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ASYMPTOTIC EXPANSIONS OF GAUSS-LEGENDRE
QUADRATURE RULES FOR INTEGRALS

WITH ENDPOINT SINGULARITIES

AVRAM SIDI

This paper is dedicated to the memory of Professor Philip Rabinowitz

Abstract. Let I[f ] =
∫ 1
−1 f(x) dx, where f ∈ C∞(−1, 1), and let Gn[f ] =∑n

i=1 wnif(xni) be the n-point Gauss–Legendre quadrature approximation to

I[f ]. In this paper, we derive an asymptotic expansion as n → ∞ for the error
En[f ] = I[f ]−Gn[f ] when f(x) has general algebraic-logarithmic singularities
at one or both endpoints. We assume that f(x) has asymptotic expansions of
the forms

f(x) ∼
∞∑

s=0

Us(log(1 − x))(1 − x)αs as x → 1−,

f(x) ∼
∞∑

s=0

Vs(log(1 + x))(1 + x)βs as x → −1+,

where Us(y) and Vs(y) are some polynomials in y. Here, αs and βs are, in
general, complex and �αs,�βs > −1. An important special case is that in
which Us(y) and Vs(y) are constant polynomials; for this case, the asymptotic
expansion of En[f ] assumes the form

En[f ] ∼
∞∑

s=0
αs �∈Z

+

∞∑
i=1

asih
αs+i +

∞∑
s=0

βs �∈Z
+

∞∑
i=1

bsih
βs+i as n → ∞,

where h = (n + 1/2)−2, Z
+ = {0, 1, 2, . . .}, and asi and bsi are constants

independent of n.

1. Introduction

Consider the problem of approximating finite-range integrals of the form

(1.1) I[f ] =
∫ 1

−1

f(x) dx

by the n-point Gauss–Legendre quadrature rule

(1.2) Gn[f ] =
n∑

i=1

wnif(xni),
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where xni are the abscissas [the zeros of Pn(x), the nth Legendre polynomial] and
wni are the corresponding weights. Let

(1.3) En[f ] = I[f ] − Gn[f ]

denote the error in this approximation.
When f ∈ C∞[−1, 1], the error En[f ] tends to zero as n → ∞ faster than all

negative powers of n, that is, En[f ] = o(n−µ) as n → ∞ for every µ > 0. In
particular, when f(z) is analytic in an open set of the z-plane that contains the
interval [−1, 1] in its interior, it holds that En[f ] = O(e−σn) as n → ∞ for some
σ > 0. See Davis and Rabinowitz [2, p. 312].

When f(x) has integrable singularities in (−1, 1) and/or at one or both endpoints
x = ±1, En[f ] tends to zero slowly, its rate of decay depending on the strength
of the singularities. For example, when f(x) = (1 − x)αg(x), with �α > −1 but
α �= 0, 1, . . . , and g ∈ C∞[−1, 1], it is known that En[f ] = O(n−2α−2) as n → ∞.
See [2, p. 313].

A much refined version of this result was given by Verlinden [11, Theorem 1].
For future reference, we reproduce Verlinden’s result next:

Theorem 1.1. Let f(x) = (1− x)αg(x), with �α > −1 but α �= 0, 1, . . . , and g(z)
analytic in an open set that contains the interval [−1, 1] in its interior. Then, with
h = (n + 1/2)−2, En[f ] has the asymptotic expansion

(1.4) En[f ] ∼
∞∑

k=1

akhα+k as n → ∞.

Here, ak are some constants independent of n.

The proof of Verlinden’s theorem is quite difficult and makes use of an impor-
tant asymptotic result of Elliott [3] concerning the Jacobi polynomials and their
corresponding functions of the second kind.

