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GAUSSIAN HYPERGEOMETRIC SERIES
AND SUPERCONGRUENCES

ROBERT OSBURN AND CARSTEN SCHNEIDER

Abstract. Let p be an odd prime. In 1984, Greene introduced the notion of
hypergeometric functions over finite fields. Special values of these functions
have been of interest as they are related to the number of Fp points on alge-
braic varieties and to Fourier coefficients of modular forms. In this paper, we
explicitly determine these functions modulo higher powers of p and discuss an
application to supercongruences. This application uses two non-trivial gen-
eralized Harmonic sum identities discovered using the computer summation
package Sigma. We illustrate the usage of Sigma in the discovery and proof of
these two identities.

1. Introduction

In [16] and [17], Greene defined general hypergeometric series over finite fields.
His aim was to show that these functions satisfy properties analogous to classical
hypergeometric series. For example, the four major evaluations of the ordinary
hypergeometric series 3F2 due to Saalschütz, Dixon, Watson, and Whipple [5] all
have finite field interpretations (see page 126 of [16]). Greene’s work was in part
motivated by the analogy between Gauss sums and Gamma functions [10], [23],
[43].

His approach has proven to be a powerful technique for character sum evalua-
tions. Recently, several authors have shown that special values of these functions
are related to the number of points over Fp, p an odd prime, of Calabi-Yau three-
folds [3], traces of Hecke operators [11], formulas for Ramanujan’s τ -function [35],
and the number of points on a family of elliptic curves [13]. We should also mention
that hypergeometric series over arbitrary fields has been developed [14], [15], but
their application to number theory has yet to be investigated.

The purpose of this paper is to further study arithmetic properties of hyper-
geometric functions over finite fields. In particular, we explicitly determine these
functions modulo higher powers of p and then briefly discuss extensions of super-
congruences.

We first recall some definitions. Let Fp denote the finite field with p elements.
We extend all characters χ of F∗

p to Fp by setting χ(0) := 0. Following [16] and
[17], we give two definitions. The first definition is the finite field analogue of the
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binomial coefficient. If A and B are characters of Fp, then

(1)
(

A

B

)
:=

B(−1)
p

J(A, B̄) =
B(−1)

p

∑
x∈Fp

A(x)B̄(1 − x),

where J(χ, ψ) denotes the Jacobi sum if χ and ψ are characters of Fp. The second
definition is the finite field analogue of ordinary hypergeometric functions. If A0,
A1, . . . , An, and B1, . . . , Bn are characters of Fp, then the Gaussian hypergeometric
function over Fp is defined by
(2)

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn
| x

)
p

:=
p

p − 1

∑
χ

(
A0χ

χ

)(
A1χ

B1χ

)
. . .

(
Anχ

Bnχ

)
χ(x),

where the summation is over all characters χ of Fp. In this paper, we restrict
our attention to the case Ai = φp for all i and Bj = εp for all j where φp is the
quadratic character and εp is the trivial character mod p. We shall denote this
value by n+1Fn(λ). By [16] and [17], pn

n+1Fn(λ) ∈ Z. Before stating the main
result, we recall that for i, n ∈ N, generalized Harmonic sums H

(i)
n are defined by

H(i)
n :=

n∑
j=1

1
ji

and H
(i)
0 := 0. We now define the quantities

X(p, λ, n) := φp(λ)

p−1
2∑

j=0

(p−1
2 +j

j

)l(p−1
2

j

)l

(−1)jlλ−j

(
1+2(n + 1)j

(
H

(1)
p−1
2 +j

−H
(1)
j

)

+ j2
(

n+1
2 (1 + n)

(
H

(1)
p−1
2 +j

− H
(1)
j

)2

− (n+1
2 )

(
H

(2)
p−1
2 +j

− H
(2)
j

)))
,

(3)

Y (p, λ, n) := φp(λ)

p−1
2∑

j=0

(p−1
2 + j

j

)l(p−1
2

j

)l

(−1)jlλ−jp

·
(

1 + (n + 1)j
(
H

(1)
p−1
2 +j

− H
(1)
j

)
− (n+1

2 )j
(
H

(1)
p−1
2 +j

− H
(1)
p−1
2 −j

))
,

(4)

Z(p, λ, n) := φp(λ)

p−1
2∑

j=0

(
2j

j

)2l

16−jlλ−jp2
,(5)

and

(6) D(p, λ) :=

p−5
2∑

j=0

j!2∏j
i=0(i + 1

2 )2
(j + 1)2λ−j−1,

where l := n+1
2 . The main result of this paper is the following.



GAUSSIAN HYPERGEOMETRIC SERIES 277

Theorem 1.1. If n ≥ 2, then
(7)
−pn

n+1Fn(λ) ≡ (−φp(−1))n+1
[
p2X(p, λ, n) + pY (p, λ, n) + Z(p, λ, n)

]
(mod p3)

and if n = 1, then

(8) −p2F1(λ) ≡ p2
[
X(p, λ, 1) + D(p, λ)

]
+ pY (p, λ, 1) + Z(p, λ, 1) (mod p3).

