A STATISTICAL RELATION OF ROOTS OF A POLYNOMIAL IN DIFFERENT LOCAL FIELDS

YOSHIYUKI KITAOKA

ABSTRACT. Let f(x) be a monic polynomial in $\mathbb{Z}[x]$. We observe a statistical relation of roots of f(x) in different local fields \mathbb{Q}_p , where f(x) decomposes completely. Based on this, we propose several conjectures.

1. INTRODUCTION AND CONJECTURES

Let *n* be an odd natural number, and consider prime numbers *p* such that p-1 is divisible by *n*. Then the sum of *n*-th roots of unity in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is divisible by *p*, and the quotient $\mathfrak{s}(p)$ lies in the interval [1, n-2]. In the previous paper ([1]), we proposed a few conjectures on the distribution of $\mathfrak{s}(p)$.

In this paper, we give a comprehensive viewpoint. For a polynomial

(1.1)
$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \in \mathbb{Z}[x],$$

we put

$$Spl(f) = \{p \mid f(x) \mod p \text{ is completely decomposable}\},\$$

where p denotes prime numbers. Let r_1, \ldots, r_n $(r_i \in \mathbb{Z}, 0 \le r_i \le p-1)$ be solutions of $f(x) \equiv 0 \mod p$ for $p \in Spl(f)$; then $a_{n-1} + \sum r_i \equiv 0 \mod p$ is clear. Thus there exists an integer $C_p(f)$ such that

(1.2)
$$a_{n-1} + \sum_{i=1}^{n} r_i = C_p(f)p$$

We stress that the local solutions are supposed to satisfy

(1.3)
$$0 \le r_i \le p - 1 \quad (r_i \in \mathbb{Z}).$$

To survey the situation, the proofs of the following will be gathered in the next section.

Proposition 1.1. Let f(x) = x + a $(a \in \mathbb{Z})$; then we have, for primes p with finitely many possible exceptions,

(1.4)
$$C_p(f) = \begin{cases} 1 & if \ a > 0, \\ 0 & if \ a \le 0. \end{cases}$$

The range of $C_p(f)$ for a general case is given by

©2008 American Mathematical Society

Received by the editor May 7, 2007 and, in revised form, December 10, 2007.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11K99, 11C08, 11Y05.

Key words and phrases. Statistics, roots of polynomial, local field.

The author was partially supported by Grant-in-Aid for Scientific Research (C), The Ministry of Education, Science, Sports and Culture.

Proposition 1.2. Suppose that $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \in \mathbb{Z}[x]$ does not have a linear factor in $\mathbb{Q}[x]$. Then we have, for $p \in Spl(f)$,

$$(1.5) 1 \le C_p(f) \le n-1$$

except finitely many possible primes.

Remark 1.3. We have chosen the local solutions under the condition (1.3). When we adopt the condition $-1/2 \le r_i/p < 1/2$, we have

$$C_p(x+a) = 0$$

for any prime p(>|a|). Although it may seem desirable, in return, we lose our good expectation in Section 4.

The following is the second exceptional case where we can evaluate $C_p(f)$ explicitly.

Theorem 1.4. Let n be a natural number and let

$$f(x) = \sum_{i=0}^{2n} a_i x^i \in \mathbb{Z}[x]$$

be a monic polynomial such that (i) f(x) does not have a linear factor in $\mathbb{Q}[x]$ and (ii) there are polynomials $f_1(x), f_2(x)$ such that $f(x) = f_1(f_2(x))$ with deg $f_2(x) = 2$. Then we have

(1.6)
$$C_p(f) = n \ (= \frac{1}{2} \deg f(x))$$

for primes $p \in Spl(f)$ with finitely many possible exceptions.

Let f(x) be a monic polynomial in $\mathbb{Z}[x]$. To study the distribution of the values $C_p(f)$, we put, for $1 \le c \le \deg f(x) - 1$ and a positive number X,

$$Pr(c, f, X) = \frac{\#\{p \in Spl(f) \mid p \leq X, C_p(f) = c\}}{\#\{p \in Spl(f) \mid p \leq X\}},$$

$$\mu(f, X) = \frac{\sum_{p \in Spl(f), p \leq X} C_p(f)}{\#\{p \in Spl(f) \mid p \leq X\}},$$

$$\sigma^2(f, X) = \frac{\sum_{p \in Spl(f), p \leq X} C_p(f)^2}{\#\{p \in Spl(f) \mid p \leq X\}} - \mu(f, X)^2.$$

Let us give one more definition.

Definition 1.5. Let f(x) be a monic polynomial of deg $f(x) \ge 2$ in $\mathbb{Z}[x]$; then there are monic polynomials $f_1(x), f_2(x) \in \mathbb{Z}[x]$ which satisfy $f(x) = f_1(f_2(x))$ and deg $f_2(x) \ge 2$. We call the minimum among deg $f_2(x)$ the reduced degree of f(x), and denote it by rd(f).

