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WELL-BALANCED SCHEMES FOR CONSERVATION LAWS
WITH SOURCE TERMS BASED ON A LOCAL
DISCONTINUOUS FLUX FORMULATION
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ABSTRACT. We propose and analyze a finite volume scheme of the Godunov
type for conservation laws with source terms that preserve discrete steady
states. The scheme works in the resonant regime as well as for problems with
discontinuous flux. Moreover, an additional modification of the scheme is not
required to resolve transients, and solutions of nonlinear algebraic equations
are not involved. Our well-balanced scheme is based on modifying the flux
function locally to account for the source term and to use a numerical scheme
especially designed for conservation laws with discontinuous flux. Due to the
difficulty of obtaining BV estimates, we use the compensated compactness
method to prove that the scheme converges to the unique entropy solution as
the discretization parameter tends to zero. We include numerical experiments
in order to show the features of the scheme and how it compares with a well-
balanced scheme from the literature.

1. INTRODUCTION

In this paper we study conservation laws with source terms, often referred to as
balance laws, a prototype of which is given by

up + f(u), = Az, u), (z,t) e R x Ry,

(L) u(z,0) = ugp(x), z €R,

where w is the (scalar) unknown, f is the flux function, and A is the source term.
Frequently the source term takes the form

(1.2) A(z,u) = 2/ (2)b(u),

in which case (L)) can be seen as a model equation for the Saint-Venant (shallow
water) equations. We remark that the coefficient z in (I2) can be discontinuous,
which would correspond to a discontinuous bottom topography.

Formally (L)) with the source (L2) is equivalent to

Ut +AUI :0,
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where U = (u, z) and the matrix A is given by

_(f(w) —b
A_< -,
The eigenvalues of the above matrix (wave speeds) are f’(u) and 0, which can

coincide and thereby result in “resonance”.
If z(x) = x, then ([L2) reduces to

ur + (f(w))e = b(u),

which is the usual case of an autonomous source term. If b(u) = 1, (L) reduces to

(1.3) ue + (f(u))e = 2/ (2).
In fact, (I3]) can be written in the following conservative form,
(1.4) u + (f(u) = 2(2)), =0,

which is an example of a conservation law with a spatially varying coefficient. These
equations, (4] in particular, when the coefficients are discontinuous, have been
studied from a theoretical and numerical point of view in a large number of papers;
cf. [1} 2 @] 10, 14] 18], 211 27, 28] and the references therein. The link between (L))
and ([L4) will be the basis for the numerical scheme introduced in this paper.

Solutions of (1)) must be interpreted in the weak sense, and so-called entropy
conditions are used to select a unique weak solution to the initial-value problem.
This solution is referred to as an entropy solution. Weak and entropy solutions of
([T2) are well defined when 2z’ € L (cf. Section [2) . Whenever b is independent of
u, one can interpret (L)) in the sense of distributions, even for discontinuous z.

One of the key issues in designing numerical schemes for (ILI]) is the resolution

of steady states. For the continuous problem, at a steady state u = u(x) the flux
function f and the source term A are balanced, i.e., u satisfies
(1.5) flu)y = Az, u).
More detailed forms of (L) can be derived for (I2) (cf. Section ). The usual
strategy of devising numerical methods for (IT)) is to use a Godunov type numerical
flux in a finite volume method coupled with a centered differencing of the source
term. It is well known that this does not preserve discrete steady states [13].
Another alternative is provided by the so-called splitting or fractional steps method,
which is based on separating the updates for the flux and the source [I9]. This
method is also deficient with regard to preserving discrete steady states.

Because of these difficulties, so-called well-balanced schemes have been proposed.
These schemes are designed specifically for preserving steady states. A variety of
well-balanced schemes can be found in literature; see [13} 111 [5, [6] and the references
cited therein. For a partial overview, see also the introductory part of [15].

Our aim in this paper is to devise a well-balanced scheme for (II). The key
element of our strategy will be a “local” transformation of the balance law (II]) to
a conservation law with a space-time dependent discontinuous coefficient:

(1.6) up + f(k(z,t),u)s =0
where f is the flux modified locally by the source. Equations of this type are by
now mathematically well-studied within a proper framework of entropy solutions,

and various types of numerical methods have been devised and analyzed for these
equations (cf. the list of references given above and for (IL6]) in particular reference
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[16]). Thus, our strategy is to employ numerical schemes designed for conservation
laws with discontinuous coefficients (L)) to approximate solutions of (LI]) (details
are presented in Section[3]). This strategy is similar in spirit to that used in [5] [19].

The finite volume scheme devised herein is designed to preserve discrete steady
states and can therefore be called well-balanced. The scheme is very simple to
implement and does not require solving algebraic equations or an addtional entropy
treatment for discontinuous steady states. It resolves the transients to first order
and the steady states are resolved to machine precision. The main features of
the scheme are demonstrated through a series of numerical experiments in Section
We believe that the approach of using a local discontinuous flux formulation
for designing well-balanced schemes will lead to alternative numerical schemes for
systems of conservation laws as well, including the shallow water equations with
bottom topography and the Euler equations for flow in a nozzle. We plan to address
the extension to systems in future works.

