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ON NEWMAN POLYNOMIALS WHICH DIVIDE
NO LITTLEWOOD POLYNOMIAL

ARTŪRAS DUBICKAS AND JONAS JANKAUSKAS

Abstract. Recall that a polynomial P (x) ∈ Z[x] with coefficients 0, 1 and
constant term 1 is called a Newman polynomial, whereas a polynomial with
coefficients −1, 1 is called a Littlewood polynomial. Is there an algebraic num-
ber α which is a root of some Newman polynomial but is not a root of any Lit-
tlewood polynomial? In other words (but not equivalently), is there a Newman
polynomial which divides no Littlewood polynomial? In this paper, for each
Newman polynomial P of degree at most 8, we find a Littlewood polynomial
divisible by P . Moreover, it is shown that every trinomial 1+uxa +vxb, where
a < b are positive integers and u, v ∈ {−1, 1}, so, in particular, every Newman
trinomial 1 + xa + xb, divides some Littlewood polynomial. Nevertheless, we
prove that there exist Newman polynomials which divide no Littlewood poly-
nomial, e.g., x9+x6+x2+x+1. This example settles the problem 006:07 posed
by the first named author at the 2006 West Coast Number Theory conference.
It also shows that the sets of roots of Newman polynomials VN , Littlewood

polynomials VL and {−1, 0, 1} polynomials V are distinct in the sense that
between them there are only trivial relations VN ⊂ V and VL ⊂ V. Moreover,
V �= VL ∪ VN . The proofs of several main results (after some preparation) are
computational.

1. Introduction

A polynomial P (x) ∈ Z[x] with coefficients 0, 1 and constant term 1 is called a
Newman polynomial. Polynomials P with coefficients −1, 1 are called Littlewood
polynomials. Let VN and VL be the sets of roots of Newman and Littlewood polyno-
mials, respectively. Let also V be the set of roots of polynomials P with coefficients
in the set {−1, 0, 1} and P (0) �= 0. Throughout this paper, we write H(P ) for the
height of the polynomial P , namely, the maximum modulus of its coefficients. The
polynomial P ∗(x) = xdeg P P (1/x) is called the reciprocal polynomial of P .

The sets VN , VL and V have been investigated by several authors, e.g., [8], [9],
[15]. It is well known that the set VN is contained in the intersection of the annulus
1/φ < |z| < φ with �(z) < 3/2, where φ = (1 +

√
5)/2. A more precise bounding

contour was given in [15], where it was also shown that the closure of this set VN is
path-connected. The points of VL inside the unit circle are related to the vanishing
points of power series with ±1 coefficients. Beaucoup, Borwein, Boyd and Pinner
studied the extremal zeros of such power series and their multiplicity in [2] and [3].

Clearly, every α ∈ V is an algebraic integer. Moreover, it is a unit, and it is not
difficult to show that all such α are located in the annulus 1/2< |z|<2. The converse
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of this statement does not hold; namely, there are many units α that lie with their
conjugates in the annulus 1/2 < |z| < 2 but α /∈ V. For instance, the minimal
polynomial P (x) = x4 + x3 + 2x2 − x + 1 of the number θ = (−1 + i

√
3)(1 +

√
5)/4

does not divide any polynomial with coefficients {−1, 0, 1} (see [9]).
It is evident that VN ⊆ V and VL ⊆ V. Moreover, VN is a proper subset of V,

because VN contains no positive numbers, whereas, say, 1 ∈ VL ⊆ V. In order to
show that VL is a proper subset of V it would be sufficient to prove that there is
an α ∈ VN which is not in VL. This would imply that VN is not a subset of VL, so
that all three sets VN , VL and V are distinct and both sets VN \ VL and VL \ VN
are not empty.

For this, it suffices to show that there is an irreducible polynomial P (x) ∈
Z[x], P (0) �= 0, which divides some Newman polynomial but does not divide any Lit-
tlewood polynomial. However, it seems that the problem of finding such examples is
non-trivial, so the first named author posed this question as an open problem 006:07
at the 2006 West Coast Number Theory conference (see http://web.newsguy.com/
bartgoddard/problems2006.pdf). Below, we shall use a numerical algorithm (see
Theorem 4) to determine whether a given polynomial P (x) ∈ Z[x] with at least
one zero outside the unit circle divides some Littlewood polynomial or not. In
particular, using this test, we will show that the irreducible Newman polynomial
x9 + x6 + x2 + x + 1 of degree 9 does not divide any Littlewood polynomial. In
addition, it will be shown that there are no such Newman polynomials of degree at
most 8.

Divisibility properties of polynomials with coefficients {−1, 0, 1} have been stud-
ied on many occasions, since they have many applications to various diophantine
problems. For example, the order of vanishing of such polynomials at 1 was studied
in [1], and the multiplicity of cyclotomic and non-cyclotomic factors of such poly-
nomials was studied in [7] and [14]. The paper [14] was partly motivated by a hope
to establish an absolute upper bound B for the multiplicity of a non-cyclotomic fac-
tor P in the factorization of polynomials with coefficients {−1, 0, 1}. Such a bound
would lead to the proof of Lehmer’s conjecture on Mahler’s measure. If the bound
B exists, then B � 4. Recently, several new results on Lehmer’s conjecture have
been obtained in [5] and [6]. In [5], Lehmer’s conjecture was confirmed for polyno-
mials with odd coefficients, so, in particular, for Littlewood polynomials. See also
[10] for better numerical estimates.

The above-mentioned papers contain some interesting examples which are in
some sense “special cases” of our problem. For instance, in [5], it was observed
that if P (x) ∈ Z[x] is not a product of cyclotomic polynomials Φm modulo 2 and
P divides some Littlewood polynomial L, then the quotient Q = L/P has Mahler’s
measure greater than 1. In other words, Q cannot be a product of cyclotomic
polynomials. Similarly, from the result on the Mahler measure of Littlewood poly-
nomials given in [6], it follows that if 1 < M(P ) < (1 +

√
5)/2 and P divides a

non-reciprocal Littlewood polynomial L, then L/P must have at least one non-
cyclotomic factor. Otherwise, we have M(L) = M(P ) < (1 +

√
5)/2, where L is a

non-reciprocal Littlewood polynomial, which is impossible by [6]. Mossinghoff [14]
found Littlewood polynomials divisible by � and {−1, 0, 1} polynomials divisible by
�3, where �(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 is Lehmer’s polynomial.

