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TILES IN QUASICRYSTALS WITH QUARTIC IRRATIONALITY

KEVIN G. HARE

Abstract. In 2003, Pelantová and Twarock did research into the number
of, and types of, tiles found in 1-dimensional cut and project quasicrystals
associated with 7-order symmetry. In this paper we extend this to symmetries
of order 9 (degree 3), as well as orders 15, 16, 20 and 24 (degree 4). Some
discussion of the next case, order 11 (degree 5), is given.

1. Introduction and definitions

Since their discovery in 1984 [13], quasicrystals have been the focus of consider-
able study [1, 6, 7, 8, 9, 10, 11]. Quasicrystals are objects that exhibit long range
aperiodic order, yet despite this, exhibit much of the structure and order one comes
to expect from their more common cousins, crystals. Unlike crystals, which may
only exhibit rotational symmetries of orders 2, 3, 4 or 6, quasicrystals, in theory,
can exhibit rotational symmetries of many other orders. (In practice, only orders
5, 8, 10 and 12 have been observed.) This paper studies the number of tiles one
would expect in a quasicrystal with a “simple” rotational symmetry. The number
of tiles can, to some extent, be thought of as the complexity of a quasicrystal. The
results in this paper go some way to show why one would not expect higher degree
symmetries to be observed experimentally.

We let Ok = Z
[
2 cos

(
2π
k

)]
. This is the ring of integers of the maximal real

subfield of the kth cyclotomic field Q
(
e2πi/k

)
, and the degree over Q of this subfield

is n = φ(k)/2, where φ is the Euler phi-function. Denote the ring automorphisms
of Ok by σ1, . . . , σn with σ1 the identity.

Definition 1.1. We define the 1-dimensional cut and project quasicrystal of degree
n, with acceptance windows Ω2, . . . , Ωn, as

Σk(Ω2, . . . , Ωn) = {α ∈ Ok | σj(α) ∈ Ωj , j = 2, . . . , n} .

This definition (and most of the theoretical results) can be easily generalized to
use any ring of integers O, instead of Ok. For notational and stylistic reasons, we
will sometimes write Σ = Σk = Σ(Ω2, . . . , Ωn) = Σk(Ω2, . . . , Ωn), if the acceptance
windows or order are either implied or not relevant.

Definition 1.2. We define Tk(Ω2, . . . , Ωn) to be the set of tiles, where tiles are
defined as the distances between neighbouring points in the quasicrystal. Formally,
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we order Σ as

Σk(Ω2, . . . , Ωn) = {· · · < y−1 < y0 < y1 < y2 < · · · }
and set

Tk(Ω2, . . . , Ωn) = {yi − yi−1 | i ∈ Z}.
Again, we may write T = Tk = T (Ω2, . . . , Ωn) = Tk(Ω2, . . . , Ωn) if the accep-

tance windows or the order are either implied, or not relevant.
One reason that the cut and project method is used to model quasicrystals is

that the tiles tend to be not too big, and at the same time, not too small. To be
precise, we make the definitions:

Definition 1.3. A set Λ is a Delone set if it is uniformly discrete, and relatively
dense. That is, if there exists 0 < r ≤ R such that all balls of radius r contain at
most one point in Λ, and all balls of radius R contain at least one point in Λ.

Definition 1.4. A set Λ is a Meyer set if it is a Delone set and if there exists a
finite set F such that Λ − Λ ⊆ Λ + F .

Fact 1.1. We have that Σ is a Meyer set, and that T has a finite number of tiles.

The above fact follows from the work of [10, Section 3].
Rewritten into our notation, the main goal in [11] was to find the possible sizes

of T7(Ω2, Ω3). This paper extends these results to other orders and higher degrees.
The first step in determining the size of T is to determine if there are relationships

on the acceptance windows which ensure that the tile sets will have the same size.
To do this we adopt and adapt the concept of equivalence from [11].

Definition 1.5. We call two quasicrystals Σk(ΩA
2 , . . . , ΩA

n ) and Σk(ΩB
2 , . . . , ΩB

n )
equivalent if they have the same tile set modulo rescaling by a constant factor
λ ∈ Ok, that is, if

Tk(ΩA
2 , . . . , ΩA

n ) = λTk(ΩB
2 , . . . , ΩB

n ).