We note that Theorem 1.1 generalizes both Theorem 1 in [1], where the case
n = 2 was handled modulo p2, and Theorem 2.4 in [25]. As an application of
Theorem 1.1, we prove a supercongruence for the Legendre symbol

(−1
p

)
. This

result generalizes Theorem 1 in [27].

Corollary 1.2. Let p be an odd prime. Then

(9)

p−1
2∑

n=0

(
2n

n

)2

16−n +
3
8
p(−1)

p−1
2

p−1
2∑

i=1

(
2i

i

)
1
i
≡

(
−1
p

)
(mod p3).

The method of proof for Theorem 1.1 has its origin in [3]. Namely, the idea is to
first observe that since the functions n+1Fn(λ) are defined in terms of Jacobi sums,
then one can express them as Gauss sums. One then applies the Gross-Koblitz
formula [18] to express the Gauss sums in terms of p-adic Gamma functions. Using
combinatorial properties of the p-adic Gamma function, Theorem 1.1 then follows.
For an introduction to these methods, see [32]. This general framework has been
the basis for several recent results on supercongruences (see [1], [21], [25], [27], [28],
[29]). Theorem 1.1 has recently been used to settle a conjecture of van Hamme
(see [26]). Finally, the congruence in (9) appears to hold modulo p4. This has been
numerically confirmed for all primes less than 5000.

The paper is organized as follows. In Section 2, we recall properties of the
p-adic Gamma function. In Section 3, we prove Theorem 1.1. In Section 4, we
prove Corollary 1.2 using Theorem 1.1 and two non-trivial Harmonic sum identities
discovered using the computer summation program Sigma [39]. A description of the
non-trivial methods involved using the Sigma package is included in Section 5. We
should also mention that similar harmonic number identities were discovered and
proven in [33]. These types of identities played an important role in the proof of
Beukers’ supercongruence for Apéry numbers (see [2] or Theorem 7 in [3]).

2. Preliminaries

We first recall the definition of the p-adic Gamma function and list some of its
main properties. For more details, see [22], [30], or [37]. Let | · | denote the p-adic
absolute value on Qp. For n ∈ N, we define

Γp(n) := (−1)n
∏
j<n

(j,p)=1

j.

One can extend this function to all x ∈ Zp by setting

Γp(x) := lim
n→x

Γp(n).

The following proposition provides some of the main properties of Γp.

Proposition 2.1. Let n ∈ N and x ∈ Zp. Then
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(1) Γp(0) = 1.

(2)
Γp(x + 1)

Γp(x)
=

{
−x if |x| = 1,
−1 if |x| < 1.

(3) If 0 ≤ n ≤ p − 1, then n! = (−1)n+1Γp(n + 1).
(4) |Γp(x)| = 1.
(5) Let x0 ∈ [1, 2, . . . , p] be the constant term in the p-adic expansion of x.

Then
Γp(x)Γp(1 − x) = (−1)x0 .

(6) If x ≡ y (mod pn), then Γp(x) ≡ Γp(y) (mod pn).

For x ∈ Zp, we define

(10) G1(x) :=
Γ′

p(x)
Γp(x)

and

(11) G2(x) :=
Γ′′

p(x)
Γp(x)

.

One can check that G1(x) and G2(x) are defined for all x ∈ Zp using the fact
that Γp(x) is locally analytic and |Γp(x)| = 1. We now mention some congruence
properties of the p-adic Gamma function. For a proof of this result, see [8] or [21].

Proposition 2.2. Let p ≥ 7 be prime, x ∈ Zp, and z ∈ pZp. Then
(1) G1(x), G2(x) ∈ Zp.
(2) We have

Γp(x + z) ≡ Γp(x)

(
1 + zG1(x) +

z2

2
G2(x)

)
(mod p3).

(3) Γ′
p(x + z) ≡ Γ′

p(x) + zΓ′′
p(x) (mod p2).

We also need the following combinatorial congruence which relates Γp to certain
binomial coefficients.

Lemma 2.3. If p is an odd prime and 1 ≤ j ≤ p−1
2 , then

−φp(−1)(−1)j

(p−1
2 + j

j

)(p−1
2

j

)
≡

Γp( 1
2 + j)2

Γp(1 + j)2
(mod p2).

Proof. By Proposition 2.1 (3) and (5), we have

−φp(−1)(−1)j

(p−1
2 + j

j

)(p−1
2

j

)
= −φp(−1)(−1)j (p−1

2 + j)!
j!2(p−1

2 − j)!

=
Γp( 1

2 + j + p
2 )Γp( 1

2 + j − p
2 )

Γp(1 + j)2
.

Now, using Proposition 2.2 (2), we have

Γp

(1
2

+ j +
p

2

)
Γp

(1
2

+ j − p

2

)
≡

{
Γp

(1
2

+ j
)

+
p

2
Γ′

p

(1
2

+ j
)}{

Γp

(1
2

+ j
)
− p

2
Γ′

p

(1
2

+ j
)}

(mod p2)

≡ Γp

(1
2

+ j
)2

(mod p2)

and the result follows. �
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Finally, we need to define

(12) A(j) := G1( 1
2 + j) − G1(1 + j)

and for a positive integer n,

(13)
B(n, j) :=n+1

2

(
G2( 1

2 + j) − G2(1 + j)
)

+ (n+1)n
2 G1( 1

2 + j)2

+ (n+1)(n+2)
2 G1(1 + j)2 − (n + 1)2G1( 1

2 + j)G1(1 + j).