Interestingly, the asymptotic expansion in Theorem 1.1 resembles, in its form,
the generalized Euler–Maclaurin expansion of Navot [4] for the trapezoidal rule
approximation to the integral

∫ 1

−1
(1 − x)αg(x) dx. Thus, it could be viewed as an

analogue of this Euler–Maclaurin expansion in the context of Gauss–Legendre quad-
rature. Verlinden [11] has also applied the Richardson extrapolation in conjunction
with this expansion for approximating

∫ 1

−1
(1− x)αg(x) dx with high accuracy. For

Euler–Maclaurin expansions and the Richardson extrapolation, see Atkinson [1],
Ralston and Rabinowitz [7], Stoer and Bulirsch [10], and Sidi [8], for example.

In [11], Verlinden also gives an asymptotic expansion for the case in which f(x)
has an algebraic-logarithmic endpoint singularity. He considers specifically f(x) =
log(1 − x)(1 − x)αg(x), and shows that the asymptotic expansion of En[f ] in this
case is obtained by differentiating that of Theorem 1.1 with respect to α term by
term.

In this work, we consider functions f(x) that have arbitrary algebraic-logarithmic
endpoint singularities at one or both endpoints ±1. The class of functions we
consider is more general than that considered in [11], and contains the latter as a
subclass. We derive asymptotic expansions of En[f ] as n → ∞ for these functions.
In the next section, we state our main results on these asymptotic expansions when
f ∈ C∞(−1, 1) and mention some important special cases. In Section 3, we present
the proofs of these results. In Section 4, we extend the results of Section 2 to the
case in which f(x) is only in Cr(−1, 1) for some nonnegative integer r.
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2. Statement of main results

Throughout this section, we assume that the function f(x) in (1.1)–(1.3) has the
following properties:

1. f ∈ C∞(−1, 1) and has the asymptotic expansions

f(x) ∼
∞∑

s=0

Us(log(1 − x))(1 − x)αs as x → 1−,

f(x) ∼
∞∑

s=0

Vs(log(1 + x))(1 + x)βs as x → −1+,

(2.1)

where Us(y) and Vs(y) are some polynomials in y, and αs and βs are, in
general, complex and satisfy

−1 < �α0 ≤ �α1 ≤ �α2 ≤ · · · ; lim
s→∞

�αs = +∞,

−1 < �β0 ≤ �β1 ≤ �β2 ≤ · · · ; lim
s→∞

�βs = +∞.
(2.2)

Here, �z stands for the real part of z.
2. If we let us = deg (Us) and vs = deg (Vs), then the αs and βs are ordered

such that

(2.3) us ≥ us+1 if �αs+1 = �αs; vs ≥ vs+1 if �βs+1 = �βs.

3. By (2.1), we mean that, for each r = 1, 2, . . . ,

f(x) −
r−1∑
s=0

Us(log(1 − x))(1 − x)αs

= O
(
Ur(log(1 − x))(1 − x)αr

)
as x → 1−,

f(x) −
r−1∑
s=0

Vs(log(1 + x))(1 + x)βs

= O
(
Vr(log(1 + x))(1 + x)βr

)
as x → −1+.

(2.4)

4. For each k = 1, 2, . . . , the kth derivative of f(x) also has asymptotic ex-
pansions as x → ±1 that are obtained by differentiating those in (2.1) term
by term.

The following are consequences of (2.2) and (2.3):
(i) There are only a finite number of αs that have the same real parts. Sim-

ilarly, there are only a finite number of βs that have the same real parts.
Consequently, �αs < �αs+1 and �βs′ < �βs′+1 for infinitely many values
of the indices s and s′.

(ii) The sequences {Us(log(1−x))(1−x)αs}∞s=0 and {Vs(log(1+x))(1+x)βs}∞s=0

are asymptotic scales. For a discussion of asymptotic scales, see Olver [5,
p. 25], for example. Thus, also by (2.4), the expansions in (2.1) are genuine
asymptotic expansions.

A key result that we will use to state and prove our main theorems is essentially
given in [11, Section 6]; it is also a corollary of Theorem 1.1 corresponding to the
case g(x) ≡ 1 there. We state it below as Theorem 2.1. To that effect, let us define

(2.5) f±
ω (x) = (1 ± x)ω.
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Then

(2.6) I[f+
ω ] = I[f−

ω ] =
2ω+1

ω + 1
, �ω > −1.