Regarding convergence analysis of well-balanced schemes, if f # 0, it is possible
to work within the standard BV (bounded variation) framework; see, e.g., [11]
12]. When resonance occurs, i.e., if f'(u) = 0 for some u, the situation becomes
more complicated. As with other problems (equations with discontinuous flux)
experiencing resonance phenomena, there is generally no spatial variation bound
for the conserved variable w itself. In order to show compactness of approximate
solutions, the so-called singular mapping approach has been used in the last twenty
years, in particular for conservation laws with discontinuous coefficients; cf. [T, [2,
10], 14, 18, 2T, 27, 28]. More recently, alternative analytical tools have been utilized
for discontinuous flux problems, including compensated compactness [16, [I7] and
entropy process solutions/kinetic solutions [4]. Regarding convergence analysis for
equations with source terms, very few of the papers deal with the resonant case
where BV estimates are not available. Indeed, we know only of [24] [, 14]. In
[24, [14] the singular mapping technique is used to prove the convergence of the
Glimm, Godunov, and front tracking methods, while the authors of [6] prove the
convergence of so-called equilibrium schemes using the method of kinetic solutions.

In the present paper we show that under suitable hypotheses on the flux function
and the source term, the approximate solutions generated by our well-balanced
scheme converge to the entropy solution of (LZ). The convergence proof utilizes
the compensated compactness method [25] 26]. Let ua, denote the approximate
solution generated by the well-balanced scheme and let (S, Q) be an entropy-entropy
flux pair. Then the main step in the compensated compactness method is to prove
that the entropy production S (uaz); + @ (vaz), is compact in ngcl’Q. We remark
that the VVIEC1 2 compactness analysis is nontrivial; it relies on the properties of the
solution of the Riemann problem for a conservation law with discontinuous flux.

We have organized this paper as follows: In Section 2] we state our assumptions
and define the notion of solutions to be used later on. In Section [3] we present
our well-balanced scheme, while the convergence analysis is given in Section @l In
Section Bl we report on a series of numerical examples and present a comparison
between our scheme and a well-balanced scheme found in the literature.
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2. PRELIMINARIES

2.1. Hypotheses. In this section we detail the hypotheses on f, A, ug and recall
the notion of entropy solutions for conservation laws. We assume that f satisfies
the following assumptions:

(A1) f e CL.(R).
(A.2) f has finitely many points of extrema.
(A.3) u— f(u) is genuinely nonlinear. More precisely, f”(u) # 0 for a.e. u € R.
(A.4) There exist finite constants M, Cy such that
|u| > M implies | f(u)| > Cflog(|ul).

Next we state the assumptions on the source term A.

(A.5) We have that A(z,0) = 0, or A(z,u) = 2/(z). The mapping u — A(x,u)

is locally Lipschitz continuous in w for all z with a Lipschitz constant Cjy.

Regarding the initial data, we assume

(A.6) ug(z) € L=(R).
2.2. Definition of solutions. We define weak solutions of (L2) as follows:

Definition 2.1. Suppose and hold. A function u € L*®(R x R} ) is
called a weak solution of (L)) if for all ¢ € C°(R x [0, 00)),

/R+ /th + f(u)pe + A(x, u)p drdt + /Ru(x, 0)¢(,0) = 0.

Next, we consider the special case
(A7) A(z,u) = 2'(x) for some function z € L*°(R) N BV (R),
in which case the following definition of a weak solution can be used:

Definition 2.2. Suppose holds. A function u € L>®(R xR,) is called a weak
solution of (L)) if for all ¢ € C°(R x [0, 00)),

/W/RW’H'(f(“)—Z(ﬂf))@xdxdt+/Ru(x,o)g;(x,o) de — 0.

Observe that this definition is meaningful even when z is discontinuous, which
is due to the conservative form of the source term

Weak solutions are not uniquely determined by their initial data and have to
be supplemented with an entropy condition to achieve uniqueness. An entropy
solution of ([2]) is defined as follows:

Definition 2.3. Suppose holds. A function u € L®(R x Ry ) is called an
entropy solution of () if for all nonnegative ¢ € C°(R x [0,00)) and for all
entropy-entropy flux pairs (5, Q) the following inequality holds:

(2.1)
| [ swe+Quie. + S @Al updsdt + [ S (unle)) o(a,0) da 20,
R+ JR R
A pair of C? functions (S, Q) is an entropy-entropy flux pair if $” >0, Q' = S'f'.
It is sufficient to establish ([Z]) for the Kruzkov entropy-entropy flux pairs
(22)  Se(u):=lu—d, Qclu)=sign(u—c)(f(u)—flc), ceR,

where the sign function sign () satisfies sign (0) = 0. It is a well-known fact that
there exists a unique entropy solution w of (LIl if ug € L*®(R) and A(z,w) is
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Lipshitz continuous in x and locally Lipschitz continuous in u. Moreover, if ug €
BV (R), then u belongs to BV(R x (0,T")) for any T > 0.

Let us now turn to the singular case For the sake of having a well-
posed problem at our disposal, we shall reinforce by introducing the following
“piecewise smoothness” assumption:

(A.8) Condition holds and z(z) is piecewise C! with a finite number of
jump discontinuity points located at g < x1 < --- < xp, M > 0.

Under this condition we will employ a notion of an entropy solution taken from
[15].

Definition 2.4. Suppose holds. A function u is said to be an entropy solution
of ([L3) if for all c € R and for all 0 < p € CX(R x [0, 00)),

// lu — | pr + sign (u — ¢) (f(u) — f(¢))py dadt
RJR,

(2.3) /R D/R+ sign (u — ¢) 2/ (z)p dzdt

+Z/ 2(xm+) — 2(xm—)| (T, t dt+/\uo—c|<pda}>0

where D = {zg,21,...,2}

For various existence and uniqueness results for entropy solutions in the sense of
Definition we refer to [14].

2.3. Convergence framework. We will use the compensated compactness method
[25] 26] to prove convergence of our approximate solutions. For simplicity, we will
use the Young measure independent version of this method [7, [20].

