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A STATISTICAL RELATION OF ROOTS OF A POLYNOMIAL
IN DIFFERENT LOCAL FIELDS

YOSHIYUKI KITAOKA

Abstract. Let f(x) be a monic polynomial in Z[x]. We observe a statistical
relation of roots of f(x) in different local fields Qp, where f(x) decomposes
completely. Based on this, we propose several conjectures.

1. Introduction and conjectures

Let n be an odd natural number, and consider prime numbers p such that p− 1
is divisible by n. Then the sum of n-th roots of unity in (Z/pZ)× is divisible by p,
and the quotient s(p) lies in the interval [1, n − 2]. In the previous paper ([1]), we
proposed a few conjectures on the distribution of s(p).

In this paper, we give a comprehensive viewpoint. For a polynomial

(1.1) f(x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x],

we put
Spl(f) = {p | f(x) mod p is completely decomposable},

where p denotes prime numbers. Let r1, . . . , rn (ri ∈ Z, 0 ≤ ri ≤ p−1) be solutions
of f(x) ≡ 0 mod p for p ∈ Spl(f); then an−1 +

∑
ri ≡ 0 mod p is clear. Thus there

exists an integer Cp(f) such that

(1.2) an−1 +
n∑

i=1

ri = Cp(f)p.

We stress that the local solutions are supposed to satisfy

(1.3) 0 ≤ ri ≤ p − 1 (ri ∈ Z).

To survey the situation, the proofs of the following will be gathered in the next
section.

Proposition 1.1. Let f(x) = x + a (a ∈ Z); then we have, for primes p with
finitely many possible exceptions,

(1.4) Cp(f) =
{

1 if a > 0,
0 if a ≤ 0.

The range of Cp(f) for a general case is given by
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Proposition 1.2. Suppose that f(x) = xn +an−1x
n−1 + · · ·+a1x+a0 ∈ Z[x] does

not have a linear factor in Q[x]. Then we have, for p ∈ Spl(f),

(1.5) 1 ≤ Cp(f) ≤ n − 1

except finitely many possible primes.

Remark 1.3. We have chosen the local solutions under the condition (1.3). When
we adopt the condition −1/2 ≤ ri/p < 1/2, we have

Cp(x + a) = 0

for any prime p (> |a|). Although it may seem desirable, in return, we lose our
good expectation in Section 4.

The following is the second exceptional case where we can evaluate Cp(f) ex-
plicitly.

Theorem 1.4. Let n be a natural number and let

f(x) =
2n∑
i=0

aix
i ∈ Z[x]

be a monic polynomial such that (i) f(x) does not have a linear factor in Q[x] and
(ii) there are polynomials f1(x), f2(x) such that f(x)=f1(f2(x)) with deg f2(x)=2.
Then we have

(1.6) Cp(f) = n (=
1
2

deg f(x))

for primes p ∈ Spl(f) with finitely many possible exceptions.

Let f(x) be a monic polynomial in Z[x]. To study the distribution of the values
Cp(f), we put, for 1 ≤ c ≤ deg f(x) − 1 and a positive number X,

Pr(c, f, X) =
#{p ∈ Spl(f) | p ≤ X, Cp(f) = c}

#{p ∈ Spl(f) | p ≤ X} ,

µ(f, X) =

∑
p∈Spl(f),p≤X Cp(f)

#{p ∈ Spl(f) | p ≤ X} ,

σ2(f, X) =

∑
p∈Spl(f),p≤X Cp(f)2

#{p ∈ Spl(f) | p ≤ X} − µ(f, X)2.

Let us give one more definition.

Definition 1.5. Let f(x) be a monic polynomial of deg f(x) ≥ 2 in Z[x]; then
there are monic polynomials f1(x), f2(x) ∈ Z[x] which satisfy f(x) = f1(f2(x)) and
deg f2(x) ≥ 2. We call the minimum among deg f2(x) the reduced degree of f(x),
and denote it by rd(f).

