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FIELDS OF DEFINITION OF BUILDING BLOCKS

JORDI QUER

Abstract. We investigate the fields of definition up to isogeny of the abelian
varieties known as building blocks. These varieties are defined as the Q-varieties
admitting real or quaternionic multiplications of the maximal possible degree
allowed by their dimensions (cf. Pyle (2004)). The Shimura-Taniyama conjec-
ture predicts that every such variety is isogenous to a non-CM simple factor
of a modular Jacobian J1(N).

The obstruction to descend the field of definition of a building block up
to isogeny is given by Ribet in 1994 as an element in a Galois cohomology
group. In this paper we begin by studying these elements from an abstract
Galois-cohomological point of view, and obtain results and formulas for the

computation of invariants related to them. When considered for the element
attached to a building block, these invariants give the structure of its en-
domorphism algebra, and also complete information on the possible fields of
definition up to isogeny of this building block.

We implemented these computations in Magma for building blocks given as
Q-simple factors up to isogeny of the Jacobian of the modular curve X1(N).
Using this implementation we computed a table for conductors N ≤ 500, which
is described in the last section. This table is a source of examples of building
blocks with different behaviors and of statistical information; in particular, it
contains many examples that answer a question posed by Ribet in 1994 on the
existence of a smallest field of definition up to isogeny for RM-building blocks
of even dimension.

1. Building blocks

Let Q be an algebraic closure of the rationals and let GQ = Gal(Q/Q) be the
absolute Galois group. All number fields will be seen as subfields of Q. The action
of GQ will be denoted exponentially on the left. All GQ-modules are assumed to be
discrete, and group cohomology is always (continuous) Galois cohomology.

We work in the category of abelian varieties up to isogeny, in which all isogenies
are formally inverted, and denote as usual End0(A) := Q ⊗Z End(A) the endo-
morphism algebra of an abelian variety in that category; End0

K(A) will denote the
subalgebra of endomorphisms defined over a given field K.

In this section we recall the basic theory of the abelian varieties known as building
blocks. The main references are the thesis of E. Pyle, published in [1], and the papers
[5] and [4] by K. Ribet. Most results quoted as Ribet-Pyle in the present paper
appear in [5] or [4] for building blocks with real multiplications and then in [1] are
given for the general case of real or quaternionic multiplication.
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An abelian variety B/Q defined over Q is a Q-variety if it is GQ-equivariantly
isogenous to all its conjugates: for every σ ∈ GQ there exists an isogeny µσ : σB → B
that is compatible with the Galois action in the sense that

µσ ◦ σψ = ψ ◦ µσ ∀ ψ ∈ End0(B).

A building block is a Q-variety that is simple and has endomorphism algebra
D = End0(B) either a totally real field F of degree [F : Q] = dimB or a (nec-
essarily totally indefinite) quaternion algebra over a totally real field F of degree
[F : Q] = 1

2 dim B. In other words, the Rosati involution is an involution of the
first kind on the division algebra D, and the dimension of this algebra is the largest
possible allowed by the dimension of B. We will call them RM-building blocks or
QM-building blocks depending on whether D = F (real multiplication) or D is a
quaternion algebra over F (quaternionic multiplication).

The class γ. Let B be a building block. For every σ ∈ GQ pick a compatible isogeny
µσ : σB → B in such a way that the set {µσ} is locally constant. For every pair
σ, τ ∈ GQ let c(σ, τ ) denote the map µσ ◦ σµτ ◦ µ−1

στ ; it is an endomorphism of B
that belongs to the center F of the endomorphism algebra D, and c is a 2-cocycle
of GQ with values in F ∗ viewed as a module with trivial action. The cohomology
class of c is an element γ = [c] ∈ H2(GQ, F ∗) that does not depend on the choice of
compatible isogenies between the Galois conjugates of B, and is in fact an invariant
of the isogeny class of the variety B.

Let K be a number field. A building block B is said to be a building block over
K if the abelian variety B and all the endomorphisms of D are defined over the field
K. If a building block B is isogenous to a building block over K, we say that B
descends to K (up to isogeny), and also that K is a field of definition up to isogeny
of the building block B. The cohomology class γ turns out to be the obstruction
to descend the field of definition of a building block; indeed, one has the

Theorem 1.1 (Ribet-Pyle, cf. [1, Proposition 5.2]). A building block B is isogenous
to a building block over the number field K if, and only if, the cohomology class γ
lies in the kernel of the restriction map H2(GQ, F ∗) → H2(GK , F ∗).

The degree map. The “degree” δ(µσ) of compatible isogenies is defined and studied
in [4, p. 114] in the case of real multiplication and in [1, pp. 218-220] for the general
case. After fixing a polarisation θ : B → B̂ of the building block B, the “degree” of
a compatible isogeny µσ is defined as

δ(µσ) = µσ ◦ σθ−1 ◦ µ̂σ ◦ θ;

it is a totally positive element of the field F (cf. [1, Proposition 5.4]) and from the
fact that the endomorphism algebra of B is of the first kind one deduces that

c(σ, τ )2 = δ(µσ)δ(µτ )δ(µστ )−1.

This equality implies that γ belongs to the 2-torsion subgroup H2(GQ, F ∗)[2]. The
name “degree” is due to the fact that the degree of an isogeny µσ : σB → B,
in the usual sense of the degree of a homomorphism between abelian varieties, is
the reduced norm over Q of the element δ(µσ) of the simple algebra D (cf. [1,
Proposition 5.5]). Since the compatible isogenies µσ are determined only up to
multiplication by an element of F ∗, the degree map δ viewed with values in F ∗/F ∗2

is an invariant of (the isogeny class of) the variety B.
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Decomposition of γ (cf. [4, p. 115]). The group F ∗ has a (noncanonical) de-
composition as the cartesian product P × {±1} of the group {±1} and the free
group P = F ∗/{±1}. This induces a decomposition (also noncanonical) of the
second cohomology groups, which restricted to the two-torsion subgroups gives a
decomposition

(1) H2(GQ, F ∗)[2] � H2(GQ, P )[2] × H2(GQ, {±1}).

The exact sequence 1 → P
x�→x2

→ P → P/P 2 → 1 induces an isomorphism in
cohomology:

(2) H2(GQ, P )[2] � Hom(GQ, P/P 2).

Note that P/P 2 = F ∗/{±1}F ∗2. Under the decomposition (1) and the isomor-
phism (2) the element γ ∈ H2(GQ, F ∗)[2] is split into two pieces: an element γ ∈
Hom(GQ, P/P 2) canonically determined by γ and an element γ± ∈ H2(GQ, {±1}) �
Br(Q)[2] that does depend on the choice of decomposition F ∗ � P × {±1}. The
condition of Theorem 1.1 can now be translated into the corresponding conditions
for the components γ and γ±: a field K trivializes γ if, and only if, it trivializes
both components γ and γ±.