This paper is organized as follows. The main results are given in Sections 2 and
3. In Section 4 we give an auxiliary result for polynomials over the finite field F2
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with two elements. Section 5 contains the proofs of most of our theoretical results.
We then develop some algorithms used in our computations (see Section 6). The
details of the computations are provided in Section 7.

2. Main results

Note that the sets VN and VL have infinitely many common elements. For
example, the root of unity ζ = e2πi/u, where u � 2, is a root of xu−1 + · · · + x + 1.
This is a Newman polynomial and a Littlewood polynomial. So every root of unity
except for 1 belongs to VN ∩ VL. Our next result implies that the structure of
the set VN ∩ VL is non-trivial: every Newman trinomial divides some Littlewood
polynomial. (A trinomial is a polynomial with three non-zero coefficients.) In fact,
our statement is more general:

Theorem 1. For each trinomial P with {−1, 0, 1} coefficients and P (0) �= 0, there
exists a polynomial Q with coefficients {−1, 0, 1} such that the product PQ is a
Littlewood polynomial.

Similar results for certain special quadrinomials will be given in Section 3. Our
computations show that the roots of Newman polynomials of degree at most 8 also
belong to VN ∩ VL:

Theorem 2. Every Newman polynomial of degree at most 8 divides some Littlewood
polynomial.

We also have the following:

Theorem 3. Every Newman polynomial divides some integer polynomial with odd
coefficients.

The main purpose of this paper is to give some examples of algebraic numbers
α ∈ VN \ VL. We found several irreducible Newman polynomials not dividing any
Littlewood polynomial. Some of them are given in Table 1. Polynomials given in
rows 2, 4, 6, 8 are reciprocal to polynomials given in rows 1, 3, 5, 7, respectively.

Table 1. Some Newman polynomials of degree 9 not dividing any
Littlewood polynomial.

Polynomial P (x)

1. 1 + x4 + x6 + x7 + x9

2. 1 + x2 + x3 + x5 + x9

3. 1 + x3 + x7 + x8 + x9

4. 1 + x + x2 + x6 + x9

5. 1 + x + x2 + x4 + x6 + x9

6. 1 + x3 + x5 + x7 + x8 + x9

7. 1 + x + x4 + x5 + x6 + x7 + x9

8. 1 + x2 + x3 + x4 + x5 + x8 + x9

All these polynomials were found using numerical tests based on the following
statement:
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Theorem 4. Let P (x) ∈ Z[x] be a monic polynomial whose roots of modulus strictly
greater than 1 are labelled α1, . . . , αk, where k � 1. Suppose that there exist a
positive integer N and a real number δ � 0 with the property that, for each of
the 2N vectors b = (b1, . . . , bN ), where b1, . . . , bN ∈ {−1, 1}, there are two positive
integers n = n(b) � N and i = i(b) � k such that

(|αi| − 1)|αn
i + b1α

n−1
i + · · · + bn| � 1 + δ.

Then P does not divide any Littlewood polynomial.

At first glance, the statement of the theorem may look somewhat strange, be-
cause one obtains the weakest inequality when δ = 0. However, on several occasions
below, we shall use the statement of the theorem with strictly positive δ. This is
why we prefer to state the theorem in the above form.

Using the examples from Table 1 it is possible to construct infinitely many irre-
ducible Newman polynomials not dividing any Littlewood polynomial. This shows
that the set VN \ VL is infinite. We will prove the following statement:

Theorem 5. There exist infinitely many primitive irreducible Newman polynomials
which do not divide any Littlewood polynomial.

In this context, a polynomial P (x) ∈ Z[x] is called primitive if P cannot be
written as P (x) = G(xk) with some integer k � 2 and some G(x) ∈ Z[x].

Take P (x) = 1 + x4 + x6 + x7 + x9. Since P (x) does not divide any Littlewood
polynomial, the polynomial P (−x) = 1 + x4 + x6 − x7 − x9 also does not divide
any Littlewood polynomial. The polynomial 1 + x4 + x6 − x7 − x9 has a positive
root α, so it does not divide any Newman polynomial. This shows that α ∈ V, but
α /∈ VL ∪ VN , so VL ∪ VN is strictly contained in V.

3. Other results

For each complex root α of the polynomial P (x) ∈ R[x], the complex conjugate
α is also a root of P . If P is a Newman (resp. Littlewood) polynomial, then its
reciprocal P ∗ is also a Newman (resp. Littlewood) polynomial. Thus each of the
sets VL, VN , VN ∩VL, VN \VL, VL \VN maps into itself by the complex conjugation
z �→ z and the inversion z �→ 1/z. In the next statement we consider the map
z �→ z1/k.

Lemma 6. Let k be a positive integer. Then P (x) ∈ Z[x] divides some Littlewood
polynomial if and only if P (xk) divides some Littlewood polynomial.

By the same method as that in the proof of Theorem 1, one can show that certain
quadrinomials also divide polynomials with small odd coefficients and sometimes
even Littlewood polynomials.

Theorem 7. Let P be a quadrinomial with coefficients in {−1, 0, 1} such that
P (0) = 1. Then there is a Newman polynomial Q such that all coefficients of the
product PQ belong to the set {−3,−1, 1, 3} and, moreover, to the set {1, 3} if P
itself is a Newman polynomial. Furthermore, if a < b < c are positive integers and
P is of one of the forms

i) 1 + xa − xb − xc,
ii) 1 − xa − xb − xc, where exactly one of the numbers a, b, c is odd,
iii) 1 + xa + xb + xc, where exactly one of the numbers a, b, c is even,
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iv) 1 + xa + xb − xc, where all the exponents a, b, c are odd or, alternatively, c is
even and precisely one of the numbers a, b is odd,
then the quadrinomial P divides some Littlewood polynomial L, and L/P is a poly-
nomial with coefficients in {−1, 0, 1}.

It would be of interest to find out whether this result can be extended to the full
analogue of Theorem 1, namely, to all quadrinomials of height 1. If so, then this
would imply that our example x9 + x6 + x2 + x + 1 is minimal not only in terms of
its degree (nine), but also in terms of the number of its non-zero coefficients (five).

Suppose that P (x) ∈ Z[x] divides some Littlewood polynomial L. One may ask
which values can its degree deg L take. The answer is given in terms of factorization
of L modulo 2.

Lemma 8. Suppose that a polynomial P (x) ∈ Z[x] divides a Littlewood polynomial
L. Let P̃ (x) ∈ F2[x] be the reduction of P modulo 2. Then deg L + 1 is a multiple
of deg2 P̃ . (This quantity will be defined in Section 4.)