We require the following lemma which relates A(j) and B(n, j) to generalized
Harmonic sums. The proof is similar to Lemma 4.1 in [21] and thus is omitted.

Lemma 2.4. Let p be an odd prime and 0 ≤ j ≤ p−1
2 . Then

(14) A(j) ≡ H
(1)
p−1
2 +j

− H
(1)
j + 2p

j−1∑
r=0

1
(2r + 1)2

(mod p2)

and

(15) B(n, j) ≡ (n+1)2

2

(
H

(1)
p−1
2 +j

− H
(1)
j

)2

− (n+1
2 )

(
H

(2)
p−1
2 +j

− H
(2)
j

)
(mod p).

3. Proof of Theorem 1.1

We are now in a position to prove Theorem 1.1.

Proof. Let n ≥ 3 be odd. From (1) and (2), we know that

−pn
n+1Fn(λ) =

1
1 − p

∑
χ

J(φ, χ)n+1χ̄(λ)

where χ̄ is the complex conjugate of χ. After expressing the Jacobi sum J(φ, χ)n+1

in terms of Gauss sums, we then apply the Gross-Koblitz formula [18] to get (see
also [3] or [25])
(16)

−pn
n+1Fn(λ) =

1
1 − p

{
φp(λ) + (−φp(−1))

n+1
2

( p−3
2∑

j=0

Γp( j
p−1 )n+1

Γp( 1
2 + j

p−1 )n+1
ωj(λ)

+ pn+1

p−2∑
j=

p+1
2

Γp( j
p−1 )n+1

Γp( j
p−1 − 1

2 )n+1
ωj(λ)

)}
.

Here ω is the Teichmüller character which satisfies ω(λ) ≡ λps−1
(mod ps) and thus

ωj(λ) ≡ λjps−1
(mod ps)

for s ≥ 1. As n ≥ 3 is odd, the second sum in (16) vanishes modulo p3. As
1

1−p ≡ 1+p+p2 (mod p3) and thus j
p−1 ≡ −j− jp− jp2 (mod p3), we apply parts



280 ROBERT OSBURN AND CARSTEN SCHNEIDER

(5) and (6) of Proposition 2.1 and reindex the summation to obtain
(17)

− pn
n+1Fn(λ)≡(1 + p + p2)

{
φp(λ) + (−φp(−1))

n+1
2

·

p−1
2∑

j=1

Γp( 1
2 +j+jp+jp2)n+1

Γp(1+j+jp+jp2)n+1
ω

p−1
2 −j(λ)

}
(mod p3).

By Proposition 2.2 (2), we see that

Γp(x0 + j + jp + jp2)n+1 ≡ Γp(x0 + j)n+1
[
1 + (n + 1)(jp + jp2)G1(x0 + j)

+ n+1
2 (jp + jp2)2

(
G2(x0 + j) + nG1(x0 + j)2

)]
(mod p3)

for x0 ∈ Zp. We expand the numerator and denominator of (17) with x0 = 1
2 and

x0 = 1 respectively. After multiplying the numerator and denominator by

1−(n+1)jpG1(1+j)− n+1
2 j2p2

(
G2(1+j)−(n+2)G1(1+j)2

)
−(n+1)jp2G1(1+j),

we get
(18)

− pn
n+1Fn(λ)

≡ (1 + p + p2)

{
φp(λ) + (−φp(−1))

n+1
2

p−1
2∑

j=1

Γp( 1
2 + j)n+1

Γp(1 + j)n+1

(
1 + (n + 1)jpA(j)

+ (n + 1)jp2A(j) + j2p2B(n, j)
)
ω

p−1
2 −j(λ)

}
(mod p3)

where A(j) and B(n, j) are defined by (12) and (13). We now need to consider the
sums

φp(λ) + (−φp(−1))
n+1

2

·

p−1
2∑

j=1

Γp( 1
2 + j)n+1

Γp(1 + j)n+1

(
1 + 2(n + 1)jA(j) + j2B(n, j)

)
ω

p−1
2 −j(λ),

(19)

φp(λ) + (−φp(−1))
n+1

2

p−1
2∑

j=1

Γp( 1
2 + j)n+1

Γp(1 + j)n+1

(
1 + (n + 1)jA(j)

)
ω

p−1
2 −j(λ),(20)

and

(21) φp(λ) + (−φp(−1))
n+1

2

p−1
2∑

j=1

Γp( 1
2 + j)n+1

Γp(1 + j)n+1
ω

p−1
2 −j(λ)

which are the coefficients of p2, p, and 1 respectively in (18). Observe that as we
want to determine n+1Fn(λ) mod p3, it suffices to compute (19) mod p, (20) mod
p2, and (21) mod p3. Also note that

(22) ω
p−1
2 −j(λ) = ω

p−1
2 (λ)ω−j(λ) = φp(λ)ω−j(λ)
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as ω is of order p − 1. By Lemma 4.4 in [21], we see that

(23) (n+1
2 )j

(
H

(1)
p−1
2 +j

− H
(1)
p−1
2 −j

)
≡ −2(n + 1)jp

j−1∑
r=0

1
(2r + 1)2

(mod p2).