We get the obvious generalizations of two results in [11], following the same
proofs.

Lemma 1.1 (Lemma 2.2 of [11]). Let Ω2, . . . , Ωn be bounded half-closed intervals.
Then Σ(Ω2, . . . , Ωn) and Σ(Ω2 + a2, . . . , Ωn + an) are equivalent for any ai ∈ R.

Using methods similar to [11, Proposition 2.3], it can be shown that the tile sets
for Σ([0, �2), . . . , [0, �n)) and Σ([0, �2], . . . , [0, �n]) differ by at most n − 1 tiles for
any �j ∈ R. A similar argument shows that Σ((0, �2), . . . , (0, �n)) and Σ([0, �2), . . . ,
[0, �n)) have the same tile set. As such, for this paper, we only consider half-closed
intervals.

Tiles such that both end points of the tile are end points under some σj of Ωj will
occur with 0 density. Tilings that contain such tiles are known as singular tilings
[1, 7]. For the purposes of this paper, we will only be concerned with non-singular
tilings; hence we will always assume that the Ωj are half-closed.

In Section 2 we discuss a technique to solve a particular computational problem
that is needed for Sections 3 and 4. In Section 3 we will show how Lemmas 1.1
and 3.1, along with the computational technique from Section 2, allow us to find
a relevant area LRA ⊂ Rn−1 for Ok. A relevant area LRA has the property that
all Σ based on half-closed intervals are equivalent to some Σ([0, �2), . . . , [0, �n))
with (�2, . . . , �n) ∈ LRA. In Section 4 we discuss how to find the tile set for a
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cut and project quasicrystal with specified Ω2, . . . , Ωn. In Section 5 we show how
to partition the relevant area LRA into subregions, each of which has a constant
tile set. Section 6 discusses the computational aspects that would be involved in
extending the results of this paper to order 11 (the next case), as well as some
experimental results. In Section 7 we combine Section 5 with Sections 3 and 4 to
find all tile set sizes for points in the relevant area LRA for specific orders. These
results are summarized in Table 7.1.

2. Computational tools

There is a common problem that comes up in both the analysis of determining
the LRA and, later, in determining the tile set and tile set size of Σ(Ω2, . . . , Ωn) for
specific Ω2, . . . , Ωn.

This problem can be summarized as follows.

Problem 2.1. Let B be a box in Rm with edges parallel to the axes. Let Si be a
sequence of smaller boxes in Rm, again with the edges parallel to the axes. Further,
let each Si be contained within B and share at least one corner with B. Find:

(1) N minimal (if it exists) such that

N⋃
i=1

Si = B;

(2) all j ≤ N such that
j−1⋃
i=1

Si =
j⋃

i=1

Si.

To put this less formally, we want to find out how many boxes Si are needed to
cover B, as well as which boxes Sj are unused (based on the previous S0, S1, . . . , Sj−1

boxes).
The algorithm used to solve this problem is best demonstrated by an example.

Example 1. Let B = [0, 6] × [0, 6] and let the smaller boxes be

S1 = [0, 5] × [0, 3], S2 = [3, 6] × [0, 5], S3 = [4, 6] × [0, 1],
S4 = [0, 4] × [2, 6], S5 = [2, 6] × [4, 6].

(a) First we subtract S1 = [0, 5] × [0, 3] from B. We see that

B \ S1 = [5, 6] × [0, 6] ∪ [0, 6] × [3, 6].

(b) Next we subtract S2 = [3, 6] × [0, 5] from B \ S1. We see that

B \ (S1 ∪ S2) = ([5, 6] × [0, 6] ∪ [0, 6] × [3, 6]) ∩ ([0, 3] × [0, 6] ∪ [0, 6] × [5, 6])

= ([5, 6] × [0, 6] ∩ [0, 3] × [0, 6]) ∪ ([5, 6] × [0, 6] ∩ [0, 6] × [5, 6])

∪ ([0, 6] × [3, 6] ∩ [0, 3] × [0, 6]) ∪ ([0, 6] × [3, 6] ∩ [0, 6] × [5, 6])

= ∅ × [0, 6] ∪ [5, 6] × [5, 6] ∪ [0, 3] × [3, 6] ∪ [0, 6] × [5, 6](2.1)

= [5, 6] × [5, 6] ∪ [0, 3] × [3, 6] ∪ [0, 6] × [5, 6](2.2)

= [0, 3] × [3, 6] ∪ [0, 6] × [5, 6].



