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LOCAL PROJECTION STABILIZATION OF EQUAL ORDER
INTERPOLATION APPLIED TO THE STOKES PROBLEM

SASHIKUMAAR GANESAN, GUNAR MATTHIES, AND LUTZ TOBISKA

Abstract. The local projection stabilization allows us to circumvent the
Babuška–Brezzi condition and to use equal order interpolation for discretizing
the Stokes problem. The projection is usually done in a two-level approach
by projecting the pressure gradient onto a discontinuous finite element space
living on a patch of elements. We propose a new local projection stabilization
method based on (possibly) enriched finite element spaces and discontinuous
projection spaces defined on the same mesh. Optimal order of convergence is
shown for pairs of approximation and projection spaces satisfying a certain inf-
sup condition. Examples are enriched simplicial finite elements and standard
quadrilateral/hexahedral elements. The new approach overcomes the prob-
lem of an increasing discretization stencil and, thus, is simple to implement
in existing computer codes. Numerical tests confirm the theoretical conver-
gence results which are robust with respect to the user-chosen stabilization
parameter.

1. Introduction

The standard Galerkin approach for solving the Stokes problem by finite element
discretizations is well established [9, 17]. If the finite element spaces approximating
velocity and pressure satisfy an inf-sup condition, stability and convergence of the
discretization can be proven. Applying this technique on adaptive meshes with
hanging nodes, the additional constraints to guarantee the conformity of the velocity
space reduce its dimension and it is not a priori clear whether the inf-sup condition
remains valid for the considered pair of finite element spaces. Indeed, it is far
from being trivial that the stability property proven on a family of regular meshes
remains true when considering adaptive grids with hanging nodes [27].

An alternative approach for solving the Stokes problem consists of using equal
order interpolations which are simple to implement since the same finite element
space is used for approximating the pressure and the velocity components. How-
ever, we have to take into consideration that equal order interpolation does not
satisfy the inf-sup stability condition and may produce oscillations in the pressure.
Starting with [19], a methology has been developed to modify the discrete problem
such that the correponding bilinear form is coercive on the product space. In this
way stability is achieved for arbitrary pairs of finite elements including equal or-
der interpolations on meshes with hanging nodes. Stability has been generated by
adding weighted residuals of the strong form of the differential equation to the dis-
crete problem. This pressure stabilized Petrov–Galerkin (PSPG) formulation has
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been successfully developed in different ways. Combined with the streamline up-
wind Petrov Galerkin (SUPG) stabilization, it has been used to treat two instability
phenomena of the Navier–Stokes equations in a unique framework: the dominating
advection for higher Reynolds numbers and the violation of the discrete inf-sup con-
dition. The general idea behind this class of residual based stabilization technique is
to enhance stability without upsetting consistency [14, 30]. Moreover, it has been
shown in [15, 18, 29, 30] that an additional least square term for the incompress-
ibility condition, called grad-div stabilization, improves the robustness. Properties
of the grad-div stabilization onto the algebraic solver are discussed in [26].

Another approach is the projection based stabilization technique. The stabiliza-
tion by projecting the pressure gradient onto a continuous finite element space has
been analyzed in [13]. This method has been shown to be still consistent in the sense
that a smooth exact solution satisfies the discrete problem. However, the method
is quite expensive due to the nonlocal behavior of the projection. Alternatively,
a two-level approach with a projection onto a discontinuous finite element space
living on patches of elements has been analyzed in [4]. This more local method is
no longer consistent in a strong manner but the consistency error can be bounded
by a rate which does not reduce the optimal order of convergence. The technique of
local projection has been investigated to stabilize dominating advection for trans-
port equations in [5] and extended to the Oseen equation in [7]. A drawback of the
two-level approach from the implementation point of view is the fact that the added
stabilizing term produces a larger stencil which may not fit in the data structure
of an available programming code. As pointed out in [23], the key point of stabi-
lization by local projection is the existence of a special interpolant with additional
orthogonality properties with respect to the projection space. This general view
opens the possibility to construct stabilized methods for enriched equal order finite
element spaces by local projection onto a discontinuous finite element space living
on the same mesh. In particular, the added stabilizing term does not produce a
larger stencil in contrast to the two-level approach.

From the implementational point of view, equal order interpolations allow us to
work with only one finite element space, but additional stabilization terms have
to be assembled. Note that the PSPG approach includes more stabilizing terms
compared to the local projection method.

The main objective of this paper is to adapt this new approach to the Stokes
problem, to give examples of solution and projection spaces allowing stability and
optimal convergence, and to demonstrate the potential of the method by a number
of selected numerical tests. The remaining part of the paper is organized as follows.
In Section 2, a weak formulation of the Stokes problem and its standard Galerkin
discretization is given. We formulate the local projection method for arbitrary
equal order interpolations satisfying a certain compatibility condition with respect
to the projection space. Section 3 is devoted to optimal a-priori estimates related
to an asymptotically optimal choice of the stabilization parameter. In Section 4, we
consider examples of enriched finite element spaces satisfying the compatibility con-
dition. In particular, we show the equivalence of the projection based stabilization
method of lowest order enriched finite elements on simplices with the PSPG/grad-
div stabilization of the unenriched spaces. Finally, the properties of the method
are illustrated by numerical tests in Section 5.
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Notation. Throughout this paper, C will denote a generic positive constant which
is independent of the mesh. Subscripted constants such as C1 are also independent
of the mesh, but have a fixed value. We will write shortly α ∼ β, if there are
positive constants C and C such that

Cβ ≤ α ≤ Cβ

holds. The Stokes problem will be considered in the domain Ω ⊂ R
d, d = 2, 3,

which is assumed to be a polygonal or polyhedral domain with boundary ∂Ω. For a
measurable subset G of Ω, the usual Sobolev spaces Wm,p(G) with norm ‖ · ‖m,p,G

and semi-norm |·|m,p,G are used. In the case p = 2, we have Hm(G) = Wm,2(G) and
the index p will be omitted. The L2 inner product on G is denoted by (·, ·)G. Note
that the index G will be omitted for G = Ω. This notation of norms, semi-norms,
and inner products is also used for the vector-valued and tensor-valued case.