By Lemma 2.3, we have

(24)

[
− φp(−1)(−1)j

( p−1
2 + j

j

)(p−1
2

j

)]n+1
2

≡
Γp( 1

2 + j)n+1

Γp(1 + j)n+1
(mod p2)

and so after combining Lemma 2.4, (22), (23), (24) and accounting for j = 0, then
(19) is congruent modulo p to (3), and (20) is congruent modulo p2 to (4). Here we
have used the fact that Γp(1)2 = 1 and Γp( 1

2 )2 = −φp(−1) and thus for n ≥ 3 odd

Γp( 1
2 )n+1

Γp(1)n+1
= (−φp(−1))

n+1
2 .

By Proposition 2.5 in [27], we have

Γp( 1
2 + j)2

Γp(1 + j)2
= −φp(−1)

(
2j

j

)2

16−j

and thus using (22), we have that (21) and (5) are congruent modulo p3, namely

(25)

φp(λ) + (−φp(−1))
n+1

2

p−1
2∑

j=1

Γp( 1
2 + j)n+1

Γp(1 + j)n+1
ω

p−1
2 −j(λ)

≡ φp(λ)

p−1
2∑

j=0

(
2j

j

)n+1

16−j
(

n+1
2

)
λ−jp2

(mod p3).

This proves the result for n ≥ 3 odd. A similar argument applies to the case
n ≥ 2 is even. We now turn to the case n = 1. By (16), we need only consider the
last sum

(26) −φp(−1)p2

p−2∑
j=

p+1
2

Γp( j
p−1 )2

Γp( j
p−1 − 1

2 )2
ωj(λ).

By (5) and (6) of Proposition 2.1 and after reindexing the exponent of ω(λ), (26)
is equivalent modulo p3 to

−φp(−1)p2

p−2∑
j=

p+1
2

Γp( 1
2 + j)2

Γp(1 + j)2
( 1
2 + j)2ω

3p−3
2 −j(λ).
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By repeated use of Proposition 2.1 (2) we have for p+1
2 ≤ j ≤ p − 2 that

Γp

(1
2

+
p + 1

2

)2

≡ 1 (mod p),

Γp

(1
2

+
p + 1

2
+ 1

)2

≡
(p + 2

2

)2

(mod p),

Γp

(1
2

+
p + 1

2
+ 2

)2

≡
(p + 4

2

)2(p + 2
2

)2

(mod p),

...

Γp

(1
2

+ p − 2
)2

≡
(2p − 5

2

)2(2p − 7
2

)2

· · ·
(p + 2

2

)2

(mod p).

By Proposition 2.1 (3), Γp(1 + j)2 = (j!)2. Also using the fact that λp−1 ≡ 1
(mod p), we have

ω
3p−3

2 −j(λ) ≡ λ
3p−3

2 −j (mod p)

≡ λ
p−1
2 +p−1−j (mod p)

≡ λ
p−1
2 −j (mod p)

for p+1
2 ≤ j ≤ p − 2 and thus

p−2∑
j=

p+1
2

Γp( 1
2 + j)2

Γp(1 + j)2
( 1
2 + j)2ω

3p−3
2 −j(λ)

≡ 1
(p+1

2 )!2

(p

2
+ 1

)2

ωp−2(λ) + · · ·

+
(p+2

2 )2 · · · ( 2p−5
2 )2

(p − 2)!2
(1

2
+ p − 2

)2

ω
p+1
2 (λ) (mod p)

≡ 1
−φp(−1)( 1

2 )
(1)2λ−1 + · · ·

+
(1)2(2)2 · · · (p−5

2 )2

−φp(−1)(p − 2)2(p − 3)2 · · · (p+1
2 )2

(p − 3
2

)2

λ−1−p−5
2 (mod p)

≡ −φp(−1)D(p, λ) (mod p).

This proves the result for n = 1. �

4. Proof of Corollary 1.2

Theorem 1.1 can be used to obtain modulo p3 supercongruences in various set-
tings. For example, Apéry numbers [3], traces of Frobenius endomorphisms on
elliptic curves [24], [31], and colored partition functions [31] all occur as special
values of n+1Fn(λ) for certain n and λ. We do not mention these results here,
choosing instead to illustrate with one example. We now prove Corollary 1.2.
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Proof. If p is an odd prime, then by Section 3 in [16],

p · 2F1(1) = −
(
−1
p

)

and so by (8),(
−1
p

)
≡ p2

[
X(p, 1, 1) + D(p, 1)

]
+ pY (p, 1, 1) + Z(p, 1, 1) (mod p3).

We now claim that

(27) X(p, 1, 1) + D(p, 1) + 1 ≡ 0 (mod p).