The reduced degree of the polynomial in Theorem 1.4 is 2, and the reduced degree of $x^n - a$ is the least prime divisor of n. By definition, the reduced degree is greater than 1, and the reduced degree of a polynomial of prime degree p is p. Using this notation, the theorem above is rephrased as follows.

Corollary 1.6. Let $f(x) (\in \mathbb{Z}[x])$ be a monic polynomial of rd(f) = 2 and suppose that it does not have a linear factor in $\mathbb{Q}[x]$. Then we have

$$\lim_{X \to \infty} Pr(c, f, X) = \begin{cases} 1 & \text{if } c = \frac{1}{2} \deg f(x), \\ 0 & \text{otherwise,} \end{cases}$$
$$\lim_{X \to \infty} \mu(f, X) = \frac{1}{2} \deg f(x),$$
$$\lim_{X \to \infty} \sigma^2(f, X) = 0.$$

This case seems exceptional.

Now we propose a conjecture based on data in Section 5 :

Conjecture 1.7. Let f(x) be a monic irreducible polynomial of degree $n (\geq 3)$ in $\mathbb{Z}[x]$. We assume that the reduced degree of f(x) is not 2. Then

(1.7)
$$\mu(f) := \lim_{X \to \infty} \mu(f, X) = n/2,$$
$$\sigma^2(f) := \lim_{X \to \infty} \sigma^2(f, X) = n/12,$$

and putting

$$Pr(c, f) := \lim_{X \to \infty} Pr(c, f, X),$$

the array of densities $[Pr(1, f), \ldots, Pr(n-1, f)]$ depends only on the reduced degree rd(f) of f(x). Moreover, the following is likely:

$$Pr(c,f) = 0 \ unless \ (\deg f(x))/rd(f) \le c \le \deg f(x) - (\deg f(x))/rd(f)$$

and

$$Pr(k, f) = Pr(n - k, f) \quad \text{for all } k,$$
$$Pr(1, f) \le Pr(2, f) \le \dots \ge Pr(n - 2, f) \ge Pr(n - 1, f),$$

that is, a symmetric unimodal sequence.

Remark 1.8. Let f(x) be a monic polynomial in $\mathbb{Z}[x]$. We denote by K and K_f its minimal splitting field of f(x) and the Galois closure of K over \mathbb{Q} , respectively. For a prime number p, we know that with finitely many possible exceptions, $f(x) \mod p$ decomposes completely if and only if p decomposes fully in K, and hence in K_f . Thus Chebotarev's Density Theorem tells us that

$$\frac{\#\{p \in Spl(f) \mid p \le X\}}{X/\log X} \sim \frac{1}{[K_f : \mathbb{Q}]},$$

and hence

$$Pr(c, f, X) = \frac{\#\{p \in Spl(f) \mid p \leq X, C_p(f) = c\}}{\#\{p \in Spl(f) \mid p \leq X\}}$$
$$\sim [K_f : \mathbb{Q}] \frac{\#\{p \in Spl(f) \mid p \leq X, C_p(f) = c\}}{X/\log X}.$$

If f(x) = g(x)h(x) for monic polynomials $g(x), h(x) \in \mathbb{Z}[x]$, then

$$C_p(f) = C_p(g) + C_p(h)$$

is easy to see. Numerical data suggests that

$$Pr(c,g) = \lim_{X \to \infty} \frac{\#\{p \in Spl(g) \cap Spl(h) \mid p \le X, C_p(g) = c\}}{\#\{p \in Spl(g) \cap Spl(h) \mid p \le X\}}.$$

YOSHIYUKI KITAOKA

2. Proofs

Proof of Proposition 1.1. Suppose that a prime number p is greater than |a|. If a > 0, then the local solution mod p is p - a, and so $C_p(f) = 1$. If $a \le 0$, then the local solution is -a, and $C_p(f) = 0$.

Proof of Proposition 1.2. Let $p \in Spl(f)$ and let $r_i \in \mathbb{Z}$ be integral solutions of $f(x) \equiv 0 \mod p$ with $0 \leq r_i \leq p-1$. By the definition (1.2), we have

$$C_p(f)p \ge a_{n-1},$$

which yields $C_p(f) \ge 0$ with finite exceptions. If $C_p(f) = 0$, then we have by (1.2),

$$0 \le r_1 = -a_{n-1} - \sum_{i=2}^n r_i \le -a_{n-1}.$$

Therefore, if there exist infinitely many primes $p \in Spl(f)$ such that $C_p(f) = 0$, then there is an integer r by the pigeon hole principle such that $0 \le r \le -a_{n-1}$ and $r = r_1$ for infinitely many primes, which means f(r) = 0 by $f(r) = f(r_1) \equiv 0 \mod p$. This contradicts the assumption, and hence $C_p(f) \ge 1$ with finitely many possible exceptions.