2. Stokes problem and its discretization

2.1. Weak formulation. Let Ω ⊂ R
d be a polygonal (d = 2) or polyhedral (d = 3)

domain with Lipschitz continuous boundary Γ = ∂Ω. We consider the Stokes
problem

(2.1)

−�u + ∇p = f in Ω,

div u = 0 in Ω,

u = 0 on Γ,

⎫⎪⎬⎪⎭
where f is a given body force, u and p denote the velocity and pressure field,
respectively. Introducing the spaces V :=

(
H1

0 (Ω)
)d and Q := L2

0(Ω), a weak
formulation of (2.1) reads:

Find (u, p) ∈ V × Q such that

(2.2) (∇u,∇v) − (p, div v) + (q, div u) = (f, v) ∀(v, q) ∈ V × Q.

The Lax–Milgram theorem applied to the subspace of divergence-free functions and
the inf-sup condition

(2.3) inf
q∈Q

sup
v∈V

(q, div v)
‖q‖0 |v|1

> 0,

guarantee that there is a unique solution of (2.2); see [17].

2.2. Discrete problem and stabilized formulation. We are given a family {Th}
of shape-regular decompositions of Ω into d-simplices, quadrilaterals, or hexahedra.
The diameter of a cell K is denoted by hK . The mesh parameter h describes the
maximum diameter of the cells K ∈ Th.

Let Yh be a scalar finite element space of continuous, piecewise polynomials
functions over Th. The spaces for approximating the velocity and the pressure are
given by Vh := Y d

h ∩ V and Qh := Yh ∩ Q, respectively.
The standard Galerkin discretization reads:
Find (uh, ph) ∈ Vh × Qh such that for all (vh, qh) ∈ Vh × Qh,

(2.4) (∇uh,∇vh) − (ph, div vh) + (qh, div uh) = (f, vh).
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It is known that, in general, equal order interpolations do not satisfy the discrete
counterpart of (2.3), i.e., the Babuška–Brezzi condition [9]

(2.5) ∃β0 > 0, ∀h : inf
qh∈Qh

sup
vh∈Vh

(qh, div vh)
‖qh‖0 |vh|1

≥ β0

is violated. Therefore, we intend to add to (2.4) a stabilizing term based on local
projection. To this end, we need further notation. Let Ps(K), s = 0, 1, . . . , denote
the set of all polynomials of degree less than or equal to s and let Dh(K) be a
finite dimensional function space on the cell K ∈ Th with Ps(K) ⊂ Dh(K). We
extend the definition by allowing Dh(K) = {0} together with P−1(K) = Dh(K).
We introduce the associated global space of discontinuous finite elements

Dh :=
⊕

K∈Th

Dh(K)

and the local L2(K)-projection πK : L2(K) → Dh(K) which generates the global
projection πh : L2(Ω) → Dh by

(πhw)|K := πK(w|K) ∀K ∈ Th, ∀w ∈ L2(Ω).

The fluctuation operator κh : L2(Ω) → L2(Ω) is given by κh := id − πh where
id : L2(Ω) → L2(Ω) is the identity on L2(Ω). We will have a closer look at the case
Dh(K) = {0}. The inclusion Ps(K) ⊂ Dh(K) is satisfied for s = −1. Moreover,
since πKw = 0 for all w ∈ L2(K), the fluctuation operator κh degenerates to
the identity. For simplicity of notation, we will not distinguish between the scalar
operators id, πK , πh, κh acting on scalar functions and their vector-valued versions.
Thus, κh∇p has to be understood as acting on each component of ∇p separately.

Now we are able to introduce the stabilizing term

(2.6) Sh(ph, qh) :=
∑

K∈Th

αK

(
κh∇ph, κh∇qh

)
K

where αK are parameters to be chosen. Our stabilized discrete problem reads:
Find (uh, ph) ∈ Vh × Qh such that for all (vh, qh) ∈ Vh × Qh,

(2.7) (∇uh,∇vh) − (ph, div vh) + (qh, div uh) + Sh(ph, qh) = (f, vh).

In order to study the properties of (2.7) on the product space Vh × Qh, we
introduce the bilinear form

(2.8) Ah

(
(u, p); (v, q)

)
:= (∇u,∇v) − (p, div v) + (q, div u) + Sh(p, q)

and the mesh-dependent norm

(2.9) |||(v, q)||| :=

(
|v|21 + ‖q‖2

0 +
∑

K∈Th

αK‖κh∇q‖2
0,K

)1/2

.

3. Stability and convergence

We are interested in methods of a fixed order r ∈ N. In order to guarantee sta-
bility and convergence of our method (2.7), we suppose that following assumptions
are satisfied.
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Assumption A1. For the fluctuation operator κh, the approximation property

‖κhw‖0,K ≤ Ch�
K |w|�,K ∀w ∈ H�(K), ∀K ∈ Th, 0 ≤ � ≤ r − 1

holds.
Note that Assumption A1 is fulfilled in the case Pr−2(K) ⊂ Dh(K) for any

r ∈ N. We have for Dh(K) = {0} by definition P−1(K) ⊂ Dh(K) and

‖κhw‖0,K = ‖id w‖0,K = ‖w‖0,K ∀w ∈ L2(K), ∀K ∈ Th.

In the case dim (Dh(K)) ≥ 1, Assumption A1 follows from the Bramble–Hilbert
lemma.

Assumption A2. The finite element space Yh approximates H1(Ω) of order r,
i.e., there exists an interpolation operator ih : H1(Ω) → Yh such that ihv ∈ H1

0 (Ω)
for all v ∈ H1

0 (Ω) and the error estimate

‖v − ihv‖0,K + hK |v − ihv|1,K ≤ Ch�
K‖v‖�,ω(K)

holds for all v ∈ H�
(
ω(K)

)
, for all K ∈ Th, and 1 ≤ � ≤ r + 1 where ω(K)

denotes a certain local neighborhood of K which appears in the definition of these
interpolation operators for non-smooth functions; see [12, 28] for more details.

The existence theory of interpolation operators for non-smooth functions satis-
fying Assumption A2 is well established in the literature; see [1, 12, 28].

