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SPECTRAL DECOMPOSITION OF REAL SYMMETRIC
QUADRATIC λ-MATRICES AND ITS APPLICATIONS

MOODY T. CHU AND SHU-FANG XU

Abstract. Spectral decomposition provides a canonical representation of an
operator over a vector space in terms of its eigenvalues and eigenfunctions. The
canonical form often facilitates discussions which, otherwise, would be com-
plicated and involved. Spectral decomposition is of fundamental importance
in many applications. The well-known GLR theory generalizes the classical
result of eigendecomposition to matrix polynomials of higher degrees, but its
development is based on complex numbers. This paper modifies the GLR the-
ory for the special application to real symmetric quadratic matrix polynomials,
Q(λ) = Mλ2 +Cλ+K, M nonsingular, subject to the specific restriction that
all matrices in the representation be real-valued. It is shown that the existence
of the real spectral decomposition can be characterized through the notion of
real standard pair which, in turn, can be constructed from the spectral data.
Applications to a variety of challenging inverse problems are discussed.

1. Introduction

Representing an operator in terms of its eigenvalues and eigenvectors, the so-
called spectral decomposition, has been a powerful tool in many disciplines of
sciences and engineering. The spectral decomposition of a single matrix, often
expressed in the Jordan canonical form, has significant applications such as simpli-
fying the representation of complicated systems, shedding light on the asymptotic
behavior of differential equations, or characterizing the performance behavior of
numerical algorithms [13, 15]. This paper concerns itself with the spectral decom-
position of a special class of quadratic λ-matrices,

(1.1) Q(λ) := Mλ2 + Cλ + K,

where M , C and K are symmetric matrices in R
n×n and M is nonsingular.

Real symmetric quadratic λ-matrices arise frequently in the study of applied
mechanics, electrical oscillation, vibro-acoustics, fluid dynamics, signal processing,
and finite element model of some critical PDEs [18, 28]. The specifications of
the underlying physical system are embedded in the matrix coefficients (M, C, K).
Typically, the forward analysis involves finding scalars λ ∈ C and nonzero vectors
x ∈ Cn, called the eigenvalues and eigenvectors of the system, respectively, to satisfy
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the algebraic equation Q(λ)x = 0. Our goal is to characterize a representation of the
coefficient matrices (M, C, K) in terms of the spectral data of Q(λ). The emphasis
in this discussion is that all information involved in the representation must be
real-valued. The efficacy of our theory will be demonstrated by its application to
some challenging inverse problems at the end of this paper.

To motivate our consideration and set the notation for later comparison, recall
first the classical spectral decomposition of a symmetric matrix A ∈ R

n×n,

(1.2) A = XΛX�,

where X = [x1, . . . ,xn] ∈ R
n×n and Λ = diag{λ1, . . . , λn} ∈ R

n×n are matrices
composed of orthonormal eigenvectors xi and corresponding eigenvalues λi, re-
spectively. It is important to point out that the orthogonality X�X = In of the
eigenvector matrix X is an intrinsic property due to the symmetry of A, which will
be explored later. Consider next the linear pencil

(1.3) L0(λ) = Bλ − A,

where A and B are symmetric matrices in R
n×n and B is positive definite. Again,

the coefficients (B, A) of the pencil can be represented as

(1.4)
{

B = X−�X−1,
A = X−�ΛX−1,

where X = [x1, . . . ,xn] and Λ = diag{λ1, . . . , λn}, satisfying Axi = λiBxi, are still
real matrices. It is in this sense that we call (1.4) the spectral decomposition of the
linear pencil (B, A). Note that the “orthogonality” of X is built in the first equation
in (1.4) which, called B-orthogonality, can be written as X�BX = In. Even
without the positive definiteness of B, a real symmetric pencil Bλ − A can still be
reduced to the diagonal form Iλ−Λ by congruence under mild conditions such as all
eigenvalues being simple, except that the nonsingular matrix X usually is complex-
valued [10, 15]. (A short proof can also be found in [4] and [19, Appendix A]. A
more complete and systematic development is made in [23].) If the transformation
is limited to real congruence, then the diagonal form should be replaced by a block
diagonal form with at most 2 × 2 blocks along the diagonal [12, Theorem 1.5.4].
See also [24] for a different scenario, where B is real symmetric and A is real skew-
symmetric. In this paper we ask whether a similar notion can be generalized to the
real symmetric quadratic λ-matrix Q(λ) where three coefficient matrices (M, C, K)
are to be decomposed simultaneously.

The query we are asking is a classical problem already considered in the seminal
book by Gohberg, Lancaster and Rodman [11]. Indeed, via the notion of Jordan
triple the GLR theory developed in [11] works for general matrix polynomials of
arbitrary degrees. If the coefficients of the matrix polynomial are self-adjoint, then
additional properties such as the existence of a self-adjoint triple and the sign
characteristic can be developed from the theory [11, Chapter 10]. As an example, we
mention a case studied in [22] for a real symmetric quadratic λ-matrix Q(λ) under
the assumption that all eigenvalues are simple and nonreal. Let Xc = [x1, . . . ,xn]
and Λ = diag{λ1, . . . , λn} denote n × n matrices of (half of) the eigenvectors and
the eigenvalues, respectively, where λi are those eigenvalues residing in the upper
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half-complex plane. Define

X := [Xc, Xc] ∈ C
n×2n,(1.5)

T :=
[

Λ 0
0 Λ

]
∈ C

2n×2n.(1.6)

The GLR theory [22, Theorem 2] asserts that if the matrix

(1.7) U :=
[

X
X T

]
∈ C

2n×2n

is nonsingular (so that (X , T ) forms a complex Jordan pair), then the eigenvector
matrix X enjoys the “orthogonality”,

(1.8) X X � = 0,

and the matrix coefficients (M, C, K) can be decomposed as

(1.9)

⎧⎨⎩
M = (X T X �)−1,
C = −M(X T 2X �)M,
K = −(X T −1X �)−1.

The challenge is that, even with symmetry, a real symmetric matrix polynomial
often has complex-valued eigenstructure [10]. The Jordan pair (X , T ) constructed
above by the GLR theory for the spectral decomposition (1.9) is complex-valued.
A real-valued decomposition for the real coefficients of a quadratic λ-matrix in the
same spirit of (1.4) for a linear pencil is not obvious. One of our contributions is
to fill in the details of a real-valued spectral decomposition. Additionally, we show
that the real-valued spectral decomposition of Q(λ) naturally carries a specially
structured scaling factor which we could consider as a “parameter”. Its simplest
form helps to facilitate the study of some inverse problems. Our main thrust in
this paper is to investigate these properties and to demonstrate some interesting
applications.