In fact, the value of deg L grows exponentially with the degree of P . If, for
instance, a monic polynomial P of degree 10 is a prime divisor of the cyclotomic
polynomial Φ1023 in F2[x], then deg2 P̃ = 210 − 1. The degree of any Littlewood
polynomial L divisible by P must be of the form 1023k − 1, where k ∈ N, so it is
greater than or equal to 1022. One has thus to consider 21022 different possibilities
in trying to find a polynomial L of degree 1022 divisible by P . This simple example
demonstrates the computational complexity of the problem.

One possible strategy is to search for a factor Q(x) ∈ Z[x] of small height, say,
H(Q) � 2 such that the product PQ is a Littlewood polynomial. The following
lemma implies that one can restrict oneself with only finitely many choices for Q.
This will be used in Algorithm 14 below.

Lemma 9. Suppose that a polynomial P (x) ∈ Z[x] of degree d � 1 divides a
Littlewood polynomial L. Let h = H(L/P ). Then there exists a polynomial Q(x) =∑n

j=0 bjx
j ∈ Z[x] of degree

n � (2h + 1)d + d − 2

and height H(Q) � h such that the product PQ is also a Littlewood polynomial.
Moreover, the vector of coefficients (b0, b1, b2, . . . , bn−1, bn) of Q contains no two
identical blocks bj , bj+1, . . . , bj+d−1 of length d.

Suppose that a Newman polynomial P does not divide any Littlewood polyno-
mial. We shall construct infinitely many examples of such polynomials by perturb-
ing the roots of P.

Theorem 10. Suppose that P satisfies the conditions of Theorem 4 with some
δ > 0. Then there exists an ε > 0 which depends on P and δ only with the following
property: if the polynomial P1(x) ∈ Z[x] has some roots β1, . . . , βk, each of modulus
strictly greater than 1 such that |αj − βj | < ε for j = 1, . . . , k, where α1, . . . , αk

are the roots of P of modulus strictly greater than 1, then P1 does not divide any
Littlewood polynomial.

Such approximations may be obtained from the sequence of polynomials of the
form xnP (x) + R(x), where R is a Newman polynomial relatively prime to P and
n > deg R.
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Theorem 11. Suppose that the polynomial P satisfies the conditions of Theorem 4
with some δ > 0. Then, for any R(x) ∈ Z[x], there exists a positive integer n0 such
that, for each n � n0, the polynomial xnP (x)+R(x) does not divide any Littlewood
polynomial.

All polynomials given in Table 1 have at least two zeros outside the unit circle.
It would be of interest to find out whether there exists an irreducible polynomial
P (x) ∈ Z[x] with exactly one root outside the unit circle such that P divides some
Newman polynomial but no Littlewood polynomial. In other words, does there exist
a Pisot or a Salem number α such that −α is a root of some Newman polynomial
but not a root of any Littlewod polynomial?

4. Auxiliary facts about polynomials from F2[x]

Every polynomial f(x) ∈ F2[x] with f(0) �= 0 modulo 2 may be written uniquely
as a product

f(x) = (x + 1)m
r∏

j=1

φj(x)mj ,

where m � 0 and φj(x) ∈ F2[x] are irreducible polynomials of degree greater than
or equal to 2 and multiplicity mj � 1, j = 1, . . . , r. The product is empty if r = 0.
Every polynomial φj divides a unique cyclotomic polynomial Φej

of odd index ej .
Let s be the least positive integer satisfying 2s � max{m + 1, m1, . . . , mr}. Define
the number

deg2 f = 2slcm(e1, . . . , er).

Lemma 12. If a polynomial f(x) ∈ F2[x] divides the polynomial h(x) = xn + · · ·+
x + 1, then n + 1 is divisible by the number deg2 f . Conversely, if deg2 f divides
n + 1, then there exists a polynomial g(x) ∈ F2[x] such that f(x)g(x) = h(x).

Proof. Write h(x) = (xn+1 + 1)/(x + 1) in F2[x]. Let n + 1 = 2lk, where k is odd
and l � 0. Then, in F2[x], we have

h(x) = (xk + 1)2
l

/(x + 1).

Let α be a root of the irreducible factor φj(x) of f . Note that the order of α in the
multiplicative group of the field F2deg φj is ej , so ej divides k for every j = 1, . . . , r.
The polynomial xk + 1 has no multiple roots. Therefore the power 2l is greater
than or equal to the maximum of the numbers m+1, m1, . . . , mr. Hence n+1 must
be divisible by 2s and the least common multiple of the integers e1, . . . , er. On the
other hand, if we take n = n1 deg2 f − 1, for some positive integer n1, then h(x)
vanishes at all roots of f(x) with required multiplicities. Thus h(x) is divisible by
f(x), and g(x) ∈ F2[x] is the quotient h(x)/f(x). �

We shall give an example of the computation of deg2 P̃ . Consider the polynomial
P (x) = 1 + x2 + x5 + x9 ∈ Z[x]. Reducing modulo 2, the polynomial splits over F2

into the following irreducible factors:

P̃ (x) = (x + 1)2(x2 + x + 1)(x5 + x4 + x3 + x + 1).

In this example, we have m = 2, r = 2, m1 = m2 = 1, φ1(x) = x2 + x + 1 and
φ2(x) = x5 + x4 + x3 + x + 1. The polynomial φ1 is the cyclotomic polynomial
Φ3. The polynomial φ2 divides the cyclotomic polynomial Φ31. Hence e1 = 3, e2 =
25 − 1 = 31 and s = 2. Thus deg2 P̃ = 22lcm(3, 31) = 372. Therefore, by Lemma 8,
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any Littlewood polynomial L divisible by 1 + x2 + x5 + x9 must be of degree
deg L = 372k − 1, where k = 1, 2, . . . .

Two of our statements are very simple corollaries of Lemma 12.