408 KEVIN G. HARE

Here we are able to remove ∅ × [0, 6] from line (2.1) as it is empty. In line (2.2),
we are able to remove [5, 6] × [5, 6] because it is contained within [0, 6] × [5, 6].

(c) Next we subtract S3 = [4, 6] × [0, 1]. We see through a similar calculation
that

B \ (S1 ∪ S2 ∪ S3) = [0, 3] × [3, 6] ∪ [0, 6] × [5, 6],

which tells us that S3 is not useful.
(d) Next we subtract S4 = [0, 4] × [2, 6] to get

B \ (S1 ∪ S2 ∪ S3 ∪ S4) = [4, 6] × [5, 6].

(e) Lastly we subtract S5 = [2, 6] × [4, 6] to get

B \ (S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5) = ∅.

This is represented in Figure 2.1. The parts of each Si that are used to cover B
are shaded different colours. This tells us that N = 5 and that the only non-useful
j value is j = 3.

To summarize, the main points are:
• Start by representing B \ Sj =

⋃
C∈Cj

C as a union of smaller boxes.
• Inductively define Aj as B\(S1∪S2∪. . .∪Sj) =

⋃
A∈Aj

A where Aj contains
no empty boxes and no box that is completely contained in another box.

• We do this by noticing that

B \ (S1 ∪ . . . ∪ Sj+1) = (B \ (S1 ∪ . . . ∪ Sj)) ∩ (B \ Sj+1)

=

⎛
⎝ ⋃

A∈Aj

A

⎞
⎠ ∩

⎛
⎝ ⋃

C∈Cj+1

C

⎞
⎠

=
⋃

A∈Aj ,C∈Cj+1

A ∩ C

=
⋃

A∈A′′
j+1

A,

where A′′
j+1 = {A ∩ C : A ∈ Aj , C ∈ Cj+1}.

• Remove any empty box A from A′′
j+1 to get a new set A′

j+1.
• Remove any box A1 from A′

j+1 that is completely contained in some other
box A2 in A′

j+1 to get a new set Aj+1.
• Check whether Aj+1 is the same as Aj to see if j + 1 is useful.
• Check whether Aj+1 = ∅.

This technique works reasonably well for dimensions 4 or less, which is all that
we are interested in for this paper.
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(a) S1 (b) S1 and S2

(c) S1, S2, and S3 (d) S1, S2, S3, and S4

(e) S1, S2, S3, S4, and S5

Figure 2.1. Covering B with Si
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3. Finding the relevant area

Based on Definition 1.5 and Lemma 1.1 we see that T (Ω2, . . . , Ωn) with half-
closed intervals is equivalent to some T ([0, �2), . . . , [0, �n)), with (�2, . . . , �n) ∈ Rn−1

+ .
The next result will give us a new relationship that will allow us to find a relevant
area LRA such that any T (Ω2, . . . , Ωn) with half-closed intervals is equivalent to
some T ([0, �2), . . . , [0, �n)), with (�2, . . . , �n) ∈ LRA, where LRA is a closed bounded
subset of Rn−1

+ .

Lemma 3.1. Let γ be a unit in Ok. That is, there exists a γ′ ∈ Ok, such that
γ · γ′ = 1. Then

γΣ(Ω2, . . . , Ωn) = Σ(σ2(γ)Ω2, . . . , σn(γ)Ωn).

Proof.