Fields of definition up to isogeny. Let KP be the extension of Q fixed by the kernel
of γ. It is a polyquadratic extension of Q (we will use the word polyquadratic
for extensions that are abelian of exponent two, i.e. a composition of quadratic
extensions). A given field K trivializes γ if, and only if, it contains the field KP .
On the other hand, every nontrivial element of Br(Q)[2] has splitting fields that
are quadratic fields, hence every building block B is always isogenous to a building
block over some polyquadratic extension of Q (this is Theorem 1.2 of [4] for the
real multiplication case and Theorem 5.1 of [1] for the general case).

Let resKP

Q (γ±) denote the image of the sign component γ± by the restriction
map

resKP

Q : H2(GQ, {±1}) → H2(GKP
, {±1}) � Br(KP )[2].

If resKP

Q (γ±) is trivial, then KP is the smallest possible field of definition up to
isogeny for the building block B. Otherwise, if resKP

Q (γ±) �= 1, then there is no such
smallest possible field: all fields of definition up to isogeny must strictly contain
KP , and they are the extensions of KP that are splitting fields for the division
quaternion algebra with center KP corresponding to the element resKP

Q (γ±).
In [4, Corollary 4.5] Ribet proves that for RM-building blocks of odd dimension

we are always in the first case: resKP

Q (γ±) is trivial. This fact was proven previously
by N. Elkies for the case F = Q, the situation in which the building blocks are also
known by the name of Q-curves. In [4, p. 109] Ribet asks whether the hypothesis
on the parity of dimB is really necessary in his result. In the table of building
blocks that we describe in the last section we will find examples of RM-building
blocks of even dimension (2 and 4) with nontrivial resKP

Q (γ±), hence the hypothesis
is necessary; the table also contains examples of QM-building blocks with trivial
and nontrivial values of this element.

The study of the existence of building blocks with no smallest field of defini-
tion up to isogeny was in fact our main motivation to program the computations
described in the present paper.
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The Brauer class of D. Every element γ ∈ H2(GQ, F ∗) determines an element
brcF (γ) ∈ Br(F ), defined as the image of γ under the natural maps

(3) H2(GQ, F ∗) → H2(GF , F ∗) → H2(GF , F
∗
),

of which the first is the restriction to the subgroup GF ⊆ GQ and the second is the
map induced by the embedding F ∗ ↪→ F

∗
as GF -modules with the natural Galois

action. When γ is the element obtained from a building block B by the construction
described above, then brcF (γ) is just the class of the algebra D = End0(B) in the
Brauer group Br(F ) (cf. [1, Theorem 2.1]).

2. Some computations in Galois cohomology

Let F be a totally real number field. We consider F ∗ as a GQ-module with
trivial action. Let γ ∈ H2(GQ, F ∗)[2] be a cohomology class of order dividing
2. Let γ ∈ Hom(GQ, P/P 2) and let γ± ∈ H2(GQ, {±1}) be the two components
corresponding to γ under a decomposition (1) and the isomorphism (2).

In this section we study this element γ just as an element of the abstract coho-
mology group considered. The results and formulas obtained will be later applied to
the case of our interest, in which γ = γB is obtained as in Section 1 from a building
block B. We first compute the homomorphism GQ → P/P 2 corresponding to the
component γ. As for the sign component γ±, we study its dependence on the chosen
decomposition F ∗ � P × {±1}, and also show how to compute it as an element of
Br(Q)[2]. We will then study the Brauer class brcF (γ) ∈ Br(F )[2] corresponding
to γ under the maps (3), and give a formula for computing it explicitly.

Two torsion of the Brauer group. We will need explicit descriptions of elements
belonging to the 2-torsion Br(k)[2] � H2(Gk, {±1}) of the Brauer group of a field
k (we are interested in number fields but these descriptions work for any field of
characteristic different from 2). Here we recall a couple of basic constructions of
such elements (see [2, Section 2] for more details) and also introduce notation. For
every pair of elements a, b ∈ k∗ we denote, as it is customary, by (a, b) ∈ Br(k)[2]
the Brauer class of the quaternion algebra with basis {1, ı, j, κ} and multiplication
determined by ı2 = a, j2 = b, ıj = −j ı = κ. The class (a, b) can also be constructed
as a cup product in H2(Gk, {±1}) as follows. Let χa, χb : Gk → Z/2Z be additive
characters of order dividing 2 whose kernels have as fixed fields k(

√
a) and k(

√
b),

respectively. Then the map

(σ, τ ) 
→ (−1)χa(σ)χb(τ) : Gk × Gk → {±1}
is a two-cocycle of Gk with values in {±1} whose cohomology class is that of (a, b).

For every Galois character χ : Gk → k
∗

we will denote by γχ ∈ Br(k)[2] the
Brauer class of the two-cocycle of Gk with values in {±1} defined by

(σ, τ ) 
→
√

χ(σ)
√

χ(τ )√
χ(στ )

after a choice of a square root
√

χ(σ) for each σ ∈ Gk. This element represents the
obstruction to embed the cyclic extension of k fixed by ker χ into a cyclic extension
of k of double degree; equivalently, it is the obstruction to the existence of a square
root of the Galois character χ. If χ is quadratic with kernel having fixed field k(

√
a),

then one easily checks that the element γχ coincides with (a, a), which is also equal
to (a,−1).
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The degree splitting maps. Let c be a cocycle representing the class γ. Since c2 is a
coboundary, there exists a splitting map for it; i.e. a map σ 
→ δσ : GQ → F ∗ such
that

(4) c2(σ, τ ) = δσδτδ−1
στ .

Motivated by the fact that in the situation of interest to us the maps δσ are provided
by the “degrees” δ(µσ) of isogenies between conjugates of building blocks, we define

Definition 2.1 (Degree splitting map). A map σ 
→ δσ : GQ → F ∗ satisfying (4)
will be called a degree splitting map for the two-cocycle c.