Proof of Lemma 8. The reduction of any Littlewood polynomial L modulo 2 is
L̃(x) = xdeg L + · · · + x + 1. Since L̃ is divisible by P̃ , the result follows from
Lemma 12. �
Proof of Theorem 3. Let P be a Newman polynomial of degree b. By Lemma 12,
there exists a polynomial Q̃(x) =

∑n−b
j=0 q̃jx

j ∈ F2[x], satisfying P̃ (x)Q̃(x) = xn +
· · · + x + 1 in F2[x]. Set Q(x) = Q̃(x), where 0 and 1 are understood as positive
integers rather than elements of F2. It follows that PQ has all odd coefficients. �

5. Proofs

Proof of Lemma 6. The proof of the lemma is similar to the proof of Proposition
(iv) in [16]. If the polynomial P (x) ∈ Z[x] divides some Littlewood polynomial L,
and Q is a Littlewood polynomial of degree k − 1, then the product L(xk)Q(x) is
a Littlewood polynomial divisible by P (xk). One can take, for instance, Q(x) =
1 + x + · · · + xk−1.

For the converse, suppose that P (xk) divides a Littlewood polynomial L. Rewrite
L(x) putting the powers xi, xj satisfying i ≡ j(mod k) together:

L(x) = L0(xk) + xL1(xk) + · · · + xk−1Lk−1(xk).

Note that each Lj(x), j = 0, . . . , k − 1, is either a Littlewood polynomial or zero.
For each 0 � j � k − 1, there exist Qj , Rj ∈ Z[x], such that Lj = PQj + Rj ,
where deg Rj < deg P . Since P (xk)|L(x), it follows that P (xk) divides R(x) =
R0(xk)+xR1(xk)+ · · ·+xk−1Rk−1(xk). The degree of R is � k(deg P −1)+k−1,
so deg R < k deg P. Hence all the polynomials Rj must be zeros identically. This
implies that all non-zero polynomials Lj are Littlewood polynomials divisible by P.
(There must be at least one non-zero Lj , because L is non-zero.) �

Proof of Lemma 9. Let P (x) =
∑d

j=0 ajx
j . Among all polynomials Q of height

H(Q) � h such that the product PQ is a Littlewood polynomial, there is a poly-
nomial of minimal degree, say, Q(x) =

∑n
j=0 bjx

j . Write P (x)Q(x) = L(x), where
all coefficients of L are ±1.

We begin from the second part of the statement. Suppose that the vector of
coefficients of the polynomial Q, (b0, b1, . . . , bn−1, bn), contains two identical blocks
br, br+1, . . . , br+d−1 and bs, bs+1, . . . , bs+d−1 of length d, where r < s. After re-
moving s − r coefficients br, br+1, . . . , bs−1 from this vector, we obtain the vector
(b0, . . . , br−1, bs, . . . , bn). Define the polynomial T (x) =

∑n−(s−r)
j=0 tjx

j by

tj =

{
bj if j < r,

bj+(s−r) if j � r.

Since br+j = bs+j for j = 0, . . . , d−1, the first r+d coefficients of T and Q coincide,
tj = bj , 0 � j � r + d − 1. Hence Q(x) ≡ T (x) (mod xr+d). Similarly, the last
n− s + 1 coefficients of Q and T are equal. So, for their reciprocal polynomials, we
have Q∗(x) ≡ T ∗(x) (mod xn−s+1). It follows that L(x) = P (x)Q(x) ≡ P (x)T (x)
(mod xr+d) and L∗(x) = P ∗(x)Q∗(x) ≡ P ∗(x)T ∗(x) (mod xn−s+1). Hence the
first r + d and the last n − s + 1 coefficients of L and PT are the same. But PT
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has precisely n− s + r + d + 1 coefficients, so each of those coefficients must be ±1.
Hence PT is a Littlewood polynomial. It follows that deg T < deg Q, which is a
contradiction with the minimality of deg Q.

Now, we turn to the first part of the statement. Since the right-hand side of the
inequality, (2h+1)d+d−2, is greater than d for every d � 1, we may assume n > d.
The number of blocks of length d in the vector of coefficients of Q is n − d + 2.
On the other hand, this number must be less than or equal to the total number of
different possible blocks, otherwise two of them will be identical, which is already
proved to be impossible. By choosing any element of the block from the set of
2h + 1 integers {−h, . . . , 0, . . . , h}, one obtains exactly (2h + 1)d different blocks.
This implies that n − d + 2 � (2h + 1)d, as claimed. �

Proof of Theorem 1. Without loss of generality, we may assume that the constant
coefficient of P is 1 (otherwise multiply P by −1). The trinomial P has one of the
four forms

(i) 1 − xa + xb, (ii) 1 + xa − xb, (iii) 1 − xa − xb, (iv) 1 + xa + xb,

where a < b are two positive integers.
Write P (x) = 1 + εaxa + εbx

b, where the coefficients εa, εb ∈ {−1, 1}. We first
consider the cases (i)–(iii), when at least one of the coefficients εa, εb is negative.
The reduction of the polynomial P mod 2 is P̃ (x) = 1 + xa + xb. By Lemma
12, there exists a polynomial Q̃(x) =

∑n−b
j=0 q̃jx

j ∈ F2[x], satisfying P̃ (x)Q̃(x) =
xn + · · ·+x+1 in F2[x] provided that n+1 is divisible by deg2 P̃ . Take the number
n = deg2 P̃ − 1 to obtain the polynomial of the least possible degree. Define the
polynomial Q(x) =

∑n−b
j=0 qjx

j ∈ Z[x] by

qj =

{
0 if q̃j = 0,

1 if q̃j = 1,

so that Q̃(x) is a reduction mod 2 of the polynomial Q(x).
Writing P (x)Q(x) = (1 + εaxa + εbx

b)
∑n−b

j=0 qjx
j = L(x) =

∑n
j=0 ljx

j , we see
that the coefficients lj ∈ Z, j = 0, . . . , n, are given by the formulae

lj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

qj for 0 � j < a,

qj + εaqj−a for a � j < b,

qj + εaqj−a + εbqj−b for b � j � n − b,

εaqj−a + εbqj−b for n − b < j � n − b + a,

εbqj−b for n − b + a < j � n.

The third line is excluded in case n < 2b. Since L(x) ≡ P̃ (x)Q̃(x) ≡ xn + · · ·+x+1
(mod 2), all the coefficients lj are odd. There are at most three non-zero terms in
the formulae for lj , so lj ∈ {−3,−1, 1, 3}. Note that lj = ±3 may appear only in
the third line when all three terms qj , εaqj−a and εbqj−b are 1 or all three −1. This
is impossible, because qj , qj−a, qj−b ∈ {0, 1} and at least one of εa, εb is negative.
Thus PQ is a Littlewood polynomial, where Q is a Newman polynomial.