By the symmetry of the Gauss-Legendre quadrature formulas, namely, by the fact
that xn,n−i+1 = −xni and wn,n−i+1 = wni for all i in (1.2), we also have

(2.7) Gn[f+
ω ] = Gn[f−

ω ],

so that

(2.8) En[f+
ω ] = En[f−

ω ].

Theorem 2.1. Let f±
ω (x) be as in (2.5), with �ω > −1 but ω �∈ Z

+, where Z
+ =

{0, 1, 2, . . .}. Then, with h = (n + 1/2)−2, En[f±
ω ] has the asymptotic expansion

(2.9) En[f±
ω ] ∼

∞∑
k=1

ck(ω)hω+k as n → ∞,

that is valid uniformly in every strip −1 < d1 ≤ �ω ≤ d2 < ∞ of the ω-plane. The
ck(ω) are analytic functions of ω for �ω > −1 (same functions for f+

ω and for f−
ω ).

When ω ∈ Z
+, for each k = 0, 1, . . . , it holds that ck(ω) = 0; in this case, we also

have En[f±
ω ] = 0 for all n ≥ (ω + 1)/2.

We now state the main results of this work. We start with the following special
case of pure algebraic (nonlogarithmic) endpoint singularities that is important and
of interest in itself:

Theorem 2.2. Let f(x) be exactly as described in the first paragraph of this section
with the same notation, Us(y) = As �= 0 and Vs(y) = Bs �= 0 being constant
polynomials for all s. Then, with h = (n + 1/2)−2 and Z

+ = {0, 1, 2, . . .}, it holds
that

(2.10) En[f ] ∼
∞∑

s=0
αs �∈Z

+

As

∞∑
k=1

ck(αs)hαs+k +
∞∑

s=0
βs �∈Z

+

Bs

∞∑
k=1

ck(βs)hβs+k as n → ∞.

Here, ck(ω) are precisely as given in Theorem 2.1.

Remarks.
1. By (2.2), the sequences {hαs+k}∞s=0 and {hβs+k}∞s=0 are asymptotic scales

as n → ∞, and the expansion in (2.10) is a genuine asymptotic expansion
when its terms are reordered according to their size.

2. Note that, when Us(y) and Vs(y) are constants, the nonnegative integer
powers (1 − x)s and (1 + x)s, if present in the asymptotic expansions of
(2.1), do not contribute to the expansion of En[f ] as n → ∞.

3. In case αs, βs are all nonnegative integers in Theorem 2.2, of course, f ∈
C∞[−1, 1], and the asymptotic expansion in (2.10) is empty (zero). This
does not necessarily mean that En[f ] = 0, however. It only means that
En[f ] tends to zero as n → ∞ faster than all negative powers of n, which
is consistent with the known result we mentioned in Section 1. Of course,
when f(x) is a polynomial, En[f ] = 0 for all large n.

4. If αs = α+s and βs = s for all s = 0, 1, . . . , in Theorem 2.2, then f(x) is of
the form f(x) = (1−x)αg(x) with g ∈ C∞[−1, 1], and As = (−1)sg(s)(1)/s!,
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s = 0, 1, . . . . In this case, the second double sum in (2.10) disappears and
the first double sum can be rearranged so that

(2.11) En[f ] ∼
∞∑

k=1

akhα+k as n → ∞,

where ak are functions of α given by

(2.12) ak =
[ k−1∑

s=0

Asck−s(α + k)
]
, k = 1, 2, . . . ,

and are analytic in every strip −1 < d1 ≤ �α ≤ d2 < ∞ of the α-plane.
Thus, Theorem 2.2 reduces to the result of Verlinden given in Theorem 1.1;
however, it is more general since the function g(z) now is not assumed to
be analytic in an open set in the z-plane containing the interval [−1, 1] but
is assumed to be in C∞[−1, 1] only.