Two degree splitting maps for the same cocycle differ in a group homomorphism
GQ → F ∗ that, by continuity, must take values in the torsion subgroup {±1} of
F ∗, i.e., two degree splitting maps differ in a quadratic Galois character. Tak-
ing its values modulo squares, we obtain from any degree splitting map a group
homomorphism

(5) δ : GQ → F ∗/F ∗2, σ 
→ δσ (mod F ∗2),

and the set of all these homomorphisms modulo quadratic Galois characters only
depends on the cohomology class γ and not on the cocycle c representing it. We
can also take the values of a degree splitting map modulo elements of {±1}F ∗2,
and in this way we obtain a group homomorphism

δ : GQ → F ∗/{±1}F ∗2 = P/P 2, σ 
→ δσ (mod {±1}F ∗2),

that only depends on the cohomology class γ. One has the following:

Proposition 2.2. The map δ : GQ → P/P 2 is the first component γ of γ under
any decomposition (1) and the isomorphism (2).

Proof. The proof given by Pyle in [1, Proposition 5.6] for the case when γ = γB

is attached to a building block works in the general situation. We repeat here the
argument.

Let c be a cocycle representing γ. The class γ ∈ H2(GQ, P )[2] under the
decomposition (1) is the class of the cocycle c = c (mod {±1}) with values in
P = F ∗/{±1}.

Given any degree splitting map for c, consider the corresponding map δ. The
image of this map in H2(GQ, P )[2] under the isomorphism (2), which is the con-
necting homomorphism of group cohomology, is computed in the following way:
one chooses representatives in P of the values of δ in P/P 2; for example, one may
take δσ (mod {±1}) as a representative of δ(σ). Then the element δσδτδ−1

στ is a
square in the group P , and taking its (unique) square root in P we obtain a map
(σ, τ ) 
→

√
δσδτδ−1

στ which is a two-cocycle of GQ with values in P whose class in
H2(GQ, P )[2] is the required image. But since c2(σ, τ ) = δσδτδ−1

στ , the square roots√
δσδτδ−1

στ coincide with the values c(σ, τ ) of the cocycle c. �

The quadratic degree characters. Let KP denote the fixed field of the kernel of the
homomorphism γ. It is a polyquadratic extension of Q. A quadratic character ψ of
GQ will be called a quadratic degree character if its restriction to the subgroup GKP

is trivial; equivalently, if it factors through the group Gal(KP /Q). The group of all
quadratic degree characters will be denoted by Ψ. In the future we will also often
make use of the additive versions (with values in Z/2Z) of the quadratic degree
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characters, i.e., of the homomorphisms GQ → Z/2Z factoring through the group
Gal(KP /Q).

Let σ1, . . . , σr be elements of GQ whose restrictions to KP give a basis of
Gal(KP /Q) as a vector space over the field of two elements, and let ψ1, . . . , ψr

be the dual basis of the space of additive characters Hom(Gal(KP /Q), Z/2Z) with
respect to the basis {σi}; we consider the characters ψi as defined in all elements
of GQ by inflation. Given a degree splitting map σ 
→ δσ, let δi = δσi

be the
corresponding values for i = 1, . . . , r.

Definition 2.3 (Dual bases). The characters ψi : GQ → Z/2Z and the elements
δi ∈ F ∗ constructed in this way from any basis σ1, . . . , σr of Gal(KP /Q) will be
called dual bases with respect to the degree splitting map δ.

Lemma 2.4. There exist degree splitting maps such that the corresponding map (5)
factors through the group Gal(KP /Q). These degree splitting maps will be called
reduced.

Proof. Let δ 
→ δσ : GQ → F ∗ be any degree splitting map, and let {ψi} and {δi}
be dual bases with respect to it.

For every σ ∈ GQ its action on the field KP coincides with that of the element
σ

ψ1(σ)
1 · · ·σψr(σ)

r , hence γ(σ) = γ(σ1)ψ1(σ) · · · γ(σr)ψr(σ) and there exists a unique
sign χδ(σ) ∈ {±1} such that

(6) δσ = χδ(σ)δψ1(σ)
1 · · · δψr(σ)

r (mod F ∗2).

From this identity and the observation that δ
ψi(σ)
i δ

ψi(τ)
i = δ

ψi(στ)
i (mod F ∗2) for

every σ, τ ∈ GQ it follows that the map σ 
→ χδ(σ) is a quadratic Galois character
(this character depends not only on the degree map δ as the notation employed
might suggest, but also on the basis σi of the Galois group Gal(KP /Q) chosen).

Let us consider the new splitting map δ′ obtained multiplying δ by the character
χδ, and perform the same construction with this new map. Since χδ(σi) = 1, as it
is clear from (6), we have δ′i = δi, and then for every σ ∈ GQ we have

δ′σ = χδ(σ)δσ = χδ(σ)2δψ1(σ)
1 · · · δψr(σ)

r = δ′1
ψ1(σ) · · · δ′r

ψr(σ) (mod F ∗2).

From this expression it follows that the values of the degree splitting map δ′ on
an element σ ∈ GQ depend only on the restriction of this element to the field KP ,
because the exponents ψi(σ) only depend on it. �

It is clear that among the (infinitely many) degree splitting maps for a given
cocycle c, which differ from each other by the multiplication by any quadratic
Galois character, the reduced ones are finite in number, and differ from each other
by the multiplication by a quadratic degree character.

When B is a building block and c(σ, τ ) = µσ◦σµτ ◦µ−1
στ is the 2-cocycle computed

from a locally constant set of compatible isogenies, then the “degree” map σ 
→
δ(µσ) defined in Section 1 is a reduced degree splitting map for the cocycle c. This
is an immediate consequence of the fact that the values δ(µσ) are totally positive:
in the identity (6) the sign χδ(σ) always has to be positive since the elements on
both sides are totally positive elements of F ∗.

For every degree splitting map δ we denote by ∆δ the subgroup of F ∗/F ∗2

generated by the values δσ for σ ∈ GQ, and by Fδ = F ({
√

δσ}) = F (
√

∆δ) the field
obtained by adjoining to F the square roots of these values, which is a polyquadratic



FIELDS OF DEFINITION OF BUILDING BLOCKS 543

extension of F . Let ∆ be the subgroup of F ∗/F ∗2 generated by all the values ±δσ,
or equivalently by the values δσ and by −1. The group ∆ no longer depends on the
degree splitting map δ but only on the class γ. When the degree splitting map δ
is not reduced, then ∆δ = ∆; when δ is reduced, then ∆δ is a subgroup of index 2
of ∆ with ∆ = ∆δ ⊕ 〈−1〉. In fact, every complement of 〈−1〉 in ∆ as an F2-vector
space is of the form ∆δ for a reduced degree splitting map δ.

Let σ 
→ δσ be a degree splitting map. For each s ∈ GF we define

(7) ψs(σ) =
s
√

δσ√
δσ

, σ ∈ GQ,

which is a quadratic Galois character that depends only on the action of s on the
field Fδ. Then one has the following:

Lemma 2.5. If δ is a reduced degree splitting map, then the map s 
→ ψs induces
an isomorphism between the group Gal(Fδ/F ) and the group Ψ of the quadratic
degree characters.