The reduced degree of the polynomial in Theorem 1.4 is 2, and the reduced degree
of xn−a is the least prime divisor of n. By definition, the reduced degree is greater
than 1, and the reduced degree of a polynomial of prime degree p is p. Using this
notation, the theorem above is rephrased as follows.
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Corollary 1.6. Let f(x) (∈ Z[x]) be a monic polynomial of rd(f) = 2 and suppose
that it does not have a linear factor in Q[x]. Then we have

limX→∞ Pr(c, f, X) =
{

1 if c = 1
2 deg f(x),

0 otherwise,
limX→∞ µ(f, X) = 1

2 deg f(x),
limX→∞ σ2(f, X) = 0.

This case seems exceptional.
Now we propose a conjecture based on data in Section 5 :

Conjecture 1.7. Let f(x) be a monic irreducible polynomial of degree n (≥ 3) in
Z[x]. We assume that the reduced degree of f(x) is not 2. Then

µ(f) := lim
X→∞

µ(f, X) = n/2,(1.7)

σ2(f) := lim
X→∞

σ2(f, X) = n/12,

and putting
Pr(c, f) := lim

X→∞
Pr(c, f, X),

the array of densities [Pr(1, f), . . . , P r(n−1, f)] depends only on the reduced degree
rd(f) of f(x). Moreover, the following is likely:

Pr(c, f) = 0 unless (deg f(x))/rd(f) ≤ c ≤ deg f(x) − (deg f(x))/rd(f)

and
Pr(k, f) = Pr(n − k, f) for all k,

Pr(1, f) ≤ Pr(2, f) ≤ · · · ≥ Pr(n − 2, f) ≥ Pr(n − 1, f),

that is, a symmetric unimodal sequence.

Remark 1.8. Let f(x) be a monic polynomial in Z[x]. We denote by K and Kf its
minimal splitting field of f(x) and the Galois closure of K over Q, respectively. For
a prime number p, we know that with finitely many possible exceptions, f(x) mod p
decomposes completely if and only if p decomposes fully in K, and hence in Kf .
Thus Chebotarev’s Density Theorem tells us that

#{p ∈ Spl(f) | p ≤ X}
X/ log X

∼ 1
[Kf : Q]

,

and hence

Pr(c, f, X) =
#{p ∈ Spl(f) | p ≤ X, Cp(f) = c}

#{p ∈ Spl(f) | p ≤ X}

∼ [Kf : Q]
#{p ∈ Spl(f) | p ≤ X, Cp(f) = c}

X/ log X
.

If f(x) = g(x)h(x) for monic polynomials g(x), h(x) ∈ Z[x], then

Cp(f) = Cp(g) + Cp(h)

is easy to see. Numerical data suggests that

Pr(c, g) = lim
X→∞

#{p ∈ Spl(g) ∩ Spl(h) | p ≤ X, Cp(g) = c}
#{p ∈ Spl(g) ∩ Spl(h) | p ≤ X} .
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2. Proofs

Proof of Proposition 1.1. Suppose that a prime number p is greater than |a|. If
a > 0, then the local solution mod p is p − a, and so Cp(f) = 1. If a ≤ 0, then the
local solution is −a, and Cp(f) = 0. �

Proof of Proposition 1.2. Let p ∈ Spl(f) and let ri ∈ Z be integral solutions of
f(x) ≡ 0 mod p with 0 ≤ ri ≤ p − 1. By the definition (1.2), we have

Cp(f)p ≥ an−1,

which yields Cp(f) ≥ 0 with finite exceptions. If Cp(f) = 0, then we have by (1.2),

0 ≤ r1 = −an−1 −
n∑

i=2

ri ≤ −an−1.

Therefore, if there exist infinitely many primes p ∈ Spl(f) such that Cp(f) = 0,
then there is an integer r by the pigeon hole principle such that 0 ≤ r ≤ −an−1 and
r = r1 for infinitely many primes, which means f(r) = 0 by f(r) = f(r1) ≡ 0 mod p.
This contradicts the assumption, and hence Cp(f) ≥ 1 with finitely many possible
exceptions.

Next, (1.2) implies
Cp(f)p ≤ an−1 + n(p − 1),

and so Cp(f) ≤ n with finitely many possible exceptions. If Cp(f) = n, then we
have by (1.2),

np ≤ an−1 + r1 + (n − 1)(p − 1),
and hence

1 ≤ p − r1 ≤ an−1 − (n − 1) ≤ an−1.

