consider distinct but overlapping classes of problems.
While the numerical method of [4] is identical with that of the current paper, the
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analysis of [4] relies heavily on the maximum principle already mentioned, and on
the construction of an elaborate decomposition of u into a sum of a smooth part,
a layer component associated with each edge of Ω̄, and a corner layer associated
with each corner of Ω̄. A similar decomposition is used even in the case of a single
reaction-diffusion equation in [2]. In contrast, the analysis presented in the current
paper needs no decomposition of u when investigating our scheme on a Bakhvalov
mesh and only a relatively simple decomposition on a Shishkin mesh.

Assumption 1.1. Assume that the matrix A is coercive, i.e., that there exists a
constant γ > 0 such that

(1.2) vT Av ≥ γ2vT v in Ø for all v ∈ R
m.

Assume also that for some α ∈ (0, 1] we have A ∈ C4,α(Ω̄)M×M and f ∈ C4,α(Ω̄)M ,
and that the restriction of g to each edge of Ω̄ yields a function lying in C4,α[0, 1]M

and that g is continuous at each of the corners; this implies that g ∈ C0,α(∂Ω)M .
Finally, assume that

−ε2gxx(0+, 0) − ε2gyy(0, 0+) + Ag(0, 0) = f(0, 0)

with corresponding conditions at the other three corners of the domain Ω̄; these
conditions can be loosely thought of as requiring “Lg = f” at each corner .

Assumption 1.1 implies that (1.1) has a unique solution u ∈ C6,α(Ω)M∩
C3,α(Ω̄)M ; see [5] and [4, Section 3]. Nevertheless, unlike [4], the operator L does
not obey a maximum principle, and consequently our analysis is very different from
that of [4].

Notation. Throughout the paper C, sometimes subscripted, is a generic positive
constant that is independent of the perturbation parameter ε and of the number of
mesh intervals N . We set

|v| :=
√

vT v for v ∈ R
M ,

‖v‖D := max
(x,y)∈D̄

|v(x, y)| for v ∈ C(D̄),

‖v‖D := max
(x,y)∈D̄

|v(x, y)| for v ∈ C(D̄)M ,

and we drop the subscript D on these norms when D = Ø. The notation ‖·‖D is also
used for the L∞ norms of continuous functions of one variable and for mesh-valued
functions.

The notation ∂mw denotes any mth-order partial derivative of a function w.

2. Properties of the exact solution

The following stability result, which is critical for our analysis, is a slight mod-
ification of an argument from [1]. Note how neatly it side-steps the absence of a
maximum principle for L.

Lemma 2.1. Let w ∈ C2(Ω)M ∩ C(Ω̄)M . Then

‖w‖ ≤ γ−2‖Lw‖ + ‖w‖∂Ω.

Proof. Set v = 1
2wT w. Observe that

−2wT ∆w = −∆(wT w) + 2|wx|2 + 2|wy|2 ≥ −∆(wT w).
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Hence, taking the scalar product of wT with −ε2∆w + Aw = Lw then invok-
ing (1.2), we get

−ε2∆v + 2γ2v ≤ wT Lw in Ω,

and clearly |v|∂Ω ≤ ‖w‖2
∂Ω/2. Now the standard maximum principle for scalar

problems posed on Ω, with a constant barrier function, gives

‖v‖ ≤ 1
2γ2

‖w‖ ‖Lw‖ +
1
2
‖w‖2

∂Ω.

This implies that

‖w‖2 = 2‖v‖ ≤ ‖w‖
(
‖Lw‖

γ2
+ ‖w‖∂Ω

)
,

because ‖w‖∂Ω ≤ ‖w‖. The proposition of the lemma follows upon dividing by
‖w‖. �

Thus L is (L∞, L∞) stable even though it fails in general to satisfy a maximum
principle.

Lemma 2.1 implies that (1.1) has a unique solution in C0,α(Ω̄), by the standard
theory for solutions of systems of linear boundary-value problems [5, Chapter 7,
Theorem 5.1], and this solution is bounded pointwise, uniformly in ε.