5. If αs = α + s and βs = β + s for all s = 0, 1, . . . , in Theorem 2.2, then f(x)
is of the form f(x) = (1−x)α(1+x)βg(x) with g ∈ C∞[−1, 1], and As and
Bs are given by

As =
(−1)s

s!
ds

dxs

[
(1 + x)βg(x)

]∣∣∣∣
x=1

= (−1)s
s∑

i=0

(
β

i

)
g(s−i)(1)
(s − i)!

2β−i,

Bs =
1
s!

ds

dxs

[
(1 − x)αg(x)

]∣∣∣∣
x=−1

=
s∑

i=0

(−1)i

(
α

i

)
g(s−i)(−1)

(s − i)!
2α−i.

(2.13)

Note that As are entire functions of β only, while Bs are entire functions of
α only. In this case, by rearranging both of the double sums in (2.10), we
have the following generalization of Theorem 1.1 for algebraic singularities
at both endpoints:

(2.14) En[f ] ∼
∞∑

k=1

akhα+k +
∞∑

k=1

bkhβ+k as n → ∞.

Here, ak and bk are functions of both α and β given by

(2.15) ak =
k−1∑
s=0

Asck−s(α + k), bk =
k−1∑
s=0

Bsck−s(β + k), k = 1, 2, . . . ,

and are analytic when α and β are such that −1 < d1 ≤ �α ≤ d2 < ∞ and
−1 < d′1 ≤ �β ≤ d′2 < ∞, respectively.

The next theorem deals with the general case, in which algebraic-logarithmic
singularities may occur at the endpoints.

Theorem 2.3. Let f(x) be exactly as described in the first paragraph of this sec-
tion with the same notation, and let Us(y) =

∑us

i=0 σsiy
i and Vs(y) =

∑vs

i=0 τsiy
i.

Denote d
dω by Dω. For an arbitrary polynomial W (y) =

∑k
i=0 εiy

i and an arbitrary
function g that depends on ω, define also

W (Dω)g :=
k∑

i=0

εi

[
Di

ωg
]

=
k∑

i=0

εi
dig

dωi
.
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Then, with h = (n + 1/2)−2, it holds that

En[f ] ∼
∞∑

s=0

∞∑
k=1

Us(Dαs
)
[
ck(αs)hαs+k

]
(2.16)

+
∞∑

s=0

∞∑
k=1

Vs(Dβs
)
[
ck(βs)hβs+k

]
as n → ∞.

Here, ck(ω) are precisely as given in Theorem 2.1.

Remarks.
1. To see the explicit form of the expansion in Theorem 2.3, we also need

Di
ω

[
ck(ω)hω+k

]
= hω+k

i∑
j=0

(
i

j

)
c
(i−j)
k (ω)(log h)j ,

where c
(r)
k (ω) stands for the rth derivative of ck(ω). Using this, it can be

seen, for example, that

Us(Dαs
)
[
ck(αs)hαs+k

]
= hαs+k

us∑
j=0

esj(log h)j ,

where

esj =
us∑
i=j

(
i

j

)
σsic

(i−j)
k (αs), j = 0, 1, . . . , us.

Note that esus
= σsus

ck(αs). By Theorem 2.1, this implies that esus
= 0

when αs ∈ Z
+.

Thus, (2.16) assumes the following explicit form:

(2.17) En[f ] ∼
∞∑

s=0

∞∑
k=1

Ûsk(log h)hαs+k +
∞∑

s=0

∞∑
k=1

V̂sk(log h)hβs+k as n → ∞,

where Ûsk(y) and V̂sk(y) are polynomials in y with deg (Ûsk) ≤ us and
deg (Vs) ≤ vs. If αs ∈ Z

+, then deg (Ûsk) ≤ us − 1; otherwise, deg (Ûsk) =
us. Similarly, if βs ∈ Z

+, then deg (V̂sk) ≤ vs−1; otherwise, deg (V̂sk) = vs.
2. Invoking now (2.2) and (2.3), we conclude that the sequences

{Us(Dαs
)[ck(αs)hαs+k]}∞s=0 and {Vs(Dβs

)[ck(βs)hβs+k]}∞s=0

are asymptotic scales as n → ∞, and that the expansion in (2.16) is a
genuine asymptotic expansion.