γΣ(Ω2, . . . , Ωn) = γ{α ∈ Ok : σj(α) ∈ Ωj}
= {γα : α ∈ Ok, σj(α) ∈ Ωj}
= {γγ′α : αγ′ ∈ Ok, σj(αγ′) ∈ Ωj}
= {α : αγ′ ∈ Ok, σj(α) ∈ σj(γ)Ωj}
= {α : α ∈ Ok, σj(α) ∈ σj(γ)Ωj}
= Σ(σ2(γ)Ω2, . . . , σn(γ)Ωn). �

A value γ ∈ Ok such that there exists a γ′ ∈ Ok with γ ·γ′ = 1 is called a unit of
Ok. The set of all units in Ok forms what is known as the unit group of Ok [5]. This
unit group is a finitely generated abelian group under multiplication; hence there
exists a set of generators γ1, γ2, . . . , γm. In this case m = n−1 because Ok is totally
real. So all units in Ok can be written as a product γa1

1 . . . γ
an−1
n−1 with aj ∈ Z and

γj generators of the unit group. These generators can be found with the software
package Pari, [3], and are summarized in Table 3.1. To represent the generators
symbolically, we write each generator as a sum

∑
biβ

i where β = 2 cos
(

2π
k

)
.

Table 3.1. Fundamental Units

Order Root Fundamental Units

Degree 3
7 β = 2 cos

(
2π
7

)
≈ 1.247 β2 − 1, β

9 β = 2 cos
(

2π
9

)
≈ 1.532 β − 1, β

Degree 4
15 β = 2 cos

(
2π
15

)
≈ 1.827 β3 − 3β, β − 1, β2 − 3

16 β = 2 cos
(

2π
16

)
≈ 1.848 β2 − 1, β − 1, β2 + β − 1

20 β = 2 cos
(

2π
20

)
≈ 1.902 β2 − 2, β2 − β − 2, β3 − β2 − 3β + 3

24 β = 2 cos
(

2π
24

)
≈ 1.931 β, β3 − 3β − 1, β3 − β2 − 3β + 2

Degree 5
11 β = 2 cos

(
2π
11

)
≈ 1.682 β4 − 3β2 + 1, β, β2 + β − 1, β3 − 2β



TILES IN QUASICRYSTALS 411

By Lemma 3.1 we see that for any element of this unit group, say γ, we have that
Σ(Ω2, . . . , Ωn) and Σ(σ2(γ)Ω2, . . . , σn(γ)Ωn) are equivalent. To take advantage of
lattice algorithms, and the algorithm of Section 2, we move to logarithms. Define:

wj = (log(|σ2(γj)|), log(|σ3(γj)|), . . . , log(|σn(γj)|))

for j from 1 to n − 1.
It should be noted that there are many different LRA and it will never be unique.

We have the following lemma, which follows directly from Lemma 3.1, which will
help to determine an LRA.

Lemma 3.2. A set L is a relevant area if {log(L) +
∑

wiai} with ai ∈ Z tiles
Rn−1. I.e., the union of the log(L) +

∑
wiai covers Rn−1, as the ai range over

Zn−1, and their interiors are pairwise disjoint.

So at this point we are attempting to find any LRA with the properties of
Lemma 3.2. An easy log(LRA) to find is the parallelepiped given by the vectors
w1, w2, . . . , wn−1. (See Figure 3.1(a) for this parallelepiped and its translates.)

In Section 5 we will show how to partition an LRA into subregions such that
for any (�2, . . . , �n) in a subregion, the tile set (and hence tile set size) based on
the acceptance windows Ωj = [0, �j) is constant. These subregions are boxes with
edges parallel to the axes. Unfortunately, the parallelepiped found for log(LRA)
given by the vectors w1, w2, . . . , wn−1 gives an awkward region for the LRA. (See
Figure 3.1(b).) This is because we will be covering the LRA by boxes with edges
parallel to the axes, whereas this LRA does not have edges parallel to the axes. In
theory, it should be possible to use a box B ⊃ LRA, with edges parallel to the axes,
and partition it by the methods of Section 5. Instead we will adopt the technique
from [11] which will find a different LRA such that all of its edges are parallel to
the axes. The initial setup for such an object is slightly more expensive, but once
it is created the partitioning of the LRA into subregions is very easy.

