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NEW METHOD TO OBTAIN SMALL PARAMETER
POWER SERIES EXPANSIONS OF MATHIEU RADIAL

AND ANGULAR FUNCTIONS

T. M. LARSEN, D. ERRICOLO, AND P. L. E. USLENGHI

Abstract. Small parameter power series expansions for both radial and an-
gular Mathieu functions are derived. The expansions are valid for all integer
orders and apply the Stratton-Morse-Chu normalization. Three new contribu-
tions are provided: (1) explicit power series expansions for the radial functions,
which are not available in the literature; (2) improved convergence rate of the
power series expansions of the radial functions, obtained by representing the
radial functions as a series of products of Bessel functions; (3) simpler and
more direct derivations for the power series expansion for both the angular
and radial functions. A numerical validation is also given.

1. Introduction

Mathieu angular and radial functions depend on a parameter c. This article
describes a new method to compute their power series expansions when 0 ≤ c < 1.
Three new contributions are provided for small parameter Mathieu functions: (1)
explicit power series expansions for the radial functions, which are not available
in the literature; (2) improved convergence rate of the power series expansions of
the radial functions, obtained by representing the radial functions as a series of
products of Bessel functions; and, (3) simpler and more direct derivations for the
power series expansion for both the angular and radial functions. Using this new
method, power series expansions valid for all integer orders are obtained, using the
Stratton-Morse-Chu normalization.

This work is motivated by physical applications where small parameter power
series expansions for both angular and radial functions are required to develop an-
alytical derivations. Power series expansions for Mathieu functions already present
in the literature are not useful for the following two reasons. First, published results
only contain expansions for the angular functions, but not for the radial functions,
such as [1], [26], and [22]. Second, the normalization used is not appropriate. In fact,
various normalizations exist for Mathieu functions and the two most frequently used
are the one of Goldstein-Ince [17], [21] and the one of Stratton-Morse-Chu [37, 36].
When it comes to small parameter power series expansions, most published results
apply the Goldstein-Ince normalization, such as [1], [26], with the exception of [22].
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The change of normalization is by no means a trivial operation when one needs to
develop analytical derivations. Therefore, this article provides expressions for both
radial and angular functions using the Stratton-Morse-Chu normalization. The
choice of the Stratton-Morse-Chu normalization is dictated by a vast collection of
analytical results that already exist, such as [5], [30], [7], [12], [13], [31], [14], [38],
[39], [6].

This article fills a gap in the literature on Mathieu functions by extending and
improving the results given in [22]. Preliminary results of this research were given
in [23].

This work is organized as follows. The notation for the Matheiu functions is
described in Section 2. Then, because the method to obtain the power series ex-
pansions differs between even and odd functions, even functions are examined in
Section 3, and odd parity functions are considered in Section 4. The relationship
with prior results obtained in [22] is clarified in Section 5, which is followed by a
numerical validation in Section 6 and the conclusions in Section 7.

2. Mathieu angular and radial functions

Mathieu’s differential equation is given by [36], [37]:

(2.1)
∂2

∂v2
f2 +

(
b − c2

2
cos 2v

)
f2 = 0,

where b and c are constants. When c > 0, Mathieu’s equation contains a periodic
coefficient. In many physical applications only periodic solutions are of interest,
and for a given c there exist two countable sets of values of b for which equation
(2.1) admits periodic solutions. These values of b are called characteristic values
and, depending upon the set, the period of the solution is either π or 2π. Because
of their periodicity and their meaning in physical applications, these solutions are
also called Mathieu angular functions Sem(c, v), Som(c, v). Closely related to (2.1)
is Mathieu’s modified differential equation [36], [37]:

(2.2)
∂2

∂u2
f1 +

(
c2

2
cosh 2u − b

)
f1 = 0,

whose solutions are called Mathieu modified functions or Mathieu radial functions,
Re(�)

m (c, u), Ro(�)
m (c, u), (� = 1, . . . , 4), as suggested by many physical applications.

Mathieu functions were first introduced by Émile Léonard Mathieu (1835–1890)
in 1868 when he investigated the vibrational modes of a stretched elliptical mem-
brane [25]. These functions have been studied by many authors, including Whit-
taker and Watson [41], Stratton [37], Morse and Feshbach [28], Meixner and Schäfke
[27], and McLachlan [26]. The computation of Mathieu functions is not a trivial
problem and it has been addressed by many authors, including Blanch [4], Clemm
[8, 9], Hodge [20], Frisch [16], Rengarajan and Lewis [29], Baker [3], Shirts [34, 35],
IMSL [40], Zhang and Jin [43], Alhargan [2], Mathematica [42], Erricolo [15].

Mathieu functions are used in many applications in physics and engineering,
which are usually related to the solution of the wave equation in elliptic cylinder
coordinates [5], [18], [33], [7], [32], [38], [13], [12], [24], [14], [39].

Both the angular and radial functions are expressed as series expansions. For
the same order and parity, the expansion coefficients that define the angular and
radial functions are the same. The expansion coefficients are not uniquely defined
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and different choices are possible depending upon the normalization used. In this
work, only the Stratton-Morse-Chu normalization is considered.