The following lemma, which contains the compensated compactness method as
we rely on it herein, is taken from [7], 20].

Lemma 2.1. Let {u°} ., be a sequence of functions such that:

(i) |uf| < C for alle > 0.
(ii) The two sequences

{S1(u)e + Qu(u)etong  and  {S2(u’)r + Q2(u%)a} g
are in a compact subset of ngcl’z(]R x RT), where
Si(w)=u—c, Qi(u) = f(u) - f(e),
Sa(u) = Flu) = S(0), Qelu) = [ (fule))de,

for all c € R.
Then there is a subsequence of {u} converging a.e. to a function u € L®(R x RT).

(2.4)

We will also need the following technical result [] (see also [23]).

Lemma 2.2. Let Q C R? be an open set. If 1 < ¢ < 2 < r < oo, then
{compact set of I/Vlgclq(ﬂ)} ﬂ {bounded set of ngclr(ﬂ)}
C {compact set of VVIECM(Q)} .
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3. THE NUMERICAL SCHEME

In this section we define our the well-balanced scheme for (L)) and (L2), which
is a Godunov type finite volume scheme.
Let At and Az be the time step and mesh size respectively. Fix T' > 0 and set

Cy = M exp(CT),
where C' is a constant to be determined later. Now set

M; = ()] .
f [jg%u]\f (u)]

We assume that the time step and the mesh size satisfy the following CFL-condition:

At
MM, <1, A= ——.
F=" Azx
Let t" = nAt, and z; = jAz forn=0,1,2,...and j =...,—1,-1/2,0,1/2,1,....

Let I; denote the interval [x;_1/9,%;11/2) and I" the interval [t t"T1). Set
1?(.%, t) = 1[]. (x)lln (t),
where 1 denotes the characteristic function of the set €.
The initial data is defined by
1 Tjp1/2

U= A

0
j u(z,0) d.

Tj—1/2
Fixing a time level {" on which our approximate solution uf is given, we describe
next how to construct the approximate solution u”*! at the subsequent time level

J
t"tL. Let u™(x) and B"(z) be defined as
u"(z) = ully(z),  B"(z)=)» Brl(x)
J J

and
B;'I - B;'ll = qaq (Tj-1, 25, A(z,u"(2))),
where ga, is some approximate integration such that

b
quwwﬁfmma%MHQ

for bounded functions h. In order to determine B completely, we also need to give
a starting boundary value B7 to start the above iteration. We simply choose B}
to be zero in the numerical experiments presented in this paper. The choice of
the starting value is not at all important in the scheme and several choices of the
starting value led to the same numerical solutions. For ¢ € [t",¢"*1) we solve the
following conservation law with a discontinuous coefficient:

(3.1) ug + (f(u) = B"(x)), =0, wu(z,t")=u"(z),

and then define u;-”rl as

1
nt+l _ = n+1
u; —Ax/lju(y,t )dy.

By the CFL-condition, waves emerging from the Riemann problems at z = ;1 /o
will not interact, and therefore we obtain

(3.2) uf ™t =} = A (Fiaye — Fjoay2)

where Fjj /5 is the flux across x = z;,1/s.
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The flux Fj ;15 is determined by solving the Riemann problem for a conservation
law with discontinuous flux:

(33) Ut + (f(u) - B;l)x =0, u(ﬂf, O) = u;‘la T < Tjtr1/2,

Ut + (f(u) - B]T‘L—&-l)w = Oa u(x,O) = u}l+17 x> Tjy1/2-
The Riemann problems (B3] can be exactly solved [10, Bl 22]. These formulas
provide simple expressions for the Godunov flux to be used across each interface.

For example, if f has only one minimum for v = # and no maxima, then we have
the following formula for the interface flux:

Fjpryp = max {f (max {uf,0}) + B, f (min {0,uf;1}) + By} -
For more general flux functions, similar explicit formulas have been obtained in [3].
We omit them here for brevity.

For the convergence analysis, we define an approximate solution ua, for ¢t # ¢"
and z € R by setting

upg(z,t) = u(z,t) t" <t <t"t xR,

where u is the entropy solution of (31); cf. Definition 2]

We are going to show in the subsequent section that (32) is a well-balanced
scheme (preserves discrete steady states exactly) and that ua, converges as Az — 0
to an entropy solution of (2.

4. CONVERGENCE ANALYSIS

In this section, we will carry out the convergence analysis for the well-balanced
Godunov type scheme ([3.2). First, we show that the scheme preserves discrete
steady states. A discrete steady state for our scheme is defined by

(4.1) f i) = f(uf) =B}, - B, jE€L,
where we observe that
Tj+1
P B [ A () dy
T
This is the flux-source balance that characterizes steady states. In the special case
of ([L2)) we use the formula,

+ (2 (@j+17) = 2 (2j51/24)) 0 (wf) -
The well-balancing properties of the scheme are defined below.

Lemma 4.1. Let {u?}jez be a sequence such that

f(“?+1) - f(“?) = B}, — B}, Vj €Z,
and
(42)  f (uf) f (ufyy) <O= f (u}) >0 and [ (u},,) <0, Vi € Z.
Then
u;“rl =uj, Vj e Z,
where {u}“‘l }jeZ is computed by the scheme (B.2]).
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Proof. Since uj satisfies both the Rankine-Hugoniot condition and the entropy

condition (4.2)) across each interface ;1 /9, we have that
Fiyi0=f (u}) + B} = f (u}y,) + B}y, Vi€
Therefore, Fj /o = Fj_1/2 and the lemma is proved. O

Remark 4.1. Lemma [Tl says that a discrete steady state (1)) satisfying condition
([#2) is preserved by the well-balanced scheme ([B2]). The additional constraint
([#2) is an entropy condition essentially excluding under-compressive waves.