We will choose our LRA such that the upper corner is (1, 1, . . . , 1). This means
that after taking logarithms, that log(LRA) is completely in Rn−1

≤0 and has a corner
at (0, 0, . . . , 0).

Let T be the natural projection from Rn−1 to Rn−2 by T (b2, b3, . . . , bn) =
(b3, . . . , bn). Consider the vectors w1, w2, ..., wn−1. Consider the fundamental region
in Rn−1 defined by these vectors. Call this region F . Clearly, {F +

∑
aiwi | ai ∈ Z}

will cover Rn−1. Notice that the edges of this object are not parallel to the axes.
Now consider the object T (F ). By projection, we see that {T (F +

∑
aiwi) |

ai ∈ Z} will cover Rn−2. We can now take a translate of T (F ), say by v ∈ Rn−1,
such that T (F + v) is in Rn−2

≤0 . Call this new object T (F ′) = T (F + v). Again, we
see that {T (F ′ +

∑
aiwi) | ai ∈ Z} will cover Rn−2. We now take T (L) such that

T (L) contains T (F ′). Now let L be the smallest (n−2)-dimensional box containing
T (F ′) in the hyperplane x2 = 0. Then {T (L +

∑
aiwi) | ai ∈ Z} covers Rn−2.

Further, we see that the translates of L do not overlap, as there is no lattice vector
in the plane x2 = 0, except 0. (A lattice vector with one component 0 corresponds
to a unit u with one conjugate equal to ±1. In this case, u = ±1 and the lattice
vector is 0.)
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(a) Parellelepiped shaped LRA

(b) Removing Logarithms

Figure 3.1. LRA based on Parallelepiped

Given this L, then for all (0, x3, . . . , xn) ∈ L, find the minimal |z|, with z < 0,
such that (z, x3, . . . , xn) overlaps a translate of L. (This is doable by the algorithm
of Section 2.) The LRA is the area between (0, x3, . . . , xn) and (z, x3, . . . , xn) as
(0, x3, . . . , xn) ranges over values in L. To see that we need only a finite number
of different z values, we note that |z| is bounded by the length of F under the
projection (x2, . . . , xn) → x2.

This new object, when tiled, will cover Rn−1.
We will demonstrate this with an example.

Example 2. Consider the case of β = 2 cos
(

2π
9

)
≈ 1.532 of order 9.

This has fundamental units β − 1 and β. This gives w1 = (−0.427, 1.058) and
w2 = (−1.058, 0.631). As a first attempt, we can use the log(LRA) given by the
parallelogram with vertices (0, 0), w1, w1 + w2 and w2. Unfortunately, when we
remove the logs, the resulting LRA is very awkward to use, from a computational
point of view. (See Figures 3.1(a) and 3.1(b) for this region, and its translates in
Rn−1.)

Instead, we follow the outline as given above, to find an LRA with edges parallel
to the axes.

• We start with the fundamental region F ; see Figure 3.2(a).
• We then project this region F to the y-axis to get T (F ); see Figure 3.2(b).
• We then translate this projection to get T (F ′) = T (F + v), a region on the

y-axis, and totally non-positive; see Figure 3.2(c).
• We then use the algorithm of Section 2 to fill in the object in R2; see Figure

3.2(d).
• The final object, when logarithms are removed, is given in Figure 3.2(e).



TILES IN QUASICRYSTALS 413

(a) Fundamental Region (b) Projection of Fundamental Region

(c) Translation of Projection
of Fundamental Region

(d) Filling R2

(e) Removing Logarithms

Figure 3.2. Finding the LRA
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Table 4.1. Values in Σ((−1, 1), (−1, 1))