Next, (1.2) implies

$$C_p(f)p \le a_{n-1} + n(p-1),$$

and so $C_p(f) \leq n$ with finitely many possible exceptions. If $C_p(f) = n$, then we have by (1.2),

$$np \le a_{n-1} + r_1 + (n-1)(p-1),$$

and hence

$$1 \le p - r_1 \le a_{n-1} - (n-1) \le a_{n-1}.$$

Hence, if there exist infinitely many primes p such that $C_p(f) = n$, then there is an integer R such that $1 \leq R \leq a_{n-1}$ and $R = p - r_1$ for infinitely many primes p. For such primes, we have $f(-R) \equiv f(r_1) \equiv 0 \mod p$, and so f(-R) = 0, which contradicts the assumption on f(x). Thus we have $C_p(f) \leq n - 1$ with finitely many possible exceptions.

Proof of Theorem 1.4. We may suppose that f_1, f_2 are monic and $f_2(x) = (x+a)^2$ for some rational number a. Then we have

$$f(x) = ((x+a)^2)^n + c_{n-1}((x+a)^2)^{n-1} + \cdots + (c_i \in \mathbb{Q}),$$

and hence $a_{2n-1} = 2na$. The above means that g(x) := f(x-a) is an even polynomial and then g(x) = g(-x), i.e., f(x-a) = f(-x-a). Substituting x = a, we have f(0) = f(-2a), which means that -2a is a root of a monic polynomial $f(x) - f(0) \in \mathbb{Z}[x]$. Thus 2a is an integer:

$$(2.1) a = a_{2n-1}/2n \in \mathbb{Z}/2$$

Let $p \in Spl(f)$ and $f(-a) \notin p\mathbb{Z}_p$. First we assume $a \in \mathbb{Z}$ and let $\pm r_i$ (i = 1, ..., n) be solutions of $f(x - a) \equiv 0 \mod p$; then $-a \pm r_i$ are solutions of $f(x) \equiv 0 \mod p$. Take an integer R_i such that

$$-a + r_i \equiv R_i \mod p$$
 and $0 \leq R_i \leq p - 1$.

Then we have $-a - r_i \equiv -2a - R_i \mod p$, and $R_i, -2a - R_i$ (i = 1, ..., n) are solutions of $f(x) \equiv 0 \mod p$. Let us show that

$$(2.2) -p+1 \le -2a - R_i \le -1$$

with finitely many possible exceptions. If $-2a - R_i \ge 0$ for infinitely many primes $p \in Spl(f)$, then we have $0 \le R_i \le -2a$ for the same primes, and hence there is an integer R such that $0 \le R \le -2a$ and $R = R_i$ for infinitely many primes $p \in Spl(f)$. This R satisfies $f(R) = f(R_i) \equiv 0 \mod p$ for infinitely many primes p, which yields f(R) = 0. Thus we have the contradiction, and hence $-2a - R_i \le -1$. If $-2a - R_i \le -p$ for infinitely many primes $p \in Spl(f)$, then we have $-2a \le R_i - p \le -1$ for the same primes, and hence there is an integer R' such that $-2a \le R' \le -1$ and $R' = R_i - p$ for infinitely many primes $p \in Spl(f)$. This R' satisfies $f(R') \equiv f(R_i) \equiv 0 \mod p$ for infinitely many primes p, which yields the contradiction $f(R') \equiv f(R_i) \equiv 0 \mod p$ for infinitely many primes p, which yields the contradiction f(R') = 0. Thus we have shown (2.2) with finitely many possible exceptions, and then R_1, \ldots, R_n and $p - 2a - R_1, \ldots, p - 2a - R_n$ are all roots in [0, p - 1] of $f(x) \mod p$. Hence we have

$$C_p(f) = (a_{n-1} + \sum R_i + \sum (p - 2a - R_i))/p$$

= $(a_{n-1} + np - 2an)/p$
= n

by (2.1).

Next, we assume $a \in \mathbb{Z}/2 \setminus \mathbb{Z}$ and put a = b + 1/2 ($b \in \mathbb{Z}$). We consider the above argument over $\mathbb{Z}_p/p\mathbb{Z}_p$ instead of $\mathbb{Z}/p\mathbb{Z}$; then $a \equiv b - (p-1)/2 \mod p$ is clear. Let $\pm r_i$ (i = 1, ..., n) be solutions of $f(x - a) \equiv 0 \mod p$; then $-b + (p-1)/2 \pm r_i$ ($\equiv -a \pm r_i \mod p$) are all integral solutions of $f(x) \equiv 0 \mod p$. Take an integer R_i such that

$$-b + (p-1)/2 + r_i \equiv R_i \mod p \text{ and } 0 \le R_i \le p-1.$$

Then we have $-b + (p-1)/2 - r_i \equiv -2b - 1 - R_i \mod p$ and $R_i, -2b - 1 - R_i$ (i = 1, ..., n) are all solutions of $f(x) \equiv 0 \mod p$. Let us show

$$(2.3) 0 \le p - 2b - 1 - R_i \le p - 1$$

with finitely many exceptions. Suppose $p - 2b - 1 - R_i \ge p$; then we have $0 \le R_i \le -2b - 1$. If this is true for infinitely many primes p, then there is an integer R such that $0 \le R \le -2b - 1$ and $R = R_i$ for infinitely many primes. Therefore, $f(R) = f(R_i) \equiv 0 \mod p$ for infinitely many primes, which implies the contradiction f(R) = 0.