Remark 4.2. If the steady states of ([[2)) are smooth and, in addition, we assume
that z is also smooth, then we have a more explicit representation of the flux-source
balance. If b(u) # 0, we can formally write (LH) as

f'(s)

(4.3) D) - +(z) = C,  D(u) = /0 ’ .

for some constant C. It is clear that (£3]) constitutes a nonlinear algebraic equation
from which a steady state can be calculated.

It is easy to check that the discrete steady state (@) differs from the steady
state (@3] by order of the truncation error. This is consistent with any discrete
form of ([4.3]) which may also differ from the continuous steady state by the order
of the truncation error. We have chosen to preserve the discrete steady state (£.1])
as it is more general, and the flux-source balance (L) is valid (in the weak form)
when the steady states and the function z are no longer smooth. It is also valid for
the more general case of (ILI]) where a simple algebraic formula (3)) is no longer
available.

Remark 4.3. Note that we have some flexibility in the choice of B in (LI)) as it
is based on a quadrature of A. Two different choices for B will lead to different
discrete steady states. When A is continuous, these two discrete steady states
(corresponding to different B’s) differ by the order of the truncation error.

ds,

Next, we will show that the approximate solutions are bounded in L°.

Lemma 4.2. There exists a constant o, independent of Ax, such that
ung (2, t")] < Me?™ M = |[ug| oo g -

Proof. Let M,C4,Cy be the constants defined in and Without loss of
generality, we can assume that u} < M. Now either f(u) > Cylog(u) or f(u) <
—Cylog(u) for v > M. We assume that f(u) > Cjlog(u), the other case being
similar. To start we assume inductively that u} < M et =: M,. Any Riemann
problem arising at t = ¢t"™ will involve left and right flux functions whose difference
is bounded by
AzCy < ATTALC, =: A

Furthermore, any left and right states are smaller than M,;,. Therefore, any states
in the solution will be less than u, where @ solves

Therefore,
Cy (log () — log (My)) < A,

or
m S MneA/Cf — Meo'thrCA/(ACf)At'
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Setting ¢ = C4/(ACy) shows that u?“ < Me°t""" . Showing the corresponding
lower bounds is similar. O

We will apply the compensated compactness Lemma 21l to the sequence {ua,}.
To this end, we will need to establish certain entropy dissipation estimates to be
able to verify the W, "> compactness of the entropy production associated with
{uaz}. To prove the dissipation estimates we will adapt an approach from [I7]
developed for conservation laws with discontinuous coefficients.

As ua, locally is the solution of the Riemann problems for conservation laws
with discontinuous coeflicients, we start by recalling some results relating to the
problem

ut+g(kl7u)mzov U(Q?,O)ZUI ZIJ<0,
Ut+g(krau)x:0, u(xao):ur z >0,
where k; ,» and wu; , are given constants. For the moment, we just assume that g is a

continuously differentiable function. The Rankine-Hugoniot condition tells us that
the values

up, = lim u(z,i)

satisfy

9o == g (ki, u;) =9 (kﬁulr) :
In general, this does not determine u;m uniquely, and we need an additional condi-
tion. We use here the so-called minimal jump entropy condition, which states that
among the possible choices we select u; and u,. such that |u; — u.| is minimal. This
choice has the following consequences (see [10]):

g (ki,u) > g (ky,up) for all u € [uj, u]], or
u <u, =
g (kpyu) > g (kryul) for all u € [u], u],

) ) g (ki,u) < g (ki,up) for all v € [u], uj], or
(4.4) u, <u =
g (kryu) < g (kp,ul) for all u € [u., ;).

Lemma 4.3 ([I7]). If the values uj and u]. are chosen according to the minimal
jump entropy condition, then for any constant c,

QT‘ (’U,;,C) - Ql (’U,;,C) < |g (krac) -9 (klac)| )
where Q; and Q.. denote the Kruzkov entropy fluzes

Ql(U, C) = sign (U - C) (g (kla U) -9 (klv C)) ’

Qr(va C) = sign (U - C) (g (krvv) -9 (kra C)) :

Next we continue with the proofs of the entropy dissipation estimates. We shall
use the notation
[a](x,t) = }Linlo alx + h,t) — alx — h,t),

for any quantity ¢ = a(z,t). Fix an entropy-entropy flux pair (S,Q). Then the
entropy dissipation of ua, associated with (S, Q) is defined to be

@5) B = [[Swa) et Quan)gadudt, o€ CRR xRy,

IIx, T
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where we let IIx r denote the set [—X, X] x [0,T] and where ¢ € C*(Ilx 7).
Without loss of generality, we can assume that X and 7" are such that X =z ;1o
and T = tV for some integers J and N.

By an integration by parts and the local Riemann solution structure of the
approximation ua,, we can split E(y) as

(4.6) E(p) = Ii(¢) + LI2(p) + I3(¢) + La(p) + I5(e0),
where
X
B = [ 8 uae ) ote) [ de
I(p) = ]:_: /); [S (uaz(z,t"=)) — S (um(w7t”+))}<ﬂ(%t") dz,
J N—1 gn+t
Z /tn [Q (“?J:l/Q) -Q (“;L+J:rl/2)} p(xj,t)dt,
j=—J n=0
N-1 tn+1 i
= ]71/2) o(@j, t)) ’ ., dt,
n=0 1" J

tn.+1

Z Z/ [o[ST + [Q]] p(zj41/2 + ot,t) dt,

M&

where the summation over ¢ extends to all shocks with speeds ¢ in the solution of
the Riemann problem at the interface x;, /2. We have also used the notation

n,+

i1/ =

lim  ua, (z,t7).
T2

We have the following lemma on the variation across each time level.