3. When αs = α+s and βs = β+s, for all s = 0, 1, . . . , and u0 = u1 = · · · = p
and v0 = v1 = · · · = q, we can rearrange the double sums in (2.17), and
obtain

(2.18) En[f ] ∼
∞∑

k=1

Ǔk(log h)hα+k +
∞∑

k=1

V̌k(log h)hβ+k as n → ∞,

where Ǔk(y) =
∑k−1

s=0 Ûs,k−s(y) and V̌k(y) =
∑k−1

s=0 V̂s,k−s(y) are poly-
nomials in y of degree at most p and q, respectively. If α ∈ Z

+, then
deg (Ǔk) ≤ p − 1. Similarly, if β ∈ Z

+, then deg (V̌k) ≤ q − 1.
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4. The case in the preceding remark arises, for example, when

f(x) = (1 − x)α(1 + x)β[log(1 − x)]p[log(1 + x)]qg(x)

with g ∈ C∞[−1, 1]. In this case, the asymptotic expansion of En[f ] can
be obtained by differentiating the asymptotic expansion of En[f̃ ], where
f̃(x) = (1 − x)α(1 + x)βg(x), p times with respect to α and q times with
respect to β. Note that f̃(x) here is precisely the function f(x) given in
Remark 5 following Theorem 2.2, and the asymptotic expansion of En[f̃ ] is
as given in (2.14) and (2.15). Recall that the ak and bk there are analytic
functions of both α and β. Thus, applying ∂p+q/∂αp∂βq to (2.14), we
obtain the expansion in (2.18).

A simpler special case is one in which β = 0 and q = 0. For this case,
we have f(x) = (1 − x)α[log(1 − x)]pg(x) with p a positive integer and
g ∈ C∞[−1, 1]. The asymptotic expansion of En[f ] is now of the form

(2.19) En[f ] ∼
∞∑

k=1

Ǔk(log h)hα+k as n → ∞,

where Ǔk(y), as before, are polynomials in y of degree at most p, and this
can be obtained by differentiating the asymptotic expansion of En[f̃ ], where
f̃(x) = (1− x)αg(x), p times with respect to α. The asymptotic expansion
of En[f̃ ] is that given in (2.11). The case p = 1 has been given in [11,
Section 6].

Just as the expansion of En[f ] (for Gauss–Legendre quadrature) in Theorem 1.1
is an analogue of Navot’s generalized Euler–Maclaurin expansion (for the trape-
zoidal rule), those in Theorems 2.2 and 2.3 (for Gauss–Legendre quadrature) are
analogues of the author’s [9] recent generalizations of the Euler–Maclaurin expan-
sion (for the trapezoidal rule) under precisely the same conditions.

3. Proofs of main results

3.1. Proof of Theorem 2.2. With Us(y) = As and Vs(y) = Bs, and an arbitrary
positive integer m, let

(3.1) p(x) =
m−1∑
s=0

As(1− x)αs +
m−1∑
s=0

Bs(1 + x)βs =
m−1∑
s=0

Asf
−
αs

(x) +
m−1∑
s=0

Bsf
+
βs

(x).

Here, f±
ω (x) are as defined in (2.5). Then,

(3.2) f(x) = p(x) + φ(x); φ(x) := f(x) − p(x).

Thus,

(3.3) En[f ] = En[p] + En[φ].

By Theorem 2.1,

En[p] =
m−1∑
s=0

AsEn[f−
αs

] +
m−1∑
s=0

BsEn[f+
βs

](3.4)

∼
m−1∑
s=0

As

∞∑
k=1

ck(αs)hαs+k +
m−1∑
s=0

Bs

∞∑
k=1

ck(βs)hβs+k as n → ∞.
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We now have to analyze En[φ]. For this, we need to know the differentiability
properties of φ(x) on [−1, 1]. First, φ ∈ C∞(−1, 1). At x = ±1, φ(x) has the
asymptotic expansions

φ(x) ∼ w+
m(x) +

∞∑
s=m

As(1 − x)αs as x → 1−; w+
m(x) = −

m−1∑
s=0

Bs(1 + x)βs ,

φ(x) ∼ w−
m(x) +

∞∑
s=m

Bs(1 + x)βs as x → −1+; w−
m(x) = −

m−1∑
s=0

As(1 − x)αs .