Assumption A3. There exists an interpolation operator jh : H1(Ω) → Yh with
jhv ∈ H1

0 (Ω) for all v ∈ H1
0 (Ω), the orthogonality property

(3.1) (w − jhw, qh) = 0 ∀qh ∈ Dh, ∀w ∈ H1(Ω),

and the approximation property

(3.2) ‖w − jhw‖0,K + h|w − jhw|1,K ≤ Ch�
K‖w‖�,ω(K),

for all w ∈ H�(ω(K)), 1 ≤ � ≤ r + 1, where ω(K) denotes again a certain local
neighborhood of K.

Note that (3.1) holds for Dh(K) = {0}. For dim Dh(K) ≥ 1, the existence of
an interpolation operator satisfying the additional orthogonality property (3.1) has
been investigated in [23]. It turns out that the Assumption A2 together with the
local inf-sup condition

(3.3) ∃β1 > 0 ∀h > 0, ∀K ∈ Th : inf
qh∈Dh(K)

sup
vh∈Yh(K)

(vh, qh)K

‖vh‖0,K ‖qh‖0,K
≥ β1

for the spaces Dh(K) and Yh(K) are sufficient for A3; see [23, Theorem 2.2]. Here,
Yh(K) is the restriction of functions from Yh with support in K, i.e.,

Yh(K) := {wh|K : wh ∈ Yh, wh = 0 on Ω\K}.
The local inf-sup condition will be fulfilled if Yh(K) is rich enough compared to
Dh(K). Special pairs of spaces Yh(K) and Dh(K) satisfying the local inf-sup con-
dition will be studied in Section 4.

Lemma 3.1. Let the Assumptions A1, A3, and h2
K/αK ≤ C be fulfilled. Then,

there exists a positive constant β independent of h such that

(3.4) inf
(vh,qh)∈Vh×Qh

sup
(wh,rh)∈Vh×Qh

Ah

(
(vh, qh); (wh, rh)

)
|||(vh, qh)||| |||(wh, rh)||| ≥ β

holds.
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Proof. Let (vh, qh) be an arbitrary element of Vh × Qh. We obtain

Ah

(
(vh, qh); (vh, qh)

)
= |vh|21 +

∑
K∈Th

αK‖κh∇qh‖2
0,K .(3.5)

Furthermore, due to the continuous inf-sup condition (2.3), there exists for any
qh ∈ Qh an element vqh

∈ V satisfying

−(qh, div vqh
) = ‖qh‖2

0, ‖vqh
‖1 ≤ C‖qh‖0.

Consequently, we have for the interpolant jhvqh
,

Ah

(
(vh, qh);(jhvqh

, 0)
)

= −(qh, div jhvqh
) + (∇vh,∇jhvqh

)

=‖qh‖2
0 + (qh, div (vqh

− jhvqh
)) + (∇vh,∇jhvqh

).(3.6)

Using integration by parts, the orthogonality property (3.1), and the assumption
h2

K/αK ≤ C, we estimate the second term in (3.6) as follows:∣∣(qh, div (vqh
− jhvqh

))
∣∣ = |(∇qh, vqh

− jhvqh
)| = |(κh∇qh, vqh

− jhvqh
)|

≤ C

( ∑
K∈Th

αK‖κh∇qh‖2
0,K

)1/2( ∑
K∈Th

h2
K

αK
|vqh

|21,K

)1/2

≤ C1

( ∑
K∈Th

αK‖κh∇qh‖2
0,K

)1/2

‖qh‖0

≤ ‖qh‖2
0

4
+ C2

1

∑
K∈Th

αK‖κh∇qh‖2
0,K .

The last term in (3.6) is estimated by

|(∇vh,∇jhvqh
)| ≤ |vh|1 |jhvqh

|1 ≤ C2|vh|1 ‖qh‖0 ≤ ‖qh‖2
0

4
+ C2

2 |vh|21.

Summarizing the estimates of the individual terms, we end up with

Ah

(
(vh, qh); (jhvqh

, 0)
)
≥ ‖qh‖2

0

2
− C3

(
|vh|21 +

∑
K∈Th

αK‖κh∇qh‖2
0,K

)
where C3 = max(C2

1 , C2
2 ). Multiplying this inequality by 2/(1+2C3) and adding it

to (3.5) we conclude that for any (vh, qh) ∈ Vh × Qh there is (wh, rh) := (vh, qh) +
2/(1 + 2C3)(jhvqh

, 0) such that

Ah

(
(vh, qh); (wh, rh)

)
≥ 1

1 + 2C3
|||(vh, qh)|||2.

Furthermore, the H1-stability of the interpolation jh and the definition of vqh
imply

|||(wh, rh)||| ≤ |||(vh, qh)||| + 2
1 + 2C3

|jhvqh
|1 ≤ |||(vh, qh)||| + C4‖qh‖0

≤ (1 + C4)|||(vh, qh)|||.

Thus, the lemma holds with β = ((1 + 2C3)(1 + C4))−1. �

Note, that Lemma 3.1 implies the unique solvability of the stabilized discrete
problem.

Now we will consider the consistency error.
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Lemma 3.2. Assume that the fluctuation operator κh satisfies Assumption A1.
Let (u, p) ∈ V × (Q ∩ Hr(Ω)) be the solution of the Stokes problem (2.2) and
(uh, ph) ∈ Vh×Qh the solution of the stabilized problem (2.7). Then, the consistency
error can be estimated by∣∣∣Ah

(
(u − uh, p − ph); (vh, qh)

)∣∣∣ ≤ C

( ∑
K∈Th

αKh2r−2
K |p|2r,K

)1/2

|||(vh, qh)|||

for all (vh, qh) ∈ Vh × Qh.

Proof. Using (2.8), (2.2), and (2.7), we obtain

Ah

(
(u − uh, p − ph); (vh, qh)

)
= Sh(p, qh).