Corollary 2.1. The solution u of (1.1) satisfies the bound

‖u‖ ≤ γ−2‖f‖ + ‖g‖∂Ω.

This bound needs much less smoothness and compatibility of the data than is
assumed in Assumption 1.1.

In [4, Theorem 3.1] bounds on low-order derivatives of u are derived under
hypotheses like Assumption 1.1 except that (1.2) is replaced by other assumptions
on A. An inspection of the arguments in [4, Section 3] reveals that the key property
needed there is an a priori L∞(Ω) bound like Corollary 2.1, which enables the
invocation of Schauder estimates. Consequently, the same conclusions hold true for
(1.1)–(1.2). That is, we have the following result:

Lemma 2.2. The solution u of (1.1) satisfies the bounds∥∥∂ku
∥∥ ≤ Cε−k for k = 0, . . . , 3;(2.1a)

furthermore,

∥∥∂2j
x ∂4−2j

y u
∥∥ ≤ Cε−4 for j = 0, 1, 2.(2.1b)

The inequality (2.1b), which stems from a result of Volkov [11], is somewhat
surprising since in general one does not have u ∈ C4,α(Ω̄)M ; note that (2.1b) is
valid only for certain fourth-order derivatives of u.

We now derive sharper bounds on the pure derivatives of u that show that the
large values seen in Lemma 2.2 do in fact decay rapidly as one moves away from
∂Ω.
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Lemma 2.3. Let u be the solution of (1.1). Let � ∈ (0, γ) be arbitrary but fixed.
Then there exists a constant C, which is independent of ε, such that∣∣∂k

xu(x, y)
∣∣ ≤ C

[
1 + ε−k

(
e−�x/ε + e−�(1−x)/ε

)]
,∣∣∂k

y u(x, y)
∣∣ ≤ C

[
1 + ε−k

(
e−�y/ε + e−�(1−y)/ε

)]
,

for all (x, y) ∈ Ω̄ and k = 1, . . . , 3.

Proof. Fix � ∈ (0, γ) and set Bk(x) = 1 + ε−k
(
e−�x/ε + e−�(1−x)/ε

)
. We use

induction on k. For k = 0 the lemma follows from Corollary 2.1. For k = 1, 2, 3,
differentiating (1.1) k times with respect to x gives

− ε2∆∂k
xu + A∂k

xu = ∂k
xf −

k−1∑
�=0

(
k

l

) (
∂k−�

x A
)
∂�

xu =: ϕk

with |ϕk(x, y)| ≤ CBk−1(x),

where the bound on ϕk is a consequence of the inductive hypothesis. Define ũ by
∂k

xu = Bkũ. Then

−ε2∆ũ − 2ε2 B′
k

Bk
∂xũ +

(
A − ε2 B′′

k

Bk

)
ũ =

ϕk

Bk
.

Taking the inner product with ũ and setting vk = 1
2 |ũ|

2 we obtain, as in the proof
of Lemma 2.1,

−ε2∆vk − 2ε2 B′
k

Bk
∂xvk + 2(γ2 − �2)vk ≤ C‖ũ‖,

by (1.2) and because B′′
k (x) ≤ ε−2�2Bk(x) and ϕk(x, y) ≤ CBk(x). Boundary

conditions for vk follow from Lemma 2.2: |vk| ≤ C‖ũ‖ on ∂Ø. Application of a
comparison principle for scalar equations yields

1
2 ‖ũ‖

2 = ‖vk‖ ≤ C ‖ũ‖ .

Dividing by ‖ũ‖ gives ‖ũ‖ ≤ C; then, recalling the definition of ũ, we obtain the
first inequality of the lemma. The second inequality is proved in the same way. �

Next we give an analogous bound for the pure fourth-order derivatives of u, but
the proof is different since these derivatives are discontinuous at the corners of the
domain and consequently do not lie in C(Ω̄).