Hence, if there exist infinitely many primes p such that Cp(f) = n, then there is
an integer R such that 1 ≤ R ≤ an−1 and R = p − r1 for infinitely many primes
p. For such primes, we have f(−R) ≡ f(r1) ≡ 0 mod p, and so f(−R) = 0, which
contradicts the assumption on f(x). Thus we have Cp(f) ≤ n − 1 with finitely
many possible exceptions. �

Proof of Theorem 1.4. We may suppose that f1, f2 are monic and f2(x) = (x+ a)2

for some rational number a. Then we have

f(x) = ((x + a)2)n + cn−1((x + a)2)n−1 + · · · (ci ∈ Q),

and hence a2n−1 = 2na. The above means that g(x) := f(x − a) is an even
polynomial and then g(x) = g(−x), i.e., f(x− a) = f(−x− a). Substituting x = a,
we have f(0) = f(−2a), which means that −2a is a root of a monic polynomial
f(x) − f(0) ∈ Z[x]. Thus 2a is an integer:

(2.1) a = a2n−1/2n ∈ Z/2.

Let p ∈ Spl(f) and f(−a) /∈ pZp. First we assume a ∈ Z and let ±ri (i = 1, . . . , n)
be solutions of f(x − a) ≡ 0 mod p; then −a ± ri are solutions of f(x) ≡ 0 mod p.
Take an integer Ri such that

−a + ri ≡ Ri mod p and 0 ≤ Ri ≤ p − 1.

Then we have −a − ri ≡ −2a − Ri mod p, and Ri,−2a − Ri (i = 1, . . . , n) are
solutions of f(x) ≡ 0 mod p. Let us show that

(2.2) −p + 1 ≤ −2a − Ri ≤ −1
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with finitely many possible exceptions. If −2a − Ri ≥ 0 for infinitely many primes
p ∈ Spl(f), then we have 0 ≤ Ri ≤ −2a for the same primes, and hence there
is an integer R such that 0 ≤ R ≤ −2a and R = Ri for infinitely many primes
p ∈ Spl(f). This R satisfies f(R) = f(Ri) ≡ 0 mod p for infinitely many primes p,
which yields f(R) = 0. Thus we have the contradiction, and hence −2a−Ri ≤ −1.
If −2a − Ri ≤ −p for infinitely many primes p ∈ Spl(f), then we have −2a ≤
Ri − p ≤ −1 for the same primes, and hence there is an integer R′ such that
−2a ≤ R′ ≤ −1 and R′ = Ri − p for infinitely many primes p ∈ Spl(f). This R′

satisfies f(R′) ≡ f(Ri) ≡ 0 mod p for infinitely many primes p, which yields the
contradiction f(R′) = 0. Thus we have shown (2.2) with finitely many possible
exceptions, and then R1, . . . , Rn and p − 2a − R1, . . . , p − 2a − Rn are all roots in
[0, p − 1] of f(x) mod p. Hence we have

Cp(f) = (an−1 +
∑

Ri +
∑

(p − 2a − Ri))/p

= (an−1 + np − 2an)/p

= n

by (2.1).
Next, we assume a ∈ Z/2\Z and put a = b+1/2 (b ∈ Z). We consider the above

argument over Zp/pZp instead of Z/pZ; then a ≡ b − (p− 1)/2 mod p is clear. Let
±ri (i = 1, . . . , n) be solutions of f(x − a) ≡ 0 mod p; then −b + (p − 1)/2 ± ri (≡
−a ± ri mod p) are all integral solutions of f(x) ≡ 0 mod p. Take an integer Ri

such that

−b + (p − 1)/2 + ri ≡ Ri mod p and 0 ≤ Ri ≤ p − 1.