Lemma 4.4. Let ua, and u} be generated by the well-balanced scheme (3.2). There
exists a constant C = C(X,T) independent of Az such that

N-1

J
(4.7) Z Z/ Aa”a:t" ) — u?)2dx§0.

n=1 j=—
Proof. In what follows we use the entropy-entropy flux pair

S)= 30 Qulw) = ufulw)

Without loss of generality, we assume that the numerical solution ua, has compact
support, so that we can use the test function ¢ = 1, which implies F(y¢) = 0.
Since ua, is bounded,

(4.8) ()] < C1(X,T) and |I5(p)| < C5(X, T).
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Next we estimate I5. Writing u™ for uaz(-, t"—) we find

L(p) = Z/j S(u) =S (u}) dw

n,j J

1 a2 2
5 [ @) - )
ng
1 n 'n,2 n n n
252/ (u™ —uf) dx—Z/ uf (u —uf) do
ng L ng Yl
1 n n
252/1.@__%)26[%
n,j J

as the second term in the third line above is zero since

n __ 1 n
(4.9) uj = Ax /Ij u” (x) dx.

Regarding the term I3(¢), we use the fact that ua, is the exact solution of a
Riemann problem. Thus, by the entropy condition,

and consequently,
I3(¢) = 0.

For any convex C? function S, we have using Lemma F3] and an approximation
argument (see [I7] for details)

n,+ n,—
Q (”j+1/2) -Q (“j+1/2) < [Bjy - Bj|

Tjt1
< / A (g, u" ()] dy

< OAA$7

where Cjy is specified in [(A.5)| If |(A.7)[ holds, then we can bound the last term by
the total variation of z in the interval I, /5. In both cases we have

I4 (‘)0) Z _Cv

where C' = C(X,T) is a positive constant independent of Az. This finishes the
proof of the lemma. O

Estimate (1) can be converted into an estimate of the variation of the approx-
imate solutions, which is the content of the subsequent lemma.

Lemma 4.5. Let u} be defined by the well-balanced scheme [B.2). There exists a
constant C = C(X,T) independent of Ax such that

N—1 J 9 ) )
n,— n,+ n n,— n n,+
Az Z Z (“j+1/2 - ”j+1/2> + (“j - ”j+1/2) + (“j+1 - “j+1/2) <G
n=0 j=—J
where J and N are such that T =t~ and Typ12 = X.

Proof. Equipped with (1), the proof follows along the lines of [9] (see estimate
(7.13) on page 67 in that paper). O
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Now we prove the ngcl -2 compactness of the entropy production associated with
the approximate solutions.

Lemma 4.6. Let ua, be generated by the well-balanced scheme [B2) and let
(Si, Qi), © = 1,2, be the entropy-entropy flux pairs defined in Lemma 21 De-
fine the functional E by

E(p) = // Si (unz) pr + Qi (uaz) @ dudt, i=1,2.
Ix, 1
Then the sequence {EA}A;DO 18 compact in VVIECM(R x RT).

Proof. First we note that by the L> bounds on ua,, we have that
E)| < Cllelw =y m

so that F is bounded in W=7 for any r € (2, 00]. By using the bounds (Z38) and
Lemma [£4] we conclude

[L(@)] [I5 ()] H3()] < Crllpll oo iy ) -

To estimate the I>-term we split it as follows:
Iy () = Iz,1 () + I22(9),

where

La(p) = Z/I (S (u™) =5 (u})) (¢ —@(z,t")) d

where ¢} = p(z;,1"). Next
S (u) =8 (uf) = Su (uf) (w2 = uf) + 58u (67) (w2 —uf)”,

for some intermediate value 67 (z). The integral of the first term above over the
interval (z;_1/2,%;41/2) is zero. Therefore, we can write

1
Bl = 5[ X [ 5o (0) (2 = 3)?
n,j J

S C ||(IO||L°°(HX,T) ?
by Lemma [ 4l Let each term in I 5 be denoted by I%g Then

’Igg(sp)‘ = ’/1 (S (u™) =5 (u})) (¢ —e(z,t™) dx‘

< ellconngn e [ 15 (2) =8 ()] do.

where a € (0,1) will be chosen later. Then, by a weighted Young’s inequality,

i OtA1,204+1
[B50)] < Ml gy ) AT =55

Hlelonemy [ Aa® (5 (u2) = 8 ()" d
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Now, summing over j,n, and using Lemma [£.4] as when bounding I5; we arrive at

1122(9)] < 19l go.a gz (A2?* 7170 + CA?)

< C el oy o) A° (AxQ(a—J)—l_Fl).

Ix 1
Therefore, if

1
> -+
« 2+,

we have that

|I272(SO)| S C HQDHCO’O‘(HX,T) Axé.

Next we estimate the term I, for the entropy-entropy flux pairs defined in ([2)).
We have, by the properties of the entropy solution of the Riemann problem for
conservation laws with discontinuous flux,

10010 = |7 (w572) = £ (453,0)
= |£ (wi)2) + B} = F()55)) = Bjsa + By = B]

— B, -Br|< [
_|j+1 j|—

Tj

+1
|A (y,u"(y))| dy < Calz,

from which the desired estimate follows:

(4.10) () < AtY (@} 41y] < C el
J.m

Next we counsider the entropy flux Q2(u). We have

s
j+1/2

Qalssa= [ (ule)de

n,+
Yjt1/2

By using the L bounds on ua, and the fact that |f,(u)| < C for bounded u we
see that

i
u
QD] < [ 0@ = 310
u—
where we have introduced the notation
- — i n,— n,+ + _ n,— n,+
u~ = min {uj+1/2, uj+1/2} u = max {uj+1/2,uj+1/2} .