2. Spectral Decomposition

Linearization is a rather convenient way to cast a matrix polynomial as a linear
problem [14]. One special way to linearize the real symmetric quadratic λ-matrix
Q(λ) is the linear pencil,

(2.1) L(λ) := L(λ; M, C, K) =
[

C M
M 0

]
λ −

[
−K 0
0 M

]
.

It is easy to see that Q(λ) and L(λ) are equivalent in the sense that Q(λ)x = 0 if
and only if

(2.2)
([

C M
M 0

]
λ −

[
−K 0
0 M

]) [
x
y

]
= 0.

Because we have assumed that M is nonsingular, we even know that y = λx.
Clearly, L(λ) is real symmetric. Note, however, that the leading coefficient [ C M

M 0 ]
of L(λ) is not positive definite, so the decomposition for Q(λ) cannot be answered
directly in the same way as the decomposition (1.4) for L0(λ).

At present, we have not yet assumed any eigenstructure of Q(λ). It is entirely
possible that the eigenvalues are complex-valued or have high geometric multiplic-
ities. The notion of standard pair introduced in [11] will be a fundamental tool
for our development. The canonical form of a standard pair can be considered as
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a generalization of the Jordan canonical form to matrix polynomials. So that this
paper is self-contained, we briefly review the ideas below, but limit ourselves to the
special class of real symmetric quadratic polynomials (1.1) and require specifically
that all matrices involved be real-valued. From time to time, we shall compare
our real formulation with its counterpart of complex formulation already developed
in [11] and point out the difference when the demand for real-valued matrices is
enforced.

The symmetry of the matrix coefficients is not essential in the following definition
but we insist that M must be nonsingular.

Definition 2.1. A pair of matrices (X, T) ∈ Rn×2n × R2n×2n is called a real
standard pair for the quadratic λ-matrix Q(λ) if and only if the matrix

(2.3) U = U(X, T) :=
[

X

XT

]
is nonsingular and the equation

(2.4) MXT
2 + CXT + KX = 0

holds.

The existence of a real standard pair for Q(λ) is clear. Direct computation shows
that the special choice (X0, T0) with

(2.5)

⎧⎨⎩
X0 := [In, 0],

T0 :=
[

0 I
−M−1K −M−1C

]
,

is a real standard pair of Q(λ). The problem is that the self-reference of (X0, T0)
to the original matrix coefficients makes this pair not very useful in practice. We
seek real standard pairs that contain the eigeninformation more explicitly. We shall
construct such a real standard pair later, but first we point out the following result
that shows how two arbitrary real standard pairs are related to each other. The
proof follows directly from [11, Theorem 1.25].

Lemma 2.2. Let (X1, T1) be a given real standard pair of Q(λ). Then (X2, T2) is
also a real standard pair of Q(λ) if and only if

(2.6)
{

X2 = X1S,
T2 = S−1T1S,

for some 2n × 2n real invertible matrix S. In this case, S is uniquely determined
by

(2.7) S :=
[

X1

X1T1

]−1 [
X2

X2T2

]
.

Rewriting (2.4) as

(2.8)
[

C M
M 0

] [
X

XT

]
T =

[
−K 0
0 M

] [
X

XT

]
,

we see that

L(λ)U =
[

C M
M 0

]
U(λI − T).
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It follows that

(2.9) Q(λ)x = 0 ⇔ (λI − T)
(

U−1

[
x
λx

])
= 0.

The relationship (2.9) is informative. Not only does it show that the 2n × 2n real
matrix T has exactly the same spectrum as the n × n quadratic λ-matrix Q(λ), it
also indicates how the associated eigenvectors of Q(λ) and T can be implied from
each other via the associated nonsingular matrix U . In this sense, we may say that
the innate eigeninformation in a real standard pair (X, T) is equivalent to that in
the original Q(λ).

We are interested in representing matrix coefficients of Q(λ) in terms of its real
standard pair. Toward that end, it will be convenient to introduce the nonsingular
matrix,

(2.10) S = S(X, T) :=
(

U�
[

C M
M 0

]
U

)−1

.

Note that S is symmetric and is a function of the real standard pair (X, T). Some
special choices of real standard pairs lead to special structures of S, which will be
studied later in the paper. We now state our main result about the real-valued
spectral decomposition.

Theorem 2.3. Given a real symmetric quadratic λ-matrix Q(λ) := Mλ2+Cλ+K,
let (X, T) be a real standard pair and S the corresponding nonsingular matrix defined
according to (2.10). Then Q(λ) enjoys a spectral decomposition in the sense that
its matrix coefficients (M, C, K) can be factorized in terms of (X, T) as follows:

(2.11)

⎧⎨⎩ M =
(
XTSX�)−1

,

C = −MXT
2SX�M,

K = −MXT
3SX�M + CM−1C.

Proof. By the definition of S, trivially we have

(2.12)
[

X

XT

]
SX

�M =
[

0
In

]
.

The expression for M immediately follows. We also have the useful fact,

(2.13) XSX
� = 0.

Post-multiplying (2.4) by SX� and applying the representation of M and the fact
(2.13), we obtain the formula for C. Similarly, post-multiplying (2.4) by TSX�, we
obtain

MXT
3SX

� + CXT
2SX

� + KXTSX
� = 0.

Upon substitution by the decompositions of M and C, the representation of K
follows. �

We point out that our representation (2.11) is intimately related to the formula
proved by Lancaster in [19, Theorem 1]. The fundamental difference is that we
use only the real standard pair (X, T) together with the associated real matrix S
to represent the real symmetric matrices (M, C, K), whereas Lancaster constructed
the same system by employing the more general notion of Jordan triple (or Jordan
pair for a self-adjoint system) that typically is complex-valued. Specifically, let
(X , J , Y ) denote the Jordan triple referred to in [19], where J is a suitable
Jordan matrix. Then we see that the role of matrices Γj := X J jY , j = 1, 2, 3, in
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[19, Equation (6)] or [27, Theorem 7] is being replaced exactly by our XTjSX�, j =
1, 2, 3, in (2.11). Likewise, the “self-orthogonality” of X relative to S as indicated
in (2.13) in the above proof is analogous to the fact X Y = 0 in [11, Equation
(2.12)] or [19, Equation (5)]. (Indeed, for a self-adjoint system, it can be made
that Y = PX ∗, where P is an appropriate permutation matrix as defined in [24,
Equation (18)] and is analogous to our matrix S.)