Lemma 2.4. Let u be the solution of (1.1). Let � ∈ (0, γ) be as in Lemma 2.3.
Then there exists a constant C such that∣∣∂4

xu(x, y)
∣∣ ≤ C

[
1 + ε−4

(
e−�x/ε + e−�(1−x)/ε

)]
,(2.2a) ∣∣∂4

yu(x, y)
∣∣ ≤ C

[
1 + ε−4

(
e−�y/ε + e−�(1−y)/ε

)]
,(2.2b)

for all (x, y) ∈ Ω.

Proof. For each (x, y) ∈ Ω, let Γ(x, y) denote the distance from (x, y) to the nearest
of the four corners of Ω. Set Ωε = {(x, y) ∈ Ω : Γ(x, y) < ε}. From (2.1b) we
see immediately that (2.2a) holds true on Ω̄ε, because the sum of exponentials in
(2.2a) is then bounded below by a positive constant. But u ∈ C4,α(Ω \ Ωε)M since
the corners of Ω̄ are excluded from Ω \ Ωε; as regards boundary data for ∂4

xu on
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∂(Ω\Ωε), first (2.1b) implies that (2.2a) is valid on ∂Ωε and on {(x, y) ∈ ∂(Ω\Ωε) :
x = 0 or 1}, then (1.1) gives

∣∣∂4
xu

∣∣ ≤ C on {(x, y) ∈ ∂(Ω \ Ωε) : y = 0 or 1}. The
maximum principle argument of Lemma 2.3 can now be invoked to prove (2.2a) on
Ω \ Ωε.

The inequality (2.2b) follows similarly. �
Note that the bounds of Lemmas 2.3 and 2.4 were obtained without constructing

any decomposition of u.

Remark 2.1. The requirement that g be continuous at the corners of Ω̄ corresponds
to zero-order compatibility of the data of (1.1), while the condition “Lg = f” (see
Assumption 1.1) at these corners corresponds to first-order compatibility. Compat-
ibility conditions of order k ≥ 0 are defined in [3, Section 3]: at the corner (0, 0),
the kth compatibility condition is

(2.3) ε2g(2k)
s (0) + (−1)k+1ε2g(2k)

w (0) +
k∑

i=1

(−1)i−1∂2(k−i)
x ∂2(i−1)

y F (0, 0) = 0,

where gs and gw are the restrictions of g to x = 0 and y = 0 respectively, and
F := f−Au. The compatibility conditions at the other corners of Ω̄ are analogous.

Let � ≥ 0 be an integer. Similarly to Lemmas 2.3 and 2.4, one can prove that
if f ∈ C2�,α(Ω̄)M , the restriction of g to each edge of Ω̄ yields a function lying in
C2�+2,α[0, 1]M , and the compatibility conditions up to order � are satisfied at each
corner, then for all (x, y) ∈ Ω one has∣∣∂k

xu(x, y)
∣∣ ≤ C

[
1 + ε−k

(
e−�x/ε + e−�(1−x)/ε

)]
for k = 0, 1, . . . , 2� + 2,

with an analogous result for ∂k
y u(x, y).

Remark 2.2. Consider the case of a single equation, i.e., M = 1. Then one can
apply a maximum principle argument directly to (1.1), i.e., most of the argument
of Lemma 2.1 can be discarded, and following our subsequent analysis one obtains
again the bounds of Lemmas 2.3 and 2.4. These bounds are sharper than the
bounds obtained in [2] via a lengthy decomposition of u. Our bounds are identical
to those stated in [6], but the proof there is flawed.

Furthermore, when our arguments are applied to a reaction-diffusion system
posed on a one-dimensional domain, this yields an improvement of the a priori
bounds of [1].