Suppose $p - 2b - 1 - R_i \leq -1$; then $-2b \leq R_i - p \leq -1$. If there exist infinitely many such primes, then there exists an integer R' such that $-2b \leq R' \leq -1$ and $R' = R_i - p$ for infinitely many primes. Hence $f(R') \equiv f(R_i) \equiv 0 \mod p$ for infinitely many primes. This is the contradiction and we have shown (2.3). Now we have, with the condition (2.3),

$$C_p(f) = (a_{n-1} + \sum R_i + \sum (p - 2b - 1 - R_i))/p$$

= $(a_{n-1} + np - 2an)/p$
= n ,

which completes the proof.

YOSHIYUKI KITAOKA

3. Miscellaneous Remarks

Let us give some remarks. The following conjecture was stated in Remark 2 in [1].

Conjecture 3.1. Let $F = \mathbb{Q}(\alpha) \ (\neq \mathbb{Q})$ be an algebraic number field with an algebraic integer α , and let k be a non-negative integer. For a prime number p which decomposes fully in F and a prime ideal \mathfrak{p} lying above p, we write in $F_{\mathfrak{p}} = \mathbb{Q}_p$

$$\alpha = c_{\mathfrak{p}}(0) + c_{\mathfrak{p}}(1)p + \cdots + (c_{\mathfrak{p}}(i) \in \mathbb{Z}, 0 \le c_{\mathfrak{p}}(i) < p).$$

Then the points $(c_{\mathfrak{p}}(0)/p, c_{\mathfrak{p}}(1)/p, \ldots, c_{\mathfrak{p}}(k)/p) (\in [0, 1)^{k+1})$ distribute uniformly when p, \mathfrak{p} run over those above.

The conjectures of the average and the variance in Conjecture 1.7 are intuitively supported by Conjecture 3.1 and Theorem 2 in [1], which is quoted below for convenience as

Theorem 3.2. Let $x_1, x_2, ..., x_n$ be random variables on \mathbb{R} obeying the uniform distribution I(0,1), or what amounts to the same, their distribution functions are all equal to the set-theoretical characteristic function of [0,1]. Then, putting

$$X_n = \frac{1}{\sqrt{n}}(x_1 + x_2 + \dots + x_n - n/2),$$

 $X = \lim_{n \to \infty} X_n$ determines a normal distribution on \mathbb{R} with mean 0 and with variance $\frac{1}{12}$.

Indeed, we can show that Conjecture 3.1 yields the assertion on the average as follows.

Proposition 3.3. Let f(x) be a monic irreducible polynomial in $\mathbb{Z}[x]$ and suppose $n = \deg f(x) \ge 2$. Assuming Conjecture 3.1, we have

$$\mu(f) = n/2.$$

The proof is quite similar to the proof of Proposition 1 in [1].

The following gives a connection between Conjecture 4 in [1] and the viewpoint in this paper.

Proposition 3.4. Let $m (\ge 2)$ be a natural number and put n = 3m and $f(x) = (x^3)^{m-1} + \dots + x^3 + 1, g(x) = x^n - 1$. Then

(3.1)
$$\mu(g) = (\deg g(x) - 1)/2, \ \sigma^2(g) = (\deg g(x) - 3)/12$$

is true if and only if

$$\mu(f) = \frac{1}{2} \deg f(x), \ \sigma^2(f) = \frac{1}{12} \deg f(x).$$

Proof. First, we note that

$$g(x) = (x^3 - 1)f(x).$$

 $Spl(g) \subset Spl(f)$ is clear. To see the converse, let $p \in Spl(f)$. Suppose that the order of any solution r of $f(x) \equiv 0 \mod p$ is relatively prime to 3; then any solution r of $f(x) \equiv 0 \mod p$ is a root of $x^m - 1 \equiv 0 \mod p$, since $r^n \equiv 1 \mod p$. This is the contradiction, because deg f(x) = 3m - 3 > m. Thus there is a root r such that the order of $\langle r \rangle$ is divisible by 3 and hence $x^3 - 1 \mod p$ is completely decomposable, and hence Spl(g) = Spl(f). Let $r_i \ (0 \le r_i \le p - 1)$ be roots of $f(x) \mod p$ and let

 $\{1, R_1, R_2\}$ $(0 \le R_i \le p-1)$ be roots of $x^3 - 1 = (x-1)(x^2 + x + 1) \mod p$; then we have, by the definition

$$C_p(g) = (1 + R_1 + R_2 + \sum r_i)/p = C_p(x^2 + x + 1) + C_p(f).$$

Hence Theorem 1.4 implies $C_p(g) = 1 + C_p(f)$ with finitely many exceptional primes p, which yields

$$\mu(g) = \mu(f) + 1, \sigma^{2}(g) = \sigma^{2}(f),$$

which completes the proof.