It is worth pointing out another useful fact. By (2.8) we see that the product,

S−1
T = U�

[
−K 0
0 M

]
U,

is symmetric. It follows that, given a standard pair (X, T), the product TS is
symmetric. Together with the fact that S is symmetric, we can prove recursively
that

(2.14) T
kS = (TkS)�

holds for all k = 1, 2, . . .. Actually, if we define an indefinite scalar product [12],

[x,y] := 〈S−1x,y〉,
where 〈·, ·〉 is the usual scalar product over R

2n, then the fact that S−1T = T�S−1

can be interpreted as [Tx,y] = [x, Ty]. In [11, Chapter S5], the transformation T is
said to be “symmetric” with respect to S−1. As such, the symmetry of the powers
of T with respect to S−1 is naturally expected from an operator point of view. See
also [27, Section 6].

We already know that in any given real standard pair (X, T), the matrix T alone
inherits the spectrum of Q(λ). If T in (2.8) were a diagonal matrix, then U could
be thought of as the “eigenvector matrix” of the linear pencil L(λ). In view of (1.4)
where the leading coefficient matrix B is positive-definite, the matrix S−1 may be
considered as a “normalization factor” for the eigenvectors. In (1.4), S−1 is taken
to be the identity and, hence, the matter is simple. In our setting, it seems that
the matrix S−1 is also determined once a real standard pair is prescribed, but the
following result suggests a different view.

Theorem 2.4. Let X ∈ Rn×2n, T ∈ R2n×2n be some given matrices. If there exists
a symmetric and nonsingular matrix S ∈ Rn×n such that the product XTSX�

is nonsingular and that the relationships (2.13) and (2.14) hold, then (X, T) is a
real standard pair for the real symmetric quadratic λ-matrix Q(λ) whose matrix
coefficients M , C and K are defined according to (2.11). Furthermore, after the
construction of (M, C, K), the matrix S is related to (X, T) via (2.10).

Proof. Since XTSX� is nonsingular, M can be defined. By the assumption of
(2.14), we see that the three matrix coefficients M , C and K are symmetric. By
the assumption of (2.13) and the definition of C, we further observe that[

X

XT

] [
TSXT M + SX�C SX�M

]
=

[
In 0
0 In

]
,

implying that the matrix
[

X
XT

]
is nonsingular. It follows that

MXT
2

[
X

XT

]−1

= MXT
2
[

TSXT M + SX�C SX�M
]

=
[
−K −C

]
,

which is equivalent to MXT2 + CXT + KX = 0. �
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Theorem 2.4 can be regarded as the converse of Theorem 2.3. It is important
because it does not require beforehand that the relationship (2.10) between S and
(X, T) before a real symmetric quadratic λ-matrix be defined. Rather, it qualifies
whether a prescribed pair of real matrices (X, T) can ever serve as a standard pair
at all and constructs, when feasible, the corresponding quadratic λ-matrix.

The results established is that Theorem 2.3 and Theorem 2.4 specify a necessary
and sufficient condition on (X, T) being a real standard pair. Once a real standard
pair has been identified, our theory enables us to decompose the real symmetric
quadratic λ-matrix in terms of (X, T) and the corresponding S. What is needed is a
real standard pair (X, T) other than the trivial example (X0, T0) which, if used, gives
back the quadratic λ-matrix in its own coefficients. We are particularly interested
in using eigeninformation to construct a real standard pair. In the subsequent
discussion, we consider some specially selected real standard pairs and study the
resulting effect on the structure of the matrix S.

3. Structure of S

For simplicity, we shall limit our attention only to the case when T is block
diagonal. It seems natural to begin with this block diagonal structure because it
mimics, in the real setting, the block structure of the Jordan matrix.

The following result is true in general [9, Chapter VIII, Theorem 1], regardless
of whether S or T is derived from the context described in the preceding section or
not.

Lemma 3.1. Suppose that T = diag{T1, . . . , Tk} where Tj ∈ Rnj×nj for j =
1, . . . , k and that the spectra of Tj and T� are disjoint whenever j �= �. Then a
symmetric matrix S satisfies ST� = TS if and only if S = diag{S1, . . . , Sk} where
Sj ∈ Rnj×nj is symmetric and SjT

�
j = TjSj for j = 1, . . . , k.

Now we move into more specific details pertaining to the main thrust of this
paper. We first construct a real standard pair for a real symmetric quadratic λ-
matrix from its spectral data. Let the distinct eigenvalues in the spectrum of the
pencil Q(λ) be denoted by

(3.1) λ1, λ1, λ2, λ2, . . . , λ�, λ�, λ�+1, . . . , λk,

where λ1, . . . , λ� are distinct complex-valued eigenvalues and λ�+1, . . . , λk are dis-
tinct real eigenvalues, each of which has algebraic multiplicity nj (and, thus, 2n1 +
· · · + 2n� + n�+1 + · · · + nk = 2n). Associated with eigenvalue λj , let

(3.2) J(λj) = λjInj
+ Nj

denote its Jordan canonical form (which may be made of several Jordan blocks) and
Xj the n × nj submatrix of corresponding generalized eigenvectors. In the above,
Nj is the nj × nj nilpotent matrix with at most 1’s along its superdiagonal (see
(3.12) for an example), depending on the geometric multiplicities of λj . It is known
that the 2n × nj matrix

(3.3)
[

Xj

XjJ(λj)

]
is of full column rank and that the equation

(3.4) MXjJ(λj)2 + CXjJ(λj) + KXj = 0

is satisfied [11, Proposition 1.10].
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In the event that λj = αj + ıβj is a complex-valued eigenvalue, write

(3.5) Xj = XjR + ıXjI ,

with XjR, XjI ∈ Rn×nj . We further combine the two corresponding complex-valued
nj ×nj Jordan blocks J(λj) and J(λj) into one 2nj × 2nj real-valued block Jr(λj)
defined by
(3.6)

Jr(λj) := P−1
j

[
J(αj + ıβj) 0

0 J(αj − ıβj)

]
Pj =

[
αjInj

+ Nj βjInj

−βjInj
αjInj

+ Nj

]
,

where

(3.7) Pj :=
1√
2

[
Inj

−ıInj

Inj
ıInj

]
.