3. Discretization

Consider an arbitrary tensor-product mesh ω̄ = ω̄x × ω̄y on Ω̄, with ω̄x : 0 =
x0 < x1 < · · · < xN = 1 and ω̄y : 0 = y0 < y1 < · · · < yN = 1. Let ω = ω̄ ∩ Ω
and ∂ω = ω̄ ∩ ∂Ω. Set hi := xi − xi−1 and kj := yj − yj−1. Given a mesh function
{vi,j}N

i,j=0, introduce the standard difference operators

δ2
xvi,j :=

1
�i

(
vi+1,j − vi,j

hi+1
− vi,j − vi−1,j

hi

)
for i, j = 1, . . . , N − 1,

and

δ2
yvi,j :=

1
k̄j

(
vi,j+1 − vi,j

kj+1
− vi,j − vi,j−1

kj

)
for i, j = 1, . . . , N − 1,
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where

�i :=
hi+1 + hi

2
and k̄j :=

kj+1 + kj

2
.

For vector-valued mesh functions v we use the notation

δ2
xv =

(
δ2
xv1, . . . , δ

2
xvM

)T
and δ2

yv =
(
δ2
yv1, . . . , δ

2
yvM

)T
.

Then our discretization is: Find U such that

[LU ]i,j := −ε2
(
δ2
xU + δ2

yU
)
i,j

+ A(xi, yj)U i,j = f i,j in ω,(3.1a)

U i,j = gi,j on ∂ω.(3.1b)

Lemma 3.1. The discrete operator L satisfies the stability inequality

‖W ‖ω̄ ≤ γ−2 ‖LW ‖ω + ‖W ‖∂ω

for arbitrary vector-valued functions W defined on ω̄.

Proof. This proof is a discrete analogue of the argument for Lemma 2.1. Let V =
1
2W T W . Note that

W T
i,jδ

2
xW i,j =

1
2
δ2
x

(
W T W

)
i,j

− 1
2�i

(
|W i+1,j − W i,j |2

hi+1
+

|W i,j − W i−1,j |2

hi

)

with a similar identity for δ2
y. Thus

W T
i,j

(
δ2
x + δ2

y

)
W i,j ≥

(
δ2
x + δ2

y

)
Vi,j .

Hence, using (1.2), we get −ε2
(
δ2
x + δ2

y

)
V + 2γ2V ≤ W T LW on ω, and |V |∂ω ≤

1
2‖W ‖2

∂ω. A standard discrete maximum principle for scalar problems, with a
constant barrier function, yields

‖V ‖ω̄ ≤ 1
2γ2

‖W ‖ω ‖LW ‖ω +
1
2
‖W ‖2

∂ω .

Hence

‖W ‖2
ω̄ = 2 ‖V ‖ω̄ ≤ ‖W ‖ω̄

(
‖LW ‖ω

γ2
+ ‖W ‖∂ω

)
.

The proposition of the lemma follows. �

Lemma 3.1 implies that the linear system (3.1) has a unique solution U .

3.1. Layer-adapted meshes. We shall consider two types of a priori meshes:
Bakhvalov and Shishkin meshes. When constructing these meshes, some a priori
knowledge of the behaviour of the derivatives of the exact solution is essential. This
information is provided by Lemmas 2.3 and 2.4. Let � ∈ (0, γ) be arbitrary but
fixed. Then∣∣∂k

xu(x, y)
∣∣ ≤ C

[
1 + ε−k

(
e−�x/ε + e−�(1−x)/ε

)]
for k = 0, . . . , 4,(3.2)

with analogous bounds for ∂k
y u.
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Bakhvalov meshes [1]: These meshes are based on user-chosen mesh parameters
σ > 0 and q ∈ (0, 1/2), where the grid points are xi = i/N if σε ≥ �q, while when
σε < �q one sets

xi =

⎧⎨
⎩

ϕ(i/N) for i ≤ N/2,

1 − ϕ((N − i)/N) for i > N/2,

with a mesh generating function ϕ defined by

ϕ(ξ) =

{
χ(ξ) := −σε

� ln
(
1 − ξ

q

)
for ξ ∈ [0, τ ],

π(ξ) := χ(τ ) + χ′(τ )(ξ − τ ) for ξ ∈ [τ, 1/2].