Then we have −b + (p − 1)/2 − ri ≡ −2b − 1 − Ri mod p and Ri,−2b − 1 − Ri

(i = 1, . . . , n) are all solutions of f(x) ≡ 0 mod p. Let us show

(2.3) 0 ≤ p − 2b − 1 − Ri ≤ p − 1

with finitely many exceptions. Suppose p − 2b − 1 − Ri ≥ p; then we have 0 ≤
Ri ≤ −2b − 1. If this is true for infinitely many primes p, then there is an integer
R such that 0 ≤ R ≤ −2b − 1 and R = Ri for infinitely many primes. Therefore,
f(R) = f(Ri) ≡ 0 mod p for infinitely many primes, which implies the contradiction
f(R) = 0.

Suppose p− 2b− 1−Ri ≤ −1; then −2b ≤ Ri − p ≤ −1. If there exist infinitely
many such primes, then there exists an integer R′ such that −2b ≤ R′ ≤ −1 and
R′ = Ri − p for infinitely many primes. Hence f(R′) ≡ f(Ri) ≡ 0 mod p for
infinitely many primes. This is the contradiction and we have shown (2.3). Now
we have, with the condition (2.3),

Cp(f) = (an−1 +
∑

Ri +
∑

(p − 2b − 1 − Ri))/p

= (an−1 + np − 2an)/p

= n,

which completes the proof. �
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3. Miscellaneous remarks

Let us give some remarks. The following conjecture was stated in Remark 2 in
[1].

Conjecture 3.1. Let F = Q(α) ( �= Q) be an algebraic number field with an alge-
braic integer α, and let k be a non-negative integer. For a prime number p which
decomposes fully in F and a prime ideal p lying above p, we write in Fp = Qp

α = cp(0) + cp(1)p + · · · (cp(i) ∈ Z, 0 ≤ cp(i) < p).

Then the points (cp(0)/p, cp(1)/p, . . . , cp(k)/p)(∈ [0, 1)k+1) distribute uniformly
when p, p run over those above.

The conjectures of the average and the variance in Conjecture 1.7 are intuitively
supported by Conjecture 3.1 and Theorem 2 in [1], which is quoted below for
convenience as

Theorem 3.2. Let x1, x2, . . . , xn be random variables on R obeying the uniform
distribution I(0, 1), or what amounts to the same, their distribution functions are
all equal to the set-theoretical characteristic function of [0, 1]. Then, putting

Xn =
1√
n

(x1 + x2 + · · · + xn − n/2),

X = limn→∞ Xn determines a normal distribution on R with mean 0 and with

variance
1
12

.

Indeed, we can show that Conjecture 3.1 yields the assertion on the average as
follows.

Proposition 3.3. Let f(x) be a monic irreducible polynomial in Z[x] and suppose
n = deg f(x) ≥ 2. Assuming Conjecture 3.1, we have

µ(f) = n/2.

The proof is quite similar to the proof of Proposition 1 in [1].
The following gives a connection between Conjecture 4 in [1] and the viewpoint

in this paper.

Proposition 3.4. Let m (≥ 2) be a natural number and put n = 3m and f(x) =
(x3)m−1 + · · · + x3 + 1, g(x) = xn − 1. Then

(3.1) µ(g) = (deg g(x) − 1)/2, σ2(g) = (deg g(x) − 3)/12

is true if and only if

µ(f) =
1
2

deg f(x), σ2(f) =
1
12

deg f(x).

Proof. First, we note that
g(x) = (x3 − 1)f(x).

Spl(g) ⊂ Spl(f) is clear. To see the converse, let p ∈ Spl(f). Suppose that the
order of any solution r of f(x) ≡ 0 mod p is relatively prime to 3; then any solution
r of f(x) ≡ 0 mod p is a root of xm − 1 ≡ 0 mod p, since rn ≡ 1 mod p. This is the
contradiction, because deg f(x) = 3m−3 > m. Thus there is a root r such that the
order of 〈r〉 is divisible by 3 and hence x3 − 1 mod p is completely decomposable,
and hence Spl(g) = Spl(f). Let ri (0 ≤ ri ≤ p − 1) be roots of f(x) mod p and let
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{1, R1, R2} (0 ≤ Ri ≤ p − 1) be roots of x3 − 1 = (x − 1)(x2 + x + 1) mod p; then
we have, by the definition

Cp(g) = (1 + R1 + R2 +
∑

ri)/p = Cp(x2 + x + 1) + Cp(f).