Finally, we arrive at the definition,

(3.8)
{

X := [X1R, X1I , . . . , X�R, X�I , X�+1, . . . , Xk] ,
T := diag{Jr(λ1), . . . , Jr(λ�), J(λ�+1), . . . , J(λk)},

which by construction is a real standard pair for Q(λ).
The corresponding matrix S to (3.8) therefore possesses the structure as is de-

scribed in Lemma 3.1. That is,

(3.9) S = diag{S1, . . . , Sk},
where all diagonal blocks Sj are symmetric. Additionally, for j = 1, . . . , �, the
matrix Sj ∈ R2nj×2nj satisfies

(3.10) SjJr(λj)� = Jr(λj)Sj ,

and for j = � + 1, . . . , k, the matrix Sj ∈ R
nj×nj satisfies

(3.11) SjJ(λj)� = J(λj)Sj .

What is interesting is that the structure of S contains a far more subtle texture
than at first glance, on which we elaborate in the next two subsections.

3.1. Upper Triangular Hankel Structure. Recall that an m × n matrix H =
[hij ] is said to have a Hankel structure if hij = ηi+j−1, where {η1, . . . , ηm+n−1} are
some fixed scalars. The matrix H is said to be upper triangular Hankel if ηk = 0
for all k > min{m, n}. Note that the zero portion of an upper triangular Hankel
matrix occurs at the lower right corner of the matrix.

Assume that the geometric multiplicity of λj is mj , that is, assume that there
are mj Jordan blocks corresponding to the eigenvalue λj . Write

(3.12) Nj = diag {N (j)
1 , N

(j)
2 , . . . , N (j)

mj
},

where N
(j)
i is the nilpotent block of size n

(j)
i for i = 1, . . . , mj . A straightforward

calculation shows that any symmetric solution Z to the equation

(3.13) ZN�
j = NjZ,

is necessarily of the form

(3.14) Z =

⎡⎢⎢⎢⎣
Z11 Z12 . . . Z1mj

Z21 Z22 . . . Z2mj

...
...

...
Zmj1 Zmj2 . . . Zmjmj

⎤⎥⎥⎥⎦ , Zik ∈ R
n

(j)
i ×n

(j)
k ,
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where Z�
ik = Zki and Zik is upper triangular Hankel. Equipped with this fact, we

conclude from (3.11) that the matrices Sj corresponding to the real eigenvalues λj ,
j = � + 1, . . . , k, are made of mj ×mj upper triangular Hankel blocks as described
in (3.14).

The very same structure persists in the following sense for the complex conjugate
eigenvalues λj when j = 1, . . . , �.

Theorem 3.2. With Jr(λj) given by (3.6), a real-valued symmetric matrix Sj

satisfies (3.10) if and only if Sj is of the form

(3.15) Sj =
[

Uj Wj

Wj −Uj

]
,

where Uj and Wj are real-valued nj × nj matrices whose entries can be partitioned
into upper triangular Hankel blocks of the form described in (3.14).

Proof. For simplicity, denote the blocks of Sj in the form

Sj =
[

U W
W� V

]
,

where U and V are symmetric. Comparing the corresponding blocks in SjJr(λj)� =
Jr(λj)Sj , we obtain

NjU − UN�
j = β(W − W�),(3.16)

NjW − WN�
j = −β(U + V ),(3.17)

NjW
� − W�N�

j = β(U + V ),

NjV − V N�
j = β(W − W�).

It follows that

Nj(U + V ) − (U + V )N�
j = 2β(W − W�),(3.18)

Nj(W − W�) − (W − W�)N�
j = −2β(U + V ).(3.19)

Upon substituting (3.19) into (3.18), we obtain the linear equation,

N2
j (W − W�) − 2Nj(W − W�)N�

j + (W − W�)N2�
j + 4β2(W − W�) = 0,

which can be rewritten as

(3.20)
(
Inj

⊗ N2
j − 2Nj ⊗ Nj + N2

j ⊗ Inj
+ 4β2Inj

⊗ Inj

)
vec(W − W�) = 0,

where ⊗ stands for the Kronecker product and vec the column vectorization of
a matrix. By the structure of Nj , we see that the coefficient matrix in (3.20) is
upper triangular with constant 4β2 along its diagonal. It follows that W must be
symmetric and, hence, V = −U . The equations (3.16) and (3.17) are reduced to
the form (3.13). Their solutions U and W must be block upper triangular Hankel
as is shown in (3.14). �
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The above-mentioned upper triangular Hankel structure of S prevails in the most
general distribution of eigenvalues of Q(λ). We investigate one special case below.

3.2. Semi-simple Structure. The more generic case when all eigenvalues are
semi-simple is worth studying. An eigenvalue λj is semi-simple if its algebraic
multiplicity nj is the same as the geometric multiplicity mj . When all eigenvalues
are semi-simple, the upper triangular Hankel structure no longer shows up. In this
case, the matrix S is necessarily of the form

(3.21) S = diag
{[

U1 W1

W1 −U1

]
, . . . ,

[
U� W�

W� −U�

]
, S�+1, . . . , Sk

}
,

where Uj , Wj ∈ Rnj×nj are symmetric for j = 1, . . . , �, and Sj ∈ Rnj×nj is sym-
metric for j = � + 1, . . . , k. Furthermore, if all eigenvalues are simple, that is, if
nj = 1 for all j = 1, . . . , k in (3.1), then the matrix S is of the form

(3.22) S = diag
{[

s1 t1
t1 −s1

]
, . . . ,

[
s� t�
t� −s�

]
, s�+1, . . . , sk

}
,

where sj , tj ∈ R for j = 1, . . . , k, (sj , tj) �= (0, 0) for j = 1, . . . , �, and sj �= 0 for
j = � + 1, . . . , k.

As a matter of fact, in the semi-simple case the structure of the matrix S in
(3.21) can be further simplified. It can be reduced to a structure similar to that in
(3.22). We explain the procedure as follows.