The transition point τ is determined by the equation (1 − 2τ )χ′(τ ) = 1 − 2χ(τ ).
Thus the tangent to the graph of χ at

(
τ, χ(τ )

)
passes through (1/2, 1/2). This

defines the mesh on [0, 1/2] and it is extended to [0, 1] by reflection about x = 1/2.
The resulting mesh generating function ϕ lies in C1[0, 1].
Shishkin meshes [9, 10]: These meshes are constructed as follows. Choose mesh
parameters σ > 0 and q ∈ (0, 1/2). Define the transition point

λ := min
{

q,
σε

�
ln N

}
.

Assuming that qN is an integer, we divide each of the two intervals [0, λ] and
[1 − λ, 1] uniformly into qN subintervals and [λ, 1 − λ] into (1 − 2q)N subintervals
of equal length. A typical choice would be q = 1/4 and N divisible by 4. The mesh
generating function for a Shishkin mesh is piecewise linear and continuous.

3.2. Error analysis. In the layer regions the Bakhvalov mesh is not approximately
equidistant. Consequently, the truncation error of the difference scheme is appar-
ently only first order at points in the layers, but a more delicate analysis given
in [1] for a two-point boundary value problem shows that the truncation error at
every mesh point is in fact O(N−2) uniformly in ε. It is straightforward to modify
Bakhvalov’s analysis for the case of (1.1); we shall outline how this is done in an
appendix because, while [1] is often cited as a seminal paper, its contents are not
widely known and because in recent publications Bakhvalov meshes have received
much less attention than Shishkin meshes even though they give more accurate
numerical solutions.

The analysis of singularly perturbed reaction-diffusion problems on Shishkin
meshes on the domain Ω has been carried out by Clavero et al. [2] in the case
of a single equation and by Kellogg et al. [4] for a system of equations, but the
error analysis in both papers relies on the lengthy construction of a decomposition
of the solution. The analysis for Shishkin meshes in the present paper is much
simpler.

Theorem 3.1. Let Assumption 1.1 be satisfied. Assume that the mesh parameter
σ satisfies σ ≥ 2. Then

‖u − U‖ω̄ ≤
{

CN−2 for Bakhvalov meshes,
CN−2 ln2 N for Shishkin meshes.

Proof. Let η = u − U denote the error. Lemma 3.1 yields∥∥u − U
∥∥

ω̄
≤ γ−2

∥∥L(u − U)
∥∥

ω
= γ−2

∥∥Lu − Lu
∥∥

ω
(3.3)
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because u = U on ∂ω. For the mth component of the truncation error Lη =
Lu − Lu we have

(Lu)m − (Lu)m = ε2
(
∂2

xum − δ2
xum

)
+ ε2

(
∂2

yum − δ2
yum

)
for m = 1, . . . , M.

For any ψ ∈ C4(Ω) with ∂k
xψ bounded on Ω̄ for k = 0, . . . , 4, Taylor expansions

show that

∣∣∣[∂2
xψ − δ2

xψ
]
i,j

∣∣∣ ≤
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C
∥∥∂2

xψ (·, yj)
∥∥

[xi−1,xi+1]
, (3.4a)

C (hi + hi+1)
∥∥∂3

xψ (·, yj)
∥∥

[xi−1,xi+1]
, (3.4b)

|hi − hi+1|
∣∣∂3

xψ(xi, yj)
∣∣

+C(hi + hi+1)2
∥∥∂4

xψ(·, yj)
∥∥

[xi−1,xi+1]
. (3.4c)

There are analogous bounds for ∂2
yψ − δ2

yψ.
Bakhvalov meshes. By choosing σ ≥ 2, an application of the technique in [1] for
one-dimensional problems, combined with the bound (3.2) on ∂k

xum for k = 2, 3, 4,
yields

ε2
∣∣∣(∂2

xum − δ2
xum

)
i,j

∣∣∣ ≤ CN−2 for i, j = 1, . . . , N − 1 and m = 1, . . . , M ;

see the Appendix for details. There is a corresponding bound for ∂2
yum − δ2

yum.
Thus the truncation error is uniformly bounded by CN−2. Invoking (3.3), the proof
of Theorem 3.1 for the Bakhvalov mesh is complete.
Shishkin meshes. First consider the case where λ = q ≤ σε�−1 ln N . Then the
mesh is uniform with mesh size N−1. Furthermore, ε−1 ≤ C ln N . Hence (3.2) and
(3.4c) give