Remark 3.5. In the above proposition, (3.1) is the assertion in Conjecture 4 in [1], if n is odd.

Remark 3.6. Although we considered carrying at the first digit only, it is possible to consider it at every digit. Let r_1, \ldots, r_n be solutions of $f(x) \equiv 0 \mod p^i$; then $a_{n-1} + \sum r_j \equiv 0 \mod p^i$ holds, and so we can consider $(a_{n-1} + \sum r_j)/p^i$ instead of $C_p(f)$. Let $\mu_i(f), \sigma_i^2(f), Pr_i(c, f)$ be those defined at the *i*-th digit similarly to the case i = 1. We expect that they are independent of *i* and the product $Pr_1(c_1, f) \cdots$ $Pr_m(c_m, f)$ is equal to the density $Pr([c_1, \ldots, c_m], f)$, which is the density similarly defined for the array $[c_1, \ldots, c_m]$ with the carried integer c_i at the *i*-th digit.

4. RATIONAL APPROXIMATION OF EXPECTED DENSITY

In this section, we discuss approximating the expected densities by rationals. Let f(x) be a monic polynomial of rd(f) = 2 such that f(x) does not have a linear factor in $\mathbb{Q}[x]$; then we already know by Theorem 1.4 that

$$C_p(f) = \frac{1}{2} \deg f(x).$$

Let f be an irreducible monic polynomial of degree 3m in $\mathbb{Z}[x]$. If the reduced degree is 3, Pr(c, f) is likely to be as follows:

$$Pr(c, f) = \begin{cases} 2^{-m} \binom{m}{c-m} & \text{if } m \le c \le 2m, \\ 0 & \text{otherwise.} \end{cases}$$

The data for n = 3, 6, 9, 12, 15 in the next section support this.

Similarly, in Tables 5 and 6 in [1], when n = 3m, densities seem to be approximated by

$$\begin{cases} 2^{-(m-1)} \binom{m-1}{s-m} & \text{if } m \le s \le 2m-1, \\ 0 & \text{otherwise.} \end{cases}$$

Professor Yukari Kosugi perceived that the densities in Tables 10 and 6 of [1] are approximated by Eulerian numbers if n is a prime number. Let us introduce this. Let A(1,1) = 1 and let A(n,k) $(1 \le k \le n)$ be defined by

$$A(n,k) = (n-k+1)A(n-1,k-1) + kA(n-1,k).$$

Their values are:

$n\setminus k$	1	2	3	4	5	6	7	8	9
2	1	1							
3	1	4	1						
4	1	11	11	1					
5	1	26	66	26	1				
6	1	57	302	302	57	1			
7	1	12	1191	2416	1191	12	1		
8	1	247	4293	15619	15619	4293	247	1	
9	1	502	14608	88234	15619	88234	14608	502	1

In the tables referred above, the densities are well approximated by

$$A(n-2,s)/(n-2)!$$

when n is prime. Following her great insight, we easily see that the density Pr(c, f) is well approximated by

$$A(\deg f(x) - 1, c)/(\deg f(x) - 1)!$$

if $rd(f) = \deg f(x)$ (cf. Section 5 below).

What is expected if $4 \le rd(f) < \deg f$? (Cf. f_3, f_4 in 5.6.)

5. Numerical data

5.1. n = 3. In the following table, $\mu, \sigma^2, Pr(c)$ are the abbreviation of $\mu(f, 10^9)$, $\sigma^2(f, 10^9)$, $Pr(c, f, 10^9)$ and $\#Spl = \#Spl(f, 10^9)$. The expected values of $\mu(f)$, $\sigma^2(f)$, Pr(c, f) are in the last line. We use these abbreviations hereafter if we do not refer, and the values are rounded off to four decimal places.

f	μ	σ^2	Pr(1)	Pr(2)	#Spl
$x^3 - x - 1$	1.500	0.2500	0.4998	0.5002	8474030
$x^3 + x^2 + x - 1$	1.500	0.2500	0.5002	0.4998	8472910
$x^3 - 3x + 1$	1.500	0.2500	0.4999	0.5001	16949354
$x^3 + x^2 - 4x + 1$	1.500	0.2500	0.4999	0.5001	16948980
	n/2 = 1.5	n/12 = 0.25	1/2	1/2	