Hence Theorem 1.4 implies Cp(g) = 1+Cp(f) with finitely many exceptional primes
p, which yields

µ(g) = µ(f) + 1, σ2(g) = σ2(f),

which completes the proof. �

Remark 3.5. In the above proposition, (3.1) is the assertion in Conjecture 4 in [1],
if n is odd.

Remark 3.6. Although we considered carrying at the first digit only, it is possible
to consider it at every digit. Let r1, . . . , rn be solutions of f(x) ≡ 0 mod pi; then
an−1 +

∑
rj ≡ 0 mod pi holds, and so we can consider (an−1 +

∑
rj)/pi instead of

Cp(f). Let µi(f), σ2
i (f), P ri(c, f) be those defined at the i-th digit similarly to the

case i = 1. We expect that they are independent of i and the product Pr1(c1, f) · · ·
Prm(cm, f) is equal to the density Pr([c1, . . . , cm], f), which is the density similarly
defined for the array [c1, . . . , cm] with the carried integer ci at the i-th digit.

4. Rational approximation of expected density

In this section, we discuss approximating the expected densities by rationals.
Let f(x) be a monic polynomial of rd(f) = 2 such that f(x) does not have a

linear factor in Q[x]; then we already know by Theorem 1.4 that

Cp(f) =
1
2

deg f(x).

Let f be an irreducible monic polynomial of degree 3m in Z[x]. If the reduced
degree is 3, Pr(c, f) is likely to be as follows:

Pr(c, f) =

⎧⎪⎨
⎪⎩

2−m

(
m

c − m

)
if m ≤ c ≤ 2m,

0 otherwise.

The data for n = 3, 6, 9, 12, 15 in the next section support this.
Similarly, in Tables 5 and 6 in [1], when n = 3m, densities seem to be approxi-

mated by ⎧⎪⎨
⎪⎩

2−(m−1)

(
m − 1
s − m

)
if m ≤ s ≤ 2m − 1,

0 otherwise.

Professor Yukari Kosugi perceived that the densities in Tables 10 and 6 of [1]
are approximated by Eulerian numbers if n is a prime number. Let us introduce
this. Let A(1, 1) = 1 and let A(n, k) (1 ≤ k ≤ n) be defined by

A(n, k) = (n − k + 1)A(n − 1, k − 1) + kA(n − 1, k).
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Their values are:

n \ k 1 2 3 4 5 6 7 8 9
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
7 1 12 1191 2416 1191 12 1
8 1 247 4293 15619 15619 4293 247 1
9 1 502 14608 88234 15619 88234 14608 502 1

In the tables referred above, the densities are well approximated by

A(n − 2, s)/(n − 2)!

when n is prime. Following her great insight, we easily see that the density Pr(c, f)
is well approximated by

A(deg f(x) − 1, c)/(deg f(x) − 1)!

if rd(f) = deg f(x) (cf. Section 5 below).
What is expected if 4 ≤ rd(f) < deg f? (Cf. f3, f4 in 5.6.)

5. Numerical data

5.1. n = 3. In the following table, µ, σ2, P r(c) are the abbreviation of µ(f, 109),
σ2(f, 109), Pr(c, f, 109) and #Spl = #Spl(f, 109). The expected values of µ(f),
σ2(f), Pr(c, f) are in the last line. We use these abbreviations hereafter if we do
not refer, and the values are rounded off to four decimal places.

f µ σ2 Pr(1) Pr(2) #Spl
x3 − x − 1 1.500 0.2500 0.4998 0.5002 8474030
x3 + x2 + x − 1 1.500 0.2500 0.5002 0.4998 8472910
x3 − 3x + 1 1.500 0.2500 0.4999 0.5001 16949354
x3 + x2 − 4x + 1 1.500 0.2500 0.4999 0.5001 16948980

n/2 = 1.5 n/12 = 0.25 1/2 1/2

5.2. n = 4. The reduced degrees of the following polynomials are 4. We put

f1 = x4 − x3 − x2 − x − 1,

f2 = x4 − x3 − x2 + x + 1,

f3 = x4 + x3 + x2 + x + 1.