In order to verify (27), we first study X(p, 1, 1). By (3), we have

X(p, 1, 1) =

p−1
2∑

j=0

(p−1
2 + j

j

)(p−1
2

j

)
(−1)j

(
1 + 4j

(
H

(1)
p−1
2 +j

− H
(1)
j

)

+ j2
(
2
(
H

(1)
p−1
2 +j

− H
(1)
j

)2

−
(
H

(2)
p−1
2 +j

− H
(2)
j

)))
.

The identity

(28)
n∑

k=0

(−1)k

(
n + k

k

)(
n

k

)(
1 + 2k

(
Hn+k − Hk

))
= (−1)n(2n + 1)

was discovered using Sigma (see Lemma 2.2 in [27]). In particular, we find

p−1
2∑

j=0

(p−1
2 + j

j

)( p−1
2

j

)
(−1)j

(
1 + 2j

(
H

(1)
p−1
2 +j

− H
(1)
j

))
≡ 0 (mod p),

and thus
(29)

X(p, 1, 1) ≡ −1 −

p−1
2∑

j=1

(p−1
2 + j

j

)(p−1
2

j

)
(−1)j

+

p−1
2∑

j=1

( p−1
2 + j

j

)(p−1
2

j

)
(−1)j

(
j2

(
2
(
H

(1)
p−1
2 +j

− H
(1)
j

)2

−
(
H

(2)
p−1
2 +j

− H
(2)
j

)))
(mod p).

By Proposition 2.2 and Lemma 2.3, we also have

(30) D(p, 1) ≡

p−3
2∑

j=1

(p−1
2 + j

j

)−1(p−1
2

j

)−1

(−1)j (mod p).
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For positive integers n, the relation

(31)

n∑
j=1

(
n + j

j

)(
n

j

)
(−1)j

(
j2

(
2
(
H

(1)
n+j − H

(1)
j

)2

−
(
H

(2)
n+j − H

(2)
j

)))

+
n∑

j=1

(
n + j

j

)−1(
n

j

)−1

(−1)j = n(−1 + 2n)(−1)n

was found using Sigma. Equation (27) now follows by taking n = p−1
2 in (31), in

the identity

(32)
n∑

j=1

(
n + j

j

)(
n

j

)
(−1)j = −1 + (−1)n,

and reducing modulo p. We now consider Y (p, 1, 1). By (4), we have

Y (p, 1, 1) =

p−1
2∑

j=0

( p−1
2 + j

j

)(p−1
2

j

)
(−1)j

(
1 + j

(
H

(1)
p−1
2 +j

− H
(1)
j

)

+ j
(
H

(1)
p−1
2 −j

− H
(1)
j

))
.

For positive integers n, the relation

(33)

n∑
j=0

(
n + j

j

)(
n

j

)
(−1)j

(
1 + j

(
H

(1)
n+j + H

(1)
n−j − 2H

(1)
j

))

= (1 + 2n)
(

2n

n

)
(−1)n − 3

2
n(1 + n)(−1)n

n∑
i=1

(
2i
i

)
i

was discovered using Sigma. Taking n = p−1
2 in (33) and reducing mod p2, we have

(34) Y (p, 1, 1) ≡ p +
3
8
(−1)

p−1
2

p−1
2∑

i=1

(
2i

i

)
1
i

(mod p2).

Equation (9) then follows from (5), (27), and (34). �

5. Finding and proving identities (31) and (33) with Sigma

An efficient algorithm to find and prove identities involving nested definite and
indefinite sum expressions, such as (31) and (33), has only recently been devel-
oped and implemented. Inspired by hypergeometric summation [34], in particular,
Zeilberger’s creative telescoping method [42], and Karr’s indefinite summation al-
gorithm [19, 20] (extended to definite summations), the second author developed
and implemented an algorithm using Mathematica to handle various summations.
The resulting package is called Sigma. For a more detailed description of the al-
gorithms incorporated into Sigma, please see [39]. Applications of this computer
algebra package include proving identities that arise in the enumeration of rhombus
tilings of a symmetric hexagon [12, 38], in the verification of Stembridge’s totally
symmetric plane partitions theorem [41, 6], and in certain Padé approximations [9].
In this section, we illustrate how the package can be used to discover and prove
identities (31) and (33). For simplicity, we write Hk for H

(1)
k .
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5.1. Identity (33). With Sigma we produce the following harmonic sum identities:
n∑

k=0

(−1)k

(
n + k

k

)(
n

k

)
kHk =(−1)nn(n + 1)(2Hn − 1),(35)

n∑
k=0

(−1)k

(
n + k

k

)(
n

k

)
kHn+k =(−1)nn(n + 1)2Hn − (−1)nn2,(36)

and

(37)

n∑
k=0

(−1)k

(
n + k

k

)(
n

k

)
kHn−k = −(−1)n(n + 1)2 + (−1)n(2n + 1)

(
2n

n

)

+ 2n(n + 1)(−1)nHn − 3
2
n(n + 1)(−1)n

n∑
i=1

(
2i
i

)
i

.

Then, combining (32), (36) and (37) we arrive at identity (33).