Proof. If δ is reduced, then for every σ ∈ GKP
the value δσ is a square of an

element of F ∗ and hence ψs(σ) = 1. This means that in this case all the quadratic
characters ψs are quadratic degree characters. One immediately checks that the
map s 
→ ψs : GF → Ψ is a group homomorphism. The character ψs is trivial
if, and only if, the automorphism s leaves every square root

√
δσ fixed, and by

definition this is equivalent to s ∈ GFδ
. This means that the map s 
→ ψs induces

an injective homomorphism from Gal(Fδ/F ) to Ψ. But these two groups have the
same number of elements, namely, the number of elements of the group Gal(KP /Q),
since δ : GQ → F ∗/F ∗2 factors through that Galois group and has image the group
∆δ that, by Kummer theory, is isomorphic to the Galois group of Fδ over F . �
Decompositions of F ∗. To give an isomorphism

(8) F ∗ � P × {±1}
is equivalent to giving a sign map: a group homomorphism sgn: F ∗ → {±1} such
that sgn(−1) = −1. Since such a map always factors through the quotient group
F ∗/F ∗2, it is completely determined by a homomorphism F ∗/F ∗2 → {±1} sending
−1 to −1. Equivalently, to giving a sign map amounts to giving a nontrivial linear
form of F ∗/F ∗2 as a vector space over the field of two elements, such that −1 has
nontrivial image.

If the degree [F : Q] is odd, then a canonical choice is possible: one may take
as the sign of an element of F ∗ the sign of its absolute norm in Q, or equivalently
to identify P with the subgroup of F ∗ consisting of elements of positive norm. For
fields of even degree such a canonical choice does not exist.

Proposition 2.6. The sign component γ± attached to an element γ relative to a
given sign map only depends on the values of this sign map in the finite subgroup
∆ ⊂ F ∗/F ∗2.

The sign components attached to γ for all possible sign maps differ from each
other by the multiplication by elements γψ, for ψ ∈ Ψ ranging over all the quadratic
degree characters.

Proof. Let c be any cocycle representing γ and let σ 
→ δσ be a reduced degree
splitting map for c. Fix a square root

√
δσ for every σ ∈ GQ. Then we can write

(9) c(σ, τ ) = c±(σ, τ )
√

δσ

√
δτ

√
δστ

−1
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for some sign c±(σ, τ ) ∈ {±1}. Now the class γ± is the cohomology class of
the cocycle sgn(c), that is the product of the cocycles sgn(c±) = c± (since c±
takes values in ±1), which does not depend on the sign map, and of the cocycle
sgn(

√
δσ

√
δτ

√
δστ

−1). The cohomology class of this second cocycle does not de-
pend on the choice of square roots since a change of signs in the choices only would
modify it by a coboundary. Now we describe a choice of square roots from which
we will compute its cohomology class.

Let {ψi} and {δi} be dual bases for the degree splitting map δ, as defined in
Definition 2.3. As in (6), for every σ ∈ GQ, its restriction to the field KP is
completely determined by ψi(σ) and every δσ can be written as

δσ = χδ(σ)δψ1(σ)
1 · · · δψr(σ)

r x2
σ

with sign χδ(σ) = 1 since δ is reduced, for some element xσ ∈ F ∗. We can now
define a square root for every δσ writing√

δσ =
√

δ1

ψ1(σ)
· · ·

√
δr

ψr(σ)
xσ

for any choice xσ of the square root of x2
σ. Using this choice of square roots, and

noticing that for every i = 1, . . . , r one has
√

δi
ψi(σ)√

δi
ψi(τ)

√
δi

ψi(στ)
= δi

ψi(σ)ψi(τ),

one obtains from (9) the following identity

c(σ, τ ) = c±(σ, τ ) δ1
ψ1(σ)ψ1(τ) · · · δr

ψr(σ)ψr(τ) xσxτx−1
στ .

Now applying the sign map sgn we have

sgn(c)(σ, τ ) = c±(σ, τ ) sgn(δ1)
ψ1(σ)ψ1(τ)

· · · sgn(δr)
ψr(σ)ψr(τ) sgn(xσ)sgn(xτ )sgn(xστ )−1.

From this expression, and observing that the last part made of the sgn(xσ) is a
coboundary, it follows that the class of sgn(c) depends only on the values of the
sign map in the δi, and these elements belong to ∆, which is the first part of the
statement.

For each i = 1, . . . , r, if sgn(δi) = 1, then the factor sgn(δi)
ψi(σ)ψi(τ) is trivial,

and if sgn(δi) = −1, then this factor is the cohomology class of the cup product
of ψi ∈ Hom(GQ, Z/2Z) by itself, which is the class γψ for the quadratic character
ψ = (−1)ψi . If we define εi ∈ Z/2Z by the identity sgn(δi) = (−1)εi , then we
obtain the cohomology class of sgn(c) as the product of the class [c±] by the class
γψ attached to a quadratic degree character

[sgn(c)] = [c±] · γψ, ψ = (−1)ε1ψ1+···+εrψr .

Every (multiplicative) degree character ψ ∈ Ψ can be written in a unique way as
ψ(σ) = (−1)ε1ψ1(σ)+···+εrψr(σ) for εi ∈ Z/2Z. To finish the proof of the statement
we only need to show that every quadratic degree character ψ ∈ Ψ will be obtained
from some sign map; in other words, that any choice of values of εi ∈ Z/2Z is
realized by some sign map. Indeed, the δi are a basis of ∆δ as a vector space over
F2, and since δ is reduced adding −1, one has a basis of ∆. Given an arbitrary
choice of signs sgn(δi) = (−1)εi ∈ {±1} for the δi, and defining sgn(−1) = −1, one
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gets by linearity a nontrivial linear form ∆ → {±1}. This form can be extended to
linear forms of the full space F ∗/F ∗2 which are the sign maps required. �

The characters ε. For computing the cohomology class γ± ∈ H2(GQ, {±1}) we
need to compute the cohomology class of the sign factor c± in (9) for some cocycle
c representing γ and some reduced degree splitting map for it.

Let Q
∗

be viewed as a discrete module over the group GQ with trivial action. A
theorem of Tate (cf. [6, Theorem 4]) says that the group H2(GQ, Q

∗
) is trivial.