(3.5)

Note that w+
m(x) is infinitely differentiable at x = 1 while w−

m(x) is infinitely dif-
ferentiable at x = −1. Thus, what determines the differentiability properties on
[−1, 1] of φ(x) are the infinite sums in (3.5). By the fourth of the properties of f(x)
mentioned in the beginning of Section 2, the asymptotic expansions of φ(x) in (3.5)
can be differentiated termwise as many times as we wish. Then, for every positive
integer j, it holds that

dj

dxj
φ(x) ∼ dj

dxj
w+

m(x)

+
∞∑

s=m

Asαs(αs − 1) · · · (αs − j + 1)(1 − x)αs−j as x → 1−,

dj

dxj
φ(x) ∼ dj

dxj
w−

m(x)

+
∞∑

s=m

Bsβs(βs − 1) · · · (βs − j + 1)(1 + x)βs−j as x → −1+.

(3.6)

Clearly,

lim
x→1−

dj

dxj
φ(x) = −djw+

m

dxj

∣∣∣∣
x=1

, j = 0, 1, . . . , 
�αm − 1�,

lim
x→−1+

dj

dxj
φ(x) = −djw−

m

dxj

∣∣∣∣
x=−1

, j = 0, 1, . . . , 
�βm − 1�,
(3.7)

which also means that φ(x) has 
�αm − 1� continuous derivatives at x = 1 and

�βm − 1� continuous derivatives at x = −1, in addition to being in C∞(−1, 1).
Consequently, φ ∈ Cκm [−1, 1], where κm = min{
�αm − 1�, 
�βm − 1�}.

Next, it is known that

(3.8)
∣∣En[φ]

∣∣ ≤ 4 min
q∈Π2n−1

‖φ − q‖,

where Πk is the set of all polynomials of degree at most k and

‖F‖ = max
x∈[−1,1]

|F (x)|,

and that

(3.9) min
q∈ΠN

‖F − q‖ = O
(
N−k

)
as N → ∞, when F ∈ Ck[−1, 1],

by one of Jackson’s theorems. For (3.8), see [2, Section 4.8, pp. 332–333], and for
Jackson’s theorem leading to (3.9), see Powell [6, Section 16.3, pp. 194–198], for
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example. Thus,

(3.10) min
q∈Π2n−1

‖φ − q‖ = O
(
n−κm

)
= O

(
hκm/2

)
as n → ∞.

From (3.8) and (3.10), it therefore follows that

(3.11) En[φ] = O
(
hκm/2

)
as n → ∞.

Combining (3.4) and (3.11) in (3.3), and considering only those terms with �αs +
k < �αm and �βs + k < �βm in, respectively, the first and second double summa-
tions in (3.4), we have

En[f ] =
∑

0≤s≤m−1
1≤k<�(αm−αs)

Asck(αs)hαs+k + O
(
hαm

)
(3.12)

+
m−1∑

0≤s≤m−1
1≤k<�(βm−βs)

Bsck(βs)hβs+k + O
(
hβm

)

+ O
(
hκm/2

)
as n → ∞.

Now, limm→∞ κm = ∞ and limm→∞ �αm = ∞ and limm→∞ �βm = ∞ simulta-
neously, by (2.2). From this and from (3.12), we conclude that En[f ] has the true
asymptotic expansion

(3.13) En[f ] ∼
∞∑

s=0

As

∞∑
k=1

ck(αs)hαs+k +
∞∑

s=0

Bs

∞∑
k=1

ck(βs)hβs+k as n → ∞.

Finally, the result in (2.10) follows by invoking the fact that ck(ω) = 0 when ω ∈ Z
+.

3.2. Proof of Theorem 2.3. We first observe that, with f±
ω (x) as defined in (2.5),

(3.14) f±
ω,i(x) := [log(1 ± x)]i(1 ± x)ω =

di

dωi
f±

ω (x).