Now consider the remaining case (iv), where P (x) = 1 + xa + xb. Write k =
gcd(a, b). Then a = ka1, b = kb1. At least one of the integers a1, b1 is odd. Note
that P (x) = P1(xk), where P1(x) = 1 + xa1 + xb1 . The polynomial P1(−x) has
one of the forms (i), (ii) or (iii). It follows from the earlier part of the proof that
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there exists a polynomial Q1(x) with coefficients 0 or 1, such that P1(−x)Q1(x) is
a Littlewood polynomial. Thus P1(x)Q1(−x) is a Littlewood polynomial, so that

P1(xk)Q1(−xk)(1 + x + · · · + xk−1) = P (x)Q1(−xk)(1 + x + · · · + xk−1)

is also a Littlewood polynomial. Clearly, in this case, the factor Q1(−xk)(1 + · · ·+
xk−1) is a polynomial with {−1, 0, 1} coefficients. �

Proof of Theorem 7. The proof is very similar to the proof of Theorem 1 for tri-
nomials; thus we will omit the details. For a given quadrinomial P, there exists a
Q(x) ∈ Z[x] with 0, 1 coefficients, such that P (x)Q(x) ≡ xn + · · · + x + 1 (mod
2). In the formulae for the coefficients lj of the polynomial L = PQ there are at
most four non-zero terms and all of the lj must be odd, by the choice of Q. Hence
lj ∈ {−3,−1, 1, 3}. Moreover, lj ∈ {1, 3} if all the coefficients of P are non-negative.
This proves the first part of the theorem.

Suppose that exactly two coefficients of the quadrinomial P are 1 and the other
two are −1. (For any quadrinomial P listed in (i)–(iv) either P (x) or P (−x) has this
property.) The number lj = ±3 may appear only in equations with three or four
non-zero terms (see the formulae for the coefficients lj). This is impossible, because
two of all non-zero terms have opposite signs. Therefore, for any polynomial P as
in (i)–(iv), P (x)Q(x) or P (x)Q(−x) must be a Littlewood polynomial. �

Proof of Theorem 4. Suppose that there is a Littlewood polynomial L which is
divisible by P. Since, for any positive integer m, L(x)(1+xdeg L+1+· · ·+xm(deg L+1))
is a Littlewood polynomial too, we can assume without loss of generality that
deg L � N. Write L(x) = xM +b1x

M−1 + · · ·+bM , where bj ∈ {−1, 1} and M � N.
By the assumption of the theorem, there exist positive integers n � N and i � k
such that (|αi| − 1)|αn

i + b1α
n−1
i + · · · + bn| � 1 + δ.

On the other hand, using the fact that L is divisible by P, we have L(αi) = 0.

Hence αn
i + b1α

n−1
i + · · · + bn = −(bn+1α

−1
i + · · · + bMαn−M

i ). Thus

|αn
i + b1α

n−1
i + · · · + bn| = |bn+1α

−1
i + · · · + bMαn−M

i |

�
n−M∑
j=1

|αi|−j <
∞∑

j=1

|αi|−j = 1/(|αi| − 1),

giving (|αi| − 1)|αn
i + b1α

n−1
i + · · · + bn| < 1, a contradiction. �

Proof of Theorem 10. By Theorem 4, for each of the 2N vectors b = (b1, . . . , bN ) ∈
{−1, 1}N , there exist positive integers n = n(b) � N and i = i(b) � k such that
the function

fb(z) = (|z| − 1)|zn + b1z
n−1 + · · · + bn|

is greater than 1 + δ at αi, namely, fb(αi) � 1 + δ. By continuity of fb(z), the
inequality fb(z) > 1 holds for all z in the circle |z−αi| < εb. Here, εb > 0 depends
on b, αi and δ only. Set

ε = min
b∈{−1,1}N

εb.

Now if |αi − βi| < ε, then fb(βi) > 1. Hence the roots βj , |βj | > 1, j = 1, . . . , k,
of P1 satisfy the same conditions of Theorem 4 as the roots of P with the same
numbers i = i(b), n = n(b) and the number δ = 0. �
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Proof of Theorem 11. There exists a real number ρ > 1 such that all the roots
αj , j = 1, . . . , k, of the polynomial P outside the unit circle are of moduli strictly
greater than ρ, i.e., |αj | > ρ. For any ε > 0, choose a sufficiently small positive
number r < ε such that, firstly, all the points of the set S =

⋃k
j=1{z : |z −αj | = r}

are of modulus |z| > ρ and, secondly, the polynomial P does not vanish for any
z ∈ S. Let m = infz∈S |P (z)|, M = supz∈S |R(z)|. Since S is a compact set, by the
continuity of P, we have m > 0. Hence there exists a positive integer n0 such that,
for every n > n0 and each z ∈ S, the inequality |znP (z)| > ρnm > M � |R(z)|
is satisfied. By Rouché’s theorem, the polynomial znP (z) + R(z) has the same
number of zeros inside each circle |z − αj | = r as the polynomial P . Now, choose
ε = ε(P, δ) given by Theorem 10. For n > n0, the polynomial znP (z) + R(z) has k
roots, say, βn,1, . . . , βn,k, satisfying |βn,j | > 1 and |αj − βn,j | < ε. By Theorem 10,
znP (z) + R(z) does not divide any Littlewood polynomial. �

Proof of Theorem 5. We first show that there exist infinitely many irreducible New-
man polynomials which do not divide any Littlewood polynomial. Take some ir-
reducible non-reciprocal polynomial P from Table 1. It does not divide any Lit-
tlewood polynomial. By Lemma 6, for any positive integer k, P (xk) also does not
divide any Littlewood polynomial. Theorem 3 in the paper of Filaseta [11] asserts
that the Newman polynomial P (xk) is irreducible, because P (x) is irreducible and
non-reciprocal.

In order to prove the stronger version asserting that there are infinitely many
such primitive irreducible polynomials, let us consider the polynomial P (x) = 1 +
x4 + x6 + x7 + x9 from Table 1. Numerical computations show that it satisfies the
conditions of Theorem 11 with δ = 2 (see Table 6 below). By Theorem 11, there
exists an integer n0 such that for every n > n0 the polynomial xnP (x) + 1 is a
Newman polynomial not dividing any Littlewood polynomial.