Let γ ∈ H2(GQ, F ∗) be represented by the cocycle c. By Tate’s theorem this
cocycle is a coboundary when we consider it as taking its images in Q

∗
. Let σ 
→

ασ : GQ → Q
∗

be a (continuous) splitting map for it, i.e., a map with

(10) c(σ, τ ) = ασατα−1
στ .

Let σ 
→ δσ be a reduced degree splitting map for c. Then squaring the previous
identity and dividing by (4) we see that the map ε : GQ → Q

∗
defined by

(11) ε(σ) =
α2

σ

δσ
, σ ∈ GQ

is a continuous homomorphism, i.e., a Galois character with values in the roots of
unity.

Notice that this Galois character ε depends on choices of a splitting map σ 
→ ασ

and a reduced degree splitting map σ 
→ δσ for a given cocycle c representing γ.
One may easily check that a change of α (with the same δ) amounts to multiplying
ε by the square of some Galois character, and a change of δ (same α) amounts
to multiplying ε by the corresponding quadratic degree character ψ. Hence, ε is
determined by the cohomology class γ only up to multiplication by squares of Galois
characters and by quadratic degree characters.

Theorem 2.7. Let ε be a Galois character defined by (11) from some splitting map
σ 
→ ασ and reduced degree splitting map σ 
→ δσ. There exists a sign map such
that the sign component γ± corresponding to it is the element γε ∈ H2(GQ, {±1}).

Proof. For every σ ∈ GQ choose square roots
√

δσ and
√

ε(σ) in such a way that
ασ =

√
δσ

√
ε(σ). Then we have

c(σ, τ ) = ασατα−1
στ =

√
ε(σ)

√
ε(τ )

√
ε(στ )

−1 √
δσ

√
δσ

√
δστ

−1
,

and for a given sign map sgn we have

sgn(c)(σ, τ ) = sgn(
√

ε(σ)
√

ε(τ )
√

ε(στ )
−1

) sgn(
√

δσ

√
δσ

√
δστ

−1
).

The first cocycle in this product (in which the sign map acts as the identity since
it is applied to elements of F ∗ that are equal to ±1) has cohomology class γε. As
for the second, in the proof of Proposition 2.6 we have seen that its cohomology
class ranges over all values γψ for quadratic characters ψ ∈ Ψ when the sign map
ranges over all possible such maps. Hence for the sign map corresponding to the
trivial character ψ = 1 (which is in fact the sign map that defines every element of
∆δ to be positive), the cohomology class of this second part is trivial, and we have
proved the result. �
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Computation of brcF (γ). Now we find a formula for the element brcF (γ) ∈ Br(F )[2]
determined by a given element γ ∈ H2(GQ, F ∗) under the maps (3). Let σ 
→ δσ

be a reduced degree splitting map for a cocycle c representing γ, and let ψi ∈
Hom(GQ, Z/2Z) and δi ∈ F ∗, for i = 1, . . . , r, be dual bases with respect to it.

For every i = 1, . . . , r let ti ∈ Q∗ be a rational number such that the quadratic
field Q(

√
ti) is the fixed field of kerψi. Let σ 
→ ασ be a splitting map for c

considered with values in Q
∗
, and let ε be the Galois character defined by (11) in

terms of α and δ. Then we have the following:

Theorem 2.8. The class brcF (γ) ∈ Br(F )[2] is given by the formula

brcF (γ) = resF
Q (γε) · (t1, δ1) · · · (tr, δr).

Proof. This proof is essentially the same as given in [3, Théorème 3] for the case
of cohomology classes attached to building blocks. We consider the cocycle c as
a 2-cocycle of the group GF ⊆ GQ with values in F

∗
= Q

∗
, but now with the

natural Galois action instead of the trivial action. We recall that we have c(σ, τ ) =
ασατα−1

στ . We choose square roots of ε(σ) and of δσ in such a way that ασ =√
ε(σ)

√
δσ. Multiplying and dividing by

√
δσ

σ
√

δτ

√
δστ

−1, which is a coboundary
of GF with values in Q

∗
under the Galois action, we have

c(σ, τ ) = ασατα−1
στ =

√
ε(σ)

√
ε(τ )

√
ε(στ )

−1
√

δτ

σ
√

δτ

√
δσ

σ
√

δτ

√
δστ

−1
.

From this expression we obtain the Brauer class of the cocycle c as the product
of the class γε by the class of the two-cocycle (σ, τ ) 
→

√
δτ/σ

√
δτ . Using the

assumption made of δ being reduced we can write δτ =
∏r

i=1 δ
ψi(τ)
i · x2

τ for some
xτ ∈ F ∗, and the chosen square roots satisfy√

δτ =
√

δ1

ψ1(τ)
· · ·

√
δr

ψr(τ)
· xτ

for the appropriate choice of square root xτ of x2
τ .

Let σ′
1, . . . , σ

′
r be the basis of the group Gal(Fδ/F ) consisting of the automor-

phisms determined by σ′
i

√
δj =

√
δj if i �= j and σ′

i
√

δi = −
√

δi. Let ψ′
1, . . . , ψ

′
r be

the basis of the group Hom(Gal(Fδ/F ), Z/2Z) which is the dual of the basis {σ′
i}.

We also view the characters ψ′
i as defined in all the elements of GF by inflation.

Then, for every element σ ∈ GF and 1 ≤ i ≤ r we have
√

δi/
σ
√

δi = (−1)ψ′
i(σ).

Since xτ ∈ F , we obtain
√

δτ

σ
√

δτ

=
√

δ1
ψ1(τ) · · ·

√
δr

ψr(τ) · xτ

σ
√

δ1
ψ1(τ) · · · σ

√
δr

ψr(τ) · σxτ

= (−1)ψ′
1(σ)ψ1(τ) · · · (−1)ψ′

r(σ)ψr(τ),

and this expression shows that the cohomology class of the cocycle (σ, τ ) 
→√
δτ/σ

√
δτ is the product of all the cup products of every pair of a character ψ′

i and
(the restriction to GF of) the character ψi, as characters of GF , for i = 1, . . . , r,
from which we obtain the formula for brcF (γ) given in the statement. �
Hilbert symbols. Now applying Theorems 2.7 and 2.8 we can compute the invariants
γε ∈ Br(Q)[2] and brcF (γ) = γε

∏
(ti, δi) ∈ Br(F )[2]. By class field theory, giving

an element of the Brauer group of a number field K is equivalent to giving all its
local invariants; for elements of two-torsion, and using the exact sequence

0 −→ Br(K)[2] −→
⊕

v∈ΣK

Br(Kv)[2]
(ξv) �→

∏
v ξv−→ {±1} −→ 1,
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where ΣK denotes the set of (Archimedean and non-Archimedean) places of K, and
for every completion Kv of K we identify Br(Kv)[2] with the group {±1}, to giving
an element ξ ∈ Br(K)[2] is equivalent to giving its local components ξv for every
completion, and in practice one needs only to list the (finite, of even cardinality)
set of places with ξv = −1.