∥∥Lu − Lu
∥∥

ω
≤ CN−2 ln2 N . Invoking (3.3), Theorem 3.1 follows in

this case.
Now suppose that λ = σε�−1 ln N ≤ q. Let x∗ = 2ε�−1 ln(1/ε). For each

m ∈ {1, . . . , M} and (x, y) ∈ Ω̄, set

vm(x, y) =

⎧⎪⎨
⎪⎩

∑4
ν=0

(x−x∗)ν

ν! ∂ν
xum(x∗, y) for 0 ≤ x ≤ x∗,

um(x, y) for x∗ ≤ x ≤ 1 − x∗,∑4
ν=0

(x−x∗)ν

ν! ∂ν
xum(1 − x∗, y) for 1 − x∗ ≤ x ≤ 1,

and wm(x, y) = um(x, y) − v(x, y). Then Lemmas 2.3 and 2.4 and the choice of x∗

imply that

(3.5)

∣∣∂k
xvm(x, y)

∣∣ ≤ C
(
1 + ε2−k

)
and∣∣∂k

xwm(x, y)
∣∣ ≤ Cε−k

(
e−�x/ε + e−�(1−x)/ε

)
for 0 ≤ k ≤ 4;

cf. [7]. That is, u = v + w, i.e., we have decomposed u into a sum of a regular
component v and a layer component w = (w1, . . . , wm)T . We remark that our
decomposition does not in general satisfy Lv = f and Lw = 0; these additional
properties, which are not needed here, have been obtained for various singular
perturbation problems via more complicated analyses.

Split the truncation error by writing[
∂2

xum − δ2
xum

]
i,j

=
[
∂2

xvm − δ2
xvm

]
i,j

+
[
∂2

xwm − δ2
xwm

]
i,j

.

When bounding the truncation error in v use (3.4b) for i = qN or i = (1 − q)N ,
i.e., at the mesh transition points, and at other points use (3.4c). For the layer
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term w, invoke (3.4a) for i = qN, . . . , (1 − q)N and (3.4c) otherwise. This yields

ε2
∣∣∣[∂2

xum − δ2
xum

]
i,j

∣∣∣ ≤ CN−2 ln2 N +

{
CεN−1 for i ∈ {qN, (1 − q)N},
0 otherwise.

We cannot invoke (3.3) to get the desired error bound. Instead we proceed as
follows. Write η = η1 + η2, where η1 and η2 are the solutions of

Lη1 = ε2
(
∂2

xu − δ2
xu

)
in ω, η1 = 0 on ∂ω,

Lη2 = ε2
(
∂2

yu − δ2
yu

)
in ω, η2 = 0 on ∂ω.

In order to bound η1 we use the technique of Lemma 3.1. Set V = 1
2ηT

1 η1. Then

−ε2
(
δ2
x + δ2

y

)
V + 2γ2V ≤ C ‖η1‖

∣∣Lη1

∣∣ in ø, V = 0 on ∂ø.

One can apply a discrete comparison principle for scalar equations using a barrier
function from [8]:

V̄i,j = C1 ‖η1‖N−2
(
ln2 N + λε−1ϕi

)
where

ϕi :=

⎧⎪⎨
⎪⎩

xiλ
−1 for i = 0, . . . , qN,

1 for i = qN, . . . , (1 − q)N,

(1 − xi)λ−1 for i = (1 − q)N, . . . , N.

Then with C1 chosen sufficiently large, independently of ε, one obtains ‖V ‖ω̄ ≤
C‖V̄ ‖ω̄ and hence ‖η1‖ ≤ CN−2 ln2 N . An identical bound is obtained for η2.
The assertion of the theorem follows for the Shishkin mesh. �

3.3. Numerical results. We now present the results of some numerical experi-
ments in order to illustrate the conclusions of Theorem 3.1, and to check if they
are sharp.