Remark 5.1. Note that (28), (35) and (36) can be proved using hypergeometric
techniques which appear in [4] and [7]. The key observation is that differentiation of
the rising factorial (x)k = x(x+1) . . . (x+k−1) (resp. 1/(x)k) in x and afterwards
substituting x = 1 produces (1)kHk (resp. −Hk/(1)k). With this fact, one can
produce, e.g., (35) by setting up the identity

(38)

n∑
k=0

(−n)k(n+1)k

k!(x)k
k = −n(n+1)

x
2F1(1 − n, n + 2; x + 1; 1)

= −n(n+1)
x

(x − n − 1)n−1

(x+1)n−1

with Gauss’ theorem, differentiating (38) in x, and setting x = 1. Obviously,
the successful application of this technique relies on the fact that one knows the
underlying hypergeometric identity such as (38) for the particular case (35). It
would be interesting to see proofs of identity (37), in particular of identity (31),
along the lines sketched above. Recently, a skillful application of partial fraction
decomposition has been used in [36] to derive identity (37), but so far no proof of
identity (31) has been found.

Subsequently, we illustrate the computation steps for identity (37) which can be
executed in a straightforward manner. After loading the package

In[1]:= << Sigma.m
Sigma - A summation package by Carsten Schneider c© RISC-Linz

into the computer algebra system Mathematica, we insert the sum in question:

In[2]:= S = SigmaSum[SigmaPower[−1, k]kSigmaBinomial[n + k,k]

SigmaBinomial[n, k]SigmaHNumber[n − k], {k,0,n}]

Out[2]=

n∑
k=0

(−1)kk
(n + k

k

)(n
k

)
Hn−k

Remark 5.2. Various functions support the user, such as SigmaSum for sums,
SigmaPower for powers, SigmaBinomial for binomials, or SigmaHNumber for har-
monic numbers.
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Next, we compute a recurrence relation for the given sum S by inputting:
In[3]:= rec = GenerateRecurrence[S]

Out[3]= (n + 2)(2n + 1)(n + 1)2SUM[n + 2] + 2(n + 3)(2n2 + 4n + 1)(n + 1)SUM[n + 1] +

(n + 1)(n + 2)(n + 3)(2n + 3)SUM[n] == −(2n + 1)(2n + 3)(3n + 1)(3n + 4)(−1)n
(2n
n

)

This means that SUM[n](= S =
n∑

k=0

(−1)kk
(
n+k

k

)(
n
k

)
Hn−k) satisfies Out[3].

Proof of Out[3]. Define f(n, k) := (−1)kk
(
n+k

k

)(
n
k

)
Hn−k. The correctness follows

by the creative telescoping equation

(39) g(n, k + 1) − g(n, k) = c0(n)f(n, k) + c1(n)f(n + 1, k) + c2(n)f(n + 2, k)

and the proof certificate

c0(n) = (n + 2)(n + 3)(2n + 3),

c1(n) = 2(n + 3)
(
2n2 + 4n + 1

)
, c2(n) = (n + 1)(n + 2)(2n + 1)

and

g(n, k) = (k−1)k2
(
2Hn−k(k−n−2)(k−n−1)(n+1)(k(4n+7)−2(2n3+10n2+17n+10))

+ (−k − n − 1)(16n4 + 88n3 + 179n2 + 163n + 2k2(4n2 + 11n + 7) − k(24n3

+ 98n2 + 131n + 59) + 58)
)
(−1)k

(
n + k

k

)(
n

k

)/(
(n + 1)(−k + n + 1)2(−k + n + 2)2

)
delivered by Sigma. We verify (39) as follows. Express g(n, k + 1) in terms of
h(n, k) = (−1)k

(
n+k

k

)(
n
k

)
and Hn−k by using the relations

h(n, k + 1) = − (n − k)(n + k + 1)
(k + 1)2

h(n, k)

and
Hn−k−1 = Hn−k − 1

n − k
.

Similarly, express f(n + i, k) in terms of h(n, k) and Hn−k by using the relations

h(n + 1, k) =
n + k + 1
n − k + 1

h(n, k)

and
Hn−k+1 = Hn−k +

1
n − k + 1

.

Then (39) can be checked directly. Summing (39) over k from 0 to n produces Out[3].
�

Next, we solve the recurrence relation Out[3] by typing in:
In[4]:= recSol = SolveRecurrence[rec[[1]], SUM[n]]

Out[4]= {{0, n(1 + n)(−1)n}, {0, (1 + n)(−1)n
(
− 1 + 2n

n∑
i=1

1

i

)
},

{1,−1

2
(−1)n

(
− 2(1 + 2n)

(2n
n

)
+ 3n(1 + n)

n∑
i=1

(
2i
i

)
i

)
}}

The result has to be interpreted as follows. Sigma finds two linearly independent
solutions h1(n) = n(1+n)(−1)n and h2(n) = (1+n)(−1)n

(
−1+2n

∑n
i=1

1
i

)
of the
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the homogeneous version of Out[3] (indicated by the 0 in front) plus one particular
solution

p(n) = −1
2
(−1)n

(
− 2(1 + 2n)

(
2n

n

)
+ 3n(1 + n)

n∑
i=1

(
2i
i

)
i

)

of the input recurrence itself (indicated by the 1 in front). The correctness of the
result can be easily verified by using, e.g., the relation

n+1∑
i=1

(
2i

i

)
1
i

=
n∑

i=1

(
2i

i

)
1
i

+
2(2n + 1)
(n + 1)2

(
2n

n

)
.