In our formulas appear elements given in two ways: either of the form γχ for
Galois characters of GQ, or of the form (t, δ), with t ∈ Q∗ and δ ∈ F ∗. For
the convenience of the reader we describe here how their local components can
be computed in practice, using basic well-known facts about Brauer groups and
Hilbert symbols.

Let χ : GQ → Q
∗

be a Galois character, identified in the usual way with a
primitive Dirichlet character of conductor m. For every prime number p, let χp be
the component of χ modulo to the largest power of p dividing m. Then the local
components of γχ ∈ Br(Q)[2] are given by

(γχ)p = χp(−1) for every (finite) prime p, and (γχ)∞ = χ(−1).

For a quaternion algebra over the rationals, given as (a, b) for rational numbers
a, b ∈ Q∗, the usual formulas for computing Hilbert symbols (a, b)p ∈ {±1} (see
for example Serre’s Course d’Arithmétique) are enough for determining (a, b) ∈
Br(Q)[2]. If we want to perform analogous computations over number fields, for
infinite places and places of odd residual characteristic we have similar formulas,
but in general there are no such formulas for the dyadic places. The computations
we are interested in are simplified by the fact that on the elements (t, δ) ∈ Br(F )[2]
appearing in our formula one of its components is always a rational number t ∈ Q∗;
in this case the computation is reduced to the computation of Hilbert symbols over
Q by using the formula

(t, δ)w = (t, NLw/Kv
(δ))v,

which holds in the following general situation: L/K is an extension of number
fields, t ∈ K, δ ∈ L, and w is a place of L lying over a place v of K.

Finally, when we need to consider the restriction of an element ξ ∈ Br(K)[2]
to Br(L)[2] for an extension L/K (for example we need the restriction resF

Q (γ±) in
order to compute brcF (γ) using the formula of Theorem 2.8 and also the restriction
resKP

Q (γ±) in order to decide whether KP is a field of definition or not), we can just
use the local restriction maps Br(Kv)[2] → Br(Lw)[2] for every place w of L over a
place v of K; these maps send the element ξv ∈ Br(Kv)[2] � {±1} to the element
ξ
[Lw:Kv]
v ∈ Br(Lw)[2], and everything is reduced to just computing the parity of

each extension [Lw : Kv].

3. Varieties of GL2-type

An abelian variety A/Q defined over Q is of GL2-type if the subalgebra End0
Q(A)

⊆ End0(A) is a number field of degree [E : Q] = dim A; in this paper we will also
add the condition that A has no complex multiplication, which is equivalent to the
fact that E is a maximal subfield of End0(A). One has the following:

Theorem 3.1 (Pyle-Ribet, cf. [1, Propositions 1.3, 1.4 and 4.5]). An abelian
variety over Q is of GL2-type if, and only if, it factors over Q as a power of a
building block.
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Let A be an abelian variety of GL2-type with simple factor B. Then X =
End0(A) is a matrix algebra over the division algebra D, hence a central simple F -
algebra. Let E = End0

Q(A), which is a maximal subfield of X , and has a canonical
complex conjugation given by the Rosati involution induced by any polarization
on A. The Galois action on X induces an endomorphism on it, and applying the
Noether-Skolem theorem we obtain for every σ ∈ GQ an element α(σ) ∈ E∗ such
that σψ = α(σ) ◦ ψ ◦ α(σ)−1 for every ψ ∈ X , only determined up to elements of
F ∗.

The field E is generated over F by the elements α(σ) ([1, Proposition 1.5])
and the extension E/F is Galois and abelian ([1, Proposition 1.7]). The Rosati
involution induced by any polarization of A/Q induces a canonical involution a 
→ a
of E, giving rise to the complex conjugation on every complex embedding of the
field E, and for every σ ∈ GQ one has α(σ)α(σ) ∈ F ∗ ([1, Lemma 1.6]).

The map c′(σ, τ ) 
→ α(σ)α(τ )α(στ )−1 is a 2-cocycle of GQ with values in F ∗,
considered as a module with trivial action. By the method explained in Section 1
we can construct another cocycle of the same type c(σ, τ ) = µσ ◦ σµτ ◦ µ−1

στ from
compatible isogenies between the conjugates of the building block B. In fact, one
has the following:

Theorem 3.2 (Pyle-Ribet, cf. [1, Theorem 4.6]). The cocycles c and c′ are coho-
mologous.

We remark here that the cocycle c′ we are using is the same cocycle used by
Ribet in [5], but Pyle in [1] uses its inverse; since its cohomology class belongs
to the 2-torsion of the group H2(GQ, F ∗) both choices are equally useful for our
purposes.

By the previous theorem, and since the elements α(σ) are defined only up to
multiplication by elements of F ∗, we may always make a choice of these α(σ) such
that the cocycle c′ coincides with any given cocycle c computed from the building
block B, and in the following we will always assume that we choose the α(σ) in this
way. Then, the theorem above says that the map σ 
→ α(σ) ∈ E∗ is a splitting map
with values in E∗ ⊂ Q

∗
for the cocycle c, and it can be used for the computation

of the sign component γ± and of the Brauer class brcF (γ) using Theorems 2.7 and
2.8. Moreover, the cocycle c admits the reduced degree splitting map σ 
→ δ(µσ).
Then, by formula (11) we obtain a Galois character defined by

(12) ε(σ) =
α(σ)2

δ(µσ)
.

This Galois character is completely determined by the abelian variety A, and clearly
does not depend on the isogenies between the conjugates of its absolutely simple
factor B used in its computation.

Inner twists. To every element s ∈ GF we can also attach a Galois character, which
we call an inner twist character of the GL2-type variety A/Q, defined by

(13) χs(σ) =
sα(σ)
α(σ)

.

The fact that this is a Galois character is a consequence of the fact that c′(σ, τ ) ∈
F ∗. Obviously, the character χs does only depend on the action of s on E and in
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fact we have as many such characters as the degree [E : F ]. When s is the complex
conjugation one obtains the character

χconj(σ) =
α(σ)
α(σ)

=
α(σ)α(σ)

α(σ)2
.