Example 1.

−ε2∆u1 + 2u1 + xu2 = sin
(
π(x + y)

)
in Ø, u1|∂Ø = 0,

−ε2∆u2 + (1 + y2)u1 + (3 + x)u2 = 3x(1 − x) + y(1 − y) in Ø, u1|∂Ø = 0.

For this problem γ2 ≈ 1.12.

Example 2.

−ε2∆u1 + (3 + x)u1 + yu2 + x2u3 = sin
(
π(x + y)

)
in Ø, u1|∂Ø = 0,

−ε2∆u2 + yu1 + (4 − y)u2 + xyu3 = 0 in Ø, u2|∂Ø = 0,

−ε2∆u3 + x2u1 + xyu2 + (3 − x2)u3 = exy(1 − y) in Ø, u3|∂Ø = 0,

with γ2 ≈ 1.32. For both problems we take � = 1 and σ = 2 in the construction of
the meshes.

The exact solutions to both test problems is not available, so we estimate the
accuracy of the numerical solution by comparing it with the numerical solution
obtained from Richardson extrapolation over two meshes, which has a higher order
of accuracy. Thus, let UN

ε be the solution of the difference scheme on the original
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Shishkin mesh and Ũ
2N

ε on the mesh obtained by uniformly bisecting the original
mesh. Then the extrapolated solution is

UR,N
ε :=

4Ũ
2N

ε − UN
ε

3
.

We then compute the error

ηN
ε :=

∥∥UN
ε − UR,N

ε

∥∥
ω

=
4
3

∥∥UN
ε − Ũ

2N

ε

∥∥
ω

for various values of ε.
We estimate the uniform errors for a fixed N by taking the maximum error over

a wide range of ε, namely

ηN := max
ε2=1,10−1,...,10−12

ηN
ε .

The results of our test computations are displayed in the following table. As well
as the uniform errors ηN , we also give experimental rates of convergence rN which
are computed by means of the formula

rN = log2

(
ηN

/
η2N

)
.

We also estimate the constants in the error estimate, i. e., if we have the theoretical
error bound ηN ≤ Cϑ(N), then we compute the quantity CN = ηN/ϑ(N).

The numerical results are in accordance with Theorem 3.1 and illustrate its
sharpness.

Example 1 Example 2
Shishkin mesh Bakhvalov mesh Shishkin mesh Bakhvalov mesh

N ηN rN CN ηN rN CN ηN rN CN ηN rN CN

16 1.45e-2 0.93 0.48 5.17e-3 1.81 1.32 1.18e-2 0.80 0.39 4.53e-3 1.82 1.16
32 7.57e-3 1.41 0.65 1.37e-3 1.94 1.40 6.47e-3 1.20 0.55 1.19e-3 1.95 1.22
64 2.84e-3 1.47 0.67 3.52e-4 1.99 1.44 2.82e-3 1.46 0.67 3.03e-4 1.98 1.24
128 1.02e-3 1.58 0.71 8.86e-5 2.00 1.45 1.02e-3 1.58 0.71 7.61e-5 2.00 1.25
256 3.43e-4 1.65 0.73 2.22e-5 2.00 1.45 3.41e-4 1.65 0.73 1.90e-5 2.00 1.25
512 1.09e-4 — 0.73 5.55e-6 — 1.45 1.09e-4 — 0.73 4.76e-6 — 1.25

Appendix: Truncation error on the Bakhvalov mesh

In this appendix we reproduce the argument from [1] to prove the truncation
error bound that was used in the proof of Theorem 3.1.