f µ σ2 Pr(1) Pr(2) Pr(3) #Spl
f1 2.000 0.3333 0.1664 0.6667 0.1669 2118177
f2 2.000 0.3333 0.1667 0.6667 0.1666 6354490
f3 2.000 0.3333 0.1666 0.6667 0.1667 12711386

n/2 = 2 n/12 = 0.3333 1/6 4/6 1/6

Since x5 − 1 = (x − 1)(x4 + x3 + x2 + x + 1), we have Cp(x5 − 1) = Cp(x4 +
x3 + x2 + x + 1) and so the average, the variance, and the density are the same for
x5 − 1 and x4 + x3 + x2 + x + 1. Indeed, the data for x4 + x3 + x2 + x + 1 here and
the data for n = 5, x = 109 in [1] are compatible.
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5.3. n = 5. We put

f1 = x5 − x3 − x2 − x + 1,

f2 = x5 − x4 − x2 − x + 1,

f3 = x5 + x4 − x2 − x + 1,

f4 = x5 + x4 − 4x3 − 3x2 + 3x + 1.

f µ σ2

f1 2.501 0.4169
f2 2.497 0.4177
f3 2.501 0.4161
f4 2.500 0.4169

n/2 = 2.5 n/12 = 0.4167

Pr(1) Pr(2) Pr(3) Pr(4) #Spl
0.04160 0.4578 0.4587 0.04187 423981
0.04228 0.4600 0.4561 0.04157 423719
0.04110 0.4590 0.4579 0.04193 422711
0.04180 0.4582 0.4584 0.04167 10169695

1/24 = 0.04167 11/24 = 0.4583 11/24 1/24

5.4. n = 6. We put

f1 = x6 + x + 1,

f2 = x6 + x5 + x4 + x3 + x2 + x + 1,

f3 = x6 + 2x5 + x4 + x3 + x2 + 1 = (x3 + x2)2 + (x3 + x2) + 1,

f4 = x6 + 2x4 + x3 + x2 + x + 2 = (x3 + x)2 + (x3 + x) + 2.

The reduced degree of f1, f2 is 6.

f µ σ2

f1 3.005 0.5012
f2 3.000 0.5000

6/2 6/12

Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) #Spl
0.0086 0.2135 0.5513 0.2177 0.0089 70292
0.0084 0.2164 0.5501 0.2167 0.0083 8474221
1/120 26/120 66/120 26/120 1/120

= 0.0083 = 0.2167 = 0.5500

Since x7 − 1 = (x − 1)(x6 + x5 + x4 + x3 + x2 + x + 1) = (x − 1)f2, we have
Cp(x7−1) = Cp(f2) and so the average, the variance, and the density are the same
for x7 − 1 and f2. Indeed, the data for f2 here and the data for n = 7, x = 109 in
[1] are compatible.
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The reduced degree of f3, f4 is 3.

f µ σ2

f3 3.001 0.5003
f4 2.999 0.5004

6/2 6/12

Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) #Spl
0 0.2497 0.4997 0.2506 0 705553
0 0.2506 0.4996 0.2498 0 706369
0 1/4 1/2 1/4 0

5.5. n = 7. We put

f1 = x7 − x5 − x4 − x3 − x2 − x + 1,

f2 = x7 + x6 − x5 − x4 − x3 − x2 − x + 1,

f3 = x7 + x6 − 12x5 − 7x4 + 28x3 + 14x2 − 9x + 1.

f µ σ2

f1 3.495 0.5969
f2 3.501 0.5792
f3 3.500 0.5832

7/2 7/12 = 0.5833

Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) Pr(6) #Spl
0.0016 0.0823 0.4206 0.4113 0.0832 0.0011 10076
0.0017 0.0779 0.4189 0.4228 0.0775 0.0014 9994
0.0014 0.0790 0.4192 0.4198 0.0792 0.0014 7264359
1/6! 57/6! 302/6!

= 0.0014 = 0.0792 = 0.4194

5.6. n = 8. We put

f1 = x8 + x + 2,

f2 = x8 + x7 − 7x6 − 6x5 + 15x4 + 10x3 − 10x2 − 4x + 1,

f3 = (x4 + x)2 + 1,

f4 = (x4 + x2 + x)2 + 2.