Multiplying it by the character ε we obtain a Galois character sending the element
σ ∈ GQ to α(σ)α(σ)/δ(µσ), which is an element of F ∗, and hence must be ±1;
moreover, since δ(µσ) and α(σ)α(σ) are both totally positive, this character must
be trivial, from which we deduce (see also [1, Theorem 5.2] for an equivalent result)
that the character ε attached to A by (12) is the inverse of χconj,

ε = χ−1
conj.

Hence, we also obtain as a consequence that, with the choice we made of the
elements α(σ), imposing the cocycle c′ to be the same as c, we have δ(µσ) =
α(σ)α(σ) for every σ ∈ GQ.

The quadratic degree characters. Let Fδ = F (
√

δ(µσ)) be the extension obtained
by adjoining to F the square roots of the degrees of all the µσ, which is a finite
polyquadratic extension of the same degree as KP /Q. From Lemma 2.5 we know
that there is an isomorphism between the Galois group Gal(Fδ/F ) and the group Ψ
of quadratic degree characters obtained by sending every s ∈ GF to the character

(14) ψs(σ) =
s
√

δ(µσ)√
δ(µσ)

.

Since
√

δ(µσ) = α(σ)
√

ε(σ) we obtain the following relation between the inner
twist characters and the quadratic degree characters, where we denote by

√
ε

s−1

the Galois character of GQ defined by σ 
→ s
√

ε(σ)/
√

ε(σ) for every σ ∈ GQ.

Proposition 3.3. For every element s ∈ GF one has the identity of Galois char-
acters

ψs = χs ·
√

ε
s−1

.

This proposition can be useful for the computation of the quadratic degree char-
acters from the knowledge of the inner twist characters, and vice versa. In fact,
the inner twist characters χs depend only on the action of s on the field E, and
the quadratic degree characters ψs depend on its action on the field Fδ. Hence the
identity of the proposition can be stated for elements s of the (finite) Galois group
of the field E · Fδ over F . Notice that since

√
δ(µσ) = ασ

√
ε(σ), the field E · Fδ is

obtained by adjoining to E the square roots of the values of the character ε, and it
must be either equal to E or to a quadratic extension of E.

�-adic representations [cf. [5, Section 3 and 5]]. Let A/Q be an abelian variety of
GL2-type. For every prime number � the �-adic Tate module V	(A) is free of rank
two over E ⊗Q Q	. For every prime λ of E dividing � let Eλ be the completion of
E at λ, and let Vλ = V	 ⊗E⊗Q�

Eλ. For each prime p of good reduction let

(15) ap = trEλ
(Frobp |Vλ)

with λ any prime dividing some prime � �= p. This trace of Frobenius ap is an
element of E ⊂ Eλ that does not depend on the prime λ chosen.

Then, the field E is generated by the numbers ap ([5, Proposition 1.5]), the field
F is generated by the numbers a2

p/ε(p) ([5, Theorem 5.3]; notice that the character
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ε in this theorem coincides with ours due to [1, Theorem 5.12]). Moreover, for every
prime p of good reduction such that ap �= 0 one has

(16) α(Frobp) ≡ ap (mod F ∗),

and one can obtain the values of the splitting map α from the knowledge of the
traces of Frobenius ap.

4. Computations, examples and tables

In this section we describe an implementation in Magma of a package that com-
putes the main invariants described in previous sections for modular abelian vari-
eties. We also give statistical information on the data of a table computed using this
implementation, containing building blocks that are simple factors up to isogeny of
the Jacobians J1(N) of levels N ≤ 500. The table contains many examples of RM-
building blocks of even dimension that cannot be descended to the field KP , showing
that the hypothesis of the degree [F : Q] being odd cannot be avoided in Ribet’s
result [4, Corollary 4.5]; the smallest such example occurs in level N = 33 and will
be described at the end of this section. The package will be included in forthcoming
versions of Magma and the complete table (which may be extended in the future to
bigger bounds) can be downloaded at http://www-ma2.upc.es/~quer/Recerca.

We begin by recalling some basic facts about modular forms and modular abelian
varieties. Let f =

∑
anqn ∈ S2(N, ε) be a (normalized) newform of weight 2, level

N and Nebentypus character ε. Let E = Q({an}) be the number field generated by
its Fourier coefficients. Shimura attached to f an abelian variety Af defined over
Q, of dimension dimAf = [E : Q], that can be constructed up to Q-isogeny either
as a subvariety or a quotient of the Jacobian of the modular curve X1(N). The
action of the Hecke operators on J1(N) induces an isomorphism between the field
E and End0

Q(Af ). Hence Af is an abelian variety of GL2-type. By the Eichler-
Shimura correspondence, the Fourier coefficients ap of the modular form f are the
traces of Frobenius (15) acting on the λ-adic Tate modules Vλ(Af ). Let Af be
isogenous to a power of an abelian variety Bf simple over Q. The varieties Af

and Bf (considered up to Q-isogeny and up to Q-isogeny, respectively), are called
modular abelian varieties. In ([5, Theorem 4.4]) it was shown that Serre’s conjecture
on the modularity of two-dimensional mod p Galois representations of GQ would
imply that every abelian variety of GL2-type (equivalently, every building block)
is modular. Due to the recent proof by Khare-Winterberger of Serre’s modularity
conjecture, the modularity of all building blocks is now a theorem.

The modular form f is said to have complex multiplication when there exists a
(necessarily unique and odd) Dirichlet character χ such that ap = χ(p)ap for every
prime p � N . This is equivalent to the fact that Bf is an elliptic curve with complex
multiplication by an order of the imaginary quadratic field fixed by the kernel of
the character χ.

We assume from now on that f has no complex multiplication, and hence that
Bf is a building block. In this case the field F which is the center of End0(Bf ) is
the subfield of E generated by the numbers a2

p/ε(p) for all primes p � N .
The inner twists of the non-CM modular form f are Dirichlet characters χs

attached to every element s ∈ GF and determined by the identities

(17) sap = χs(p)ap for every p � N.
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We can also define the quadratic degree characters of the non-CM modular form f
as the quadratic Dirichlet characters ψs attached to every s ∈ GF and determined
by

(18) s
√

a2
p/ε(p) = ψs(p)

√
a2

p/ε(p) for every p � N.

Then we have the following:

Proposition 4.1. The inner twists and the quadratic degree characters of a modu-
lar form are the same as the corresponding characters for the GL2-type variety Af

and the building block Bf , defined in the previous section by the identities (13) and
(14).