If f,, does not change sign in the interval (u~,u™), we can estimate the jump in Qs
as we estimated the jump in @1, concluding that

Tj+1
(4.11) Gty < / A (. u" ()] dy < Calz.

J
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Let us assume that v~ < 6 < ¥ and that f,(#) = 0. Then, by using a Taylor
expansion about & = 6,

+ +

G = [ 1©ldE<C [ le-o)ds

C(é“

< % (ut —0)* + (0 —u™)?)

—\2 n,+ n,— 2
SC’(?ﬁ—u) :C(“j+1/2_“j+1/2) )

0
(59)d£/_(€9)d€>

So by combining this estimate and (@11l with (@I0) we conclude that

2
n n,+ n,— .
‘[[Qi]]j+1/2‘ =C (Az + (uj+1/2 - uj+1/2) ) ) i =1,2,
and hence

()| < CAL[|ol| oo (14 1) Z ‘[[Qi]]?ﬂ/z’

m
n,+ mn,— 2
< Cllell gy | T+A2) (“j’+1/2 - “jil/2)
Jm
< CX,T) el poo g -

Now we can use standard arguments (see [16} 17]) to conclude that {E}azso is
compact in VVlgcl’q for some 1 < g < 2. Hence by Lemma 2.2 we obtain the VVIEC12
compactness of the approximate solutions.

To prove that any limit of {uaz}a,~o is an entropy solution, we shall need the
two succeeding lemmas.

Lemma 4.7. Consider the Riemann problem

ut+(f(u)+Bl)w =0, u(x,()) = U, z <0,
u + (f(u) + By), =0, u(z,0)=u, x>0,

where By, are constants. Let uT denote the limits
ut = xlir& u(z,t).
For each fized c € R,
Qe (u™) — Q¢ (uh) =sign (@ —c) (B — B,),
where & =u~ or @ =u" and Q. denotes the Kruzkov entropy fluz; cf. (22).
Proof. Assume first that sign (u™ — ¢) = sign (u™ — ¢). Then

Qe (u7) = Qe (uh) =sign (uF —¢) (f (u”) = f (u7))
= sign (ut —¢) (B, — B,).
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Hence the lemma holds in this case. Next assume that sign (u~ — ¢) # sign (u™ — ¢).
If u™ < u™, then we have that u™ < ¢ < u~. By the minimal jump entropy
condition, in this case ([d.4]), either

fle)<f(u7) or flo)<f(u’).

Assume now that the first of these inequalities hold. Then, using in addition the
Rankine-Hugoniot condition,

Qe (u) = Qe (u') =

(f (u™) +B;) = (f(c) + By)
= (f (") + Bi) = (f(c) + By)
fe)+Bi) = (f(e) + Br)
=sign (u” —¢) (B — B,).
If f(c) < f (ut), then we find similarly that
Qe (u™) = Qe (u™) > f(u™) — f(o)
> f(w?) = f ()
= (f (@) +B) = (f (u") + B) = (B = By)
=sign (vt —¢) (B — B,).
This concludes the case where vt < ¢ < u~. The analysis in the case where

u~ < c < ut is similar. O

To prove that a limit function of {uas} A, is an entropy solution, we shall need
the following technical lemma.

Lemma 4.8 ([15]). Let Q C R? be a bounded open set, g € L(Q2), and suppose
that {gv},~ is a sequence such that g, — g a.e. in Q as v — 0. Then there exists
a set O, which is at most countable, such that for any c € R\ O,

sign (g, —c¢) —sign(g—c¢) a.e. inQ asv — 0.
Let ¢ € © and define & = {x € Q | g(a) =c}. There exists sequences {¢,} and
{¢c,} such thate, | c and ¢, T c asv — 0, and ¢, and ¢, are in R\ O, and

sign (g(c) —¢,) — sign (g(z) —¢) a.e. z € Q\E,,

sign (g(c¢) — ¢,) — sign (g(z) —¢) a.e. x € Q\ E..

Now we are in a position to state our main convergence theorem.

Theorem 4.1. Suppose conditions [(A.1)H(A.6)| hold. Let ua, be the approzimate
solutions generated by the well-balanced Godunov type scheme [B2). Then there

exists a limit function u € L (R x R) such that

Axz—0

upny — u in L

(RxRy) forp < oo and a.e. in R x Ry.
Furthermore, u is an entropy solution of (L2l).

Proof. The claimed convergence of {uaz},~( to a limit function u is a straight-
forward consequence of Lemmas and 2.1
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Let us now prove that the limit function « is an entropy solution in the sense of
Definition 2.4l Fixing any constant ¢ € R, we consider in what follows the Kruzkov

entropy-entropy flux pairs (S.(+), Q.(+)) defined in ([2.2). By (£H) and (L0,
/ Se (uaz) o1 + Qc (upg) @z + S. (uaz) A (2, ung) @ dedt
(4.12) RXRy
+ [ S (an(w.0) (e, 0)do > Bae) + 1) + i) + ()
for ¢ € C°(R x [0,00)). The term I5(y) is nonnegative, while I5(¢y) is zero if we

choose J sufficiently large. We are left with I and Iy.
By convexity of u — S.(u) and (&9,