Observe from (3.15) that for j = 1, . . . , �, the symmetric matrices Sj are in fact
symmetric Hamiltonian. Symmetric Hamiltonian matrices enjoy a special canonical
form [1, 26]. Specifically, corresponding to each Sj , j = 1, . . . , �, there exists an
orthogonal symplectic matrix

(3.23) Qj =
[

Qj1 Qj2

−Qj2 Qj1

]
, Qj1, Qj2 ∈ R

nj×nj ,

such that

(3.24) Q�
j SjQj =

[
Tj 0
0 −T�

j

]
,

where Tj is a diagonal matrix in Rnj×nj . We may assume further that

(3.25) Tj = diag{tj1, . . . , tjnj
},

with tjρ < 0 for ρ = 1, . . . , nj . With this transformation in mind, we now specify
the simplest possible structure of S when all eigenvalues of Q(λ) are semi-simple.

Theorem 3.3. Suppose that all eigenvalues of Q(λ) are semi-simple. Then there
exists a real standard pair such that the corresponding matrix S = diag{S1, . . . , Sk}
has the structure

(3.26) Sj =
{

diag{−Inj
, Inj

}, if 1 ≤ j ≤ �,
diag{εj1, . . . , εjnj

}, if � < j ≤ k

where εjρ = ±1 depending on the sign of eigenvalues of Sj.

Proof. Let S initially denote the matrix defined via (2.10) in correspondence to the
real standard pair (X, T) defined by (3.8). Our goal is to modify the real standard
pair to produce the desirable structure specified in (3.26).
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For j = 1, . . . , �, let Qj be the Hamiltonian structure-preserving orthogonal
matrix characterized in (3.24). Note that Qj1 + ıQj2 is a unitary matrix in Cnj×nj .
Columns of the complex-valued n × nj matrix

(3.27) X̃j := Xj(Qj1 + ıQj2)|Tj |
1
2 ,

therefore, remain to represent eigenvectors of Q(λ) with corresponding eigenvalue
λj . Based on (3.5), we can identify the real and the imaginary parts of X̃j as

X̃j = X̃jR + ıX̃jI

≡ [(XjRQj1 − XjIQj2)|Tj |
1
2 , (XjRQj2 + XjIQj1)|Tj |

1
2 ](3.28)

= [XjR, XjI ]Qjdiag{|Tj |
1
2 , |Tj |

1
2 }.

Similarly, for j = � + 1, . . . , k, let Qj be the orthogonal matrix of eigenvectors of
the symmetric matrix Sj so that Q�

j SjQj = Tj := diag{tj1, . . . , tjnj
}. Define

(3.29) X̃j := XjQj |Tj |
1
2 ,

which again represents eigenvectors of Q(λ) with corresponding eigenvalue λj . It
follows that (X̃, T), where T is the same as that given by (3.8) and

(3.30) X̃ := [X̃1R, X̃1I , . . . , X̃�R, X̃�I , X̃�+1, . . . , X̃k],

is a real standard pair. Since Nj = 0 by assumption, it is easy to verify that
Q�

j Jr(λj)Qj = Jr(λj) for j = 1, . . . , � and Q�
j J(λj)Qj = J(λj) for j = �+1, . . . , k.

Through the transformation,

Q := diag{Q1, . . . , Q�, Q�+1, . . . , Qk},

D := diag{T
1
2
1 , T

1
2
1 , . . . , T

1
2

� , T
1
2

� , T
1
2

�+1, . . . , T
1
2

k },

observe that the matrix

(3.31) S̃ := D−1Q�SQD−1 =
(

DQ�[X�, (XT)�]
[

C M
M 0

] [
X

XT

]
QD

)−1

has the structure specified in (3.26). Observe further that

X̃ = XQD,

XTQD = XQTD = XQDT = X̃T,

justifying that S̃ is indeed the matrix corresponding to the standard pair (X̃, T). �

The sign attributes characterized in the expression (3.26) are closely related to
the notion of sign characteristic in the GLR theory [11, Section 10.5]. Since the idea
of sign characteristic will not be used in our applications, we shall not elaborate
the details in this presentation. We do make two remarks regarding the signs.

Corollary 3.4. Suppose that all eigenvalues of Q(λ) are semi-simple. Then the
matrix S characterized in Theorem 3.3 has trace zero.

Proof. The congruence transformation[
In −1

2CM−1

0 In

] [
C M
M 0

] [
In −1

2CM−1

0 In

]�
=

[
0 M
M 0

]
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asserts that the matrix [ C M
M 0 ] has equal numbers of positive and negative eigenval-

ues. By Sylvester’s law of inertia, it follows that the parameter matrix S̃ defined
in (3.31) has equal numbers of positive and negative 1’s along its diagonal. �

Finally, in contrast to (1.4) for eigenvectors of a symmetric linear pencil with
positive definite leading matrix coefficient, we conclude this section with a most
general orthogonality property for eigenvectors of a real symmetric quadratic λ-
matrix Q(λ).

Corollary 3.5. Suppose that all eigenvalues of Q(λ) are semi-simple. Then there
exists a real standard pair,

X = [x1R,x1I , . . . ,x�R,x�I ,x2�+1, . . . ,x2n],

T = diag
{[

α1 β1

−β1 α1

]
, . . . ,

[
α� β�

−β� α�

]
, λ2�+1, . . . , λ2n

}
,

where xjR± ıxjI are complex conjugate eigenvectors associated with complex conju-
gate eigenvalues αj±ıβj, j = 1, . . . , �, and xj is a real-valued eigenvector associated
with real-valued eigenvalue λj, j = 2�+1, . . . , 2n; not all eigenvalues are necessarily
distinct, such that[

X

XT

]� [
C M
M 0

] [
X

XT

]
= Γ := diag

{[
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]}
,(3.32) [

X

XT

]� [
−K 0
0 M

] [
X

XT

]
= ΓT.(3.33)

Proof. The expression (3.32) follows from rearranging the eigenvalues properly, if
necessary, and applying Theorem 3.3 and Corollary 3.4. The expression (3.33)
follows from the relationship (2.9). �

The result of Corollary 3.5 can be interpreted as the simultaneous reduction of
the pair of real symmetric matrices, [ C M

M 0 ] and
[−K 0

0 M

]
by real congruence. It

is important to note that for any real symmetric quadratic λ-matrix Q(λ), the
“canonical” matrix Γ necessarily has equal numbers of 1’s and −1’s along its diag-
onal. This is in sharp contrast to (1.4) where eigenvectors are B-orthogonal.