Using the approximation property of the fluctuation operator κh,

‖κh∇p‖0,K ≤ C hr−1
K |∇p|r−1,K ≤ C hr−1

K |p|r,K
and Cauchy–Schwarz inequality, we end up with the statement of the lemma. �

Theorem 3.3. Assume A1, A2, A3, and αK ∼ h2
K . Let the solution of (2.2)

satisfy (u, p) ∈
(
V ∩ Hr+1(Ω)d

)
×
(
Q ∩ Hr(Ω)

)
and let (uh, ph) ∈ Vh × Qh be the

solution of (2.7). Then, there exists a positive constant C independent of h such
that the error estimate

|||(u − uh, p − ph)||| ≤ C hr (‖u‖r+1 + ‖p‖r)

holds true. Moreover, if the Stokes problem is H2(Ω)d×H1(Ω)-regular, there exists
a positive constant C independent of h such that

‖u − uh‖0 ≤ C hr+1 (‖u‖r+1 + ‖p‖r)

holds.

Proof. Using Lemma 3.1, we can estimate

|||(jhu − uh, ihp − ph)||| ≤ 1
β

sup
(wh,rh)∈Vh×Qh

Ah

(
(jhu − uh, ihp − ph); (wh, rh)

)
|||(wh, rh)|||

≤ 1
β

sup
(wh,rh)∈Vh×Qh

Ah

(
(u − uh, p − ph); (wh, rh)

)
|||(wh, rh)|||

+
1
β

sup
(wh,rh)∈Vh×Qh

Ah

(
(jhu − u, ihp − p); (wh, rh)

)
|||(wh, rh)||| .

The consistency estimate of Lemma 3.2 and the choice of αK yield

sup
(wh,rh)∈Vh×Qh

Ah

(
(u − uh, p − ph); (wh, rh)

)
|||(wh, rh)||| ≤ C hr ‖p‖r.

The terms in Ah

(
(jhu − u, ihp − p); (wh, rh)

)
will be estimated individually. Em-

ploying the approximation properties of jh and ih, we get∣∣(∇(jhu − u),∇wh

)∣∣ ≤ |jhu − u|1 |wh|1 ≤ C hr‖u‖r+1 |||(wh, rh)|||,∣∣(ihp − p, div wh

)∣∣ ≤ C ‖ihp − p‖0 |wh|1 ≤ C hr‖p‖r |||(wh, rh)|||.
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For estimating the next term, we integrate by parts, apply the orthogonality prop-
erty (3.1) of jh, use αK ∼ h2

K , and obtain∣∣(rh, div (jhu − u)
)∣∣ =

∣∣(∇rh, jhu − u
)∣∣ =

∣∣(κh∇rh, jhu − u
)∣∣

≤ C

( ∑
K∈Th

αK‖κh∇rh‖2
0,K

)1/2( ∑
K∈Th

h2
K

αK
h2r

K ‖u‖2
r+1,ω(K)

)1/2

≤ C hr‖u‖r+1 |||(wh, rh)|||.

The stabilizing term is estimated by taking into consideration Cauchy–Schwarz
inequality, the L2-stability of the fluctuation operator κh, the approximation prop-
erties of ih, and αK ∼ h2

K :

Sh(ihp − p, rh) ≤
( ∑

K∈Th

αK‖κh∇(ihp − p)‖2
0,K

)1/2( ∑
K∈Th

αK‖κh∇rh‖2
0,K

)1/2

≤ C

( ∑
K∈Th

αKh2r−2
K ‖p‖2

r,ω(K)

)1/2

|||(wh, rh)|||

≤ C hr‖p‖r |||(wh, rh)|||.

Putting the above estimates together, we obtain

|||(jhu − uh, ihp − ph)||| ≤ C hr (‖u‖r+1 + ‖p‖r) .

Now, the triangle inequality and the estimate of the interpolation error with respect
to ||| · ||| prove the first error estimate.

Under the assumption that the Stokes problem is H2(Ω)d × H1(Ω)-regular, we
know that for any g ∈ L2(Ω)d there is a unique solution (ug, pg) ∈ (V ∩H2(Ω)d)×
(Q ∩ H1(Ω)) of the problem.

Find (ug, pg) ∈ V × Q such that

(∇v,∇ug) − (pg, div v) + (q, div ug) = (g, v) ∀(v, q) ∈ V × Q,

satisfying

‖ug‖2 + ‖pg‖1 ≤ C ‖g‖0.

Setting v = u − uh and q = 0, we get the representation

(g, u − uh) = (∇(u − uh),∇ug) − (pg, div (u − uh)).(3.7)

It follows from (2.2) and (2.7) that

(∇(u − uh),∇wh) = (p − ph, div wh) = −(p − ph, div (ug − wh)) ∀wh ∈ Vh

and

(rh, div (u − uh)) = Sh(p, rh) − Sh(p − ph, rh) ∀rh ∈ Qh,

thus, (3.7) can be written in the form

(g, u − uh) = (∇(u − uh),∇(ug − wh)) − (p − ph, div (ug − wh))

− (pg − rh, div (u − uh)) + Sh(p − ph, rh) − Sh(p, rh).
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Choosing (wh, rh) ∈ Vh × Qh as an interpolant of (ug, pg), we obtain

|(∇(u − uh),∇(ug − wh))| ≤ C |u − uh|1 h‖ug‖2,

|(p − ph, div (ug − wh))| ≤ C ‖p − ph‖0 h‖ug‖2,

|(pg − rh, div (u − uh)) ≤ C |u − uh|1 h‖pg‖1,

|Sh(p − ph, rh)| ≤ (Sh(p − ph, p − ph))1/2 (Sh(rh, rh))1/2

≤ C |||(u − uh, p − ph)||| h‖pg‖1,

|Sh(p, rh)| ≤
( ∑

K∈Th

αK‖κh∇p‖2
0,K

)1/2

(Sh(rh, rh))1/2

≤ C hr‖p‖r h‖pg‖1.

Here, we used αK ∼ h2
K , Assumption A1, and the H1 stability of the interpolation

rh ∈ Qh of pg ∈ Q to estimate Sh(rh, rh). Summarizing, we have

|(g, u − uh)| ≤ C hr
(
‖u‖r+1 + ‖p‖r

)
h (‖ug‖2 + ‖pg‖1)

≤ C hr+1[
(
‖u‖r+1 + ‖p‖r

)
‖g‖0,

and

‖u − uh‖0 = sup
g∈L2(Ω)

(g, u − uh)
‖g‖0

gives the desired L2 error estimate. �

Remark 3.4. The classical PSPG-stabilization is based on adding a stabilizing term
of the form ∑

K∈Th

τK(−∆u + ∇p − f,∇q)K .