Tile Approximation Box Needed
0 0 Not Applicable
β2 + β − 1 2.879 S1 = [0, 0.347] × [0.532, 1] X
β2 + 2β 5.412 S2 = [0.227, 1] × [0, 0.185] X
2β2 + 3β − 2 7.291 S3 = [0.574, 1] × [0.717, 1] X
2β2 + 3β − 1 8.291 S4 = [0, 0.574] × [0, 0.717] X
3β2 + 5β − 2 12.703 S5 = [0.801, 1] × [0, 0.902] X
4β2 + 6β − 3 15.582 S6 = [0.148, 1] × [0.434, 1] X
4β2 + 6β − 2 16.582 S7 = [0, 0.148] × [0, 0.434]
5β2 + 7β − 4 18.461 S8 = [0, 0.495] × [0.966, 1]
5β2 + 8β − 3 20.994 S9 = [0.375, 1] × [0, 0.619] X
6β2 + 9β − 4 23.873 S10 = [0, 0.722] × [0.151, 1]
7β2 + 10β − 5 26.752 S11 = [0, 0.069] × [0.683, 1]
7β2 + 11β − 5 28.285 S12 = [0.949, 1] × [0.335, 1]
7β2 + 11β − 4 29.285 S13 = [0, 0.947] × [0, 0.335]

4. Tile sets of fixed quasicrystals

In this section we will discuss how one would find the tiles in a cut and project
quasicrystal.

Consider a quasicrystal of the form Σ([0, �2), . . . , [0, �n)). We notice that if z ∈ T ,
then z = y2 − y1, where y1, y2 ∈ Σ. This then implies that z ∈ Σ((−�2, �2), . . . ,
(−�n, �n)). It is a standard integer programming problem to find all z ∈ Σ([−�2, �2],
. . . , [−�n, �n]) with 0 ≤ z ≤ M for any finite M . See for instance [4, 12]. The values
of z corresponding to the boundary points are easy to detect and remove.

At this point, we need to see for which z this is a valid tile. We do this by looking
at the conjugates and the associated acceptance windows.

Example 3. Let us find the tiles for Σ9([0, 1), [0, 1)). For convenience, let β =
2 cos

(
2π
9

)
≈ 1.532.

A quick calculation, summarized in Table 4.1, gives the values in Σ9((−1, 1),
(−1, 1)) that are less than 30. It is worth observing here that 1 ∈ Σ9([−1, 1], [−1, 1])
but not in Σ((−1, 1), (−1, 1)). As we are concerned with open intervals, not closed
ones, we do not include 1 in Table 4.1.

Consider the first potential tile of size β2 + β − 1. If y2 − y1 = β2 + β − 1, then
we know that σ2(y2 − y1) = σ2(β2 + β − 1) = 0.653. We know that both σ2(y2)
and σ2(y1) are in [0, 1). So this gives a range for where σ2(y1) must be. If σ2(y1) >
1− 0.653 = 0.347, then we see that it is not possible for σ2(y2 − y1) = 0.653. So we
see that σ2(y1) ∈ [0, 0.347]. A similar calculation shows that σ3(y1) ∈ [0.532, 1]. So
we need (σ2(y1), σ3(y1)) to be in the box S1 = [0, 0.347] × [0.5329, 1]. We say that
S1 is the box associated to the tile β2 + β − 1.

For each potential tile z ∈ Σ((−1, 1), (−1, 1)) in question, and each y1 ∈
Σ([0, 1), [0, 1)), we can find a y2 ∈ Σ([0, 1), [0, 1)) such that y2 − y1 = z, if and
only if (σ2(y1), σ3(y1)) is contained in a box based on σ2(z) and σ3(z).

Now this difference is not always a tile. In particular, we see that y2−y1 is not a
valid tile if there always exists a y3 with y2 > y3 > y1. This is equivalent to saying
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Figure 4.1. Tiling of order 9, Ω2 = Ω3 = [0, 1)

that for all (σ2(y1), σ3(y1)) in the box associated to the tile y2 − y1, we have that
(σ2(y1), σ3(y1)) is in a previous box associated to an earlier tile y3 − y1.

We examine the boxes in order of their tile size. What we wish to find is:
• When the boxes eventually cover [0, 1] × [0, 1] and,
• For which j the box Sj is contained in the union of all previous boxes (i.e.,

it is an unused tile).
This is just the technique from Section 2, and a simple calculation shows that

we need only the boxes S1, S2, S3, S4, S5, S6 and S9 as indicated in Table 4.1. (See
Figure 4.1.)

Thus we see that the tile set size for Σ([0, 1), [0, 1)) is 7.