3. Expansions of the even functions

The definitions for both the angular and radial functions are provided by
G. Blanch in [36]. The series representing the even solutions of (2.1) and (2.2)
are given by, respectively,

Sem(c, v) =
∞∑

k=0

Dm
2k+p cos (2k + p)v (m = 0, 1, 2...),(3.1)

Re(1)
m (c, u) =

√
π

2

∞∑
k=0

jm−(2k+p)
Dm

2k+p

Dm
p

[Jk+p(x1)Jk(x2) + pJk(x1)Jk+p(x2)] .

(3.2)

To obtain faster convergence for the even radial Mathieu functions, (3.2) contains a
series of products of Bessel functions [36]. The even radial Mathieu functions of the
second kind and order m are obtained by substituting Jk+p(x1) and Jk(x1) in (3.2)
with their respective Bessel functions of the second kind, Nk+p(x1) and Nk(x1):
(3.3)

Re(2)
m (c, u) =

√
π

2

∞∑
k=0

jm−(2k+p)
Dm

2k+p

Dm
p

[Nk+p(x1)Jk(x2) + pNk(x1)Jk+p(x2)] .

In equations (3.1)-(3.3), p = 0 if m is even and p = 1 if m is odd. The arguments
of the Bessel functions in (3.2) and (3.3) are:

(3.4) x1 =
c

2
eu, x2 =

c

2
e−u.

The even radial Mathieu functions of the third and fourth kind are defined by a
linear combination of (3.2) and (3.3) [37], [36]:

Re(3)
m (c, u) =Re(1)

m (c, u) + jRe(2)
m (c, u),(3.5)

Re(4)
m (c, u) =Re(1)

m (c, u) − jRe(2)
m (c, u).(3.6)

The expansion coefficients in (3.1), (3.2) and (3.3) and the even characteristic
values are determined by the following second order recurrence relation [22]:
(3.7)

(−n2 + b(e)
m )Dm

n − c2

4

[
Dm

n+2 +
2

εn−2
Dm

n−2 + (2 − εn−1)Dm
n

]
= 0, m, n ≥ 0.

Here εi is the Neumann factor where ε0 = 1, εi = 2 for i �= 0 and n = 2k + p. The
expansion coefficients Dm

−n = 0 for n > 0. The Dm
n (c) are expanded in a power

series valid for small values of c and have the form

(3.8) Dm
n (c) =

∞∑
r=0

α2r
m,nc2r,

where α2r
m,−n = 0 for n > 0. When c → 0, (2.1) becomes the equation of the

harmonic oscillator with even solutions:

(3.9) Sem(0, v) = A cosmv.

Substituting (3.8) into (3.1) and setting c = 0, we see that the expansion coefficients
α0

m,m = A and α0
m,n = 0 (n �= m) so that the only nonzero coefficient in (3.1)
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is Dm
m(0) = A. The constant A will later be determined by the normalization

introduced by Stratton and Chu.
The power series expansion for the even characteristic values have the form [22]

(3.10) b(e)
m (c) =

∞∑
j=0

l
(e)
2j c2j ,

where l
(e)
2j are even expansion coefficients and l

(e)
0 = m2, since b

(e)
m (0) = m2 when

c → 0 in (2.1). The normalization, used by Stratton and Chu, is chosen so that
Sem(c, 0) = 1 [37], or similarly,

(3.11)
∞∑

k=0

Dm
2k+p(c) = 1.

Substitution of (3.8) into (3.11) leads to:

(3.12)
∞∑

r=0

( ∞∑
k=0

α2r
m,2k+p

)
c2r = 1.

From (3.12) and the comments above, we see that the normalization is satisfied by
the following relations:

α0
m,m = 1 (r = 0, A = 1),(3.13)

∞∑
k=0

α2r
m,2k+p = 0 (r ≥ 1).(3.14)

The expansion coefficients are obtained by substituting (3.8) and (3.10) into (3.7)
and equating coefficients of like powers of c. The normalization is then satisfied by
use of (3.13) and (3.14). Substituting (3.8) and (3.10) into (3.7) leads to:

∞∑
r=0

(
m2 − n2

)
α2r

m,nc2r

=
1
4

∞∑
s=0

[
α2s

m,n+2 +
2

εn−2
α2s

m,n−2 + (2 − εn−1)α2s
m,n

]
c2s+2

−
∞∑

p=0

∞∑
j=1

l
(e)
2j α2p

m,nc2(p+j).

(3.15)

Equating coefficients of c0 (r = 0) in (3.15) leads to

(3.16)
(
m2 − n2

)
α0

m,n = 0.

Equation (3.16) restates that α0
m,m (n = m) is the only nonzero coefficient when

r = 0. Since (3.16) is satisfied for all values of α0
m,m, it must be determined by the

normalization given by (3.13) (α0
m,m = 1). Therefore, the first nonzero expansion

coefficients correspond to n = m and are given by:

l
(e)
0 = m2,(3.17)

α0
m,m = 1.(3.18)
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Equating coefficients of c2 (r = 1) in (3.15) leads to:

(3.19)
(
m2 − n2

)
α2

m,n =
1
4

{
α0

m,n+2 +
2

εn−2
α0

m,n−2 + [(2 − εn−1) − 4l
(e)
2 ]α0

m,n

}
.