For getting coercivity of the associated bilinear form, an upper bound τK ≤ τ0h
2
K

has assumed to be fulfilled where τ0 depends on the constant µ in the inverse
inequality

‖∆vh‖0,K ≤ µh−1
K |vh|1,K ∀vh ∈ Vh.

This results in a conditionally stable method in the sense of [6] unless linear elements
are used. The local projection schemes considered here are unconditionally stable
in the sense that the corresponding bilinear form satisfies the inf-sup condition (3.4)
for αK = α0h

2
K with 0 < α0 < ∞.

4. Enriched equal order interpolation

We consider in this section combinations of approximation and projection spaces
satisfying the Assumptions A1–A3 leading to methods of order r ≥ 1. In [4, 7],
two-level approaches have been developed where the approximation space Yh con-
sists of standard finite elements of order r = 1, 2 on triangular and quadrilateral
meshes Th. A discontinuous finite element space of order r − 1 = 0, 1 on a coarser
grid level T2h has been used as projection space Dh. Drawbacks of this approach
are that its stabilizing term increases the size of the stencil and it requires data
structures which might not be available in an existing computer code. The general
framework developed in [23] opens the way to consider continuous approximation
and discontinuous projection spaces which are defined on the same mesh. All ex-
amples given for the Oseen problem in [23, Section 4] could also be used for the
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Stokes problem. However, due to the missing advection term, the range of possible
spaces Yh and Dh is much larger, in particular, the difference of orders can be two
(instead of one for the Oseen problem).

4.1. Simplicial elements. Let us briefly discuss first order methods. We start
with continuous, piecewise linear finite elements (r = 1) for approximating velocity
and pressure. Choosing Dh = {0}, the fluctuation operator κh becomes the identity
and we end up with the stabilized method.

Find (uh, ph) ∈ Vh × Qh such that for all (vh, qh) ∈ Vh × Qh,

(4.1) (∇uh,∇vh) − (ph, div vh) + (qh, div uh) +
∑

K∈Th

αK(∇ph,∇qh)K = (f, vh).

This nonconsistent method has already been studied in [10]. Let us enrich only the
velocity space elementwise by the bubble functions

bK = (d + 1)d+1
d+1∏
i=1

λi

where λi, i = 1, . . . , d+1, denote the barycentric coordinates associated with the cell
K. Then, we get the Mini-element, shortly denoted by P+

1 /P1, which satisfies the
Babuška–Brezzi condition (2.5) and has not been stabilized [2]. However, enriching
both the velocity and the pressure space, we obtain the equal order interpolation
P+

1 /P+
1 which needs extra stabilization. We use a local projection onto the space

of piecewise constant functions, i.e. Dh = P0. These first order element pairs are
illustrated in Figure 1:

VhVhVh Qh QhQh Dh

Figure 1. Examples of first order methods. Brezzi–Pitkäranta
stabilization [10] P1/P1 (left), inf-sup stable Mini-element [2]
P+

1 /P1, local projection stabilization P+
1 /P+

1 /P0 (right).

Lemma 4.1. Assume Yh/Dh = P+
1 /P0. Then, the assumptions A1–A3 are satis-

fied and the method (2.7) converges of first order for αK = α0h
2
K , α0 > 0.

Proof. A1 and A2 hold by construction. For showing A3, it suffices to prove the
local inf-sup condition (3.3). Since dim (Dh(K)) = dim (Yh(K)) = 1, this is a
simple task. �

Now we will consider higher order methods on simplicial meshes, i.e., r ≥ 2.
We enrich the space of polynomials of degree less than or equal to r by bubble

functions
P b

r (K) := Pr(K) + bK · Pr−2(K),
and choose the approximation and projection spaces

Yh =
{
v ∈ C(Ω) : v|K ∈ P b

r (K), ∀K ∈ Th

}
,

Dh =
{
v ∈ L2(Ω) : v|K ∈ Pr−2(K) ∀K ∈ Th

}
.
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At first glance, the enriched space seems to be large, but a more careful look shows
that

P b
r (K) = Pr(K) ⊕

(
bK ·

d∑
i=2

P̃r−i(K)

)

where P̃m(K) = span

({
d∏

i=1

xαi
i ,

d∑
i=1

αi = m

})
.

Lemma 4.2. Assume r ≥ 2 and Yh/Dh = P b
r /P disc

r−2 . Then, the Assumptions
A1–A3 are satisfied and the method (2.7) converges of order r for αK = α0h

2
K ,

α0 > 0.

Proof. A1 and A2 hold by construction. For showing A3, we prove the local inf-sup
condition (3.3). Let qh ∈ Dh(K) = Pr−2(K) be arbitrary. We set vh := bKqh and
conclude vh ∈ P b

r (K) where vh = 0 on ∂K. Thus, using the transformation onto
a reference domain and the equivalence of norms on finite dimensional spaces, we
have

(qh, vh)K = (bKqh, qh)K ≥ C4‖qh‖2
0,K .

Moreover,

‖vh‖0,K = ‖bKqh‖0,K ≤ ‖bK‖∞,K‖qh‖0,K = ‖qh‖0,K ,

consequently, there exists for each 0 �= qh ∈ Dh(K) a vh ∈ Yh(K) such that

(qh, vh)K

‖q‖0,K ‖vh‖0,K
≥ C4

and the local inf-sup condition (3.3) is proven. �

Remark 4.3. To fulfill the local inf-sup condition for the projection space Dh =
P disc

r−1 , we have to enrich the approximation space further:

P b+
r (K) := P b

r (K) ⊕
(
bK · P̃r−1(K)

)
;

see [23]. For r = 2 and d = 2, the two variants are indicated in Figure 2 using the
notation P b

2 and P b+
2 for the enriched spaces with one and three additional bubbles,

respectively.