Finally, by taking all linear combinations c1h1(n) + c2h2(n) + p(n) for constants
c1 and c2, free of n, we obtain all solutions of Out[3]. Hence, by considering the
first two initial values of S we can discover and prove (37):

In[5]:= FindLinearCombination[recSol, S,2]

Out[5]= −(−1)n(1 + n)2 + (−1)n(1 + 2n)
(2n
n

)
+ 2n(1 + n)(−1)n

n∑
i=1

1

i
− 3

2
n(1 + n)(−1)n

n∑
i=1

(
2i
i

)
i

Remark 5.3. Looking at the identities (32),(36) and (35) one immediately sees that
the combination (32) + 2 · (36) − 2 · (35) produces (28). Since the sums can be
combined so nicely, we had also hoped to find a solution for the sum

Sλ(n) :=
n∑

k=0

(−λ)k

(
n + k

k

)(
n

k

)(
1 + 2k

(
Hn+k − Hk

))
.

Sigma was able to compute the recurrence

(n + 2)2Sλ(n) + (2λ − 1)
(
4n2 + 18n + 21

)
Sλ(n + 1)

+
(
16n2λ2 + 80nλ2 + 100λ2 − 16n2λ − 80nλ − 100λ + 6n2 + 30n + 39

)
Sλ(n + 2)

+ (2λ − 1)
(
4n2 + 22n + 31

)
Sλ(n + 3) + (n + 3)2Sλ(n + 4) = 0,

but failed to find any solution for a generic value λ. Interesting enough, choosing
λ = 1

2 the recurrences gets much simpler. In particular, this indicates that consid-
ering the sums S 1

2
(2n) and S 1

2
(2n + 1) separately, one can compute recurrences of

order 2 for each of them. Indeed, applying the mechanism from above for each of
the sums gives (two different) recurrences of order two. Luckily, we can even solve
the recurrences which yield

S 1
2
(2n) =

(−1)n22n(n!)2

(2n)!

and

S 1
2
(2n + 1) =

(−1)n(2n)!
22n(n!)2

(
(2n + 1)

(
Hn − H2n

)
− 1

)
.
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5.2. Identity (31). Finally, we derive the two identities

(40)

n∑
k=1

(
n + k

k

)(
n

k

)
(−1)k

(
2k2

(
Hn+k − Hk

)2

− k2
(
H

(2)
n+k − H

(2)
k

))

=(1 + n)2(−2 − 2n + n2)
(n!)2(−1)n

2(2 + 2n)!
+

1
4
n(−4 + 11n + 6n2 + 3n3)(−1)n

− 1
2
(−1 + n + n2) +

3
2
n2(1 + n)2(−1)n

n∑
i=1

i!2

(2 + 2i)!

+ n2(1 + n)2(−1)n
n∑

i=1

(−1)i

i2

and
(41)

n∑
k=1

(
n + k

k

)−1(
n

k

)−1

(−1)k = n(2n − 1)(−1)n

−
(
(1 + n)2(−2 − 2n + n2)

(n!)2(−1)n

2(2 + 2n)!
+

1
4
n(−4 + 11n + 6n2 + 3n3)(−1)n

− 1
2
(−1 + n + n2) +

3
2
n2(1 + n)2(−1)n

n∑
i=1

i!2

(2 + 2i)!

+ n2(1 + n)2(−1)n
n∑

i=1

(−1)i

i2

)

which immediately gives identity (31).
One option is to follow the same strategy as above: We can compute a recurrence

for

In[6]:= mySum =
n∑

k=0

(−1)k
(n + k

k

)(n

k

)(
2k2

(
Hn+k − Hk

)2
− k2

(
H

(2)
n+k − H

(2)
k

))

and we can solve the derived recurrence to find the right hand side of (40). But,
since the found recurrence relation is rather large (it has order 4), and the proof
certificate is even larger (it fills about one page), we follow a refined strategy pre-
sented in [33] and [40]. Namely, by running our creative telescoping algorithm with
the additional option SimplifyByExt → DepthNumber we can find a recurrence of
smaller order (order one!):

In[7]:= rec = GenerateRecurrence[mySum,SimplifyByExt → DepthNumber]

Out[7]= 2(2n + 1)(n + 2)2SUM[n] + 2(2n + 1)n2SUM[n + 1] ==

4(1+2n)+n2(n+1)(n+2)(3n+2)
n∑

i=0

(−1)i
(
n+i
i

)(
n
i

)
(n + i)2

+2n
(
4n2 + 3n− 4

)
(2n+1)

n∑
i=0

(−1)i
(
n+i
i

)(
n
i

)

+ 8(n− 1)n(n + 1)(n + 2)(2n + 1)
( n∑
i=0

(−1)i
(
n+i
i

)(
n
i

)
Hn+i −

n∑
i=0

(−1)i
(
n+i
i

)(
n
i

)
Hi

)