In this case, all expansion coefficients are equal to zero for all m except those
corresponding to n = m− 2, n = m and n = m + 2. Substituting these values of n
into (3.19) leads to

l
(e)
2 =

2 − εm−1

4
,(3.20)

α2
m,m �= 0,(3.21)

α2
m,m−2 =

{
1

16(m−1) , m ≥ 2,

0, m < 2,
(3.22)

α2
m,m+2 =

{
− 1

16(m+1) , m ≥ 1,

−1
8 , m = 0,

(3.23)

respectively. In equation (3.21), the value of α2
m,m is generally nonzero. The

appropriate value is determined by the normalization given by (3.14). Substitution
of (3.22) and (3.23) into (3.14) (r = 1) leads to:

(3.24) α2
m,m =

⎧⎪⎨
⎪⎩
− 1

8(m2−1) , m ≥ 2,
1
32 , m = 1,
1
8 , m = 0.

Equating coefficients of c4 (r = 2) in (3.15) leads to:

(
m2 − n2

)
α4

m,n

=
1
4

{
α2

m,n+2 +
2

εn−2
α2

m,n−2 + [(2 − εn−1) − 4l
(e)
2 ]α2

m,n − 4l
(e)
4 α0

m,n

}
.

(3.25)

Here we find a total of five nonzero expansion coefficients corresponding to n =
m − 4, n = m − 2, n = m, n = m + 2 and n = m + 4. Setting n = m and
substituting (3.20) into (3.25), yields:

l
(e)
4 =

⎧⎪⎨
⎪⎩

1
32(m2−1) , m = 0 or m ≥ 3,
5

192 , m = 2,

− 1
128 , m = 1,

(3.26)

α4
m,m �= 0.(3.27)
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Setting n = m − 4, n = m − 2, n = m + 2 and n = m + 4 in (3.25) leads to

α4
m,m−4 =

{
1

512(m−2)(m−1) , m ≥ 4,

0, m < 4,
(3.28)

α4
m,m−2 =

⎧⎪⎨
⎪⎩
− 1

128(m2−1)(m−1) , m = 2 or m ≥ 4,
1

2048 , m = 3,

0, m < 2,

(3.29)

α4
m,m+2 =

⎧⎪⎨
⎪⎩

1
128(m2−1)(m+1) , m ≥ 2,

− 1
512 , m = 1,

− 1
64 , m = 0,

(3.30)

α4
m,m+4 =

{
1

512(m+2)(m+1) , m ≥ 1,
1

512 , m = 0,
(3.31)

respectively. In equation (3.27), the value of α4
m,m is generally nonzero. The

appropriate value is determined by the normalization given by (3.14). Substitution
of (3.28), (3.29), (3.30) and (3.31) into (3.14) (r = 2) leads to:

(3.32) α4
m,m =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− m4−3m2+14
256(m2−1)2(m2−4) , m ≥ 4,

− 17
20480 , m = 3,
29

18432 , m = 2,
5

3072 , m = 1,
7

512 , m = 0.

The remaining expansion coefficients, α2r
m,n (r ≥ 3), are determined by equating

coefficients of c2r in (3.15), substituting previously determined l’s and expansion
coefficients, and determining α2r

m,m by the normalization requirement of (3.14).
The power series expansions of the even Mathieu functions (i.e. in terms of the

α expansion coefficients) are obtained by substitution of (3.8) into (3.1) and (3.2),
respectively

Sem(c, v) =
∞∑

r=0

{ ∞∑
k=0

α2r
m,2k+p cos (2k + p)v

}
c2r,(3.33)

Re(1)
m (c, u) =

√
π

2
(Dm

p )−1(3.34)

×
∞∑

r=0

{ ∞∑
k=0

jm−(2k+p)α2r
m,2k+p [Jk+p(x1)Jk(x2) + pJk(x1)Jk+p(x2)]

}
c2r.
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Setting 2k + p = m ± 2q and keeping in mind the expansion coefficients which are
equal to zero for all m, equations (3.14), (3.33) and (3.34) become, respectively,

α2r
m,m = −

r∑
q=1

{
α2r

m,m−2q + α2r
m,m+2q

}
,(3.35)

Sem(c, v) =
∞∑

r=0

[
α2r

m,m cos mv +
r∑

q=1

{
α2r

m,m−2q cos [(m − 2q)v](3.36)

+ α2r
m,m+2q cos [(m + 2q)v]}

]
c2r,

Re(1)
m (c, u) =

√
π

2

(3.37)

×
∑∞

r=0

[
α2r

m,mJeν(c, u)+
∑r

q=1(−1)q
{
α2r

m,m−2qJeγ(c, u)+α2r
m,m+2qJeλ(c, u)

}]
c2r∑∞

r=0 α2r
m,pc

2r
,

where the following substitutions have been made in (3.37):

Jex(c, u) = Jx+(x1)Jx−(x2) + pJx−(x1)Jx+(x2),(3.38)

ν± =
m ± p

2
, γ± =

m − 2q ± p

2
, λ± =

m + 2q ± p

2
.(3.39)

The summations in equations (3.36) and (3.37) extended from q = 1 to q = r are
equal to zero when r = 0. In practice, one evaluates

Re(1),t
m (c, u) =

√
π

2

×
∑t−1

r=0

[
α2r

m,mJeν(c, u)+
∑r

q=1(−1)q
{
α2r

m,m−2qJeγ(c, u)+α2r
m,m+2qJeλ(c, u)

}]
c2r

∑t−1
r=0 α2r

m,pc
2r

,

(3.40)

where t = (m
2 + N) or t = (m−1

2 + N) for m even or odd, respectively, and N ≥ 1
to obtain a good approximation.