Vh, QhVh, Qh DhDh

Figure 2. Examples of approximation and projection spaces of
second order: P b

2/P0 (left) and P b+
2 /P disc

1 (right).
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4.2. Quadrilateral and hexahedral elements. Now we consider the standard fi-
nite element spaces on regular families Th of quadrilateral or hexahedral meshes [11].
Let K̂ = (−1, +1)d be the reference cell,

Qr(K̂) =

⎧⎨⎩v̂ : v̂(x̂) =
∑

0≤αi≤r

cα1,...,αd
x̂α1

1 · · · x̂αd

d ,

⎫⎬⎭ ,

and b̂ =
d∏

i=1

(1−x̂2
i ) ∈ Q2(K̂) the bubble function on K̂. We denote by FK : K̂ → K

the mapping from the reference cell onto the cell K ∈ Th and set v = v̂ ◦ F−1
K . We

introduce the finite element spaces

Qr :=
{
v ∈ C(Ω) : v

∣∣
K

= v̂ ◦ F−1
K , v̂ ∈ Qr(K̂), ∀K ∈ Th

}
, r ≥ 1,

Qdisc
r :=

{
v ∈ L2(Ω) : v

∣∣
K

= v̂ ◦ F−1
K , v̂ ∈ Qr(K̂), ∀K ∈ Th

}
, r ≥ 0,

Q+
1 :=

{
v ∈ C(Ω) : v

∣∣
K

= v̂ ◦ F−1
K , v̂ ∈ Q1(K̂) + span (b̂), ∀K ∈ Th

}
.

A first order method can be derived by setting Yh = Q1 and Dh = {0}, this results
in the stabilized method (4.1). Note that in this case no projection is used.

Examples of enrichments of the velocity space such that the enriched velocity
space together with the Q1 pressure space satisfies the Babuška–Brezzi condition
has been given in [3, 25, 16]. See [21] for a more general investigation. It should
be mentioned that the local bubble space for enriching the Q1 quadrilateral space
has at least dimension 3, more precisely, one additional degree of freedom for each
component of the velocity and one degree of freedom shared by both components.
This is true in the conforming [3] as well as in the nonconforming [16] case.

We turn back to equal order interpolations stabilized by local projection. For a
local projection onto Dh = Q0 = Qdisc

0 , we enrich the approximation space and set
Yh = Q+

1 .

Lemma 4.4. Assume Yh/Dh = Q+
1 /Q0. Then, the Assumptions A1–A3 are sat-

isfied and method (2.7) converges of first order for αK = α0h
2
K , α0 > 0.

Proof. A1 and A2 hold by construction. For showing A3, it is enough to prove
the local inf-sup condition (3.3). Since dim (Dh(K)) = dim (Yh(K)) = 1, this is a
simple task. �

We now turn to higher order methods.

Lemma 4.5. Assume r ≥ 2 and Yh/Dh = Qr/Qdisc
r−2. Then, the Assumptions

A1–A3 are satisfied and method (2.7) converges of order r for αK = α0h
2
K , α0 > 0.

Proof. A1 and A2 hold by construction. For showing A3, we prove the local inf-sup
condition (3.3). Let qh ∈ Dh(K) be arbitrary. We set vh := (b̂ ◦ F−1

K ) · qh. Since
vh ◦FK = b̂ · (qh ◦FK) and qh ◦FK ∈ Qr−2(K̂), we conclude vh ∈ Yh(K). Moreover,
it follows from

‖vh‖0,K ≤ ‖qh‖0,K ,

that
(qh, vh)K

‖qh‖0,K ‖vh‖0,K
≥
∫

K̂
b̂ q̂2

h| detDFK | dx̂∫
K̂

q̂2
h| detDFK | dx̂

.
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Now, using the upper and lower bound

C5 hd
K ≤ | det DFK | ≤ C6 hd

K

shown in [24] and the equivalence of the norms

q̂ �→
(∫

K̂

q̂2 dx̂

)1/2

, q̂ �→
(∫

K̂

b̂ · q̂2 dx̂

)1/2

on the finite dimensional space Qr−2(K̂), we get the assertion of the lemma. �
Remark 4.6. Note that for r ≥ 2 and quadrilateral or hexahedral elements we do
not need any enrichments. Thus, the standard finite element spaces can be used.

Remark 4.7. The smallest projections space which guarantees Assumption A1 is
the space P disc

r−2 . Note that there are two versions of this space. The unmapped
version is defined on the original cell K ∈ Th by

P disc,u
r−2 :=

{
v : v

∣∣
K

∈ Pr−2(K)
}

and satisfies the usual approximation properties on shape regular meshes. Using
the mapping FK : K̂ → K from the reference cell (−1, +1)d onto K ∈ Th, the
mapped version is defined by

P disc,m
r−2 :=

{
v : v

∣∣
K
◦ FK ∈ Pr−2(K̂)

}
.

It satisfies the usual approximation properties only on families of successively re-
fined quadrilateral and hexahedral meshes; see [22] for more details. Since both
spaces are subspaces of Qdisc

r−2, the local inf-sup condition (3.3) is satisfied and As-
sumption A3 follows.

Remark 4.8. The local projection method with the larger projection space Dh =
P disc

r−1 was analyzed in [23]. In order to fulfill the local inf-sup condition, the ap-
proximation space Yh has to be enriched to

Qb
r :=

{
v ∈ C(Ω) : v

∣∣
K

= v̂ ◦ F−1
K , v̂ ∈ Qb

r(K̂), ∀K ∈ Th

}
where

Qb
r(K̂) := Qr(K̂) ⊕ span

(
b̂ x̂r−1

i : i = 1, . . . , d
)
.

Note that Qb
r(K̂) contains for any r ≥ 2 exactly d functions more than Qr(K̂)

where d is the space dimension.

4.3. Elimination of enrichments. In the examples above, standard finite ele-
ment spaces have been enriched with bubble functions. These additional degrees
of freedom can be eliminated locally by static condensation. We concentrate in
this section on the special case Vh/Qh/Dh = P+

1 /P+
1 /P0 on simplices, i.e., our

approximation space consists of continuous, piecewise linear functions enriched by
one bubble function bK per cell:

Yh =
{
v ∈ C(Ω) : v|K ∈ P1(K) ⊕ span bK , ∀K ∈ Th

}
.