The reduced degree of f1, f2 (resp. f3, f4) is 8 (resp. 4).

f µ σ2

f1 3.989 0.6587
f2 3.999 0.6671

8/2 = 4 8/12 = 0.6667

Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) Pr(6) Pr(7) #Spl
0 0.0204 0.2514 0.4686 0.2376 0.0220 0 1225

0.0002 0.0240 0.2364 0.4793 0.2361 0.0238 0.0002 6354766
0.0002 0.0238 0.2363 0.4794 0.2363 0.0238 0.0002
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Here the last row is A(7, c)/7!.

f µ σ2

f3 4.004 0.6599
f4 3.994 0.6655

8/2 = 4 8/12 = 0.6667

Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) Pr(6) Pr(7) #Spl
0 0.0267 0.2203 0.5028 0.2227 0.0276 0 44089
0 0.0288 0.2221 0.5020 0.2200 0.0270 0 44112
0 1/36 8/36 18/36 8/36 1/36 0

For a reducible polynomial f = x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1 =
(x2 + x + 1)(x6 + x3 + 1), the data for n = 9 in [1] means the following:

Pr(1) Pr(2) Pr(3) Pr(4) Pr(5) Pr(6) Pr(7)
0 0 0.24993 0.50014 0.24993 0 0

Put g = x2 +x+1, h = x6 +x3 +1; since Spl(h) ⊂ Spl(g) and Cp(c, f) = 1+Cp(h),
the table above is compatible with the expectation in Section 4, noting that the
reduced degree of h(x) is three.

5.7. n = 9. We put

f1 = x9 + x + 1,

f2 = x9 + x8 − 8x7 − 7x6 + 21x5 + 15x4 − 20x3 − 10x2 + 5x + 1,

f3 = (x3 + x)3 + 2,

f4 = (x3 + x)3 + (x3 + x)2 + 1.

The reduced degree of f1, f2 (resp. f3, f4) is 9 (resp. 3).

f µ σ2

f1 4.506 0.6859
f2 4.500 0.7500
f3 4.491 0.7448
f4 4.502 0.7499

9/2 = 4.5 9/12 = 0.75

f1 f2 f3 f4

Pr(1) 0 0.0000 0 0
Pr(2) 0.0064 0.0061 0 0
Pr(3) 0.1026 0.1064 0.1267 0.1240
Pr(4) 0.3654 0.3871 0.3768 0.3763
Pr(5) 0.4295 0.3877 0.3758 0.3737
Pr(6) 0.0962 0.1065 0.1208 0.1259
Pr(7) 0 0.0061 0 0
Pr(8) 0 0.0000 0 0
#Spl 156 5649358 38912 38802
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The following is the table of A(8, c)/8!:

c 1 2 3 4 5 6 7 8
0.0000 0.0061 0.1065 0.3874 0.3874 0.1065 0.0061 0.0000

5.8. n = 10. We put

f1 = x10 + x + 1,

f2 = x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1,

f3 = x10 + x5 + 2,

f4 = x10 + 3x5 + 3.

The reduced degree of f1, f2 is 10, and the one of f3, f4 is 5.

f µ σ2

f1 5.364 0.7769
f2 5.000 0.8339
f3 4.998 0.8362
f4 5.000 0.8339

10/2 = 5 10/12 = 0.8333

f1 f2 f3 f4

Pr(1) 0 0.0000 0 0
Pr(2) 0 0.0014 0.0018 0.0018
Pr(3) 0 0.0403 0.0387 0.0383
Pr(4) 0.1818 0.2432 0.2483 0.2477
Pr(5) 0.3636 0.4302 0.4235 0.4239
Pr(6) 0.3636 0.2432 0.2475 0.2483
Pr(7) 0.0909 0.0404 0.0385 0.0382
Pr(8) 0 0.0014 0.0017 0.0017
Pr(9) 0 0.0000 0 0
#Spl 11 5084435 254385 1271165

The following is the table of A(9, c)/9!:

c 1 2 3 4 5 6 7 8 9
0.0000 0.0014 0.0403 0.2431 0.4304 0.2431 0.0403 0.0014 0.0000

5.9. n = 12. We put

f1 = (x13 − 1)/(x − 1),
f2 = (x6 + x)2 + (x6 + x) + 1,

f3 = (x4 + x)3 − 3(x4 + x) + 1,

f4 = (x3 + x)4 + (x3 + x)3 + (x3 + x)2 + (x3 + x) + 1.