Proof. Let χs be an inner twist for Af . Then for every prime p not dividing N ,
the identity (13) for σ = Frobp and the congruence (16) when ap �= 0 imply the
identity (17) in this case; when ap = 0 this is also trivially satisfied. Conversely,
assume the identity (17) satisfied. The identity (13) for an automorphism σ ∈ GQ

depends only on the action of σ on the field KP . Then, using the well-known fact
that for non-CM modular forms the set of primes for which ap �= 0 is of density
one into the set of all primes, by the Cebotarev density theorem every element of
σ|Kp

∈ Gal(KP /Q) is of the form Frobp for some prime p with ap �= 0, and the
identity (17) and the congruence (16) for this prime p imply the identity (13) for σ.
The same argument can be used for proving the property for the quadratic degree
characters. �
Implementation. The best implementation available for doing computations with
modular symbols, modular forms, and modular abelian varieties are the pack-
ages written by William Stein for the computer system Magma. Based on these
packages, we implemented several functions for computing some of the invariants
described in this paper. The main functions are DegreeMap, BrauerClass, and
ObstructionDescentBuildingBlock. The three functions have as input a space
of modular symbols of level an integer N and Nebentypus a Dirichlet character ε
modulo N that is new and irreducible, and hence it determines a newform f .

The main function DegreeMap gives as output a sequence of r ≥ 0 pairs (ti, δi)
with ti ∈ Q∗ and δi ∈ F ∗, such that the field KP is the polyquadratic extension of Q
obtained by adjoining the square roots of the numbers ti, the group Ψ of quadratic
degree characters is the group generated by the r characters corresponding to the
quadratic fields Q(

√
ti), and if we denote ψi : GQ → Z/2Z the additive versions of

these characters, then the degree map corresponding to the abelian variety Bf is
determined modulo squares by the formula δ(µσ) =

∏r
i=1 δ

ψi(σ)
i (mod F ∗2). The

function BrauerClass uses the output of DegreeMap to compute the Brauer class of
the endomorphism algebras of the varieties Af and Bf from the formula in Theorem
2.8; the Brauer class is in practice given as the list of primes of F that are rami-
fied in that quaternion algebra. The function ObstructionDescentBuildingBlock
uses the function DegreeMap to compute the field KP , and gives as output the ob-
struction to descend the building block Bf over the field KP ; this obstruction is
an element of Br(KP ), given again as a list of ramified places of this field. The
computation of Hilbert symbols needed for obtaining these obstructions has been
programmed using the remarks at the end of Section 2.

An important ingredient needed by DegreeMap is the computation of the inner
twists of a modular form. For this we use W. Stein’s implementation. We remark
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that for the unconditional computation of the inner twists one has to test the
equality (17) for enough primes; the best proved bound on the number of primes
to be tested grows as N2 (see the Magma documentation on inner twists), and this
makes the computation too expensive even for moderate values of N . In general,
a conjectural bound linear on N is used in W. Stein’s implementation, that should
be enough, although there is no proof of that fact. For the elaboration of the table
described below we used the proved bound for all forms of level N ≤ 100 and the
linear bound 15 + N/2 for larger levels.

A table. We elaborated a table with the output data of the three functions just
described for all the newforms of level N ≤ 500 and Nebentypus characters ε
whose orders satisfy ϕ(ord(ε)) ≤ 12 (i.e. such that the number field generated by
the values of ε has degree over Q bounded by 12), and such that the corresponding
field F has degree [F : Q] ≤ 4. In fact we are quite confident that our table contains
all the newforms in the given level range N ≤ 500 for which the corresponding field
F has degree up to 4, with no restriction on the Nebentypus character. Indeed, for
characters whose values generate extensions of degree larger than 12 we performed
the computations using modular symbols over finite fields instead of working over
number fields, and we did not find any modular form with [F : Q] ≤ 4 for these
characters of large degree; even though this reduction process seems to always
produce the right answers, we do not have a complete theoretical justification for
it.

From our computations we obtained

#{ f ∈ S2(N, ε) newform | N ≤ 500, ϕ(ord(ε)) ≤ 12, [F : Q] ≤ 4} = 5609.

The number of such forms that are newforms for Γ0(N), i.e., forms with trivial
Nebentypus character, is

#{ f ∈ S2(N) newform | N ≤ 500, [F : Q] ≤ 4} = 1750.

In the tables below we give some statistical information on properties of the
forms of the table and of the corresponding modular abelian varieties. The first
table gives the number of forms for each degree of F over Q, and also the number of
cases in which the algebra D = End0(Bf ) is equal to F or is a quaternion division
algebra over F .

[F : Q] total D = F D �= F
1 2610 2426 184
2 1613 1555 58
3 739 695 44
4 647 619 28

total 5609 5295 314

The next table gives the number of occurrences for every possible dimension r
of the group Ψ of quadratic degree characters found in the range of the tables. We
recall that this dimension corresponds to the size of the field KP , which is of degree
[KP : Q] = 2r. The data are also given in separate rows depending on the values
of the degree [F : Q].
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[F : Q] r = 0 r = 1 r = 2 r = 3
1 1767 663 172 8
2 1031 475 102 5
3 548 131 53 7
4 378 186 73 10

total 3724 1455 400 30

Finally, we tabulate the number of occurrences of trivial and nontrivial obstruc-
tion to descend the building block Bf to the field KP up to isogeny, separated for
RM-building blocks and for QM-building blocks.

[F : Q] D = F and obs �= 0 D �= F and obs �= 0
1 0 21
2 121 1
3 0 0
4 42 0

The two zeros occurring at odd degree in the column corresponding to RM-
building blocks are due to Ribet’s result [4, Corollary 4.5]. The fact that the other
two entries at this same column are nonzero is an answer to the question posed
by Ribet asking whether the hypothesis of the degree [F : Q] being odd is really
necessary in his result.

An example. The example of this behavior with smallest level N occurs at level
N = 33. Let ε be an even Dirichlet character of order 10 and conductor 33,
which is uniquely determined up to Galois conjugation. There is a unique newform
f =

∑
anqn in the space S2(33, ε) up to Galois conjugation. It has coefficients in

the cyclotomic field E = Q(e2πi/20), of degree 8. The form has four inner twists,
given by the characters 1, χ3, ε

−1 and ε−1χ3, with χ3 being the nontrivial character
modulo 3. The field F is Q(

√
5) and the field KP is Q(

√
−11).

The Q-simple abelian variety Af is of dimension 8 and it is isogenous to the
fourth power of a Q-simple abelian surface Bf , which is an RM-building block with
multiplications by Q(

√
5). The obstruction to descend this building block to KP

up to isogeny is the nontrivial element of Br(KP )[2] ramified at the two primes of
KP of norm 3. The smallest degree of a field over which this variety can be defined
up to isogeny is 4; for example, Q(

√
−11,

√
−3) is such a field.
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