Proof of Out[7]. Define

f(n, k) = (−1)k

(
n + k

k

)(
n

k

)(
2k2

(
Hn+k − Hk

)2 − k2
(
H

(2)
n+k − H

(2)
k

))
.
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Then the correctness of Out[7] follows by the creative telescoping equation

(42) g(n, k + 1) − g(n, k) = c0(n)f(n, k) + c1(n)f(n + 1, k)

with the proof certificate c0(n) = 2(n + 2)2(2n + 1), c1(n) = 2n2(2n + 1) and

g(n, k) =

(
4(k − 1)2n(n + 1)2(2n + 1)k2

(
2H2

k − 4Hn+kHk + 2H2
n+k + H

(2)
k − H

(2)
n+k

)

−
(
n(n + 2)k3 − (n3 + 2n2 + 2n + 2)k2 − (n + 1)2(n2 − 2)k + n(n + 1)2(n2 + n − 2)

)
8n(n + 1)

(2n + 1)

(
Hk − Hn+k

)
+ (16n5 + 48n4 + 29n3 + 14n2 + 20n + 8)k2 + n(n + 1)2(16n4 + 23n3

+ n2 + 12n + 8) − (32n6 + 101n5 + 98n4 + 55n3 + 54n2 + 36n + 8)k

)
(−1)k

(n+k
k

)(n
k

)
(1 − k + n)n(1 + n)

+ n2(n + 1)(n + 2)(3n + 2)
k∑

i=0

(−1)i
(n+i

i

)(n
i

)
(n+i)2

+ 2n
(
4n2 + 3n − 4

)
(2n + 1)

k∑
i=0

(−1)i
(n+i

i

)(n
i

)

+ 8(n − 1)n(n + 1)(n + 2)(2n + 1)
( k∑

i=0

(−1)i
(n+i

i

)(n
i

)
Hn+i −

k∑
i=0

(−1)i
(n+i

i

)(n
i

)
Hi

)
.

Since the sums and products inside of g(n, k) are all indefinite, e.g., we can apply
the relation

k+1∑
i=0

(−1)i
(
n+i

i

)(
n
i

)
=

k∑
i=0

(−1)i
(
n+i

i

)(
n
i

)
− (−1)k (k−n)(k+n+1)

(k+1)2

(
n+k

k

)(
n
k

)
,

the verification of (42) is immediate. Summing (42) over k from 0 to n pro-
duces Out[7]. �

At first glance the recurrence Out[7] seems to be disappointing, we start with
the definite sum mySum, and end up with a recurrence again involving definite sums.
But, these sums are much simpler than the input sum. In particular, facilitating
again Sigma, we can produce mechanically the identities

n∑
i=0

(−1)i

(
n+i

i

)(
n
i

)
(n + i)2

= −(−1)n n!2

n2(2n)!

and
n∑

k=0

(−1)k

(
n + k

k

)(
n

k

)
Hk =

n∑
k=0

(−1)k

(
n + k

k

)(
n

k

)
Hn+k = (−1)n2Hn.

Using in addition (32), we can simplify the recurrence to

In[8]:= rec = rec/.{
n∑

i=0

(−1)i
(n+i

i

)(n
i

)
(n+i)2

→ −(−1)n n!2

n2(2n)!
,

n∑
i=0

(−1)i
(n+i

i

)(n
i

)
→ (−1)n,

n∑
i=0

(−1)i
(n+i

i

)(n
i

)
Hi →

n∑
i=0

(−1)i
(n+i

i

)(n
i

)
Hn+i}

Out[8]= 2(2n + 1)n2SUM[n + 1] + 2(n + 2)2(2n + 1)SUM[n] ==

4(2n + 1) − (−1)n(n + 1)(n + 2)(3n + 2)(n!)2

(2n)!
+ 2(−1)nn(2n + 1)

(
4n2 + 3n− 4

)
.

Given this recurrence, one can directly see its solution. With some simplifications
Sigma yields:
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In[9]:= recSol = SolveRecurrence[rec[[1]], SUM[n],SimpleSumRepresentation → True]

Out[9]= {{0, (−1)nn2(n + 1)2, {1, (1 + n)2(−2− 2n + n2)
(n!)2(−1)n

2(2 + 2n)!
− 1

2
(−1 + n + n2)

+
1

4
n(−4+11n+6n2+3n3)(−1)n+

3

2
n2(1+n)2(−1)n

n∑
i=1

i!2

(2 + 2i)!
+n2(1+n)2(−1)n

n∑
i=1

(−1)i

i2
}}

Looking at the first initial values we end up at the identity (40).
Finally, we attack the sum S(n) on the left hand side of (41). Namely, we derive

the recurrence

(n + 2)S(n) + n2S(n) =
(−1)n(n + 1)2(n + 2)(3n + 2)(n!)2

(2n + 2)!
− 2;

we remark that for this hypergeometric sum any implementation of Zeilberger’s
algorithm [42] could do the job. Using this information, we find as above, the right
hand side of (41).
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