4. Applications

Spectral decomposition of a linear transformation is so important that it has
become a classic in the literature. What we have done above is to develop a theory
of spectral decomposition for real symmetric quadratic λ-matrices. In particular,
we realize in Theorem 2.3 that there is a matrix S arising in the decomposition. The
matrix S plays a role of a normalization factor and, in general cases, its structure
is well understood. Such knowledge can sometimes shed considerable insight into
difficult problems. In this section, we describe a few applications of this theory.
Some of the problems below have been discussed elsewhere in lengthy papers, but
our approach significantly simplifies the arguments.
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4.1. Inverse Eigenvalue Problem. Generally speaking, an inverse eigenvalue
problem is to reconstruct the coefficient matrices of a quadratic pencil from some
known information of its eigenvalues and eigenvectors. Some general discussion for
linear problems can be found in the book [6]. The quadratic inverse eigenvalue
problems are much harder. There is already a long list of studies on this subject.
See, for example, [2, 16, 17, 19, 20, 21, 22, 25, 27] and the references contained
therein. In this demonstration, we consider the special QIEP where the entire
eigeninformation is given:

(QIEP)] Given 2n eigenpairs {(λj ,xj)}2n
j=1 with

λ2j−1 = λ̄2j = αj + ıβj , αj ∈ R, βj > 0,
x2j−1 = x̄2j = xjR + ıxjI , xjR,xjI ∈ Rn, j = 1, 2, . . . , �,

and
λj ∈ R, xj ∈ R

n, j = 2� + 1, . . . , 2n,

construct a real symmetric quadratic λ-matrix Q(λ) in the form of
(1.1) so that the equations

(4.1) λ2
jMxj + λjCxj + Kxj = 0,

are satisfied for all j = 1, 2, . . . , 2n. That is, Q(λ) has the prescribed
set {(λj ,xj)}2n

j=1 as its eigenpairs.
The system of equations in (4.1) can be written as

(4.2) MXΛ2 + CXΛ + KX = 0,

where

(4.3)
X := [x1R,x1I , . . . ,x�R,x�I ,x2�+1, . . . ,x2n],

Λ := diag
{[

α1 β1

−β1 α1

]
, . . . ,

[
α� β�

−β� α�

]
, λ2�+1, . . . , λ2n

}
.

We can immediately solve this inverse problem for almost all prescribed eigeninfor-
mation by Theorems 2.3 and 2.4. Specifically, using (3.22), we have the following
result.

Theorem 4.1. Assume that the matrix Λ has only simple eigenvalues. Then the
QIEP has a solution if there is a nonsingular symmetric matrix S of the form

S = diag
{[

s1 t1
t1 −s1

]
, . . . ,

[
s� t�
t� −s�

]
, s2�+1, . . . , s2n

}
,

such that XSX� = 0 and the product XΛSX� is nonsingular. In this case, the
matrix coefficients M , C and K of the solution Q(λ) are given by

M = (XΛSX�)−1, C = −MXΛ2SX�M, K = −MXΛ3SX�M + CM−1C.

Now we can be more specific by taking into account some additional physical
properties. In all cases, we find it remarkable that Theorem 4.1 provides sufficient
and necessary conditions for the general solution.

Example 1. For a damped vibrating system, we may assume that all the given
eigenvalues in the QIEP are nonreal, that is, � = n. In this case, it might be
“tempting” to try a matrix S that is of simpler form, say,

S = diag
{[

1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]}
.
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The condition that XSX� = 0 on eigenvectors then becomes the equation

(4.4) XRX�
R = XIX

�
I ,

whereas the condition that XΛSX� be nonsingular becomes that the matrix

(4.5) [XR, XI ]
[

−Ω U
U Ω

] [
XR, XI

]�
be nonsingular with the notation

XR := [x1R, . . . ,xnR],
XI := [x1I , . . . ,xnI ],

and

Ω := diag{α1, . . . , αn},
U := diag{β1, . . . , βn}.

We want to stress that the very brief argument above gives rise to precisely the
sufficient conditions discussed in [22] for the solvability of the QIEP. Furthermore,
the matrix coefficients M , C and K of the particular solution Q(λ) to the QIEP
can be expressed as

M−1 = −[XR, XI ]
[
−Ω U
U Ω

] [
XR, XI

]�
,

C = M [XR, XI ]
[
U2 − Ω2 2UΩ

2UΩ Ω2 − U2

] [
XR, XI

]�
M,

K = M [XR, XI ]
[
3ΩU2 − Ω3 3UΩ2 − U3

3UΩ2 − U3 Ω3 − 3ΩU2

] [
XR, XI

]�
M + CM−1C.

Example 2. Our quadratic λ-matrix Q(λ) is said to be hyperbolic if M is
positive definite and

(x�Cx)2 > 4(x�Mx)(x�Kx)
for all nonzero x ∈ Rn. A hyperbolic system is said to be over-damped if, addi-
tionally, C is positive definite and K is positive semi-definite. For an over-damped
system, it is well known that all the eigenvalues are real, nonpositive, and semi-
simple [11, Theorem 13.1]. This is the case that all given eigenvalues in our QIEP
are real, that is, � = 0. This inverse problem has been discussed in [20]. In this
case, we use the matrix

S = diag{I,−I},
and the condition XSX� = 0 becomes

(4.6) X1X
�
1 = X2X

�
2 ,

and the condition XΛSX� being nonsingular becomes the matrix

X1Λ1X
�
1 − X2Λ2X

�
2

being nonsingular with the notation

X1 := [x1, . . . ,xn],
X2 := [xn+1, . . . ,x2n],

and

Λ1 = diag{λ1, . . . , λn},
Λ2 = diag{λn+1, . . . , λ2n}.
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Under these conditions, the corresponding matrix coefficients are then given by

M−1 = X1Λ1X
�
1 − X2Λ2X

�
2 ,

C = M(X2Λ2
2X

�
2 − X1Λ2

1X
�
1 )M,

K = M(X2Λ3
2X

�
2 − X1Λ3

1X
�
1 )M + CM−1C.

It has to be noted, however, that the construction thus far still cannot warrant
a solution to the over-damped QIEP. We need to impose additional conditions on
the prescribed spectral data to ensure that these matrix coefficients are positive
definite and that the resulting Q(λ) is over-damped. One strategy exploited in [20]
is based on the facts, by (4.6), that X2 = X1Θ for some real orthogonal matrix Θ
and that Λ1 consists of the n largest prescribed (negative) eigenvalues. A sufficient
condition on Θ can then be characterized to guarantee that the reconstructed Q(λ)
is over-damped [20, Corollary 6].