Consequently, we also have

(3.15) I[f±
ω,i] =

di

dωi
I[f±

ω ] =
di

dωi

2ω+1

ω + 1
and

(3.16) Gn[f±
ω,i] =

di

dωi
Gn[f±

ω ],

and hence

(3.17) En[f±
ω,i] =

di

dωi
En[f±

ω ].

The following theorem, which we employ in our proof, essentially follows from
[11, Section 6].

Theorem 3.1. Let �ω > −1. Then, with h = (n + 1/2)−2, for each i = 1, 2, . . . ,
En[f±

ω,i] has the asymptotic expansion

(3.18) En[f±
ω,i] ∼

∞∑
k=1

di

dωi

[
ck(ω)hω+k

]
as n → ∞,

that is valid uniformly in every strip −1 < d1 ≤ �ω ≤ d2 < ∞ of the ω-plane.
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Remark. In other words, the asymptotic expansion of En[f±
ω,i] is obtained by dif-

ferentiating that of En[f±
ω ] i times term by term. Note, however, that even though

ck(ω) vanish when ω ∈ Z
+, c

(i)
k (ω) do not have to.

For an arbitrary positive integer m, let

p(x) =
m−1∑
s=0

Us

(
log(1 − x)

)
(1 − x)αs +

m−1∑
s=0

Vs(log(1 + x))(1 + x)βs(3.19)

=
m−1∑
s=0

us∑
i=0

σsif
−
αs,i(x) +

m−1∑
s=0

vs∑
i=0

τsif
+
βs,i(x),

and write, as before,

(3.20) f(x) = p(x) + φ(x); φ(x) := f(x) − p(x),

and

(3.21) En[f ] = En[p] + En[φ],

However, this time,

(3.22) En[p] =
m−1∑
s=0

us∑
i=0

σsiEn[f−
αs,i] +

m−1∑
s=0

vs∑
i=0

τsiEn[f+
βs,i].

By Theorem 3.1, this gives

En[p] ∼
m−1∑
s=0

∞∑
k=1

Us(Dαs
)
[
ck(αs)hαs+k

]
(3.23)

+
m−1∑
s=0

∞∑
k=1

Vs(Dβs
)
[
ck(βs)hβs+k

]
as n → ∞.

To analyze En[φ], we again need to study the differentiability properties of φ(x)
on [−1, 1]. Clearly, φ ∈ C∞(−1, 1). At x = ±1, φ(x) has the asymptotic expansions

φ(x) ∼ w+
m(x) +

∞∑
s=m

us∑
i=0

σsi[log(1 − x)]i(1 − x)αs as x → 1−,

φ(x) ∼ w−
m(x) +

∞∑
s=m

vs∑
i=0

τsi[log(1 + x)]i(1 + x)βs as x → −1+,

(3.24)

with

w+
m(x) = −

m−1∑
s=0

Vs(log(1 + x))(1 + x)βs ,

w−
m(x) = −

m−1∑
s=0

Us(log(1 − x))(1 − x)αs .

(3.25)

As was the case in the proof of Theorem 2.2, again w+
m(x) is infinitely differentiable

at x = 1 while w−
m(x) is infinitely differentiable at x = −1. By the fourth of

the properties of f(x) mentioned in the beginning of Section 2, the asymptotic
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expansions of φ(x) in (3.24) can be differentiated termwise as many times as we
wish. Then, for every positive integer j, it holds that

dj

dxj
φ(x) ∼ dj

dxj
w+

m(x) +
∞∑

s=m

Ũs(log(1 − x))(1 − x)αs−j as x → 1−,

dj

dxj
φ(x) ∼ dj

dxj
w−

m(x) +
∞∑

s=m

Ṽs(log(1 + x))(1 + x)βs−j as x → −1+,

(3.26)

where Ũs(y) and Ṽs(y) are polynomials in y of degree us and vs, respectively. It is
easy to see that, in this case too, we have