5.2. n = 4. The reduced degrees of the following polynomials are 4. We put

$$f_1 = x^4 - x^3 - x^2 - x - 1,$$

$$f_2 = x^4 - x^3 - x^2 + x + 1,$$

$$f_3 = x^4 + x^3 + x^2 + x + 1.$$

f	μ	σ^2	Pr(1)	Pr(2)	Pr(3)	#Spl
f_1	2.000	0.3333	0.1664	0.6667	0.1669	2118177
f_2	2.000	0.3333	0.1667	0.6667	0.1666	6354490
f_3	2.000	0.3333	0.1666	0.6667	0.1667	12711386
	n/2 = 2	n/12 = 0.3333	1/6	4/6	1/6	

Since $x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$, we have $C_p(x^5 - 1) = C_p(x^4 + x^3 + x^2 + x + 1)$ and so the average, the variance, and the density are the same for $x^5 - 1$ and $x^4 + x^3 + x^2 + x + 1$. Indeed, the data for $x^4 + x^3 + x^2 + x + 1$ here and the data for $n = 5, x = 10^9$ in [1] are compatible.

5.3. n = 5. We put

$$f_1 = x^5 - x^3 - x^2 - x + 1,$$

$$f_2 = x^5 - x^4 - x^2 - x + 1,$$

$$f_3 = x^5 + x^4 - x^2 - x + 1,$$

$$f_4 = x^5 + x^4 - 4x^3 - 3x^2 + 3x + 1$$

f	μ	σ^2
f_1	2.501	0.4169
f_2	2.497	0.4177
f_3	2.501	0.4161
f_4	2.500	0.4169
	n/2 = 2.5	n/12 = 0.4167

Pr(1)	Pr(2)	Pr(3)	Pr(4)	#Spl
0.04160	0.4578	0.4587	0.04187	423981
0.04228	0.4600	0.4561	0.04157	423719
0.04110	0.4590	0.4579	0.04193	422711
0.04180	0.4582	0.4584	0.04167	10169695
1/24 = 0.04167	11/24 = 0.4583	11/24	1/24	

5.4. n = 6. We put

$$\begin{aligned} f_1 &= x^6 + x + 1, \\ f_2 &= x^6 + x^5 + x^4 + x^3 + x^2 + x + 1, \\ f_3 &= x^6 + 2x^5 + x^4 + x^3 + x^2 + 1 = (x^3 + x^2)^2 + (x^3 + x^2) + 1, \\ f_4 &= x^6 + 2x^4 + x^3 + x^2 + x + 2 = (x^3 + x)^2 + (x^3 + x) + 2. \end{aligned}$$

The reduced degree of f_1, f_2 is 6.

f	μ	σ^2
f_1	3.005	0.5012
f_2	3.000	0.5000
	6/2	6/12

Pr(1)	Pr(2)	Pr(3)	Pr(4)	Pr(5)	#Spl
0.0086	0.2135	0.5513	0.2177	0.0089	70292
0.0084	0.2164	0.5501	0.2167	0.0083	8474221
1/120	26/120	66/120	26/120	1/120	
= 0.0083	= 0.2167	= 0.5500			

Since $x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) = (x - 1)f_2$, we have $C_p(x^7 - 1) = C_p(f_2)$ and so the average, the variance, and the density are the same for $x^7 - 1$ and f_2 . Indeed, the data for f_2 here and the data for $n = 7, x = 10^9$ in [1] are compatible.

The reduced degree of f_3, f_4 is 3.

f	μ	σ^2
f_3	3.001	0.5003
f_4	2.999	0.5004
	6/2	6/12

Pr(1)	Pr(2)	Pr(3)	Pr(4)	Pr(5)	#Spl
0	0.2497	0.4997	0.2506	0	705553
0	0.2506	0.4996	0.2498	0	706369
0	1/4	1/2	1/4	0	

5.5. n = 7. We put

$$\begin{aligned} f_1 &= x^7 - x^5 - x^4 - x^3 - x^2 - x + 1, \\ f_2 &= x^7 + x^6 - x^5 - x^4 - x^3 - x^2 - x + 1, \\ f_3 &= x^7 + x^6 - 12x^5 - 7x^4 + 28x^3 + 14x^2 - 9x + 1 \end{aligned}$$

f	μ	σ^2
f_1	3.495	0.5969
f_2	3.501	0.5792
f_3	3.500	0.5832
	7/2	7/12 = 0.5833

Pr(1)	Pr(2)	Pr(3)	Pr(4)	Pr(5)	Pr(6)	#Spl
0.0016	0.0823	0.4206	0.4113	0.0832	0.0011	10076
0.0017	0.0779	0.4189	0.4228	0.0775	0.0014	9994
0.0014	0.0790	0.4192	0.4198	0.0792	0.0014	7264359
1/6!	57/6!	302/6!				
= 0.0014	= 0.0792	= 0.4194				