We set Vh := (Yh ∩ H1
0 (Ω))d and Qh := Yh ∩ L2

0(Ω). The stabilized discrete prob-
lem (2.7) can be written in the form:

Find (uh, ph) ∈ Vh × Qh such that

(∇uh,∇vh) − (ph, div vh) = (f, vh) ∀vh ∈ Vh,(4.2)

(qh, div uh) + Sh(ph, qh) = 0 ∀qh ∈ Qh.(4.3)
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Let us denote by 〈·, ·〉∂G the inner product in L2(∂G) and by n the outer unit
normal with respect to Ω. Since

(1, div uh) + Sh(ph, 1) = 〈1, uh · n〉∂Ω +
∑

K∈Th

αK(κh∇ph, κh∇1)K = 0,

the equation (4.3) is true for all qh ∈ Yh.
According to the splitting of the spaces Vh and Yh into a linear and a bubble

part
Vh = VL ⊕ VB, Yh = YL ⊕ YB ,

we split the functions vh ∈ Vh and qh ∈ Yh into

vh = vL + vB , qh = qL + qB .

Next, we decompose the stabilized discrete problem by using test functions from
the linear and bubble part, respectively. This results in:

Find (uL, pL) ∈ VL × YL and (uB, pB) ∈ VB × YB such that pL + pB ∈ Qh and

(∇uL,∇vL) + (∇uB,∇vL) − (pL, div vL) − (pB, div vL) = (f, vL) ∀vL ∈ VL,

Sh(pL + pB, qL) + (qL, div uL) + (qL, div uB) = 0 ∀qL ∈ YL,

(∇uL,∇vB) + (∇uB ,∇vB) − (pL, div vB) − (pB, div vB) = (f, vB) ∀vB ∈ VB,

Sh(pL + pB, qB) + (qB, div uL) + (qB, div uB) = 0 ∀qB ∈ YB.

A careful look shows that several terms in the discrete formulation vanish,

(∇uB,∇vL) =
∑

K∈Th

(∇uB ,∇vL)K =
∑

K∈Th

[〈
∂vL

∂nK
, uB

〉
∂K

− (�vL, uB)K

]
= 0

due to �vL|K = 0 and uB|∂K = 0. Analogously, (∇uL,∇vB) = 0. It follows from(
bK ,

∂bK

∂xi

)
K

=
1
2

∫
K

∂b2
K

∂xi
dx =

1
2

∫
∂K

b2
Kni dγ = 0, i = 1, . . . , d,

that

(pB, div vB) = (qB , div uB) = 0.

Furthermore, since ∇
(
vL|K

)
∈ P0(K), we have πh∇vL = ∇vL. Consequently,

κh∇vL = 0 such that Sh(pL +pB, qL) = 0 and Sh(pL +pB, qB) = Sh(pB, pB). Now,
the bubble part of our discrete system reduces to:

Find (uB, pB) ∈ VB × YB such that

(∇uB ,∇vB) − (pL, div vB) = (f, vB) ∀vB ∈ VB,

Sh(pB, qB) + (qB, div uL) = 0. ∀qB ∈ YB .

We extend the bubble function bK : K → R onto Ω by setting bK = 0 outside of
K. Then, using the basis representations

uB =
∑

K∈Th

uK bK , pB =
∑

K∈Th

pK bK ,

we can locally solve the bubble part of the algebraic system and get

pK = − (bK , div uL)
Sh(bK , bK)

, (uK)i =
1

|bK |21,K

(
fi −

∂pL

∂xi
, bK

)
, i = 1, . . . , d.

Elimination of uB and pB in the linear part of the algebraic system yields
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Find (uL, pL) ∈ VL × YL such that for all (vL, qL) ∈ VL × YL,

(∇uL,∇vL) − (pL, div vL) +
∑

K∈Th

γK(div uL, div vL) = (f, vL)

(qL, div uL) +
∑

K∈Th

(−∆uL + ∇pL, τK∇qL)K =
∑

K∈Th

(f, τK∇qL)K

where

γK =
1
|K|

‖bK‖2
0,1,K

Sh(bK , bK)
=

‖bK‖2
0,1,K

αK |K| ‖κh∇bK‖2
0,K

, αK(x) =
‖bK‖0,1,K

|bK |21,K

bK(x).

Of course the pressure pL ∈ YL is only determined up to an additive constant. We
make the pressure unique by replacing YL by QL = YL ∩ L2

0(Ω). It is remarkable
that the reduced problem corresponds to the PSPG method [19] in combination
with the grad-div stabilization [15, 18, 29, 30].

Let us study the dependency of the parameter γK and τK on hK . We have

‖bK‖0,1,K =
(d + 1)d+1 d!

(2d + 1)!
|K|, |bK |21,K ∼ h−2

K |K|, ‖κh∇bK‖2
0,K ∼ h−2

K |K|

from which with the standard choice αK = α0h
2
K follows:

γK ∼ α−1
K h2

K ∼ 1, τK(x) ∼ h2
KbK(x).

Starting with the solution (uL, pL) ∈ VL × QL, we can reconstruct a velocity field

uh = uL + uB = uL +
∑

K∈Th

1
|bK |21,K

(f −∇pL, bK) bK

satisfying the incompressibility constraint in the sense that

(qL, div uh) = 0 ∀qL ∈ QL.

5. Numerical tests

This section presents numerical results for solving the Stokes problem with equal
order spaces where the discretization is stabilized by the local projection method.
All calculations were performed with the code MooNMD [20] on a Linux PC (Pen-
tium IV, 2.8 GHz).

Let Ω = (0, 1)2. We consider the Stokes problem

−∆u + ∇p = f, div u = 0 in Ω, u = g on Γ,

where the right hand side f and the inhomogeneous Dirichlet boundary condition
g have been chosen such that

u =
(
sin(x) sin(y), cos(x) cos(y)

)
, p = 2 cos(x) sin(y) − 2 sin(1)

(
1 − cos(1)

)
is the solution. This example was taken from [8].