The general case would be done similarly to the example above. To find the
valid tiles in Σ([0, �2), . . . , [0, �n)) we compute the first few values in Σ((−�2, �2), . . . ,
(−�n, �n)) that are greater than 0. (We compute more as necessary, until the algo-
rithm terminates.) After this, we consider a tile, say z ∈ Σ((−�2, �2), . . . , (−�n, �n)),
and use it to create a box S that will cover part of B = [0, �2] × . . . × [0, �n]. We
continue with this process, choosing the tiles in order of size, until such time as the
box B is completely covered.

5. Partitioning the relevant area LRA

In Section 3 we showed how to compute the relevant area LRA. In Section 4 we
showed how one could compute the tile set (and hence the tile set size) for a fixed
set of acceptance windows Ωj . In this section we show how to partition the LRA

into subregions such that in each subregion, the tile set (and hence tile set size) is
constant.

To do this we need some notation. Let Si be the boxes in [0, �2] × . . . × [0, �n]
associated with the tiles ti ∈ T in the quasicrystal Σ([0, �2), . . . , [0, �n)). We need to
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Figure 5.1. Covering [0, �] with [0, � − 0.4] and [0.4, �]

see what happens to these boxes Si as the �j vary. In particular, we need to see when
these regions transition from overlapping boxes that cover B = [0, �2]× . . .× [0, �n]
to non-overlapping boxes that no longer cover B = [0, �2] × . . . × [0, �n].

For this, we do a very simple one-dimensional example.

Example 4. Consider T ([0, 1)) with the boxes S1 = [0, 0.6] and S2 = [0.4, 1]
associated with the two tiles t1 and t2. These boxes cover [0, 1] in the sense that
[0, 1] = S1 ∪S2. Assume further that S1 takes precedence over S2 in the sense that
if a point is in both S1 and S2, then it is associated with the tile t1 instead of t2.

For a general tile set T ([0, �)), a point x is associated with t1 if x ∈ [0, � − 0.4],
and is associated with t2 if x ∈ [0.4, �] and is not in [0, � − 0.4]. Figure 5.1 gives
examples of S1 and S2 as they cover (or fail to cover) [0, �] for � = 0.7, 0.8, 0.9 and
1.0. We see that for 0.8 ≤ � ≤ 1.0 the tiles t1 and t2 are the only tiles of importance.
For � < 0.8 we see that S1 and S2 no longer cover [0, �]; hence we would have at
least one new additional tile.

In Section 3 we found an LRA such that every quasicrystal is equivalent to a qua-
sicrystal using this LRA. We now wish to subdivide this LRA into subregions such
that for any (b2, . . . , bn) in one of these subregions we have that Σ([0, b2), . . . , [0, bn))
has a constant tile set. To do this, we must determine, for each pair of tiles, when
their associated boxes transition from overlapping to non-overlapping. So for the ex-
ample above, [0, �− 0.4] and [0.4, �] transition from overlapping to non-overlapping
when � = 0.8. In some cases, boxes will never overlap, so we need not consider
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Figure 5.2. Partition for 9

these pairs. This check must be done for each direction, and each pair of overlap-
ping boxes. We then take, for each direction, the maximal transition point. This
will give us a subregion on which the tile set is constant. For the example above,
this would say that for any � ∈ [0.8, 1.0] the tile set of Σ([0, �)) is the same. Beyond
this transition point, we would need to recompute the tile set. We then iterate
this process. To do this, consider first the acceptance windows Ωj = [0, �j) upon
which we found the tile set. (For the first iteration of this algorithm, this typically
has �j = 1.) For each direction, we find κj such that κj is the maximal value of
a transition in this direction. This tells us that for all κj ≤ bj ≤ �j , the tile set
on the acceptance window [0, b2), [0, b3), . . . , [0, bn) is fixed. So this tells us that
[κ2, �2] × . . . × [κn, �n] is a subregion of the LRA that has a fixed tile set. We then
check the subregions