lim
x→1−

dj

dxj
φ(x) = −djw+

m

dxj

∣∣∣∣
x=1

, j = 0, 1, . . . , 
�αm − 1�,

lim
x→−1+

dj

dxj
φ(x) = −djw−

m

dxj

∣∣∣∣
x=−1

, j = 0, 1, . . . , 
�βm − 1�,
(3.27)

which also means that φ(x) has 
�αm − 1� continuous derivatives at x = 1 and

�βm − 1� continuous derivatives at x = −1, in addition to being in C∞(−1, 1).
Consequently, φ ∈ Cκm [−1, 1], where κm = min{
�αm − 1�, 
�βm − 1�}.

The proof of Theorem 2.3 can now be completed as that of Theorem 2.2. We
leave the details to the reader.

4. Extensions

In the preceding sections, we assumed that the function f(x) is infinitely differ-
entiable on (−1, 1). However, the proofs of Theorems 2.2 and 2.3 suggest that these
theorems can be extended to the case in which the function f(x) is not necessarily
in C∞(−1, 1).

Theorems 4.1 and 4.2 below are extensions of Theorems 2.2 and 2.3, respectively,
precisely to this case. In these theorems, we assume that f(x) is exactly as in the
first paragraph of Section 2, except that it ceases to be infinitely differentiable at a
finite number of points in (−1, 1), and that it is in Cr(−1, 1) for some nonnegative
integer r. Of course, f(x) continues to be infinitely differentiable in the open
intervals (−1,−1 + η) and (1 − η, 1), where η is sufficiently small and, in addition,
as x → ±1, f(x) has the asymptotic expansions given in (2.1), with (2.2)–(2.4).
Below, we adopt the notation of Sections 2 and 3.

Theorem 4.1. Let f(x) be as in the second paragraph of this section with the same
notation, Us(y) = As �= 0 and Vs(y) = Bs �= 0 being constant polynomials for all s.
Let m− and m+ be the smallest integers for which

(4.1) r < �αm− and r < �βm+ .

Then, with h = (n + 1/2)−2 and Z
+ = {0, 1, 2, . . .}, it holds that

(4.2) En[f ] =
m−−1∑
s=0

αs �∈Z
+

�r/2−�αs−1	∑
k=1

Asck(αs)hαs+k

+
m+−1∑
s=0

βs �∈Z
+

�r/2−�βs−1	∑
k=1

Bsck(βs)hβs+k + O
(
hr/2

)
as n → ∞.
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Theorem 4.2. Let f(x) be as in the second paragraph of this section with the same
notation, Us(y) and Vs(y) being polynomials in y of degree us and vs, respectively.
Let m− and m+ be the smallest integers for which

(4.3) r < �αm− and r < �βm+ .

Then, with h = (n + 1/2)−2, it holds that

(4.4) En[f ] =
m−−1∑

s=0

�r/2−�αs−1	∑
k=1

Us(Dαs
)
[
ck(αs)hαs+k

]

+
m+−1∑
s=0

�r/2−�βs−1	∑
k=1

Vs(Dβs
)
[
ck(βs)hβs+k

]
+ O

(
hr/2

)
as n → ∞.

The proof of Theorem 4.1 is achieved precisely as that of Theorem 2.2 by modi-
fying p(x) in (3.1) as in

(4.5) p(x) =
m−−1∑

s=0

As(1 − x)αs +
m+−1∑
s=0

Bs(1 + x)βs .

Similarly, the proof of Theorem 4.2 is achieved precisely as that of Theorem 2.3 by
modifying p(x) in (3.19) as in

(4.6) p(x) =
m−−1∑

s=0

Us(log(1 − x))(1 − x)αs +
m+−1∑
s=0

Vs(log(1 + x))(1 + x)βs .

In both cases, the functions φ(x) := f(x) − p(x) are in Cr[−1, 1] so that En[φ] =
O(hr/2) as n → ∞. We leave the details to the reader.

Note that the summations over the αs (the βs) in (4.2) and (4.4) are empty in
case �α0 ≥ r/2 − 1 (�β0 ≥ r/2 − 1).
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