We shall prove the existence of irreducible polynomials among xnP (x) + 1 using
standard techniques from the paper [12]. In particular, the direct consequence of
Theorem 2 in [12] is that if Pn(x) = xnP (x) + 1, where n > 2 deg P = 18, is re-
ducible, then it must have a common non-constant reciprocal factor with the recip-
rocal polynomial P ∗

n(x). If α �= 0 is a root of this common factor, then αnP (α) = −1
and α−nP (1/α) = −1. Multiplying the corresponding sides of these equalities, we
obtain P (α)P (1/α)− 1 = 0. This implies that the minimal polynomial of α over Q

must divide the polynomial G(x) = x9P (x)P (1/x)− x9. The factorization of G in
Z[x] is

(x+1)2(x2+1)(x2−x+1)(x12−x11+x10−x9+2x8−2x7+3x6−2x5+2x4−x3+x2−x+1).

If an irreducible polynomial divides two polynomials xmP (x)+1 and xnP (x)+1 for
some positive integers n > m, then it must divide their difference xmP (x)(xn−m −
1). Hence the above non-cyclotomic factor of degree 12 divides at most one polyno-
mial of the sequence Pn(x) = xnP (x)+1, n = 1, 2, . . . . The roots of the cyclotomic
factors are α = −1,±i, e±πi/3. It is easy to check that Pn(−1) = (−1)n + 1,
Pn(±i) = (±i)n + 1, P (e±πi/3) = e±πni/3 + 1. For any positive integer n = 4k, we
have P4k(α) �= 0. Therefore P4k(x) is not divisible by any of the cyclotomic factors
of G(x). Hence the subsequence x4kP (x)+1, k = 1, 2, . . . , contains infinitely many
irreducible polynomials. �
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6. Algorithms and implementation

6.1. Polynomials not dividing any Littlewood polynomial. Using Theorem
4 one can test whether a given polynomial P (x) ∈ Z[x] divides some Littlewood
polynomial. Of course, there is no guarantee at all that this will give the required
result if such an N exists, but is very large, or if such an N does not exist. In both
cases, it can still happen that P does not divide any Littlewood polynomial.

In practice, we choose a positive integer N (typical values are N = 50, 70, 100),
a real number δ � 0 (δ = 0, 1, 2) and check if there exists at least one vector
b ∈ {−1, 1}N of length N for which the left-hand side of the inequality of Theorem
4, namely, the quantity (|αj |−1)|αn

j + b1α
n−1
j + · · ·+ bn| is less than 1+ δ for every

n, where 1 � n � N, and each root αj , j = 1, . . . , k, of P is of modulus strictly
greater than 1. This is accomplished by the recursive search through the binary tree
of all vectors b. If the program reports that the reached depth is less than N + 1,
then such a vector b does not exist. The conditions of Theorem 4 are satisfied, so
that P does not divide any Littlewood polynomial. A similar method was already
used in computer graphics (see [15]).

Algorithm 13. Numerical test checking whether P (x) ∈ Z[x] can divide some
Littlewood polynomial.
Input: An integer N � 1, a real number δ � 0,

the set S of roots α of P lying in |z| > 1.
Output: Integer depth – reached depth. Initially it is 0.
Other variables: vector b.
Method: Check the conditions of Theorem 4.

Step 0: Set n = 0.

Step 1: Given n.

if n > depth then set depth = n.

if depth � N then do

for each α ∈ S test whether
(|α| − 1)|αn + b1α

n−1 + · · · + bn| < 1 + δ.

if all inequalities hold then do
i) set bn+1 = 1 and invoke Step 1 on n + 1.
ii) set bn+1 = −1 and invoke Step 1 on n + 1.

end if.

end if.

We used the following method in order to reduce the amount of numerical calcu-
lations. Let Tn(α) = αn +b1α

n−1+ · · ·+bn. The value Tn+1(α) can be found by the
formulae Tn+1(α) = αTn(α) + bn+1. Moreover, if α, α are two complex conjugate
roots of P , then it suffices to evaluate the inequality only at one of them, say, at α
with �(α) � 0.
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The most critical part of this program is the numerical evaluation of the inequal-
ity of Theorem 4. Any rounding error may cause an incorrect termination of the
recursion. To overcome this difficulty we coded the algorithm in C++ using the
C–XSC library for validated real and complex bounding interval arithmetics (see
[13]). The details concerning the initial approximation and the computation of en-
closing rectangles of roots α are given in Section 7. We store the enclosures of the
numbers α, Tn(α) using C–XSC data types cinterval or l cinterval. In order
to evaluate the left-hand side of the inequality, we compute its interval enclosure
(data types interval and l interval). Then the lower bound of this enclosure,
given by interval.Inf(), is compared to the right-hand side of our inequality. It
must be strictly smaller than 1 + δ for the inequality to hold. In addition, setting
the variable δ to be a quite large non-zero number, say δ = 2, helps to prevent any
accidental rounding errors.

6.2. Littlewood polynomials divisible by a given polynomial. Given P (x) ∈
Z[x], we search for a polynomial Q(x) ∈ Z[x] of height H(Q) � h such that the
product PQ is a Littlewood polynomial. Let

P (x) = a0 + a1x + · · · + adx
d, Q(x) = b0 + b1x + · · · + bnxn.

Clearly, P (0)Q(0) = ±1; hence we may assume that a0 = b0 = 1 (otherwise, replace
P, Q by −P,−Q, respectively). If such a Q exists, then, by Lemma 9, it is possible
to find Q of degree at most (2h + 1)d + d − 2. We used the following approach.

Suppose that the first j coefficients b0, b1, . . . , bj−1, where 0 � j � n, of Q are
already known. The coefficient lj of the product P (x)Q(x) =

∑n+d
j=0 ljx

j is given
by the equality

lj = bja0 + bj−1a1 + · · · + bmax{0,j−d}amin{j,d}.

Since a0 = 1, from this equation we find that

bj = lj − bj−1a1 − · · · − bmax{0,j−d}amin{j,d}.

The coefficient bj depends on the previous coefficients bi, 0 � i � j − 1, and the
value of the coefficient lj ∈ {−1, 1}. We must consider only those choices for lj
which give |bj | � h. Suppose that we have determined the correct value of the
coefficient lj and computed the number bj . If j = n, we are done. If no, we proceed
to compute the next coefficient bj+1.