The reduced degree of f1, f2, f3, f4 is 12, 6, 4, 3, respectively.

f µ σ2

f1 6.000 0.9993
f2 5.796 1.125
f3 6.073 1.004
f4 5.996 0.9891

12/2 = 6 12/12 = 1
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f1 f2 f3 f4

Pr(1) 0.0000 0 0 0 0
Pr(2) 0.0001 0 0 0 0
Pr(3) 0.0038 0 0.0031 0 0
Pr(4) 0.0550 0.1296 0.0541 0.0605 0.0625
Pr(5) 0.2444 0.2593 0.2085 0.2556 0.25
Pr(6) 0.3938 0.3333 0.4093 0.3707 0.375
Pr(7) 0.2438 0.2407 0.2556 0.2537 0.25
Pr(8) 0.0553 0.0370 0.0649 0.0594 0.0625
Pr(9) 0.0038 0 0.0046 0 0
Pr(10) 0.0001 0 0 0 0
Pr(11) 0 0 0 0 0
#Spl 4237228 54 1295 9862

On the right column, the values 2−4
(

4
k−4

)
for 4 ≤ k ≤ 8 are given, and the following

is the table of A(11, c)/11! for 1 ≤ c ≤ 6:

c 1 2 3 4 5 6
0.0000 0.0001 0.0038 0.0552 0.2440 0.3939

5.10. n = 15. We put

f1 = x15 + x14 − 14x13 − 13x12 + 78x11 + 66x10 − 220x9

−165x8 + 330x7 + 210x6 − 252x5 − 126x4 + 84x3

+28x2 − 8x − 1,

f2 = x15 − 3x5 + 1,

f3 = x15 + x10 − 2x5 − 1,

f4 = x15 + x12 − 4x9 − 3x6 + 3x3 + 1,

f5 = x15 + x12 − 12x9 − 21x6 + x3 + 5,

The reduced degree of f1 is 15, and the reduced degrees of f2, f3 (resp. f4, f5) are
5 (resp. 3).

f µ σ2

f1 7.500 1.250
f2 7.502 1.245
f3 7.502 1.250
f4 7.498 1.246
f5 7.514 1.239

15/2 = 7.5 15/12 = 1.25
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f1 f2 f3 f4 f5

Pr(1) 0.0000 0 0 0 0 0
Pr(2) 0 0 0 0 0 0
Pr(3) 0.0001 0.0001 0.0001 0 0 0
Pr(4) 0.0023 0.0025 0.0024 0 0 0
Pr(5) 0.0295 0.0278 0.0280 0.0314 0.0312 1/32 = 0.0313
Pr(6) 0.1472 0.1491 0.1495 0.1553 0.1504 5/32 = 0.1563
Pr(7) 0.3206 0.3195 0.3200 0.3139 0.3117 10/32 = 0.3125
Pr(8) 0.3212 0.3205 0.3190 0.3139 0.3171 10/32 = 0.3125
Pr(9) 0.1474 0.1498 0.1500 0.1542 0.1590 5/32 = 0.1563
Pr(10) 0.0294 0.0283 0.0284 0.0314 0.0305 1/32 = 0.0313
Pr(11) 0.0023 0.0024 0.0026 0 0 0
Pr(12)) 0.0000 0.0000 0.0001 0 0 0
Pr(13) 0 0 0 0 0 0
Pr(14) 0 0 0 0 0 0
#Spl 3389785 169310 169660 62503 20581

The following is the table of A(14, c)/14! for 1 ≤ c ≤ 7:

c 1 2 3 4 5 6 7
0.0000 0.0000 0.0001 0.0023 0.0295 0.1473 0.3209
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