5.6. n = 8. We put

$$f_1 = x^8 + x + 2,$$

$$f_2 = x^8 + x^7 - 7x^6 - 6x^5 + 15x^4 + 10x^3 - 10x^2 - 4x + 1,$$

$$f_3 = (x^4 + x)^2 + 1,$$

$$f_4 = (x^4 + x^2 + x)^2 + 2.$$

The reduced degree of f_1, f_2 (resp. f_3, f_4) is 8 (resp. 4).

f	μ	σ^2
f_1	3.989	0.6587
f_2	3.999	0.6671
	8/2 = 4	8/12 = 0.6667

Pr(1)	Pr(2)	Pr(3)	Pr(4)	Pr(5)	Pr(6)	Pr(7)	#Spl
0	0.0204	0.2514	0.4686	0.2376	0.0220	0	1225
0.0002	0.0240	0.2364	0.4793	0.2361	0.0238	0.0002	6354766
0.0002	0.0238	0.2363	0.4794	0.2363	0.0238	0.0002	

Here the last row is A(7, c)/7!.

f	μ	σ^2
f_3	4.004	0.6599
f_4	3.994	0.6655
	8/2 = 4	8/12 = 0.6667

Pr(1)	Pr(2)	Pr(3)	Pr(4)	Pr(5)	Pr(6)	Pr(7)	#Spl
0	0.0267	0.2203	0.5028	0.2227	0.0276	0	44089
0	0.0288	0.2221	0.5020	0.2200	0.0270	0	44112
0	1/36	8/36	18/36	8/36	1/36	0	

For a reducible polynomial $f = x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = (x^2 + x + 1)(x^6 + x^3 + 1)$, the data for n = 9 in [1] means the following:

Pr(1)	Pr(2)	Pr(3)	Pr(4)	Pr(5)	Pr(6)	Pr(7)
0	0	0.24993	0.50014	0.24993	0	0

Put $g = x^2 + x + 1$, $h = x^6 + x^3 + 1$; since $Spl(h) \subset Spl(g)$ and $C_p(c, f) = 1 + C_p(h)$, the table above is compatible with the expectation in Section 4, noting that the reduced degree of h(x) is three.

5.7. n = 9. We put

$$f_1 = x^9 + x + 1,$$

$$f_2 = x^9 + x^8 - 8x^7 - 7x^6 + 21x^5 + 15x^4 - 20x^3 - 10x^2 + 5x + 1,$$

$$f_3 = (x^3 + x)^3 + 2,$$

$$f_4 = (x^3 + x)^3 + (x^3 + x)^2 + 1.$$

The reduced degree of f_1, f_2 (resp. f_3, f_4) is 9 (resp. 3).

f	μ	σ^2
f_1	4.506	0.6859
f_2	4.500	0.7500
f_3	4.491	0.7448
f_4	4.502	0.7499
	9/2 = 4.5	9/12 = 0.75

	f_1	f_2	f_3	f_4
Pr(1)	0	0.0000	0	0
Pr(2)	0.0064	0.0061	0	0
Pr(3)	0.1026	0.1064	0.1267	0.1240
Pr(4)	0.3654	0.3871	0.3768	0.3763
Pr(5)	0.4295	0.3877	0.3758	0.3737
Pr(6)	0.0962	0.1065	0.1208	0.1259
Pr(7)	0	0.0061	0	0
Pr(8)	0	0.0000	0	0
#Spl	156	5649358	38912	38802

The following is the table of A(8, c)/8!:

c	1	2	3	4	5	6	7	8
	0.0000	0.0061	0.1065	0.3874	0.3874	0.1065	0.0061	0.0000

5.8. n = 10. We put

f_1	=	$x^{10} + x + 1,$
f_2	=	$x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1,$
f_3	=	$x^{10} + x^5 + 2,$
f_4	=	$x^{10} + 3x^5 + 3.$

The reduced degree of f_1, f_2 is 10, and the one of f_3, f_4 is 5.

f	μ	σ^2
f_1	5.364	0.7769
f_2	5.000	0.8339
f_3	4.998	0.8362
f_4	5.000	0.8339
	10/2 = 5	10/12 = 0.8333

	f_1	f_2	f_3	f_4
Pr(1)	0	0.0000	0	0
Pr(2)	0	0.0014	0.0018	0.0018
Pr(3)	0	0.0403	0.0387	0.0383
Pr(4)	0.1818	0.2432	0.2483	0.2477
Pr(5)	0.3636	0.4302	0.4235	0.4239
Pr(6)	0.3636	0.2432	0.2475	0.2483
Pr(7)	0.0909	0.0404	0.0385	0.0382
Pr(8)	0	0.0014	0.0017	0.0017
Pr(9)	0	0.0000	0	0
#Spl	11	5084435	254385	1271165

The following is the table of A(9,c)/9!:

c	1	2	3	4	5	6	7	8	9
	0.0000	0.0014	0.0403	0.2431	0.4304	0.2431	0.0403	0.0014	0.0000