Ir(p) 2 0.
Regarding the term I4(y), we use Lemma 7] and obtain

Z/ J+1/2) — Qe (uyﬂ/z)} O(Tj11/0:1) dt
gt

Tj+1
Z/ s1gn Uy g — C)/ Az, ung (2,t")) dx o(zj11/2,t) dL,

- n,— n+ : :
where “]+1/2 equals either Ujt1y2 OF WjLh o according to Lemma [£7l Defining the
piecewise constant functions @a,, A, and @A, as

Ung(z,t) ZujH/leH/Z(x t),

Upg (T, t) Zu V1 (t

I S PHE
J

we have
Ii(p) > — // sign (Ua, — ¢) A (2, Gaz) pas dedt.
IIx, 1
From their definitions and using Lemma (£3)), it follows that,
N—1 J 9
~ ~ n,— n,+
||(UA:C - uAQf)HLZ([O,T]X(fX,X)) < CAtAz Z Z (Uj+1/2 ]+1/2)
n=0 j=—J
T N (1 nt 3V Z oAt
+ <U] _Uj+1/2> + (Uj+1 _Uj+1/2) = ( )
Similarly,

(uas — ﬁAx)HLz 0 T]><(—X X))

< CAtAz Z Z ( JH/Q)z + (u;PH - ujfw)z — O(AY)

n=0 j=—J
Hence, it follows that

lim @a, = lim Giay = lim way, =w in Li (R x RT).
Axz—0 Az Axz—0 Az Ax—0 Az IOC( )
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We also have that oa, — ¢ for all (z,t) as Az — 0. Hence, using Lemma [£.8]

Ahrn Ii(p / S"(u)A(z,u)p dxdt,
Ix,r

for any ¢ € R\ ©. Comparing this with the last term in the double integral in (£.12)
and repeating the argument from [I5] to extend the set of permissible ¢’s to R, we
conclude that the limit u is an entropy solution in the sense of Definition 23] O

Finally, we consider briefly the singular case Combing the above chain of
arguments with those found in [I5] we can prove

Theorem 4.2. Suppose conditions [(A.1)H(A.4)|, |(A.6)] and [(A.7)| hold. Let un,
be the approximate solutions generated by the well-balanced Godunov type scheme
B2 Then there exists a limit function u € L>®(R x Ry) such that

UAg 27300 in LY (R xRy) forp < oo and a.e. in R x Ry.

Furthermore, u is an entropy solution of (3] in the sense of Definition 2.4l

5. NUMERICAL EXPERIMENTS

In this section we report several numerical experiments with our scheme (3.2,
and compare it with the well-balanced scheme of [6] as well as with a standard
centered source scheme. The well-balanced scheme of [6], which is formulated for
the case ([[2), can be written as

+1 n,—
(5.1) T =0 — A (F (v] ,’UJ+1/2> - F (vj_1/2,0?>) ,
where F' is a consistent and monotone numerical flux function. Moreover, v; ﬁ /2
solve the algebraic equations

n,+ n
D( ]:tl/Q) -z =D (Ujil) EZESE

where D is defined by (@3).

In our computations, we take F' in (&I to be the standard Godunov flux. We
will refer to (8:2) as the AWBS scheme and (5.1]) as the BPV scheme. The standard
centered source scheme defined as

n n n n 1 n
w} +1 _ wi — A (F (w wjﬂ) F (wjfl,wj) — E(b(wj)(ZjJr] — ZJ))> ,

where F' is any consistent and monotone numerical flux function. We will refer to
the above scheme as the CS scheme.

Example 1. We start with an experiment that involves a nonlinear flux and a
nontrivial bottom topography. Consider (LI, (L2)) with

flu) = L2 b(u) = u —(z) = {COS(M), 45 <z <5.5,
2 ’ ;

0, otherwise.

In analogy with the shallow water equations, we refer to z as the bottom topography.
The topography z is continuous in this case. This example is taken from [6]. We
compute on the domain [0, 10] with initial data ug = 0 and boundary data u|;—g = 2
to enforce the steady state. It is easy to see that the steady state is given by
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3.5
3.
2
1.5} AWBS:
BPV:,
CS :
1t BT:0000000000 0
0.5p
0
o o
0.5} o o
o o
1 N N Q0 N N
0 2 4 6 8 10

FIGURE 1. Discrete steady states computed by the three schemes
for Example [[I The results of the AWBS and BPV schemes are
indistinguishable. (BT refers to the bottom topography.)

u(x) = 2 + z. The steady state is reached once the shock front has passed the
domain. The results at the steady state are shown in Figure [Il

Note that the AWBS and BPV schemes resolve the steady state accurately even
at this coarse mesh resolution, whereas the CS scheme does not resolve the steady
state well. The errors at steady state are shown in Table [l

TABLE 1. Errors at the steady state for the CS, AWBS, and BPV
schemes with Az = 0.1 in Example [Tl

L~ Lt
CS 0.1652 0.4824
AWBS | 4.37 x 10714 222 x 10~ 13
BPV | 845 x1071* 226 x 10713

Next we focus on the transients and show the contour plots of the results with
the AWBS and BPV schemes in Figure 2l

Observe that although both the AWBS and BPV schemes converge to the same
steady state, their behavior in resolving transients is very different. In particular,
when the right-moving shock is coming in from the boundary and has yet to reach
the nontrivial dip in the bottom topography, the BPV scheme produces a traveling
hump which appears to be nonphysical. On the other hand, as soon as the shock hits
the dip, the BPV scheme closely resembles the solution computed by the AWBS
scheme. To check whether the hump is a numerical artifact and disappears as
Az — 0, we display the solutions computed by the BPV scheme Az = 0.1,0.01
in Figure Bl From Figure [l it is clear that while one part of the hump seems to
disappear in the limit, the part to the right seems to remain (and is in fact amplified)
as the mesh is refined. Numerical experiments with the CS scheme (for a very fine
mesh) show that there is no hump during the transient phase and the solutions
agree with those computed by the AWBS scheme. This leads us to believe that the
hump produced by the BPV scheme is not physical and is simply an artifact of the
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25
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1 1.5
11
0.5
o1 2 3 4 5 6 7 8 9 10
X