The even radial Mathieu functions of the second kind along with the derivatives
of the even radial Mathieu functions of the first and second kind (with respect
to u) are obtained by replacing Jex(c, u) in (3.37) with Nex(c, u), Je′x(c, u) and
Ne′x(c, u), respectively, which are given by:

Nex(c, u) = Nx+(x1)Jx−(x2) + pNx−(x1)Jx+(x2),(3.41)

Je′x(c, u) =
1
2
[x1{Jx−(x2)[Jx+−1(x1) − Jx++1(x1)](3.42)

+ pJx+(x2)[Jx−−1(x1) − Jx−+1(x1)]}
− x2{Jx+(x1)[Jx−−1(x2) − Jx−+1(x2)]

+ pJx−(x1)[Jx+−1(x2) − Jx++1(x2)]}],
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Ne′x(c, u) =
1
2
[x1{Jx−(x2)[Nx+−1(x1) − Nx++1(x1)]}(3.43)

+ pJx+(x2)[Nx−−1(x1) − Nx−+1(x1)]

− x2{Nx+(x1)[Jx−−1(x2) − Jx−+1(x2)]

+ pNx−(x1)[Jx+−1(x2) − Jx++1(x2)]}

The power series expansions for the first three terms of the even Mathieu func-
tions can finally be obtained by substitution of (3.18), (3.22)-(3.24), (3.28)-(3.32)
and (3.38)-(3.43) into the final expressions given by (3.5), (3.6), (3.36) and (3.37).

4. Expansions of the odd functions

The determination of the power series expansions for the odd Mathieu functions
follows the same procedure as for the even Mathieu functions with minor changes
throughout the derivations. The odd solutions of (2.1) are expressed by the sine
series:

(4.1) Som(c, v) =
∞∑

k=(1−p)

Fm
2k+p sin (2k + p)v (m = 1, 2, 3, ...),

and odd solutions of (2.2) are expressed by the product Bessel series

Ro(1)
m (c, u) =

√
π

2

∞∑
k=(1−p)

jm−(2k+p)
Fm

2k+p

Fm
2−p

[Jk+1(x1)Jk−1+p(x2)

−Jk−1+p(x1)Jk+1(x2)] ,

(4.2)

where the products of Bessel functions are introduced to increase the convergence
rate [36]. The odd radial Mathieu functions of the second kind are expressed as:

Ro(2)
m (c, u) =

√
π

2

∞∑
k=(1−p)

jm−(2k+p)
Fm

2k+p

Fm
2−p

[Nk+1(x1)Jk−1+p(x2)

−Nk−1+p(x1)Jk+1(x2)] .

(4.3)

In equations (4.1)–(4.3), p = 0 if m is even and p = 1 if m is odd. The arguments of
the Bessel functions in (4.2) and (4.3) are given by equation (3.4). The odd radial
Mathieu functions of the third and fourth kind are defined by a linear combination
of (4.2) and (4.3) [37], [36]:

Ro(3)
m (c, u) = Ro(1)

m (c, u) + jRo(2)
m (c, u),(4.4)

Ro(4)
m (c, u) = Ro(1)

m (c, u) − jRo(2)
m (c, u).(4.5)

The expansion coefficients in (4.1), (4.2) and (4.3) and the odd characteristic
values are determined by the following second order recurrence relation [22]:

(4.6) (−n2 + b(o)
m )Fm

n − c2

4
[
Fm

n+2 + Fm
n−2 − (2 − εn−1)Fm

n

]
= 0, m, n ≥ 1.

Here n = 2k + p, the Neumann factor has the same meaning as it did for the
even functions and the expansion coefficients Fm

−n = 0 for n ≥ 0. The Fm
n (c) are

expanded in a power series valid for small values of c and have the form

(4.7) Fm
n (c) =

∞∑
r=0

β2r
m,nc2r,
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where β2r
m,−n = 0 for n ≥ 0. When c → 0 in (2.1), the odd harmonic solutions are

given by:

(4.8) Som(0, v) = B sin mv.

Substituting (4.7) into (4.1) and setting c = 0, we see that the expansion coefficients
β0

m,m = B and β0
m,n = 0 (n �= m) so that the only nonzero coefficient in (4.1) is

Fm
m (0) = B. The constant B will later be determined by the normalization.
The power series expansions for the odd characteristic values have the following

form [22]:

(4.9) b(o)
m (c) =

∞∑
j=0

l
(o)
2j c2j ,

where l
(o)
2j are odd expansion coefficients and l

(o)
0 = m2, since b

(o)
m (0) = m2 when

c → 0 in (2.1).
The normalization, used by Stratton and Chu, is chosen so that [37]:[

d

dv
Som(c, v)

]
v=0

= 1,

or similarly:

(4.10)
∞∑

k=0

(2k + p)Fm
2k+p(c) = 1;

Substitution of (4.7) into (4.10) leads to

(4.11)
∞∑

r=0

[ ∞∑
k=0

(2k + p)β2r
m,2k+p

]
c2r = 1.