5.9. n = 12. We put

$$\begin{split} f_1 &= (x^{13}-1)/(x-1), \\ f_2 &= (x^6+x)^2+(x^6+x)+1, \\ f_3 &= (x^4+x)^3-3(x^4+x)+1, \\ f_4 &= (x^3+x)^4+(x^3+x)^3+(x^3+x)^2+(x^3+x)+1. \end{split}$$

The reduced degree of f_1, f_2, f_3, f_4 is 12, 6, 4, 3, respectively.

f	μ	σ^2
f_1	6.000	0.9993
f_2	5.796	1.125
f_3	6.073	1.004
f_4	5.996	0.9891
	12/2 = 6	12/12 = 1

	f_1	f_2	f_3	f_4	
Pr(1)	0.0000	0	0	0	0
Pr(2)	0.0001	0	0	0	0
Pr(3)	0.0038	0	0.0031	0	0
Pr(4)	0.0550	0.1296	0.0541	0.0605	0.0625
Pr(5)	0.2444	0.2593	0.2085	0.2556	0.25
Pr(6)	0.3938	0.3333	0.4093	0.3707	0.375
Pr(7)	0.2438	0.2407	0.2556	0.2537	0.25
Pr(8)	0.0553	0.0370	0.0649	0.0594	0.0625
Pr(9)	0.0038	0	0.0046	0	0
Pr(10)	0.0001	0	0	0	0
Pr(11)	0	0	0	0	0
#Spl	4237228	54	1295	9862	

On the right column, the values $2^{-4} \binom{4}{k-4}$ for $4 \le k \le 8$ are given, and the following is the table of A(11, c)/11! for $1 \le c \le 6$:

С	1	2	3	4	5	6
	0.0000	0.0001	0.0038	0.0552	0.2440	0.3939

5.10. n = 15. We put

$$\begin{array}{rcl} f_1 &=& x^{15}+x^{14}-14x^{13}-13x^{12}+78x^{11}+66x^{10}-220x^9\\ && -165x^8+330x^7+210x^6-252x^5-126x^4+84x^3\\ && +28x^2-8x-1,\\ f_2 &=& x^{15}-3x^5+1,\\ f_3 &=& x^{15}+x^{10}-2x^5-1,\\ f_4 &=& x^{15}+x^{12}-4x^9-3x^6+3x^3+1,\\ f_5 &=& x^{15}+x^{12}-12x^9-21x^6+x^3+5, \end{array}$$

The reduced degree of f_1 is 15, and the reduced degrees of f_2, f_3 (resp. f_4, f_5) are 5 (resp. 3).

f	μ	σ^2
f_1	7.500	1.250
f_2	7.502	1.245
f_3	7.502	1.250
f_4	7.498	1.246
f_5	7.514	1.239
	15/2 = 7.5	15/12 = 1.25

YOSHIYUKI KITAOKA

	f_1	f_2	f_3	f_4	f_5	
Pr(1)	0.0000	0	0	0	0	0
Pr(2)	0	0	0	0	0	0
Pr(3)	0.0001	0.0001	0.0001	0	0	0
Pr(4)	0.0023	0.0025	0.0024	0	0	0
Pr(5)	0.0295	0.0278	0.0280	0.0314	0.0312	1/32 = 0.0313
Pr(6)	0.1472	0.1491	0.1495	0.1553	0.1504	5/32 = 0.1563
Pr(7)	0.3206	0.3195	0.3200	0.3139	0.3117	10/32 = 0.3125
Pr(8)	0.3212	0.3205	0.3190	0.3139	0.3171	10/32 = 0.3125
Pr(9)	0.1474	0.1498	0.1500	0.1542	0.1590	5/32 = 0.1563
Pr(10)	0.0294	0.0283	0.0284	0.0314	0.0305	1/32 = 0.0313
Pr(11)	0.0023	0.0024	0.0026	0	0	0
Pr(12))	0.0000	0.0000	0.0001	0	0	0
Pr(13)	0	0	0	0	0	0
Pr(14)	0	0	0	0	0	0
#Spl	3389785	169310	169660	62503	20581	

The following is the table of A(14, c)/14! for $1 \le c \le 7$:

c	1	2	3	4	5	6	7
	0.0000	0.0000	0.0001	0.0023	0.0295	0.1473	0.3209

References

T. Hadano, Y. Kitaoka, T. Kubota, M. Nozaki, *Densities of sets of primes related to decimal expansion of rational numbers*, Number Theory: Tradition and Modernization, pp. 67-80, W. Zhang and Y. Tanigawa, eds., Springer, New York, 2006. MR2213829 (2007b:11110)

Department of Mathematics, Meijo University, Tenpaku, Nagoya, 468-8502, Japan E-mail address: kitaoka@ccmfs.meijo-u.ac.jp