4.2. Total Decoupling Problem. It has been long desirable, yet with very lim-
ited success, to characterize the dynamical behavior of a complicated high-degree-
of-freedom system in terms of the dynamics of some simpler low-degree-of-freedom
subsystems. For linear pencils, there are usually modal coordinates under which
the undamped quadratic eigenvalue problem can be represented by diagonal coeffi-
cient matrices. This amounts to the simultaneous diagonalization of two matrices
by congruence or equivalence transformations [15, Section 4.5]. In other words, the
undamped quadratic eigenvalue problem can be totally decoupled. Most vibrating
systems, however, are quadratic and damped. It is known that three general coeffi-
cient matrices M , C, and K cannot be diagonalized simultaneously by equivalence
or congruence coordinate transformations. In the literature, engineers and practi-
tioners have to turn to the so-called proportionally or classically damped systems
for the purpose of simultaneous diagonalization.

Recently, Garvey, Friswell and Prells [7] proposed a notion that total decoupling
of a system is not equivalent to simultaneous diagonalization. In particular, they
argued that, under some mild assumptions, a general quadratic λ-matrix can be con-
verted by real-valued isospectral transformations into a totally decoupled system.
That is, a complicated n-degree-of-freedom second-order system can be reduced to
n totally independent single-degree-of-freedom second-order subsystems.

Given a real symmetric quadratic λ-matrix Q(λ) in the form of (1.1), the prin-
ciple idea is to seek a nonsingular matrix U ∈ R

2n×2n such that the corresponding
linearized system L(λ) defined in (2.1) is transformed into

(4.7) U�
[

C M
M 0

]
U =

[
CD MD

MD 0

]
, U�

[
−K 0
0 M

]
U =

[
−KD 0

0 MD

]
,

where MD, CD and KD are all diagonal matrices. Such a transformation, if it
exists, is isospectral, so the original pencil (1.1) is equivalent to a totally decoupled
system

(4.8) QD(λ) := MDλ2 + CDλ + KD,

in the sense that eigenvectors x for Q(λ) and y for QD(λ) are related by[
x
λx

]
= U

[
y
λy

]
,

provided that MD and M are nonsingular. The focus therefore is on the existence
of U .
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The original proof of this important result by Garvey, Friswell and Prells [7]
contains some ambiguities which were later clarified and simplified by Chu and del
Buono in [4]. A rather sophisticated algorithm was proposed in [5] for computing the
transformation numerically without knowing a priori the eigeninformation. Here
we offer an even simpler proof by employing the theory established in this paper.

For demonstration, assume that all the eigenvalues of Q(λ) are simple. By
Corollary 3.5, we can find eigenvalues matrix Λ and eigenvector matrix X in the
form of (4.3) such that

(4.9)

[
X

XΛ

]� [
C M
M 0

] [
X

XΛ

]
= S := diag

{[
1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]}
,[

X
XΛ

]� [
−K 0
0 M

] [
X

XΛ

]
= SΛ.

From any given

MD = diag{m1, m2, . . . , mn}, 0 �= mj ∈ R,

define

CD := diag{c1, c2, . . . , cn},
KD := diag{k1, k2, . . . , kn}

by

cj :=

{
−2mjαj , j = 1, 2, . . . , �,

−mj(λ2j−1 + λ2j), j = � + 1, . . . , n,
(4.10)

and

kj :=

{
mj(β2

j + α2
j ), j = 1, 2, . . . , �,

mjλ2j−1λ2j , j = � + 1, . . . , n.
(4.11)

Then it is readily seen that the quadratic pencil

QD(λ) := MDλ2 + CDλ + KD

has the same spectrum as Q(λ). Let ej denote the standard jth unit vector. Direct
calculation shows that for 1 ≤ j ≤ � we have[

ej 0
αjej βjej

]� [
CD MD

MD 0

] [
ej 0

αjej βjej

]
=

[
0 βjmj

βjmj 0

]
,

and for � + 1 ≤ j ≤ n we have[
ej

λ2j−1ej

]� [
CD MD

MD 0

] [
ej

λ2j−1ej

]
= mj(λ2j−1 − λ2j),[

ej

λ2jej

]� [
CD MD

MD 0

] [
ej

λ2jej

]
= mj(λ2j − λ2j−1).
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Obviously, we also have

1
2mjβj

[
1 −1
1 1

]� [
0 βjmj

βjmj 0

] [
1 −1
1 1

]
=

[
1 0
0 −1

]
.

Now select values of mj such that

(4.12)
{

mjβj > 0, if 1 ≤ j ≤ �,
mj(λ2j−1 − λ2j) > 0, if � + 1 ≤ j ≤ n,

and define vectors⎧⎨⎩ [yjR,yjI ] := 1√
2βjmj

[ej ,−ej ], if 1 ≤ j ≤ �,

y2j−1 = y2j := 1√
mj(λ2j−1−λ2j)

ej , if � + 1 ≤ j ≤ n.

Then it follows that

(4.13)

[
Y

Y Λ

]� [
CD MD

MD 0

] [
Y

Y Λ

]
= S,[

Y
Y Λ

]� [
−KD 0

0 MD

] [
Y

Y Λ

]
= SΛ,

where

Y := [y1R,y1I , . . . ,y�R,y�I ,y2�+1, . . . ,y2n]

is the eigenvector matrix of QD(λ). Comparing (4.9) and (4.13), we conclude that
the required nonsingular 2n × 2n matrix U can be taken as the matrix

(4.14) U =
[

X
XΛ

] [
Y

Y Λ

]−1

.

It is worth noting that the technique employed above is constructive. A close
examination of the procedure reveals that the assumption of simple eigenvalues is
only for convenience. The approach can be extended to the “regular systems” char-
acterized in [27, Definition 8] or high order systems. Indeed, by reordering the real
eigenvalues, if necessary, we may ensure positivity of mj from (4.12). Consequently,
the signs of cj and kj could also be determined in (4.10) and (4.11). This feature
might be useful to meet the requirement of physical feasibility. Some relevant works
on isospectral transformations can be found in [19, 27].