From (4.11) and the comments above, the normalization is satisfied by the following:

β0
m,m =

1
m

(r = 0, B =
1
m

),(4.12)
∞∑

k=0

(2k + p)β2r
m,2k+p = 0 (r ≥ 1).(4.13)

The expansion coefficients are obtained by substituting (4.7) and (4.9) into (4.6)
and equating coefficients of like powers of c. The normalization is then satisfied by
use of (4.12) and (4.13). Substituting (4.7) and (4.9) into (4.6) leads to:

∞∑
r=0

(
m2 − n2

)
β2r

m,nc2r

(4.14)

=
1
4

∞∑
s=0

[
β2s

m,n+2 + β2s
m,n−2 − (2 − εn−1)β2s

m,n

]
c2s+2 −

∞∑
p=0

∞∑
j=1

l
(o)
2j β2p

m,nc2(p+j).

Equating coefficients of c0 (r = 0) in (4.14) leads to:

(4.15)
(
m2 − n2

)
β0

m,n = 0.

Equation (4.15) restates that β0
m,m (n = m) is the only nonzero coefficient when

r = 0. Since (4.15) is satisfied for all values of β0
m,m, it must be determined by the
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normalization given by (4.12) (β0
m,m = 1

m). Therefore, the first nonzero expansion
coefficients correspond to n = m and are given by:

l
(o)
0 = m2,(4.16)

β0
m,m =

1
m

.(4.17)

Equating coefficients of c2 (r = 1) in (4.14) leads to:(
m2 − n2

)
β2

m,n

=
1
4

{
β0

m,n+2 + β0
m,n−2 − [(2 − εn−1) + 4l

(o)
2 ]β0

m,n

}
.

(4.18)

In this case, all expansion coefficients are equal to zero for all m except those
corresponding to n = m− 2, n = m and n = m + 2. Substituting these values of n
into (4.18) leads to:

l
(o)
2 =

εm−1 − 2
4

,(4.19)

β2
m,m �= 0,(4.20)

β2
m,m−2 =

{
1

16m(m−1) , m ≥ 3,

0, m < 3,
(4.21)

β2
m,m+2 = − 1

16m(m + 1)
, m ≥ 1,(4.22)

respectively. In equation (4.20), the value of β2
m,m is generally nonzero. The ap-

propriate value is determined by the normalization given by (4.13). Substitution of
(4.21) and (4.22) into (4.13) (r = 1) leads to:

(4.23) β2
m,m =

⎧⎪⎨
⎪⎩

1
8m(m2−1) , m ≥ 3,
1
48 , m = 2,
3
32 , m = 1.

Equating coefficients of c4 (r = 2) in (4.14) leads to:(
m2 − n2

)
β4

m,n(4.24)

=
1
4

{
β2

m,n+2 + β2
m,n−2 − [(2 − εn−1) + 4l

(o)
2 ]β2

m,n − 4l
(o)
4 β0

m,n

}
.

Here we find a total of five nonzero expansion coefficients corresponding to n =
m − 4, n = m − 2, n = m, n = m + 2 and n = m + 4. Setting n = m and
substituting (4.19) in (4.24), we find that:

l
(o)
4 =

⎧⎪⎨
⎪⎩

1
32(m2−1) , m ≥ 3,

− 1
192 , m = 2,

− 1
128 , m = 1.

(4.25)

β4
m,m �= 0.(4.26)
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Setting n = m − 4, n = m − 2, n = m + 2 and n = m + 4 in (4.24) leads to

β4
m,m−4 =

{
1

512m(m−2)(m−1) , m ≥ 5,

0, m < 5,
(4.27)

β4
m,m−2 =

⎧⎪⎨
⎪⎩

1
128m(m2−1)(m−1) , m ≥ 4,

− 1
6144 , m = 3,

0, m < 3,

(4.28)

β4
m,m+2 =

⎧⎪⎨
⎪⎩
− 1

128m(m2−1)(m+1) , m ≥ 3,

− 1
2304 , m = 2,

− 1
512 , m = 1,

(4.29)

β4
m,m+4 =

1
512m(m + 2)(m + 1)

, m ≥ 1,(4.30)

respectively. In equation (4.26), the value of β4
m,m is generally nonzero. The ap-

propriate value of this constant is determined by the normalization given by (4.13).
Substitution of (4.27), (4.28), (4.29) and (4.30) into (4.13) (r = 2) leads to:

(4.31) β4
m,m =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− m4−15m2+26
256m(m2−1)2(m2−4) , m ≥ 5,

− 7
460800 , m = 4,
7

61440 , m = 3,
23

36864 , m = 2,
13

3072 , m = 1.