([0, �2] × . . . × [0, �i−1] × [0, �i − ki] × [�i+1 − ki+1, �i+1] × [�n − kn, �n]) ∩ LRA

of the LRA, for i = 2, 3, . . . , n. It should be noted that if we are checking a subregion
of the LRA, say [c2, �2]× . . .× [cn, �n], and we find that the transition value κi < ci,
then this says that there is no transition value in the appropriate range that we need
to worry about. Hence there is no need to recurse in this direction. We continue
this process until the LRA is fully partitioned. See, for example, Figure 5.2.
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(a) � = 1 (b) � = 0.9

Figure 5.3. Non-useful transition

It should be noted that occasionally a partition is made overly fine. This can
occur when the two tiles that transition from overlapping to non-overlapping do
not actually change the tile set when doing so. See, for example, Figure 5.3. It was
decided not to check for these cases.

We now have all of the necessary tools to determine the tile set sizes. The results
are summarized in Table 7.1.

6. Order 11

For the previous orders (k = 7, 9, 15, 16, 20 and 24), we first determined the
relevant area LRA. Next we partitioned the LRA into subregions and computed the
tile sizes for each of these subregions.

For order 11 this was deemed to be infeasible. If we compare the size of
[log(�2), log(1)] × . . . × [log(�d), log(1)] with log(LRA), then we get a rough esti-
mate of the number of subregions that need to be examined. Based on this, it was
determined that a complete computation of order 11 would be computationally
unattainable.

Based on a random sampling of 1500 subregions, chosen uniformly on log(LRA),
we found tile set sizes for all values between 35 through 64. This is most likely
not all of them. For example, for the case when k = 20 we have that the tile set
sizes are between 15 and 30, but the tile set sizes that are within the first standard
deviation are only 20 to 23. In fact, only 10 examples where the tile set size was
30 were found (out of a possible 29,564 subregions). For this reason, it is unlikely
that any random sampling of order 11 will find the extremes in the possible tile set
sizes.

From a practial point of view, cut and project quasicrystals of order 11 (or higher
degree orders) will probably not be recognizable in nature, as most people would
not be able to observe the existence of a pattern with this large a number of tiles,
and it would have the appearance of randomness.



TILES IN QUASICRYSTALS 419

Table 6.1. Estimated number of tiles, versus actual

Order | log(B1)| | log(LRA)| | log(LRA)|
| log(B1)| Number of Subregions

Degree 3

7 0.010807 0.525454 48.6217 45
9 0.045422 0.849287 18.6974 55

Degree 4

15 0.88224e-5 1.165455 132,101.2 16,993
16 0.94546e-4 2.441795 25,826.6 36,696
20 0.24383e-4 1.852811 75,986.5 29,564
24 0.34517e-4 2.660899 77,088.8 55,814

Degree 5

11 0.47100e-7 1.635694 34,727,742.5 ?

7. Summary

This paper formalizes, and explains how to automate, the techniques in [11]. The
results of all degree 3 and 4 cut and project quasicrystals are summarized in Table
7.1. These computations were done in C++ with 20, 40, 80 and then 160 digits of
accuracy, under which the results remained stable. This was done using the ARPREC
package of David Bailey, et al. [2]. After the LRA was partitioned into subregions,
each subregion was tested again, using a Maple implementation, to check that the
number of tiles stayed the same. So, for each subregion of the LRA, the tile set was
computed using both C++ using the ARPREC package, and using code written in
Maple. This was done as a means of double checking the solutions. The relative
slowness of Maple was balanced in this case by the fact that the calculations were
naively parallelizable and could be distributed across multiple computers.

Based upon the comments in Section 6, it is unlikely that these techniques can be
useful if used for other 1-dimensional cut and project quasicrystals of higher degree
based on closed or half-closed intervals. That being said, it should be possible to
use these techniques to study cut and project quasicrystals of higher dimensions,
or those based on multiple intervals.

Table 7.1. Tiles set sizes, and number of subregions

Order Number of Subregions Number of non-singular Tiles

Degree 3

7 45 7 to 9
9 55 7 to 9

Degree 4

15 16,993 15 to 31
16 36,696 15 to 26
20 29,564 15 to 30
24 55,814 15 to 28

Degree 5

11 35 million (?) contains 35 through 64.
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