This approach leads to the algorithm which recursively iterates through all can-
didates for the polynomial Q by trying all possible values lj = −1 and lj = 1 and
finding the coefficients bj . The recursion terminates when the factor Q is found or
when two identical blocks of coefficients of length d are detected in the vector of co-
efficients bj computed in the current branch of the recursion. Two identical blocks
will necessarily occur if j > (2h+1)d +d−2 (see the proof of Lemma 9); hence the
depth of recursion is finite. This also prevents the algorithm from searching through
non-optimal candidates for the factor Q with repeated blocks of coefficients. The
search ends immediately when the polynomial Q is found. Otherwise, it continues
until all possible candidates for Q are rejected.
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Algorithm 14. Determines whether P (x) ∈ Z[x] divides a Littlewood polynomial
L with H(L/P ) � h.
Input: A Newman polynomial P (x) = a0 + · · · + adx

d ∈ Z[x] of degree d.
A positive integer h.

Output: A polynomial Q(x) = b0 + · · · + bnxn ∈ Z[x] of height � h such that PQ
is a Littlewood polynomial.
Prints “H(Q) > h” if such a Q does not exist.

Level 0: 1. Set b0 = 1, FOUND = false.
2. Iterate to the level 1.
3. If (FOUND is false), then print “H(Q) > h”.
4. Exit.

Level j: 1. If (FOUND is true) or two identical blocks of length d are detected
in the vector of coefficients (b0, b1, . . . , bj−1) computed so far, return.

2. Check if P (x)(b0 + b1x + · · · + bj−1x
j−1) is already a Littlewood poly-

nomial:
a) if it is, set FOUND = true, print the coefficients of Q and return;

b) if it is not:
i) set lj = 1, compute bj = lj − bj−1a1 − · · · − bmax{0,j−d}amin{j,d};

if |bj | � h, iterate to the next level (j + 1);

ii) set lj = −1, compute bj = lj − bj−1a1 − · · · − bmax{0,j−d}amin{j,d};
if |bj | � h, iterate to the next level (j + 1).

3. Return to the previous level (j − 1).

We coded the Algorithm 14 in C++. The detection of repeating blocks and
checking if the product P (x)(b0 + b1x + · · · + bj−1x

j−1) is already a Littlewood
polynomial are very important to the performance of the program. We shall de-
scribe our implementation.

Before the search is started, we create an array of integers A[ ] of size (2h+1)d

and initially fill this array with zeros. To every block Bs = bs, bs+1, . . . , bs+d−1 of
length d we assign a non-negative integer

c(Bs) = (bs + h)(2h + 1)d−1 + (bs+1 + h)(2h + 1)d−2 + · · · + (bs+d−1 + h)

which is the representation of block Bs in base 2h + 1. If Bs and Bs+1 are two
adjacent blocks in the vector of coefficients, then the number c(Bs+1) can be quickly
computed from the identity

c(Bs+1) = c(Bs)(2h + 1) + bs+d + h (mod (2h + 1)d).

For each new block Bj−d found at the recursion level j � d, we check if A[c(Bj−d)]=
1 and then store the value 1 at A[c(Bj−d)]. If A[c(Bj−d)]= 1, the new block is
identical to one of the blocks computed before.
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In order to check if the product of the polynomials P and Q(x) = b0 + b1x +
· · · + bj−1x

j−1 is already a Littlewood polynomial, it suffices to check the last
d coefficients lj , lj+1, . . . , lj+d−1 of the product PQ. Indeed, all the coefficients
b0, b1, . . . , bj−1 in the course of the recursive search are computed in such a way
that the first j coefficients l0, l1, . . . , lj−1 are −1 or 1. The values lj , lj+1, . . . , lj+d−1

depend only on the last d values bj−d, bj−d+1, . . . , bj−1. We call block B = bj−d,
bj−d+1, . . . , bj−1 the endblock, if the last d coefficients of the product P (x)(bj−d +
bj−d+1x+ · · ·+bj−1x

d−1) belong to the set {−1, 1}. After initialization of the array
A[ ], before the recursive search is started, we precompute all possible endblocks
B and store the values −1 at A[c(B)]. When the block Bs with A[c(Bs)]= −1 is
found, the polynomial Q(x) is printed and the search algorithm is stopped.

We remark that another algorithm for computing Littlewood polynomials with
prescribed factors is given by Mossinghoff in the paper [14]. His approach is quite
different from ours.

7. Computations

All the computations described below were performed on the Linux desktop
computer with the Intel Pentium 4 class 2.4 Ghz processor and 1 GB of RAM. We
used the GNU C++ compiler v.4.1.2.

7.1. Newman polynomials dividing Littlewood polynomials. We ran the
implementation of Algorithm 14 on the list of all Newman polynomials P of degree
deg P � 8. For each of the 255 polynomials P in the list, the program computed
a polynomial Q(x) ∈ Z[x], H(Q) � 2, such that the product PQ is a Littlewood
polynomial L. The total program running time was less than one second. For most
polynomials P , there exists a factor Q of height 1. There are only four exceptional
Newman polynomials P of degree eight with the property that H(L/P ) � 2 for any
Littlewood polynomial L divisible by P . They are given in Table 2. The degree
and height of the factor Q are also given here, together with the recursion depth
reached until all candidates for Q of height 1 were rejected.

Table 2. Four exceptional Newman polynomials of degree 8 with
H(L/P ) � 2.

Polynomial P (x) H(Q) deg Q Recursion depth (h = 1)

1. 1 + x + x4 + x6 + x8 2 208 135
2. 1 + x2 + x4 + x7 + x8 2 208 78
3. 1 + x + x2 + x5 + x6 + x8 2 47 20
4. 1 + x2 + x3 + x6 + x7 + x8 2 47 48

Then we ran the program on the list of Newman polynomials of degree 9. As a
result, we found that 220 of the 256 polynomials divide some Littlewood polynomial
L with the height of the quotient H(L/P ) = 1. The program running time was
also less than one second. For instance, for the Newman quadrinomial P (x) =
1 + x2 + x5 + x9, which was used as an example in Section 4, the program found a
Littlewood polynomial L divisible by P . The coefficients of L are given in Table 3.
Note that the degree 371 of the polynomial L is exactly as predicted by Lemma 8.

Then we used our program once again for h = 2. As a result, we found that 18
polynomials of degree nine of the remaining 36 divide Littlewood polynomials L
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Table 3. The signs of the coefficients l0, l1, . . . , l371 ∈ {−1, 1}
of the Littlewood polynomial L(x) =

∑371
j=0 ljx

j divisible by the
polynomial P (x) = 1 + x2 + x5 + x9.