The remaining expansion coefficients, β2r
m,n (r ≥ 3), are determined by equating

coefficients of c2r in (4.14), substituting previously determined l’s and expansion
coefficients, and determining β2r

m,m by the normalization requirement of (4.13).
The power series expansions of the odd Mathieu functions (i.e. in terms of the β
expansion coefficients) are obtained by substitution of (4.7) into (4.1) and (4.2),
respectively,

Som(c, v) =
∞∑

r=0

⎧⎨
⎩

∞∑
k=(1−p)

β2r
m,2k+p sin (2k + p)v

⎫⎬
⎭ c2r,(4.32)

Ro(1)
m (c, u) =

√
π

2
(Fm

2−p)
−1(4.33)

×
∞∑

r=0

⎧⎨
⎩

∞∑
k=(1−p)

jm−(2k+p)β2r
m,2k+p[Jk+1(x1)Jk−1+p(x2)

− Jk−1+p(x1)Jk+1(x2)]

⎫⎬
⎭ c2r.
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Setting 2k + p = m ± 2q and keeping in mind the expansion coefficients which are
equal to zero for all m, equations (4.13), (4.32) and (4.33) become respectively,

β2r
m,m = − 1

m

r∑
q=1

{
(m − 2q)β2r

m,m−2q + (m + 2q)β2r
m,m+2q

}
(r ≥ 1),

(4.34)

Som(c, v) =
∞∑

r=0

[
β2r

m,m sin mv +
r∑

q=1

{
β2r

m,m−2q sin [(m − 2q)v]

(4.35)

+β2r
m,m+2q sin [(m + 2q)v]

}]
c2r,

Ro(1)
m (c, u) =

√
π

2

(4.36)

×
∑∞

r=0

[
β2r

m,mJoν(c, u)+
∑r

q=1(−1)q
{
β2r

m,m−2qJoγ(c, u)+β2r
m,m+2qJoλ(c, u)

}]
c2r∑∞

r=0 β2r
m,2−pc

2r
,

where the following substitutions have been made in (4.36):

Jox(c, u) = Jx+(x1)Jx−(x2) − Jx−(x1)Jx+(x2),(4.37)

ν± =
m ∓ p ± 2

2
, γ± =

m − 2q ∓ p ± 2
2

, λ± =
m + 2q ∓ p ± 2

2
.(4.38)

The summations in equations (4.35) and (4.36) extended from q = 1 to q = r are
equal to zero when r = 0. In practice, one evaluates

(4.39) Ro(1),t
m (c, u) =

√
π

2

×
∑t−1

r=0

[
β2r

m,mJoν(c, u) +
∑r

q=1(−1)q
{
β2r

m,m−2qJoγ(c, u) + β2r
m,m+2qJoλ(c, u)

}]
c2r∑t−1

r=0 β2r
m,2−pc

2r
,

where t =
(

m
2 − 1 + N

)
or t =

(
m−1

2 + N
)

when m is even or odd, respectively,
and N ≥ 1 to obtain a good approximation.

The odd radial Mathieu functions of the second kind along with the derivatives of
the odd radial Mathieu functions of the first and second kind (with respect to u) are
obtained by replacing Jox(c, u) in (4.36) with Nox(c, u), Jo′x(c, u) and No′x(c, u),
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respectively, which are given by:

Nox(c, u) = Nx+(x1)Jx−(x2) − Nx−(x1)Jx+(x2),(4.40)

Jo′x(c, u) =
1
2

[x1 {Jx−(x2) [Jx+−1(x1) − Jx++1(x1)](4.41)

−Jx+(x2) [Jx−−1(x1) − Jx−+1(x1)]}
− x2 {Jx+(x1) [Jx−−1(x2) − Jx−+1(x2)]

−Jx−(x1) [Jx+−1(x2) − Jx++1(x2)]}] ,

No′x(c, u) =
1
2

[x1 {Jx−(x2) [Nx+−1(x1) − Nx++1(x1)](4.42)

−Jx+(x2) [Nx−−1(x1) − Nx−+1(x1)]}
− x2 {Nx+(x1) [Jx−−1(x2) − Jx−+1(x2)]

− Nx−(x1) [Jx+−1(x2) − Jx++1(x2)]}] .
The power series expansions for the first three terms of the odd Mathieu functions

can finally be obtained by substitution of (4.17), (4.21)-(4.23), (4.27)-(4.31) and
(4.37)-(4.42) into the final expressions given by (4.4), (4.5), (4.35) and (4.36).

5. Equivalence with the method of Kokkorakis and Roumeliotis

The same results for the determination of the expansion coefficients for the power
series expansions of the Mathieu functions can also be obtained using an alternate
method introduced by Kokkorakis and Roumeliotis in [22]. The results given in [22]
are specifically derived for the angular functions, although they may also be used to
determine the radial functions. Since the new derivations are shorter and simpler to
understand, the advantages of the new method will be shown in the following, but
only for the even angular functions since the derivations for the remaining functions
are similar.