We have carried out calculations on triangular and quadrilateral meshes which
were obtained by successive regular refinement of the initial coarse meshes. The
coarsest mesh (level 0) consists of either two triangles or a single quadrilateral. The
meshes on level 1 are shown in Figure 3.

In the following, we evaluate the results of our calculations by considering the
L2 norm and the H1 semi-norm of the velocity error, the L2 norm of the pressure
error, and the error in the local projection norm ||| · |||.
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Figure 3. Meshes on level 1 consisting of triangles (left) and
quadrilaterals (right).

The first group of calculations confirms predicted convergence rates. Further-
more, the results on triangular and quadrilateral meshes are compared. The pa-
rameter α0 is kept fixed for these calculations.

We start with first order elements on triangles and quadrilaterals. We consider
the element P+

1 with projection onto P0 on triangles, the Mini-element on trian-
gles, and the element Q+

1 with projection onto P0. The results of the Mini-element
and the element P+

1 are almost the same although the Mini-element uses a smaller
pressure space. Hence, the behavior of the error with respect to different norms is
shown in Figure 4 only for the element P+

1 and the element Q+
1 . We have chosen for

these calculations the parameter α0 = 1. The errors for the quadrilateral element
are always smaller than the corresponding errors for the triangular elements. The
largest difference appears for the errors in the local projection norm and for the L2

norm of the pressure. The results differ by a factor of roughly 10. Furthermore,
the H1 semi-norm of the velocity error and the error in the local projection norm
indicate, as predicted, first order convergence on both triangles and quadrilaterals.
Moreover, the L2 norm of the velocity error converges with second order on both
types of meshes. The numerical results show that the convergence order for the L2

norm of the pressure error is on both triangular and quadrilateral meshes approxi-
mately 3/2 while our theory proves just first order convergence. A reason for this
behavior might be some superconvergence phenomena for the first order elements.

Higher order elements are investigated next. Figure 5 presents the results for
the third order elements P b+

3 with projection onto P disc
2 on triangles and Qb

3 with
projection onto P disc

2 on quadrilaterals. Furthermore, the predicted asymptotic
behavior is shown in the graphs of Figure 5. For these calculations, we have again
chosen αK = h2

K , i.e., α0 = 1. The L2 norm of the pressure error, the H1 semi-norm
of the velocity error, and the error in the local projection norm converge with third
order which confirms our theory. For these third order elements, there is no longer
a better convergence of the L2 norm of the pressure error as observed for the first
order elements. The results for the L2 norm of the velocity error indicate fourth
order accuracy, in agreement with Theorem 3.3. The calculations on quadrilateral
meshes result in a smaller error than the calculations on triangular meshes. For the
velocity error, this effect is more pronounced for higher order elements.

We will study the behavior of different third order elements on quadrilaterals.
We consider the following four elements: Qb

3 with projection onto P disc
2 , Qb

3 with
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Figure 4. First order elements on triangles and quadrilaterals.

projection onto P disc
1 , Q3 with projection onto P disc

1 , and Q3 with projection onto
Qdisc

1 . The presented theory predicts for all four elements the same asymptotic
convergence behavior. The parameter α0 was again chosen to be 1.

The graphs in Figure 6 show that the element Qb
3 with projection onto P disc

2

gives the best results which are 1–2 order of magnitude better than the results of
the other three elements. The results for the two elements which are projected onto
P disc

1 differ so slightly that the difference cannot be seen in the graphs. Looking at
these results, we find that a larger projection space produces smaller errors. This
is also indicated by the fact that the errors for the element which is projected onto
Qdisc

1 are between the errors for the elements with projection space P disc
1 and the

element with projection space P disc
2 .

Next we consider how the results depend on the parameter α0 in the stabilization
term. To this end, we have chosen three different cases: the first order element P+

1

with projection onto P0 on triangles, the third order element Qb
3 with projection

onto P disc
2 on quadrilaterals, and the third order element Q3 with projection onto

P disc
1 .
Let us start with the first order element P+

1 with projection onto P0 on trian-
gles. The graphs in Figure 7 show the results on level 5 (2,048 triangles, 9,411 de-
grees of freedom for pressure and both velocity components), level 6 (8,192 tri-
angles, 37,251 degrees of freedom), and level 7 (32,768 triangles, 148,227 degrees
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Figure 5. Third order elements on triangles and quadrilaterals.

of freedom). These results indicate that the velocity error is not very sensitive with
respect to the parameter α0; see the top row of graphs in Figure 7 and note the
scaling of the axes. The behavior of the pressure error and the error in the local
projection norm is different. If the parameter α0 tends to zero then the error in-
creases. This shows the instability of the equal order interpolation for the Stokes
problem without stabilization. For each norm, the dependence of the error on the
parameter α0 is very similar on the different refinement levels.

We continue by considering the third order element Qb
3 with projection onto P disc

2

on quadrilaterals. While varying the coefficient α0 in αK = α0 h2
K over the wide

range from 10−4 up to 104, the obtained results changed only slightly. Furthermore,
the behavior is similar on different refinement levels. If the parameter α0 tends
towards zero in these calculations, then the error in the L2 norm of the pressure
and the error in the local projection norm increase while the velocity error remains
bounded. This shows again the instability of equal order interpolation pairs for the
Stokes problem.

Finally, we look at the element Q3 with projection onto P disc
1 , i.e., the order

difference between approximation space and projection space is 2. The graphs of
Figure 8 present the results on level 3 (64 quadrilaterals, 1,875 degrees of freedom
for velocity and pressure), level 4 (256 quadrilaterals, 8,739 degrees of freedom),
and level 5 (1,024 quadrilaterals, 28,227 degrees of freedom). These results show
that this element is on all refinement levels much more sensitive with respect to the
parameter α0 as the previously considered element Qb

3 with projection onto P disc
2 .

The error changes several orders of magnitude if α0 is varying.
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Figure 6. Comparison of third order elements on quadrilaterals.
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Figure 7. Dependence of norms on the parameter α0 for first
order elements on triangles.
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Figure 8. Dependence of norms on the parameter α0 for third
order elements with difference 2 on quadrilaterals.
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