FIGURE 2. Contour plots in (z,t) plane of the solutions computed
by the AWBS and BPV schemes with Az = 0.1 in Example [l

3

2.5} t=3 BPV(Delta x =0.1): ——
BPV(Delta x=0.01): = = = =

2 A}

1.5¢
1+

[
0.5 '

ot s

0'50 2 4 6 8 10

FiGURE 3. The two solutions computed by the BPV scheme with
Az = 0.1,0.01 at time ¢ = 3 for Example [

scheme. Hence, the BPV scheme appears to converge to a different solution than
the AWBS scheme in the transient phase of the flow.

Example 2. We consider the same problem as in Example[I], except that we replace
the bottom topography z(x) by the discontinuous function

—cos(mz), 5<z<6,
—z(x) = .
0, otherwise.

This topography is similar to the one given in [6] but with the opposite sign. The
steady states are shown in Figure [l and the transients are shown in Figure

In this case, both the steady states as well as the transient solutions given by
the AWBS and BPV schemes are different. The steady state of the AWBS scheme
is the entropy satisfying steady state as it satisfies the relation u(z) = 2 + z(z),
whereas the steady state given by the BPV does not satisfy this relation and hence
is not the entropy solution. As in the previous experiment, the BPV scheme gen-
erates traveling waves almost instantaneously due to the effect of topography and
converges to the the wrong steady state. Despite the discontinuities in the bottom
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F1GURE 4. The discrete steady states computed by the AWBS and
BPV schemes with Az = 0.1 for Example

12 12 2
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8 2 8 1
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4 1 0

2 0.5 -0.5

00 1 2 3 4 5 6 7 8 9 10 0 3 5

X

FIGURE 5. Contour plots in (z,t) plane of the solutions computed
by the AWBS and BPV schemes with Az = 0.1 in Example

topography z(x), the AWBS scheme resolves the steady state almost to machine
precision and correctly resolves the transient.

Example 3. In our third example, we consider the following sources and fluxes,
us + (§U2)z = —2'(x)u, z(z)=—cos(mz),
with the initial data )
u(x,0) = cos(mx) + 1 sin(4rx).
We consider the above problem in the domain [—1, 1] with periodic boundary con-
ditions and Ax = 0.02. The exact steady state is given by
u(x) = cos(mx).

Thus the initial data is a small periodic perturbation of the steady state and we
expect the solution to converge to the steady state quickly. This problem is a
prototype for quasi-steady problems. The exact solution consists of small amplitude
waves which decay quickly to the steady state. We have computed the solution to
this problem with the AWBS scheme and show the solutions in Figure[6l As shown
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05F

05r Ustat: ———
Ul: ++++

15 0.5 0 05 1 1 05 0 05 1
X X

FIGURE 6. Approximations to solutions is experiment 3 with the
AWRBS scheme. Top left: The exact state and initial data. Top
right: Exact state and solutions with AWBS scheme at t = 0.25.
Bottom left: Exact state and solutions with AWBS scheme at ¢ =
1. Bottom right: Exact steady state and solutions with AWBS
scheme at t =5

in Figure [6 the initial conditions are a small periodic pertubation of the steady
state. The AWBS scheme captures the small time transient behaviour quite well
as shown in Figure Furthermore, the solutions converge to the steady state
by time ¢ = 5 and the AWBS scheme is able to capture this solution to machine
precision. This example shows that the AWBS scheme is good at approximation of
quasi-steady problems.

Example 4. In our fourth example we specify the relevant functions as follows:

2 3

fw) =2 b =u wo@) =1,
(w) = cos(mx), 4.5< m < 5.5,
0, otherwise.

In this case, D(u) = u? and solutions to the steady state equation (3]) may not
exist or may be multi-valued. Extra care is required to define the BPV scheme (see
[6] for details), whereas the AWBS scheme is well-defined. In fact, it is very easy to
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FIGURE 7. Solutions computed by the AWBS scheme at ¢t = 3,10
with Az = 0.1 for Example Bl (BT refers to bottom topography.)

implement as the flux function is monotone in this case. The transient and steady
state solutions computed by the AWBS scheme are shown in Figure [1

We observe that the resolution of the steady state, which in this example is given
by u(z) = /1 + z(x), is resolved to almost machine precision. Additionally, the
transients are resolved very well on this coarse mesh as well.

Example 5. In our final example we specify the data as follows:

flu) = %uZ, A(x,u) = sin(2rzu?),

up(x) =0, u(0,t) =1

In this example the structure of the source term is very general and well-balancing
based on the nonlinear transformation D and (3) is not possible, whereas the
AWBS scheme is well defined. We have computed solutions on the domain [0, 5]
and determined the steady state by solving the ODE

(u*)e = A, u)

by a high-order Runge-Kutta method. The steady state and transient solutions are
shown in Figure

The steady state is resolved quite well with the AWBS scheme. It is not imme-
diately clear how to modify other well-balanced schemes (like the BPV scheme) so
that they can be applied to the present problem. We remark that in this particular
example it was easy to determine the solution of the ODE for the steady state as
it turned out to be a smooth function. In general, however, it may not be possible
to obtain entropy satisfying steady states from ODE solvers without first building
the entropy condition into the solver, whereas the AWBS scheme by construction
automatically captures the entropy solution.
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