Both methods begin with the same definitions for the power series expansions
of the even angular functions, given by (3.1), where the expansion coefficients are
determined by the second order recurrence relation given by (3.7). Also, the power
series expansion for b

(e)
m (c) is the same in both methods and given by (3.10). The

primary difference in [22] is the choice of the power series expression for the Dm
n (c)

given by

(5.1) Dm
m±2q(c) =

[ ∞∑
k=0

α±
2q,2kc2q+2k

]
Dm

m(c) (q = 0, 1, 2, ...),

where n = m ± 2q. The Dm
m(c) are also expanded in a power series

(5.2) Dm
m(c) =

∞∑
l=0

g2lc
2l,

where the normalization is satisfied by setting g0 = 1, and

(5.3) g2l = −
l∑

q=1

l−q∑
k=0

g2k

[
α+

2q,2(l−q−k) + α−
2q,2(l−q−k)

]
(l = 1, 2, ...).

Comparing the expressions for Dm
n (c) in both methods, we see that (3.8) is an
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infinite series where as (5.1) contains a product of two infinite series. This choice
for the Dm

n (c) leads to very lengthy algebraic calculations for the determination of
the expansion coefficients that can be avoided by alternately using (3.8).

In this method, the expansion coefficients are determined by substituting (3.10)
and (5.1) into (3.7) and equating coefficients of like powers of c to zero. Once these
substitutions are made, the l

(e)
2j are determined in a straightforward manner by

setting n = m. On the other hand, the α±
2q,2k are determined by setting n = m±2q,

which leads to the following recurrence relations:

α±
2q,0 = f±(2q − 2)α±

2q−2,0, q ≥ 1, k = 0,(5.4)

α±
2q,2 = f±(2q − 2)α±

2q−2,2 + g±(2q)α±
2q,0, q ≥ 1, k = 1,(5.5)

α±
2q,2k = f±(2q − 2)α±

2q−2,2k + g±(2q)α±
2q,2k−2(5.6)

+ t±(2q)
k∑

j=2

l
(e)
2j α±

2q,2k−2j + p±(2q + 2)α±
2q+2,2k−4, q ≥ 1, k ≥ 2,

where the following substitutions have been made:

t±(2q) = ± 1
4q(m ± q)

,(5.7)

f+(2q − 2) = − 1
2εm+2q−2

t+(2q), f−(2q − 2) = −1
4
t−(2q),(5.8)

g+(2q) =
2 − εm−1

4
t+(2q), g−(2q) = −2 − εm−2q−1

4
t−(2q),(5.9)

p+(2q + 2) = −1
4
t+(2q), p−(2q + 2) = − 1

2εm−2q−2
t−(2q).′(5.10)

The derivations for the expansion coefficients determined by (5.4)-(5.6) are straight
forward when k is small but become much more tedious as k increases. Also, the
derivations which lead to equations (5.3)-(5.10) are very tedious in itself. The final
expression for the power series expansion of the even angular Mathieu functions is
then given by:

Sem(c, v) =
∞∑

l=0

g2lc
2l

(5.11)

×
{

cos mv +
∞∑

q=1

∞∑
k=0

{
α+

2q,2k cos [(m + 2q)v] + α−
2q,2k cos [(m − 2q)v]

}
c2(q+k)

}
.

The first three terms are obtained by expanding (5.11) and setting the upper
limits of the summations to the minimum values which lead to powers of c0, c2 and
c4. Expanding (5.11)and grouping together terms of like powers of c leads to:
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Sem(c, v) ≈
2∑

l=0

g2lc
2l

(5.12)

×
{

cos mv +
2∑

q=1

1∑
k=0

{
α+

2q,2k cos [(m + 2q)v] + α−
2q,2k cos [(m − 2q)v]

}
c2(q+k)

}
,

Sem(c, v)
(5.13)

= g0 cos mv +
{
g0α

−
2,0 cos [(m − 2)v] + g2 cos mv + g0α

+
2,0 cos [(m + 2)v]

}
c2

+
{
g0α

−
4,0 cos [(m − 4)v] +

(
g0α

−
2,2 + g2α

−
2,0

)
cos [(m − 2)v] + g4 cos mv

+
(
g0α

+
2,2 + g2α

+
2,0

)
cos [(m + 2)v] + g0α

+
4,0 cos [(m + 4)v]

}
c4 + O(c6).

The meaning of the expansion coefficients used in both methods can be compared
by setting the upper limit to r = 2 in (3.36) and expanding the summation:

Sem(c, v) = α0
m,m cos mv(5.14)

+
{
α2

m,m−2 cos [(m − 2)v] + α2
m,m cos mv + α2

m,m+2 cos [(m + 2)v]
}

c2

+
{
α4

m,m−4 cos [(m − 4)v] + α4
m,m−2 cos [(m − 2)v] + α4

m,m cos mv

+α4
m,m+2 cos [(m + 2)v] + α4

m,m+4 cos [(m + 4)v]
}

c4 + O(c6).

Comparing (5.13) to (5.14) leads to the following relationships for the expansion
coefficients:

α2r
m,m = g2r, r ≥ 0,(5.15)

α2
m,m±2 = g0α

±
2,0,(5.16)

α4
m,m±2 = g0α

±
2,2 + g2α

±
2,0,(5.17)

α4
m,m±4 = g0α

±
4,0,(5.18)

where the right side of equations (5.15)-(5.18) contain the expansion coefficients
used in [22]. It is interesting to note the relationship between the g2l in [22] and
the α2r

m,m. It is shown in (5.15) that these expansion coefficients are exactly equal.
This should come as no surprise since they are determined by the normalization
in both methods when n = m. Also from equations (5.16)-(5.18), we see that in
general, the α2r

m,n when n �= m are related to the expansion coefficients obtained in
[22] by the sum of products of the g2l and α±

2q,2k. This is where it becomes apparent
that the choice for the Dm

n (c) given by (3.8) leads directly to the natural form of
the power series expansion for Sem(c, v).