+ + + + + + + −− + + −− + + − + + + + −− + + + + + + + + +
+ + + + + + − + + − + + + + + + − + + + + + −− + −− + + −−
+ + + + + + + −− + + −− + −−− + + + − + −− + + + − + + −
+ + + − + + − + + − + + − + + + + −− + + − + + − + + −− + +
− + − + + − + + − + + − + + + − + −− + + + + + + −− + + − +
−− + + + − + + + + + + + + + − + + + − + + −− + −− + + −−
+ − + − + + + − + + + + + −− + − + + + + −− + + + + + + − +
+ − + + + −− + + − + + + + + + − + + − + + − + −− + + − + +
+ −− + + −− + − + + + + − + −− + + + + + + + − + + − + + −
+ + + + + − + + + − + + − + + −− + + − + + −− + −− + + + −
+ −− + + − + + + − + + + − + + + −− + + + − + + + + + − + +
−− + + − + + + − + + + + + + − + + + − + + −− + −− + + −−

with H(L/P ) = 2. The computations were completed in 1.6 sec. We launched the
program once more to check if any of the remaining 18 polynomials divide some
Littlewood polynomial with H(L/P ) = 3. The time required for the program to
complete the computations increased to 15.3 sec. The program gave a negative
answer to all 18 polynomials. For the polynomials 1 + x2 + x6 + x7 + x9 and
1+x+x2 +x5 +x7 +x8 +x9 the algorithm reached the recursion depths 4640 and
4648, respectively, before rejecting all possible candidates for Q of height at most
3. For the other 16 polynomials, the maximal depth of the iterations required was
not greater than 373.

Naturally, the polynomials from the last list are very good candidates for New-
man polynomials not dividing any Littlewood polynomial. At least this gave us a
realistic hope that such polynomials do exist. So we tested them using Algorithm 13
(see the next subsection).

In addition, we experimented with some special polynomials of higher degrees.
For instance, we computed the following factor Q of height 1 for the Lehmer poly-
nomial � of degree 10 given above:

Q(x) = 1 + x2 − x3 + x4 + x7 − x8 + x10 + x12 − x13 + x16 − x17 + x18 − x20.

The product �Q is a Littlewood polynomial of degree 30. See also [14] for other
examples.

7.2. Irreducible Newman polynomials not dividing any Littlewood poly-
nomial. We used the numerical solver program MPSolve [4], which is based on
the GMP library [17], for the computations with extended precision. For every
root α = �(α) + i�(α) with modulus |α| > 1 and imaginary part �(α) � 0 of a
given Newman polynomial P, we calculated the approximations a and b of real and
imaginary parts of α to 100 digits. We then chose a real number ε > 0 which is
sufficiently large to compute correct open bounding intervals R = (a − ε, a + ε)
and I = (b − ε, b + ε) for �(α),�(α), so that �(α) ∈ R,�(α) ∈ I. The values of ε
are provided bellow. This procedure was applied to every polynomial P tested by
Algorithm 13.
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We launched the initial test to check the conditions of Theorem 4 for the values
N = 100, δ = 0 on 18 polynomials of degree 9. We set the variable ε which controls
the accuracy of bounding intervals to a relatively large value, namely, ε = 10−14.
This accuracy was consistent with the capacity of the data types interval and
cinterval used by the C-XSC library. The recursion depths reached by the program
and the corresponding times are summarized in Table 4.

Table 4. N = 100, δ = 0, ε = 10−14

P (x) The depth of recursion Time, sec.
1. 67 8.9
2. 50 2.3
3. 71 0.7
4. 35 0.4
5. 59 1.7
6. 101 0.4
7. 101 0.1
8. 49 1.9

The row number in the first column of the table corresponds to the number of
the polynomial in Table 1. If the recursion depth reached is less than N + 1, then
the corresponding polynomial is confirmed to be the polynomial which does not
divide any Littlewood polynomial (see Section 6).

The initial test gave no information about the polynomials numbered 6 and 7.
In contrast, their reciprocals, numbers 5 and 8, were identified as those which do
not divide any Littlewood polynomial. To deal with these two examples (which
obviously must be the polynomials which do not divide any Littlewood polynomial
either), we rewrote the code of the program, replacing the data types interval and
cinterval with multiprecision data types l interval and l cinterval. We then
increased the precision of the bounding intervals to ε = 10−30. The numerical test
confirmed both polynomials as not dividing any Littlewood polynomial (see Table
5).

Table 5. N = 100, δ = 0, ε = 10−30

P (x) The depth of recursion Time, sec.
6. 81 24.2
7. 58 7.6

Then we tested whether some polynomials from Table 1 satisfy the conditions
of Theorem 4 with strictly positive δ. We used the first version of the code due to
a considerable increase in the time required by the program to complete the tests.
The results for δ = 2, which terminated up to N = 100, are given in Table 6.

It is important to note that Table 1 contains only those Newman polynomials
of degree 9 for which numerical tests confirmed that both polynomial P and its
reciprocal P ∗ do not divide any Littlewood polynomial. Moreover, in order to be
absolutely sure, in each case, using the test based on Algorithm 13, we found that
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Table 6. N = 100, δ = 2, ε = 10−14

P (x) The depth of recursion Time, sec.
1. 83 1662.0
2. 59 346.7
4. 49 140.3
5. 75 685.6
8. 67 629.5

at least one of the polynomials P and P ∗ has the required property with a quite
large value of δ. See Table 6, where δ = 2.

In each of the remaining 10 cases, the classification problem was not completely
solved. All 10 remaining polynomials are listed in Table 7.

Table 7. Newman polynomials of degree 9 which are not con-
firmed to divide a Littlewood polynomial.

1. 1 + x2 + x3 + x7 + x9

2. 1 + x2 + x6 + x7 + x9

3. 1 + x + x3 + x4 + x7 + x9

4. 1 + x2 + x5 + x6 + x8 + x9

5. 1 + x + x2 + x3 + x6 + x7 + x9

6. 1 + x2 + x3 + x6 + x7 + x8 + x9

7. 1 + x + x2 + x3 + x5 + x8 + x9

8. 1 + x + x4 + x6 + x7 + x8 + x9

9. 1 + x + x2 + x4 + x7 + x8 + x9

10. 1 + x + x2 + x5 + x7 + x8 + x9

Naturally, one can hope that further searches performed using Algorithm 14
expecting quotients L/P of height H(L/P ) � 4 or additional tests based on Al-
gorithm 13 with increased recursion depths and more accurate bounding intervals
for the roots of P will complete the classification of polynomials given in Table 7.
However, as we said above, in principle, it is possible that P does not divide any
Littlewood polynomial, but this cannot be established by Algorithm 13 applied to
P or P ∗.
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