When σε ≥ �q the mesh is uniform with mesh size N−1. Furthermore, ε−1 ≤ C.
Thus

ε2
∥∥∂2

xum − δ2
xum

∥∥
ω
≤ CN−2,(A.1)

by (3.2) and (3.4c).
Now consider the case σε < �q. For simplicity we consider only the layer at

x = 0 and assume that xi = ϕ(ti) ≤ 1/2.
From the construction of ϕ one must have τ < q and it follows that 1 < χ′(τ ) < q̃,

where we set q̃ = 1/(1−2q). Define the auxiliary points τ1, τ2 in (0, q) by χ′(τ1) = q̃
and χ′(τ2) = 1. Then τ2 = q − σε/� < τ < τ1 = q − σε(1 − 2q)/� because χ′′ > 0
on [0, q).

(i) ϕ′(t) ≤ χ′(τ ) ≤ q̃ for t ∈ [0, 1]. Thus,

hi =
∫ ti

ti−1

ϕ′(t)dt ≤ q̃N−1 for i = 1, . . . , N.(A.2)
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(ii) For t ≤ ti < q we have ϕ′(t) ≤ χ′(t) = σε/�(q − t) ≤ σε/�(q − ti). Hence,

hi =
∫ ti

ti−1

ϕ′(t)dt ≤ N−1ϕ′(ti) ≤
σε

�N(q − ti)

≤ 2σε

�N(q − ti−1)
for ti ≤ q − N−1.

(A.3)

(iii) hi+1−hi = xi+1−2xi +xi−1 = ϕ′′(t∗i )N
−2 for some t∗i ∈ [ti−1, ti+1]. Now

ϕ′′(t) ≤ χ′′(τ ) =
σε

�(q − τ )2
and

1
q − τ

≤ 1
q − τ1

=
�q̃

σε
,

which gives

|hi+1 − hi| ≤
�q̃2

σε
N−2.(A.4)

Furthermore, we have the bound

ϕ′′(t∗i ) ≤
σε

�(q − ti+1)2
≤ 4σε

�(q − ti)2
for ti ≤ q − 2

N
(A.5)

which yields

|hi+1 − hi| ≤
4σε

N2�(q − ti)2
for ti ≤ q − 2

N
.(A.6)

(iv)

e−�xi/ε =
(

q − ti
q

)σ

for ti ≤ τ(A.7)

and

e−�xi/ε ≤
(

σε

�q

)σ

for ti ≥ τ2.(A.8)

Henceforth, let σ ≥ 2. Using (3.4c), (3.2), (A.2) and (A.8), we get

ε2
∣∣∣[∂2

xum − δ2
xum

]
i,j

∣∣∣ ≤ CN−2 for τ2 ≤ ti−1,

which is the region outside the layer. For ti ≤ q − 2N−1 (the layer region),
from (3.4c) and (3.2) one arrives at

ε2
∣∣∣[∂2

xum − δ2
xum

]
i,j

∣∣∣ ≤ C |hi − hi+1| ε2 + C |hi − hi+1| ε−1e−�xi/ε

+ C (hi + hi+1)
2 ε2 + C (hi + hi+1)

2 ε−2e−�xi−1/ε.

To bound the first term on the right-hand side use (A.4); for the second term, use
(A.6) and (A.7); for the third term, use (A.2); and for the fourth, use (A.3), (A.7)
and q − ti−1 ≤ 3(q − ti)/2. This yields

ε2
∣∣∣[∂2

xum − δ2
xum

]
i,j

∣∣∣ ≤ CN−2 for ti ≤ q − 2N−1.

We are left with the transition region where τ2 > ti−1 and ti > q − 2N−1. Thus,

q − 2
N

< ti < τ2 +
1
N

= q − σε

�
+

1
N

< q +
1
N

.
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Observe that the first two inequalities here imply that ε < 3�/(σN). Use (3.4a):

ε2
∣∣∣[∂2

xum − δ2
xum

]
i,j

∣∣∣ ≤ C
(
ε2 + e−�xi−1/ε

)
≤ CN−2,

by (A.8) and ε ≤ CN−1.
Thus, on a Bakhvalov mesh, the truncation error in the maximum norm is

bounded uniformly by O(N−2).
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