6. Validation

As an example of validation, we computed radial and angular Mathieu functions
using the power series expansions given in this article and the numerical subroutines
described in [15] that were independently validated in [10, 11]. In all the following
comparisons, the value c = 0.9 is chosen for the small parameter because it provides
a more challenging test than others with smaller values of c.

Even radial functions of the first kind are examined in Fig. 1 for m = 10 and
0 ≤ u ≤ 5. We evaluate Re(1),t

m (c, u) of (3.40) and Re(1)
m (c, u) with the numerical

subroutines of [15]. Fig. 1(a) shows Re(1),t
m (c, u) when t = 5 (dotted line), t = 6
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(dashed line), and Re(1)
m (c, u). Fig. 1(b) shows Re(1),t

m (c, u) with t = 7 (dashed line)
and Re(1)

m (c, u). When 7 terms are considered, the small parameter expansion is not
distinguishable from the reference solution obtained with independent numerical
subroutines. To emphasize differences between the two evaluations, Fig. 3(a) shows
the difference between Re(1),t

m (c, u), with t = 7, and Re(1)
m (c, u).

Odd radial functions of the first kind are examined in Fig. 2 when m = 3 and
0 ≤ u ≤ 5. We evaluate Ro(1),t

m (c, u) of (4.39) and Ro(1)
m (c, u) with the numerical

subroutines of [15]. Fig. 2(a) shows Ro(1),t
m (c, u) with t = 1 (dotted line) and t = 2

(dashed line) and Ro(1)
m (c, u). Fig. 2(b) shows Ro(1),t

m (c, u) with t = 3 (dashed line)
and Ro(1)

m (c, u). When only 3 terms are computed, the curves shown in Fig. 2(b)
overlap; however, to emphasize their differences Fig. 3(b) shows a plot of the dif-
ference between Ro(1),t

m (c, u) and Ro(1)
m (c, u).

These two comparisons emphasize the general behavior that the number of terms
t increases with the order m. This is obvious by the exam of Fig. 1(b) and the
difference shown in Fig. 3(a) for m = 10 versus Fig. 2(b) and the difference shown
in Fig. 3(b) when m = 3. Additionally, when u = 0, Re(1),t

m (c, u) = 0, from
Fig. 1(b), and dRo(1),t

m (c, u)/du = 0, as it may be inferred from Fig. 2(b). The last
two features provide further confidence that our results are correct.

Angular functions are examined in Fig. 4 for m = 10 and 0 ≤ v ≤ 2π. We indi-
cate with the symbol Set

m(c, v) the evaluation of the first t terms of equation (3.36)
and with Sem(c, v) the evaluation with the numerical subroutines of [15]. Fig. 4(a)
shows Set

m(c, v) evaluated with t = 3 (dashed line) and Sem(c, v) (solid line). Since
the two curves overlap, we need to examine the difference Set

m(c, v) − Sem(c, v)
shown in Fig. 4(b). It is clear that only t = 3 terms provide an excellent agreement
with the reference solution. Additionally, Fig. 4(a) shows that Sem(c, v) = 1 when
v = 0, which satisfies the requested Stratton-Morse-Chu normalization.

A validation for odd angular functions is not reported here because it leads to
equivalent results and is omitted for brevity.
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Figure 1. Comparison between the evaluation of the small parameter ex-
pansion of the even radial functions of the first kind given in equation (3.37)
and the numerical subroutines described in [15] for m = 10.
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Figure 2. Comparison between the evaluation of the small parameter ex-
pansion of the odd radial functions of the first kind given in equation (4.36)
and the numerical subroutines described in [15] for m = 3.
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Figure 3. Even radial function of the first kind: comparison between small
parameter approximation and numerical subroutines
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7. Conclusion

This work provides explicit power series expansions for the Mathieu radial func-
tions when the parameter 0 ≤ c < 1 and using the Stratton-Morse-Chu normaliza-
tion. To the best of the authors’ knowledge, this is the first time this result is given
in the literature.

Explicit power series expansions are also given for the Mathieu angular functions
and the new results are in agreement with those previously obtained by Kokkorakis
and Roumeliotis in [22]. The method used to obtain the power series expansions is
an improvement over the one presented in [22] and it has three advantages:

(1) It is more straightforward and direct to apply.
(2) It leads to a linear complexity of the process to obtain the expansion coef-

ficients.
(3) It leads to an easier software implementation.

Numerical validations show the good agreement of the new power series expan-
sions with other numerical software to evaluate Mathieu functions.

Finally, as an example, the application that motivated this work is the extraction
of the small parameter expansions of the results obtained by Uslenghi in [38] and
Valentino and Erricolo in [39]. In that context, the small parameter expansions
correspond to low-frequency approximations, which could then be compared with
quasi-static methods, such as those derived by Hansen and Yaghjian [19].
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