4.3. Eigenvalue Embedding Problem. Model updating concerns the modifica-
tion of an existing but inaccurate model with measured data. For models char-
acterized by a second-order dynamical system, the measured data usually involve
incomplete knowledge of natural frequencies, mode shapes, or other spectral infor-
mation. In conducting the updating, it is often desirable to match only the part of
observed data without tampering with the other part of unmeasured or unknown
eigenstructure inherent in the original model. Such an updating, if possible, is said
to have no spill-over. It has been shown recently that model updating with no spill-
over is entirely possible for undamped quadratic systems, whereas the spill-over for
damped systems generally is unpreventable [3]. Such a difficulty is sometimes com-
promised by considering the eigenvalue embedding problem (EEP), which we state
as follows [2]:
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(EEP) Given a real symmetric quadratic λ-matrix Q0(λ) = M0λ
2

+ C0λ + K0 and a few of its associated eigenvalues {λi}k
i=1 with

k < 2n, assume that new eigenvalues {µi}k
i=1 have been measured.

Update the quadratic system Q0(λ) to Q(λ) = Mλ2 + Cλ + K so
that only the subset {λi}k

i=1 is replaced by {µi}k
i=1 as k eigenvalues

of Q(λ) while the remaining 2n−k eigenpairs of Q(λ), which usually
are unknown, and all the eigenvectors are kept the same as those
of the original Q0(λ).

An iterative scheme that reassigns one eigenvalue at a time has been suggested in
[2] as a possible numerical method for solving the EEP. That algorithm suffers from
two shortcomings — that the calculation can break down prematurely, and that
not all desirable eigenvalues are guaranteed to be updated. Once again, using our
theory, we offer a novel approach for solving the EEP which completely circumvents
all inbuilt troubles of the algorithm proposed in [2].

For demonstration, assume that all eigenvalues of Q0(λ) are simple. Let the
2n eigenpairs of Q0(λ) be {(λi,xi)}2n

i=1. Denote the real-valued representations of
{(λi,xi)}k

i=1 and{(λi,xi)}2n
i=k+1 as

Λ1 := diag
{[

α1 β1

−β1 α1

]
, . . . ,

[
α�1 β�1

−β�1 α�1

]
, λ2�1+1, . . . , λk

}
,

X1 := [x1R,x1I , . . . ,x�1R,x�1I ,x2�1+1, . . . ,xk]

and

Λ2 := diag
{[

αk+1 βk+1

−βk+1 αk+1

]
, . . . ,

[
αk+�2 βk+�2

−βk+�2 αk+�2

]
, λk+2�2+1, . . . , λ2n

}
,

X2 := [x(k+1)R,x(k+1)I , . . . ,x(k+�2)R,x(k+�2)I ,xk+2�2+1, . . . ,x2n],

respectively. Denote further the two matrices,

S−1
1 :=

[
X1

X1Λ1

]� [
C0 M0

M0 0

] [
X1

X1Λ1

]
,

S−1
2 :=

[
X2

X2Λ2

]� [
C0 M0

M0 0

] [
X2

X2Λ2

]
.

Then, by Theorem 2.3, we know that

M−1
0 = X1Λ1S1X

�
1 + X2Λ2S2X

�
2 ,

C0 = −M0

(
X1Λ2

1S1X
�
1 + X2Λ2

2S2X
�
2

)
M0,(4.15)

K0 = −M0

(
X1Λ3

1S1X
�
1 + X2Λ3

2S2X
�
2

)
M0 + C0M

−1
0 C0.

Denote the real-valued representation of {µi}k
i=1 by W . Assume that W has

exactly the same block diagonal structure as that of Λ1, that is, assume that W is
of the form

W = diag
{[

γ1 δ1

−δ1 γ1

]
, . . . ,

[
γ�1 δ�1

−δ�1 γ�1

]
, µ2�1+1, . . . , µk

}
.

Since the eigenvectors are not modified, the condition X1S1X
�
1 + X2S2X

�
2 = 0

automatically holds. Suppose that the matrix

(4.16) X1WS1X
�
1 + X2Λ2S2X

�
2
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is nonsingular. Then by Theorem 2.4, we know right away that one particular
solution to EEP is given by

M−1 = X1WS1X
�
1 + X2Λ2S2X

�
2 ,

C = −M
(
X1W

2S1X
�
1 + X2Λ2

2S2X
�
2

)
M,(4.17)

K = −M
(
X1W

3S1X
�
1 + X2Λ3

2S2X
�
2

)
M + CM−1C.

Combining (4.15) with (4.17), we see that the update takes place in the following
way:

M−1 = M−1
0 + X1(W − Λ1)S1X

�
1 ,

C = M
[
M−1

0 C0M
−1
0 − X1(W 2 − Λ2

1)S1X
�
1

]
M,(4.18)

K = M
[
M−1

0 (K0 − C0M
−1
0 C0)M−1

0 − X1(W 3 − Λ3
1)S1X

�
1

]
M + CM−1C,

provided that M−1
0 + X1(W − Λ1)S1X

�
1 is nonsingular. It is critically important

to note that the update formula (4.18) from Q0(λ) to Q(λ) does not need the
information about (Λ2, X2).

We believe that this closed form solution for the EEP is of interest itself and is
innovative in the literature.

5. Conclusion

The classical GLR theory is a powerful methodology that generalizes the notion
of spectral decomposition for linear operators to matrix polynomials of arbitrary
degrees. This paper modifies the GLR theory for the special application to real
symmetric quadratic matrix polynomials subject to the specific restriction that all
matrices in the representation be real-valued. By constructing a real standard pair
in the same way described in (3.8) which includes the most general case of arbitrary
algebraic or geometric multiplicities, we characterize a special type of real-valued
spectral decomposition for real symmetric quadratic λ-matrices in terms of the
usual eigeninformation.

In order to accommodate the requirement of a real-valued decomposition, a
special matrix S is introduced. Three fundamental relationships between S ∈
R2n×2n and (X, T) ∈ Rn×2n × R2n×2n, i.e., the matrix XTSX� is nonsingular, the
equality XSX� = 0 holds, and the matrix TkS is symmetric for all k, determine a
necessary and sufficient condition for the spectral decomposition. The structure of
S is investigated under different assumptions of multiplicities. In the special case
when all eigenvalues are semi-simple, S can be taken to the special form

S = diag
{[

1 0
0 −1

]
, . . . ,

[
1 0
0 −1

]}
,

which is the generalized notion of “orthogonality” among eigenvectors of a real
symmetric quadratic matrix polynomial.

The fact that we have real-valued spectral decomposition in hand makes it con-
venient for application. It is demonstrated how three nontrivial inverse problems,
each of which has attracted considerable research efforts in the literature, can now
be easily solved by exploiting our theory.
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